ggml.c 697 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026200272002820029200302003120032200332003420035200362003720038200392004020041200422004320044200452004620047200482004920050200512005220053200542005520056200572005820059200602006120062200632006420065200662006720068200692007020071200722007320074200752007620077200782007920080200812008220083200842008520086200872008820089200902009120092200932009420095200962009720098200992010020101201022010320104201052010620107201082010920110201112011220113201142011520116201172011820119201202012120122201232012420125201262012720128201292013020131201322013320134201352013620137201382013920140201412014220143201442014520146201472014820149201502015120152201532015420155201562015720158201592016020161201622016320164201652016620167201682016920170201712017220173201742017520176201772017820179201802018120182201832018420185201862018720188201892019020191201922019320194201952019620197201982019920200202012020220203202042020520206202072020820209202102021120212202132021420215202162021720218202192022020221202222022320224202252022620227202282022920230202312023220233202342023520236202372023820239202402024120242202432024420245202462024720248202492025020251202522025320254202552025620257202582025920260202612026220263202642026520266202672026820269202702027120272202732027420275202762027720278202792028020281202822028320284202852028620287202882028920290202912029220293202942029520296202972029820299203002030120302203032030420305203062030720308203092031020311203122031320314203152031620317203182031920320203212032220323203242032520326203272032820329203302033120332203332033420335203362033720338203392034020341203422034320344203452034620347203482034920350203512035220353203542035520356203572035820359203602036120362203632036420365203662036720368203692037020371203722037320374203752037620377203782037920380203812038220383203842038520386203872038820389203902039120392203932039420395203962039720398203992040020401204022040320404204052040620407204082040920410204112041220413204142041520416204172041820419204202042120422204232042420425204262042720428204292043020431204322043320434204352043620437204382043920440204412044220443204442044520446204472044820449204502045120452204532045420455204562045720458204592046020461204622046320464204652046620467204682046920470204712047220473204742047520476204772047820479204802048120482204832048420485204862048720488204892049020491204922049320494204952049620497204982049920500205012050220503205042050520506205072050820509205102051120512205132051420515205162051720518205192052020521205222052320524205252052620527205282052920530205312053220533205342053520536205372053820539205402054120542205432054420545205462054720548205492055020551205522055320554205552055620557205582055920560205612056220563205642056520566205672056820569205702057120572205732057420575205762057720578205792058020581205822058320584205852058620587205882058920590205912059220593205942059520596205972059820599206002060120602206032060420605206062060720608206092061020611206122061320614206152061620617206182061920620206212062220623206242062520626206272062820629206302063120632206332063420635206362063720638206392064020641206422064320644206452064620647206482064920650206512065220653206542065520656206572065820659206602066120662206632066420665206662066720668206692067020671206722067320674206752067620677206782067920680206812068220683206842068520686206872068820689206902069120692206932069420695206962069720698206992070020701207022070320704207052070620707207082070920710207112071220713207142071520716207172071820719207202072120722207232072420725207262072720728207292073020731207322073320734207352073620737207382073920740207412074220743207442074520746207472074820749207502075120752207532075420755207562075720758207592076020761207622076320764207652076620767207682076920770207712077220773207742077520776207772077820779207802078120782207832078420785207862078720788207892079020791207922079320794207952079620797207982079920800208012080220803208042080520806208072080820809208102081120812208132081420815208162081720818208192082020821208222082320824208252082620827208282082920830208312083220833208342083520836208372083820839208402084120842208432084420845208462084720848208492085020851208522085320854208552085620857208582085920860208612086220863208642086520866208672086820869208702087120872208732087420875208762087720878208792088020881208822088320884208852088620887208882088920890208912089220893208942089520896208972089820899209002090120902209032090420905209062090720908209092091020911209122091320914209152091620917209182091920920209212092220923209242092520926209272092820929209302093120932209332093420935209362093720938209392094020941209422094320944209452094620947209482094920950209512095220953209542095520956209572095820959209602096120962209632096420965209662096720968209692097020971209722097320974209752097620977209782097920980209812098220983209842098520986209872098820989209902099120992209932099420995209962099720998209992100021001210022100321004210052100621007210082100921010210112101221013210142101521016210172101821019210202102121022210232102421025210262102721028210292103021031210322103321034210352103621037210382103921040210412104221043210442104521046210472104821049210502105121052210532105421055210562105721058210592106021061210622106321064210652106621067210682106921070210712107221073210742107521076210772107821079210802108121082210832108421085210862108721088210892109021091210922109321094210952109621097210982109921100211012110221103211042110521106211072110821109211102111121112211132111421115211162111721118211192112021121211222112321124211252112621127211282112921130211312113221133211342113521136211372113821139211402114121142211432114421145211462114721148211492115021151211522115321154211552115621157211582115921160211612116221163211642116521166211672116821169211702117121172211732117421175211762117721178211792118021181211822118321184211852118621187211882118921190211912119221193211942119521196211972119821199212002120121202212032120421205212062120721208212092121021211212122121321214212152121621217212182121921220212212122221223212242122521226212272122821229212302123121232212332123421235212362123721238212392124021241212422124321244212452124621247212482124921250212512125221253212542125521256212572125821259212602126121262212632126421265212662126721268212692127021271212722127321274212752127621277212782127921280212812128221283212842128521286212872128821289212902129121292212932129421295212962129721298212992130021301213022130321304213052130621307213082130921310213112131221313213142131521316213172131821319213202132121322213232132421325213262132721328213292133021331213322133321334213352133621337213382133921340213412134221343213442134521346213472134821349213502135121352213532135421355213562135721358213592136021361213622136321364213652136621367213682136921370213712137221373213742137521376213772137821379213802138121382213832138421385213862138721388213892139021391213922139321394213952139621397213982139921400214012140221403214042140521406214072140821409214102141121412214132141421415214162141721418214192142021421214222142321424214252142621427214282142921430214312143221433214342143521436214372143821439214402144121442214432144421445214462144721448214492145021451214522145321454214552145621457214582145921460214612146221463214642146521466214672146821469214702147121472214732147421475214762147721478214792148021481214822148321484214852148621487214882148921490214912149221493214942149521496214972149821499215002150121502215032150421505215062150721508215092151021511215122151321514215152151621517215182151921520215212152221523215242152521526215272152821529215302153121532215332153421535215362153721538215392154021541215422154321544215452154621547215482154921550215512155221553215542155521556215572155821559215602156121562215632156421565215662156721568215692157021571215722157321574215752157621577215782157921580215812158221583215842158521586215872158821589
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  2. #include "ggml.h"
  3. #ifdef GGML_USE_K_QUANTS
  4. #include "k_quants.h"
  5. #endif
  6. #if defined(_MSC_VER) || defined(__MINGW32__)
  7. #include <malloc.h> // using malloc.h with MSC/MINGW
  8. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  9. #include <alloca.h>
  10. #endif
  11. #include <assert.h>
  12. #include <errno.h>
  13. #include <time.h>
  14. #include <math.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. #include <stdint.h>
  18. #include <inttypes.h>
  19. #include <stdio.h>
  20. #include <float.h>
  21. #include <limits.h>
  22. #include <stdarg.h>
  23. #include <signal.h>
  24. #ifdef GGML_USE_METAL
  25. #include <unistd.h>
  26. #endif
  27. // static_assert should be a #define, but if it's not,
  28. // fall back to the _Static_assert C11 keyword.
  29. // if C99 - static_assert is noop
  30. // ref: https://stackoverflow.com/a/53923785/4039976
  31. #ifndef static_assert
  32. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
  33. #define static_assert(cond, msg) _Static_assert(cond, msg)
  34. #else
  35. #define static_assert(cond, msg) struct global_scope_noop_trick
  36. #endif
  37. #endif
  38. #if defined(_MSC_VER)
  39. // disable "possible loss of data" to avoid hundreds of casts
  40. // we should just be careful :)
  41. #pragma warning(disable: 4244 4267)
  42. // disable POSIX deprecation warnigns
  43. // these functions are never going away, anyway
  44. #pragma warning(disable: 4996)
  45. #endif
  46. #if defined(_WIN32)
  47. #include <windows.h>
  48. typedef volatile LONG atomic_int;
  49. typedef atomic_int atomic_bool;
  50. static void atomic_store(atomic_int * ptr, LONG val) {
  51. InterlockedExchange(ptr, val);
  52. }
  53. static LONG atomic_load(atomic_int * ptr) {
  54. return InterlockedCompareExchange(ptr, 0, 0);
  55. }
  56. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  57. return InterlockedExchangeAdd(ptr, inc);
  58. }
  59. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  60. return atomic_fetch_add(ptr, -(dec));
  61. }
  62. typedef HANDLE pthread_t;
  63. typedef DWORD thread_ret_t;
  64. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  65. (void) unused;
  66. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  67. if (handle == NULL)
  68. {
  69. return EAGAIN;
  70. }
  71. *out = handle;
  72. return 0;
  73. }
  74. static int pthread_join(pthread_t thread, void * unused) {
  75. (void) unused;
  76. int ret = (int) WaitForSingleObject(thread, INFINITE);
  77. CloseHandle(thread);
  78. return ret;
  79. }
  80. static int sched_yield (void) {
  81. Sleep (0);
  82. return 0;
  83. }
  84. #else
  85. #include <pthread.h>
  86. #include <stdatomic.h>
  87. typedef void * thread_ret_t;
  88. #include <sys/types.h>
  89. #include <sys/stat.h>
  90. #include <unistd.h>
  91. #endif
  92. #ifdef GGML_USE_CPU_HBM
  93. #include <hbwmalloc.h>
  94. #endif
  95. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  96. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  97. #ifndef __FMA__
  98. #define __FMA__
  99. #endif
  100. #ifndef __F16C__
  101. #define __F16C__
  102. #endif
  103. #ifndef __SSE3__
  104. #define __SSE3__
  105. #endif
  106. #endif
  107. /*#define GGML_PERF*/
  108. #define GGML_DEBUG 0
  109. #define GGML_GELU_FP16
  110. #define GGML_GELU_QUICK_FP16
  111. #define GGML_SILU_FP16
  112. // #define GGML_CROSS_ENTROPY_EXP_FP16
  113. // #define GGML_FLASH_ATTN_EXP_FP16
  114. #define GGML_SOFT_MAX_UNROLL 4
  115. #define GGML_VEC_DOT_UNROLL 2
  116. #define GGML_VEC_MAD_UNROLL 32
  117. //
  118. // logging
  119. //
  120. #if (GGML_DEBUG >= 1)
  121. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  122. #else
  123. #define GGML_PRINT_DEBUG(...)
  124. #endif
  125. #if (GGML_DEBUG >= 5)
  126. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  127. #else
  128. #define GGML_PRINT_DEBUG_5(...)
  129. #endif
  130. #if (GGML_DEBUG >= 10)
  131. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  132. #else
  133. #define GGML_PRINT_DEBUG_10(...)
  134. #endif
  135. #define GGML_PRINT(...) printf(__VA_ARGS__)
  136. #ifdef GGML_USE_ACCELERATE
  137. // uncomment to use vDSP for soft max computation
  138. // note: not sure if it is actually faster
  139. //#define GGML_SOFT_MAX_ACCELERATE
  140. #endif
  141. //
  142. // logging
  143. //
  144. #if (GGML_DEBUG >= 1)
  145. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  146. #else
  147. #define GGML_PRINT_DEBUG(...)
  148. #endif
  149. #if (GGML_DEBUG >= 5)
  150. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  151. #else
  152. #define GGML_PRINT_DEBUG_5(...)
  153. #endif
  154. #if (GGML_DEBUG >= 10)
  155. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  156. #else
  157. #define GGML_PRINT_DEBUG_10(...)
  158. #endif
  159. #define GGML_PRINT(...) printf(__VA_ARGS__)
  160. //
  161. // end of logging block
  162. //
  163. #if defined(_MSC_VER) || defined(__MINGW32__)
  164. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  165. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  166. #else
  167. inline static void * ggml_aligned_malloc(size_t size) {
  168. if (size == 0) {
  169. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  170. return NULL;
  171. }
  172. void * aligned_memory = NULL;
  173. #ifdef GGML_USE_CPU_HBM
  174. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  175. #elif GGML_USE_METAL
  176. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  177. #else
  178. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  179. #endif
  180. if (result != 0) {
  181. // Handle allocation failure
  182. const char *error_desc = "unknown allocation error";
  183. switch (result) {
  184. case EINVAL:
  185. error_desc = "invalid alignment value";
  186. break;
  187. case ENOMEM:
  188. error_desc = "insufficient memory";
  189. break;
  190. }
  191. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  192. return NULL;
  193. }
  194. return aligned_memory;
  195. }
  196. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  197. #ifdef GGML_USE_CPU_HBM
  198. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  199. #else
  200. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  201. #endif
  202. #endif
  203. #define UNUSED GGML_UNUSED
  204. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  205. //
  206. // tensor access macros
  207. //
  208. #define GGML_TENSOR_UNARY_OP_LOCALS \
  209. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  210. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  211. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  212. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  213. #define GGML_TENSOR_BINARY_OP_LOCALS \
  214. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  215. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  216. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  217. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
  218. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  219. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  220. #if defined(GGML_USE_ACCELERATE)
  221. #include <Accelerate/Accelerate.h>
  222. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  223. #include "ggml-opencl.h"
  224. #endif
  225. #elif defined(GGML_USE_OPENBLAS)
  226. #if defined(GGML_BLAS_USE_MKL)
  227. #include <mkl.h>
  228. #else
  229. #include <cblas.h>
  230. #endif
  231. #elif defined(GGML_USE_CUBLAS)
  232. #include "ggml-cuda.h"
  233. #elif defined(GGML_USE_CLBLAST)
  234. #include "ggml-opencl.h"
  235. #endif
  236. #undef MIN
  237. #undef MAX
  238. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  239. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  240. // floating point type used to accumulate sums
  241. typedef double ggml_float;
  242. // 16-bit float
  243. // on Arm, we use __fp16
  244. // on x86, we use uint16_t
  245. #if defined(__ARM_NEON) && !defined(_MSC_VER)
  246. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  247. //
  248. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  249. //
  250. #include <arm_neon.h>
  251. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  252. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  253. #define GGML_FP16_TO_FP32(x) ((float) (x))
  254. #define GGML_FP32_TO_FP16(x) (x)
  255. #else
  256. #ifdef __wasm_simd128__
  257. #include <wasm_simd128.h>
  258. #else
  259. #ifdef __POWER9_VECTOR__
  260. #include <altivec.h>
  261. #undef bool
  262. #define bool _Bool
  263. #else
  264. #if defined(_MSC_VER) || defined(__MINGW32__)
  265. #include <intrin.h>
  266. #else
  267. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__)
  268. #if !defined(__riscv)
  269. #include <immintrin.h>
  270. #endif
  271. #endif
  272. #endif
  273. #endif
  274. #endif
  275. #ifdef __riscv_v_intrinsic
  276. #include <riscv_vector.h>
  277. #endif
  278. #ifdef __F16C__
  279. #ifdef _MSC_VER
  280. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  281. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  282. #else
  283. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  284. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  285. #endif
  286. #elif defined(__POWER9_VECTOR__)
  287. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  288. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  289. /* the inline asm below is about 12% faster than the lookup method */
  290. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  291. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  292. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  293. register float f;
  294. register double d;
  295. __asm__(
  296. "mtfprd %0,%2\n"
  297. "xscvhpdp %0,%0\n"
  298. "frsp %1,%0\n" :
  299. /* temp */ "=d"(d),
  300. /* out */ "=f"(f):
  301. /* in */ "r"(h));
  302. return f;
  303. }
  304. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  305. register double d;
  306. register ggml_fp16_t r;
  307. __asm__( /* xscvdphp can work on double or single precision */
  308. "xscvdphp %0,%2\n"
  309. "mffprd %1,%0\n" :
  310. /* temp */ "=d"(d),
  311. /* out */ "=r"(r):
  312. /* in */ "f"(f));
  313. return r;
  314. }
  315. #else
  316. // FP16 <-> FP32
  317. // ref: https://github.com/Maratyszcza/FP16
  318. static inline float fp32_from_bits(uint32_t w) {
  319. union {
  320. uint32_t as_bits;
  321. float as_value;
  322. } fp32;
  323. fp32.as_bits = w;
  324. return fp32.as_value;
  325. }
  326. static inline uint32_t fp32_to_bits(float f) {
  327. union {
  328. float as_value;
  329. uint32_t as_bits;
  330. } fp32;
  331. fp32.as_value = f;
  332. return fp32.as_bits;
  333. }
  334. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  335. const uint32_t w = (uint32_t) h << 16;
  336. const uint32_t sign = w & UINT32_C(0x80000000);
  337. const uint32_t two_w = w + w;
  338. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  339. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  340. const float exp_scale = 0x1.0p-112f;
  341. #else
  342. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  343. #endif
  344. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  345. const uint32_t magic_mask = UINT32_C(126) << 23;
  346. const float magic_bias = 0.5f;
  347. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  348. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  349. const uint32_t result = sign |
  350. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  351. return fp32_from_bits(result);
  352. }
  353. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  354. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  355. const float scale_to_inf = 0x1.0p+112f;
  356. const float scale_to_zero = 0x1.0p-110f;
  357. #else
  358. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  359. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  360. #endif
  361. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  362. const uint32_t w = fp32_to_bits(f);
  363. const uint32_t shl1_w = w + w;
  364. const uint32_t sign = w & UINT32_C(0x80000000);
  365. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  366. if (bias < UINT32_C(0x71000000)) {
  367. bias = UINT32_C(0x71000000);
  368. }
  369. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  370. const uint32_t bits = fp32_to_bits(base);
  371. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  372. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  373. const uint32_t nonsign = exp_bits + mantissa_bits;
  374. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  375. }
  376. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  377. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  378. #endif // __F16C__
  379. #endif // __ARM_NEON
  380. //
  381. // global data
  382. //
  383. // precomputed gelu table for f16 (128 KB)
  384. static ggml_fp16_t table_gelu_f16[1 << 16];
  385. // precomputed quick gelu table for f16 (128 KB)
  386. static ggml_fp16_t table_gelu_quick_f16[1 << 16];
  387. // precomputed silu table for f16 (128 KB)
  388. static ggml_fp16_t table_silu_f16[1 << 16];
  389. // precomputed exp table for f16 (128 KB)
  390. static ggml_fp16_t table_exp_f16[1 << 16];
  391. // precomputed f32 table for f16 (256 KB)
  392. static float table_f32_f16[1 << 16];
  393. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  394. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  395. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  396. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  397. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  398. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  399. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  400. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  401. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  402. // precomputed tables for expanding 8bits to 8 bytes:
  403. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  404. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  405. #endif
  406. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  407. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  408. // This is also true for POWER9.
  409. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  410. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  411. uint16_t s;
  412. memcpy(&s, &f, sizeof(uint16_t));
  413. return table_f32_f16[s];
  414. }
  415. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  416. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  417. #endif
  418. // note: do not use these inside ggml.c
  419. // these are meant to be used via the ggml.h API
  420. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  421. return (float) GGML_FP16_TO_FP32(x);
  422. }
  423. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  424. return GGML_FP32_TO_FP16(x);
  425. }
  426. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  427. for (int i = 0; i < n; i++) {
  428. y[i] = GGML_FP16_TO_FP32(x[i]);
  429. }
  430. }
  431. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  432. int i = 0;
  433. #if defined(__F16C__)
  434. for (; i + 7 < n; i += 8) {
  435. __m256 x_vec = _mm256_loadu_ps(x + i);
  436. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  437. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  438. }
  439. for(; i + 3 < n; i += 4) {
  440. __m128 x_vec = _mm_loadu_ps(x + i);
  441. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  442. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  443. }
  444. #endif
  445. for (; i < n; i++) {
  446. y[i] = GGML_FP32_TO_FP16(x[i]);
  447. }
  448. }
  449. //
  450. // timing
  451. //
  452. #if defined(_MSC_VER) || defined(__MINGW32__)
  453. static int64_t timer_freq, timer_start;
  454. void ggml_time_init(void) {
  455. LARGE_INTEGER t;
  456. QueryPerformanceFrequency(&t);
  457. timer_freq = t.QuadPart;
  458. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  459. // and the uptime is high enough.
  460. // We subtract the program start time to reduce the likelihood of that happening.
  461. QueryPerformanceCounter(&t);
  462. timer_start = t.QuadPart;
  463. }
  464. int64_t ggml_time_ms(void) {
  465. LARGE_INTEGER t;
  466. QueryPerformanceCounter(&t);
  467. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  468. }
  469. int64_t ggml_time_us(void) {
  470. LARGE_INTEGER t;
  471. QueryPerformanceCounter(&t);
  472. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  473. }
  474. #else
  475. void ggml_time_init(void) {}
  476. int64_t ggml_time_ms(void) {
  477. struct timespec ts;
  478. clock_gettime(CLOCK_MONOTONIC, &ts);
  479. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  480. }
  481. int64_t ggml_time_us(void) {
  482. struct timespec ts;
  483. clock_gettime(CLOCK_MONOTONIC, &ts);
  484. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  485. }
  486. #endif
  487. int64_t ggml_cycles(void) {
  488. return clock();
  489. }
  490. int64_t ggml_cycles_per_ms(void) {
  491. return CLOCKS_PER_SEC/1000;
  492. }
  493. #ifdef GGML_PERF
  494. #define ggml_perf_time_ms() ggml_time_ms()
  495. #define ggml_perf_time_us() ggml_time_us()
  496. #define ggml_perf_cycles() ggml_cycles()
  497. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  498. #else
  499. #define ggml_perf_time_ms() 0
  500. #define ggml_perf_time_us() 0
  501. #define ggml_perf_cycles() 0
  502. #define ggml_perf_cycles_per_ms() 0
  503. #endif
  504. //
  505. // cache line
  506. //
  507. #if defined(__cpp_lib_hardware_interference_size)
  508. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  509. #else
  510. #if defined(__POWER9_VECTOR__)
  511. #define CACHE_LINE_SIZE 128
  512. #else
  513. #define CACHE_LINE_SIZE 64
  514. #endif
  515. #endif
  516. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  517. //
  518. // quantization
  519. //
  520. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  521. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  522. // multiply int8_t, add results pairwise twice
  523. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  524. // Get absolute values of x vectors
  525. const __m128i ax = _mm_sign_epi8(x, x);
  526. // Sign the values of the y vectors
  527. const __m128i sy = _mm_sign_epi8(y, x);
  528. // Perform multiplication and create 16-bit values
  529. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  530. const __m128i ones = _mm_set1_epi16(1);
  531. return _mm_madd_epi16(ones, dot);
  532. }
  533. #if __AVX__ || __AVX2__ || __AVX512F__
  534. // horizontally add 8 floats
  535. static inline float hsum_float_8(const __m256 x) {
  536. __m128 res = _mm256_extractf128_ps(x, 1);
  537. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  538. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  539. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  540. return _mm_cvtss_f32(res);
  541. }
  542. // horizontally add 8 int32_t
  543. static inline int hsum_i32_8(const __m256i a) {
  544. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  545. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  546. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  547. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  548. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  549. }
  550. // horizontally add 4 int32_t
  551. static inline int hsum_i32_4(const __m128i a) {
  552. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  553. const __m128i sum64 = _mm_add_epi32(hi64, a);
  554. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  555. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  556. }
  557. #if defined(__AVX2__) || defined(__AVX512F__)
  558. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  559. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  560. uint32_t x32;
  561. memcpy(&x32, x, sizeof(uint32_t));
  562. const __m256i shuf_mask = _mm256_set_epi64x(
  563. 0x0303030303030303, 0x0202020202020202,
  564. 0x0101010101010101, 0x0000000000000000);
  565. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  566. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  567. bytes = _mm256_or_si256(bytes, bit_mask);
  568. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  569. }
  570. // Unpack 32 4-bit fields into 32 bytes
  571. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  572. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  573. {
  574. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  575. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  576. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  577. return _mm256_and_si256(lowMask, bytes);
  578. }
  579. // add int16_t pairwise and return as float vector
  580. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  581. const __m256i ones = _mm256_set1_epi16(1);
  582. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  583. return _mm256_cvtepi32_ps(summed_pairs);
  584. }
  585. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  586. #if __AVXVNNI__
  587. const __m256i zero = _mm256_setzero_si256();
  588. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  589. return _mm256_cvtepi32_ps(summed_pairs);
  590. #else
  591. // Perform multiplication and create 16-bit values
  592. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  593. return sum_i16_pairs_float(dot);
  594. #endif
  595. }
  596. // multiply int8_t, add results pairwise twice and return as float vector
  597. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  598. #if __AVXVNNIINT8__
  599. const __m256i zero = _mm256_setzero_si256();
  600. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  601. return _mm256_cvtepi32_ps(summed_pairs);
  602. #else
  603. // Get absolute values of x vectors
  604. const __m256i ax = _mm256_sign_epi8(x, x);
  605. // Sign the values of the y vectors
  606. const __m256i sy = _mm256_sign_epi8(y, x);
  607. return mul_sum_us8_pairs_float(ax, sy);
  608. #endif
  609. }
  610. static inline __m128i packNibbles( __m256i bytes )
  611. {
  612. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  613. #if __AVX512F__
  614. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  615. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  616. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  617. #else
  618. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  619. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  620. __m256i low = _mm256_and_si256( lowByte, bytes );
  621. high = _mm256_srli_epi16( high, 4 );
  622. bytes = _mm256_or_si256( low, high );
  623. // Compress uint16_t lanes into bytes
  624. __m128i r0 = _mm256_castsi256_si128( bytes );
  625. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  626. return _mm_packus_epi16( r0, r1 );
  627. #endif
  628. }
  629. #elif defined(__AVX__)
  630. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  631. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  632. uint32_t x32;
  633. memcpy(&x32, x, sizeof(uint32_t));
  634. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  635. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  636. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  637. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  638. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  639. bytesl = _mm_or_si128(bytesl, bit_mask);
  640. bytesh = _mm_or_si128(bytesh, bit_mask);
  641. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  642. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  643. return MM256_SET_M128I(bytesh, bytesl);
  644. }
  645. // Unpack 32 4-bit fields into 32 bytes
  646. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  647. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  648. {
  649. // Load 16 bytes from memory
  650. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  651. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  652. const __m128i lowMask = _mm_set1_epi8(0xF);
  653. tmpl = _mm_and_si128(lowMask, tmpl);
  654. tmph = _mm_and_si128(lowMask, tmph);
  655. return MM256_SET_M128I(tmph, tmpl);
  656. }
  657. // add int16_t pairwise and return as float vector
  658. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  659. const __m128i ones = _mm_set1_epi16(1);
  660. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  661. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  662. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  663. return _mm256_cvtepi32_ps(summed_pairs);
  664. }
  665. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  666. const __m128i axl = _mm256_castsi256_si128(ax);
  667. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  668. const __m128i syl = _mm256_castsi256_si128(sy);
  669. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  670. // Perform multiplication and create 16-bit values
  671. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  672. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  673. return sum_i16_pairs_float(doth, dotl);
  674. }
  675. // multiply int8_t, add results pairwise twice and return as float vector
  676. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  677. const __m128i xl = _mm256_castsi256_si128(x);
  678. const __m128i xh = _mm256_extractf128_si256(x, 1);
  679. const __m128i yl = _mm256_castsi256_si128(y);
  680. const __m128i yh = _mm256_extractf128_si256(y, 1);
  681. // Get absolute values of x vectors
  682. const __m128i axl = _mm_sign_epi8(xl, xl);
  683. const __m128i axh = _mm_sign_epi8(xh, xh);
  684. // Sign the values of the y vectors
  685. const __m128i syl = _mm_sign_epi8(yl, xl);
  686. const __m128i syh = _mm_sign_epi8(yh, xh);
  687. // Perform multiplication and create 16-bit values
  688. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  689. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  690. return sum_i16_pairs_float(doth, dotl);
  691. }
  692. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  693. {
  694. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  695. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  696. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  697. __m128i low = _mm_and_si128( lowByte, bytes1 );
  698. high = _mm_srli_epi16( high, 4 );
  699. bytes1 = _mm_or_si128( low, high );
  700. high = _mm_andnot_si128( lowByte, bytes2 );
  701. low = _mm_and_si128( lowByte, bytes2 );
  702. high = _mm_srli_epi16( high, 4 );
  703. bytes2 = _mm_or_si128( low, high );
  704. return _mm_packus_epi16( bytes1, bytes2);
  705. }
  706. #endif
  707. #elif defined(__SSSE3__)
  708. // horizontally add 4x4 floats
  709. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  710. __m128 res_0 =_mm_hadd_ps(a, b);
  711. __m128 res_1 =_mm_hadd_ps(c, d);
  712. __m128 res =_mm_hadd_ps(res_0, res_1);
  713. res =_mm_hadd_ps(res, res);
  714. res =_mm_hadd_ps(res, res);
  715. return _mm_cvtss_f32(res);
  716. }
  717. #endif // __AVX__ || __AVX2__ || __AVX512F__
  718. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  719. #if defined(__ARM_NEON)
  720. #if !defined(__aarch64__)
  721. inline static int32_t vaddvq_s32(int32x4_t v) {
  722. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  723. }
  724. inline static float vaddvq_f32(float32x4_t v) {
  725. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  726. }
  727. inline static float vmaxvq_f32(float32x4_t v) {
  728. return
  729. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  730. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  731. }
  732. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  733. int32x4_t res;
  734. res[0] = roundf(vgetq_lane_f32(v, 0));
  735. res[1] = roundf(vgetq_lane_f32(v, 1));
  736. res[2] = roundf(vgetq_lane_f32(v, 2));
  737. res[3] = roundf(vgetq_lane_f32(v, 3));
  738. return res;
  739. }
  740. #endif
  741. #endif
  742. #define QK4_0 32
  743. typedef struct {
  744. ggml_fp16_t d; // delta
  745. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  746. } block_q4_0;
  747. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  748. #define QK4_1 32
  749. typedef struct {
  750. ggml_fp16_t d; // delta
  751. ggml_fp16_t m; // min
  752. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  753. } block_q4_1;
  754. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  755. #define QK5_0 32
  756. typedef struct {
  757. ggml_fp16_t d; // delta
  758. uint8_t qh[4]; // 5-th bit of quants
  759. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  760. } block_q5_0;
  761. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  762. #define QK5_1 32
  763. typedef struct {
  764. ggml_fp16_t d; // delta
  765. ggml_fp16_t m; // min
  766. uint8_t qh[4]; // 5-th bit of quants
  767. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  768. } block_q5_1;
  769. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  770. #define QK8_0 32
  771. typedef struct {
  772. ggml_fp16_t d; // delta
  773. int8_t qs[QK8_0]; // quants
  774. } block_q8_0;
  775. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  776. #define QK8_1 32
  777. typedef struct {
  778. float d; // delta
  779. float s; // d * sum(qs[i])
  780. int8_t qs[QK8_1]; // quants
  781. } block_q8_1;
  782. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  783. // reference implementation for deterministic creation of model files
  784. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  785. static const int qk = QK4_0;
  786. assert(k % qk == 0);
  787. const int nb = k / qk;
  788. for (int i = 0; i < nb; i++) {
  789. float amax = 0.0f; // absolute max
  790. float max = 0.0f;
  791. for (int j = 0; j < qk; j++) {
  792. const float v = x[i*qk + j];
  793. if (amax < fabsf(v)) {
  794. amax = fabsf(v);
  795. max = v;
  796. }
  797. }
  798. const float d = max / -8;
  799. const float id = d ? 1.0f/d : 0.0f;
  800. y[i].d = GGML_FP32_TO_FP16(d);
  801. for (int j = 0; j < qk/2; ++j) {
  802. const float x0 = x[i*qk + 0 + j]*id;
  803. const float x1 = x[i*qk + qk/2 + j]*id;
  804. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  805. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  806. y[i].qs[j] = xi0;
  807. y[i].qs[j] |= xi1 << 4;
  808. }
  809. }
  810. }
  811. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  812. quantize_row_q4_0_reference(x, y, k);
  813. }
  814. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  815. const int qk = QK4_1;
  816. assert(k % qk == 0);
  817. const int nb = k / qk;
  818. for (int i = 0; i < nb; i++) {
  819. float min = FLT_MAX;
  820. float max = -FLT_MAX;
  821. for (int j = 0; j < qk; j++) {
  822. const float v = x[i*qk + j];
  823. if (v < min) min = v;
  824. if (v > max) max = v;
  825. }
  826. const float d = (max - min) / ((1 << 4) - 1);
  827. const float id = d ? 1.0f/d : 0.0f;
  828. y[i].d = GGML_FP32_TO_FP16(d);
  829. y[i].m = GGML_FP32_TO_FP16(min);
  830. for (int j = 0; j < qk/2; ++j) {
  831. const float x0 = (x[i*qk + 0 + j] - min)*id;
  832. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  833. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  834. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  835. y[i].qs[j] = xi0;
  836. y[i].qs[j] |= xi1 << 4;
  837. }
  838. }
  839. }
  840. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  841. quantize_row_q4_1_reference(x, y, k);
  842. }
  843. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  844. static const int qk = QK5_0;
  845. assert(k % qk == 0);
  846. const int nb = k / qk;
  847. for (int i = 0; i < nb; i++) {
  848. float amax = 0.0f; // absolute max
  849. float max = 0.0f;
  850. for (int j = 0; j < qk; j++) {
  851. const float v = x[i*qk + j];
  852. if (amax < fabsf(v)) {
  853. amax = fabsf(v);
  854. max = v;
  855. }
  856. }
  857. const float d = max / -16;
  858. const float id = d ? 1.0f/d : 0.0f;
  859. y[i].d = GGML_FP32_TO_FP16(d);
  860. uint32_t qh = 0;
  861. for (int j = 0; j < qk/2; ++j) {
  862. const float x0 = x[i*qk + 0 + j]*id;
  863. const float x1 = x[i*qk + qk/2 + j]*id;
  864. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  865. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  866. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  867. // get the 5-th bit and store it in qh at the right position
  868. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  869. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  870. }
  871. memcpy(&y[i].qh, &qh, sizeof(qh));
  872. }
  873. }
  874. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  875. quantize_row_q5_0_reference(x, y, k);
  876. }
  877. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  878. const int qk = QK5_1;
  879. assert(k % qk == 0);
  880. const int nb = k / qk;
  881. for (int i = 0; i < nb; i++) {
  882. float min = FLT_MAX;
  883. float max = -FLT_MAX;
  884. for (int j = 0; j < qk; j++) {
  885. const float v = x[i*qk + j];
  886. if (v < min) min = v;
  887. if (v > max) max = v;
  888. }
  889. const float d = (max - min) / ((1 << 5) - 1);
  890. const float id = d ? 1.0f/d : 0.0f;
  891. y[i].d = GGML_FP32_TO_FP16(d);
  892. y[i].m = GGML_FP32_TO_FP16(min);
  893. uint32_t qh = 0;
  894. for (int j = 0; j < qk/2; ++j) {
  895. const float x0 = (x[i*qk + 0 + j] - min)*id;
  896. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  897. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  898. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  899. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  900. // get the 5-th bit and store it in qh at the right position
  901. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  902. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  903. }
  904. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  905. }
  906. }
  907. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  908. quantize_row_q5_1_reference(x, y, k);
  909. }
  910. // reference implementation for deterministic creation of model files
  911. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  912. assert(k % QK8_0 == 0);
  913. const int nb = k / QK8_0;
  914. for (int i = 0; i < nb; i++) {
  915. float amax = 0.0f; // absolute max
  916. for (int j = 0; j < QK8_0; j++) {
  917. const float v = x[i*QK8_0 + j];
  918. amax = MAX(amax, fabsf(v));
  919. }
  920. const float d = amax / ((1 << 7) - 1);
  921. const float id = d ? 1.0f/d : 0.0f;
  922. y[i].d = GGML_FP32_TO_FP16(d);
  923. for (int j = 0; j < QK8_0; ++j) {
  924. const float x0 = x[i*QK8_0 + j]*id;
  925. y[i].qs[j] = roundf(x0);
  926. }
  927. }
  928. }
  929. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  930. assert(QK8_0 == 32);
  931. assert(k % QK8_0 == 0);
  932. const int nb = k / QK8_0;
  933. block_q8_0 * restrict y = vy;
  934. #if defined(__ARM_NEON)
  935. for (int i = 0; i < nb; i++) {
  936. float32x4_t srcv [8];
  937. float32x4_t asrcv[8];
  938. float32x4_t amaxv[8];
  939. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  940. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  941. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  942. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  943. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  944. const float amax = vmaxvq_f32(amaxv[0]);
  945. const float d = amax / ((1 << 7) - 1);
  946. const float id = d ? 1.0f/d : 0.0f;
  947. y[i].d = GGML_FP32_TO_FP16(d);
  948. for (int j = 0; j < 8; j++) {
  949. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  950. const int32x4_t vi = vcvtnq_s32_f32(v);
  951. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  952. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  953. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  954. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  955. }
  956. }
  957. #elif defined(__wasm_simd128__)
  958. for (int i = 0; i < nb; i++) {
  959. v128_t srcv [8];
  960. v128_t asrcv[8];
  961. v128_t amaxv[8];
  962. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  963. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  964. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  965. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  966. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  967. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  968. wasm_f32x4_extract_lane(amaxv[0], 1)),
  969. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  970. wasm_f32x4_extract_lane(amaxv[0], 3)));
  971. const float d = amax / ((1 << 7) - 1);
  972. const float id = d ? 1.0f/d : 0.0f;
  973. y[i].d = GGML_FP32_TO_FP16(d);
  974. for (int j = 0; j < 8; j++) {
  975. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  976. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  977. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  978. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  979. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  980. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  981. }
  982. }
  983. #elif defined(__AVX2__) || defined(__AVX__)
  984. for (int i = 0; i < nb; i++) {
  985. // Load elements into 4 AVX vectors
  986. __m256 v0 = _mm256_loadu_ps( x );
  987. __m256 v1 = _mm256_loadu_ps( x + 8 );
  988. __m256 v2 = _mm256_loadu_ps( x + 16 );
  989. __m256 v3 = _mm256_loadu_ps( x + 24 );
  990. x += 32;
  991. // Compute max(abs(e)) for the block
  992. const __m256 signBit = _mm256_set1_ps( -0.0f );
  993. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  994. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  995. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  996. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  997. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  998. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  999. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1000. const float maxScalar = _mm_cvtss_f32( max4 );
  1001. // Quantize these floats
  1002. const float d = maxScalar / 127.f;
  1003. y[i].d = GGML_FP32_TO_FP16(d);
  1004. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1005. const __m256 mul = _mm256_set1_ps( id );
  1006. // Apply the multiplier
  1007. v0 = _mm256_mul_ps( v0, mul );
  1008. v1 = _mm256_mul_ps( v1, mul );
  1009. v2 = _mm256_mul_ps( v2, mul );
  1010. v3 = _mm256_mul_ps( v3, mul );
  1011. // Round to nearest integer
  1012. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1013. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1014. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1015. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1016. // Convert floats to integers
  1017. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1018. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1019. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1020. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1021. #if defined(__AVX2__)
  1022. // Convert int32 to int16
  1023. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1024. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1025. // Convert int16 to int8
  1026. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1027. // We got our precious signed bytes, but the order is now wrong
  1028. // These AVX2 pack instructions process 16-byte pieces independently
  1029. // The following instruction is fixing the order
  1030. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1031. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1032. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1033. #else
  1034. // Since we don't have in AVX some necessary functions,
  1035. // we split the registers in half and call AVX2 analogs from SSE
  1036. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1037. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1038. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1039. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1040. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1041. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1042. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1043. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1044. // Convert int32 to int16
  1045. ni0 = _mm_packs_epi32( ni0, ni1 );
  1046. ni2 = _mm_packs_epi32( ni2, ni3 );
  1047. ni4 = _mm_packs_epi32( ni4, ni5 );
  1048. ni6 = _mm_packs_epi32( ni6, ni7 );
  1049. // Convert int16 to int8
  1050. ni0 = _mm_packs_epi16( ni0, ni2 );
  1051. ni4 = _mm_packs_epi16( ni4, ni6 );
  1052. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1053. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1054. #endif
  1055. }
  1056. #else
  1057. // scalar
  1058. quantize_row_q8_0_reference(x, y, k);
  1059. #endif
  1060. }
  1061. // reference implementation for deterministic creation of model files
  1062. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1063. assert(QK8_1 == 32);
  1064. assert(k % QK8_1 == 0);
  1065. const int nb = k / QK8_1;
  1066. for (int i = 0; i < nb; i++) {
  1067. float amax = 0.0f; // absolute max
  1068. for (int j = 0; j < QK8_1; j++) {
  1069. const float v = x[i*QK8_1 + j];
  1070. amax = MAX(amax, fabsf(v));
  1071. }
  1072. const float d = amax / ((1 << 7) - 1);
  1073. const float id = d ? 1.0f/d : 0.0f;
  1074. y[i].d = d;
  1075. int sum = 0;
  1076. for (int j = 0; j < QK8_1/2; ++j) {
  1077. const float v0 = x[i*QK8_1 + j]*id;
  1078. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1079. y[i].qs[ j] = roundf(v0);
  1080. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1081. sum += y[i].qs[ j];
  1082. sum += y[i].qs[QK8_1/2 + j];
  1083. }
  1084. y[i].s = sum*d;
  1085. }
  1086. }
  1087. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1088. assert(k % QK8_1 == 0);
  1089. const int nb = k / QK8_1;
  1090. block_q8_1 * restrict y = vy;
  1091. #if defined(__ARM_NEON)
  1092. for (int i = 0; i < nb; i++) {
  1093. float32x4_t srcv [8];
  1094. float32x4_t asrcv[8];
  1095. float32x4_t amaxv[8];
  1096. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1097. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1098. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1099. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1100. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1101. const float amax = vmaxvq_f32(amaxv[0]);
  1102. const float d = amax / ((1 << 7) - 1);
  1103. const float id = d ? 1.0f/d : 0.0f;
  1104. y[i].d = d;
  1105. int32x4_t accv = vdupq_n_s32(0);
  1106. for (int j = 0; j < 8; j++) {
  1107. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1108. const int32x4_t vi = vcvtnq_s32_f32(v);
  1109. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1110. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1111. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1112. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1113. accv = vaddq_s32(accv, vi);
  1114. }
  1115. y[i].s = d * vaddvq_s32(accv);
  1116. }
  1117. #elif defined(__wasm_simd128__)
  1118. for (int i = 0; i < nb; i++) {
  1119. v128_t srcv [8];
  1120. v128_t asrcv[8];
  1121. v128_t amaxv[8];
  1122. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1123. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1124. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1125. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1126. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1127. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1128. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1129. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1130. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1131. const float d = amax / ((1 << 7) - 1);
  1132. const float id = d ? 1.0f/d : 0.0f;
  1133. y[i].d = d;
  1134. v128_t accv = wasm_i32x4_splat(0);
  1135. for (int j = 0; j < 8; j++) {
  1136. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1137. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1138. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1139. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1140. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1141. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1142. accv = wasm_i32x4_add(accv, vi);
  1143. }
  1144. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1145. wasm_i32x4_extract_lane(accv, 1) +
  1146. wasm_i32x4_extract_lane(accv, 2) +
  1147. wasm_i32x4_extract_lane(accv, 3));
  1148. }
  1149. #elif defined(__AVX2__) || defined(__AVX__)
  1150. for (int i = 0; i < nb; i++) {
  1151. // Load elements into 4 AVX vectors
  1152. __m256 v0 = _mm256_loadu_ps( x );
  1153. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1154. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1155. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1156. x += 32;
  1157. // Compute max(abs(e)) for the block
  1158. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1159. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1160. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1161. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1162. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1163. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1164. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1165. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1166. const float maxScalar = _mm_cvtss_f32( max4 );
  1167. // Quantize these floats
  1168. const float d = maxScalar / 127.f;
  1169. y[i].d = d;
  1170. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1171. const __m256 mul = _mm256_set1_ps( id );
  1172. // Apply the multiplier
  1173. v0 = _mm256_mul_ps( v0, mul );
  1174. v1 = _mm256_mul_ps( v1, mul );
  1175. v2 = _mm256_mul_ps( v2, mul );
  1176. v3 = _mm256_mul_ps( v3, mul );
  1177. // Round to nearest integer
  1178. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1179. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1180. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1181. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1182. // Convert floats to integers
  1183. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1184. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1185. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1186. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1187. #if defined(__AVX2__)
  1188. // Compute the sum of the quants and set y[i].s
  1189. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1190. // Convert int32 to int16
  1191. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1192. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1193. // Convert int16 to int8
  1194. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1195. // We got our precious signed bytes, but the order is now wrong
  1196. // These AVX2 pack instructions process 16-byte pieces independently
  1197. // The following instruction is fixing the order
  1198. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1199. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1200. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1201. #else
  1202. // Since we don't have in AVX some necessary functions,
  1203. // we split the registers in half and call AVX2 analogs from SSE
  1204. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1205. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1206. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1207. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1208. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1209. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1210. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1211. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1212. // Compute the sum of the quants and set y[i].s
  1213. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1214. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1215. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1216. // Convert int32 to int16
  1217. ni0 = _mm_packs_epi32( ni0, ni1 );
  1218. ni2 = _mm_packs_epi32( ni2, ni3 );
  1219. ni4 = _mm_packs_epi32( ni4, ni5 );
  1220. ni6 = _mm_packs_epi32( ni6, ni7 );
  1221. // Convert int16 to int8
  1222. ni0 = _mm_packs_epi16( ni0, ni2 );
  1223. ni4 = _mm_packs_epi16( ni4, ni6 );
  1224. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1225. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1226. #endif
  1227. }
  1228. #else
  1229. // scalar
  1230. quantize_row_q8_1_reference(x, y, k);
  1231. #endif
  1232. }
  1233. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1234. static const int qk = QK4_0;
  1235. assert(k % qk == 0);
  1236. const int nb = k / qk;
  1237. for (int i = 0; i < nb; i++) {
  1238. const float d = GGML_FP16_TO_FP32(x[i].d);
  1239. for (int j = 0; j < qk/2; ++j) {
  1240. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1241. const int x1 = (x[i].qs[j] >> 4) - 8;
  1242. y[i*qk + j + 0 ] = x0*d;
  1243. y[i*qk + j + qk/2] = x1*d;
  1244. }
  1245. }
  1246. }
  1247. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1248. static const int qk = QK4_1;
  1249. assert(k % qk == 0);
  1250. const int nb = k / qk;
  1251. for (int i = 0; i < nb; i++) {
  1252. const float d = GGML_FP16_TO_FP32(x[i].d);
  1253. const float m = GGML_FP16_TO_FP32(x[i].m);
  1254. for (int j = 0; j < qk/2; ++j) {
  1255. const int x0 = (x[i].qs[j] & 0x0F);
  1256. const int x1 = (x[i].qs[j] >> 4);
  1257. y[i*qk + j + 0 ] = x0*d + m;
  1258. y[i*qk + j + qk/2] = x1*d + m;
  1259. }
  1260. }
  1261. }
  1262. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1263. static const int qk = QK5_0;
  1264. assert(k % qk == 0);
  1265. const int nb = k / qk;
  1266. for (int i = 0; i < nb; i++) {
  1267. const float d = GGML_FP16_TO_FP32(x[i].d);
  1268. uint32_t qh;
  1269. memcpy(&qh, x[i].qh, sizeof(qh));
  1270. for (int j = 0; j < qk/2; ++j) {
  1271. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1272. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1273. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1274. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1275. y[i*qk + j + 0 ] = x0*d;
  1276. y[i*qk + j + qk/2] = x1*d;
  1277. }
  1278. }
  1279. }
  1280. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1281. static const int qk = QK5_1;
  1282. assert(k % qk == 0);
  1283. const int nb = k / qk;
  1284. for (int i = 0; i < nb; i++) {
  1285. const float d = GGML_FP16_TO_FP32(x[i].d);
  1286. const float m = GGML_FP16_TO_FP32(x[i].m);
  1287. uint32_t qh;
  1288. memcpy(&qh, x[i].qh, sizeof(qh));
  1289. for (int j = 0; j < qk/2; ++j) {
  1290. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1291. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1292. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1293. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1294. y[i*qk + j + 0 ] = x0*d + m;
  1295. y[i*qk + j + qk/2] = x1*d + m;
  1296. }
  1297. }
  1298. }
  1299. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1300. static const int qk = QK8_0;
  1301. assert(k % qk == 0);
  1302. const int nb = k / qk;
  1303. const block_q8_0 * restrict x = vx;
  1304. for (int i = 0; i < nb; i++) {
  1305. const float d = GGML_FP16_TO_FP32(x[i].d);
  1306. for (int j = 0; j < qk; ++j) {
  1307. y[i*qk + j] = x[i].qs[j]*d;
  1308. }
  1309. }
  1310. }
  1311. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  1312. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  1313. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1314. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1315. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1316. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1317. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1318. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  1319. [GGML_TYPE_I8] = {
  1320. .type_name = "i8",
  1321. .blck_size = 1,
  1322. .type_size = sizeof(int8_t),
  1323. .is_quantized = false,
  1324. },
  1325. [GGML_TYPE_I16] = {
  1326. .type_name = "i16",
  1327. .blck_size = 1,
  1328. .type_size = sizeof(int16_t),
  1329. .is_quantized = false,
  1330. },
  1331. [GGML_TYPE_I32] = {
  1332. .type_name = "i32",
  1333. .blck_size = 1,
  1334. .type_size = sizeof(int32_t),
  1335. .is_quantized = false,
  1336. },
  1337. [GGML_TYPE_F32] = {
  1338. .type_name = "f32",
  1339. .blck_size = 1,
  1340. .type_size = sizeof(float),
  1341. .is_quantized = false,
  1342. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  1343. .vec_dot_type = GGML_TYPE_F32,
  1344. },
  1345. [GGML_TYPE_F16] = {
  1346. .type_name = "f16",
  1347. .blck_size = 1,
  1348. .type_size = sizeof(ggml_fp16_t),
  1349. .is_quantized = false,
  1350. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  1351. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1352. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1353. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  1354. .vec_dot_type = GGML_TYPE_F16,
  1355. },
  1356. [GGML_TYPE_Q4_0] = {
  1357. .type_name = "q4_0",
  1358. .blck_size = QK4_0,
  1359. .type_size = sizeof(block_q4_0),
  1360. .is_quantized = true,
  1361. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  1362. .from_float = quantize_row_q4_0,
  1363. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  1364. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  1365. .vec_dot_type = GGML_TYPE_Q8_0,
  1366. },
  1367. [GGML_TYPE_Q4_1] = {
  1368. .type_name = "q4_1",
  1369. .blck_size = QK4_1,
  1370. .type_size = sizeof(block_q4_1),
  1371. .is_quantized = true,
  1372. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  1373. .from_float = quantize_row_q4_1,
  1374. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  1375. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  1376. .vec_dot_type = GGML_TYPE_Q8_1,
  1377. },
  1378. [GGML_TYPE_Q5_0] = {
  1379. .type_name = "q5_0",
  1380. .blck_size = QK5_0,
  1381. .type_size = sizeof(block_q5_0),
  1382. .is_quantized = true,
  1383. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  1384. .from_float = quantize_row_q5_0,
  1385. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  1386. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  1387. .vec_dot_type = GGML_TYPE_Q8_0,
  1388. },
  1389. [GGML_TYPE_Q5_1] = {
  1390. .type_name = "q5_1",
  1391. .blck_size = QK5_1,
  1392. .type_size = sizeof(block_q5_1),
  1393. .is_quantized = true,
  1394. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  1395. .from_float = quantize_row_q5_1,
  1396. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  1397. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  1398. .vec_dot_type = GGML_TYPE_Q8_1,
  1399. },
  1400. [GGML_TYPE_Q8_0] = {
  1401. .type_name = "q8_0",
  1402. .blck_size = QK8_0,
  1403. .type_size = sizeof(block_q8_0),
  1404. .is_quantized = true,
  1405. .to_float = dequantize_row_q8_0,
  1406. .from_float = quantize_row_q8_0,
  1407. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  1408. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  1409. .vec_dot_type = GGML_TYPE_Q8_0,
  1410. },
  1411. [GGML_TYPE_Q8_1] = {
  1412. .type_name = "q8_1",
  1413. .blck_size = QK8_1,
  1414. .type_size = sizeof(block_q8_1),
  1415. .is_quantized = true,
  1416. .from_float = quantize_row_q8_1,
  1417. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  1418. .vec_dot_type = GGML_TYPE_Q8_1,
  1419. },
  1420. #ifdef GGML_USE_K_QUANTS
  1421. [GGML_TYPE_Q2_K] = {
  1422. .type_name = "q2_K",
  1423. .blck_size = QK_K,
  1424. .type_size = sizeof(block_q2_K),
  1425. .is_quantized = true,
  1426. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  1427. .from_float = quantize_row_q2_K,
  1428. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  1429. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  1430. .vec_dot_type = GGML_TYPE_Q8_K,
  1431. },
  1432. [GGML_TYPE_Q3_K] = {
  1433. .type_name = "q3_K",
  1434. .blck_size = QK_K,
  1435. .type_size = sizeof(block_q3_K),
  1436. .is_quantized = true,
  1437. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  1438. .from_float = quantize_row_q3_K,
  1439. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  1440. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  1441. .vec_dot_type = GGML_TYPE_Q8_K,
  1442. },
  1443. [GGML_TYPE_Q4_K] = {
  1444. .type_name = "q4_K",
  1445. .blck_size = QK_K,
  1446. .type_size = sizeof(block_q4_K),
  1447. .is_quantized = true,
  1448. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  1449. .from_float = quantize_row_q4_K,
  1450. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  1451. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  1452. .vec_dot_type = GGML_TYPE_Q8_K,
  1453. },
  1454. [GGML_TYPE_Q5_K] = {
  1455. .type_name = "q5_K",
  1456. .blck_size = QK_K,
  1457. .type_size = sizeof(block_q5_K),
  1458. .is_quantized = true,
  1459. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  1460. .from_float = quantize_row_q5_K,
  1461. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  1462. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  1463. .vec_dot_type = GGML_TYPE_Q8_K,
  1464. },
  1465. [GGML_TYPE_Q6_K] = {
  1466. .type_name = "q6_K",
  1467. .blck_size = QK_K,
  1468. .type_size = sizeof(block_q6_K),
  1469. .is_quantized = true,
  1470. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  1471. .from_float = quantize_row_q6_K,
  1472. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  1473. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  1474. .vec_dot_type = GGML_TYPE_Q8_K,
  1475. },
  1476. [GGML_TYPE_Q8_K] = {
  1477. .type_name = "q8_K",
  1478. .blck_size = QK_K,
  1479. .type_size = sizeof(block_q8_K),
  1480. .is_quantized = true,
  1481. .from_float = quantize_row_q8_K,
  1482. }
  1483. #endif
  1484. };
  1485. // For internal test use
  1486. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  1487. GGML_ASSERT(type < GGML_TYPE_COUNT);
  1488. return type_traits[type];
  1489. }
  1490. //
  1491. // simd mappings
  1492. //
  1493. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1494. // we then implement the fundamental computation operations below using only these macros
  1495. // adding support for new architectures requires to define the corresponding SIMD macros
  1496. //
  1497. // GGML_F32_STEP / GGML_F16_STEP
  1498. // number of elements to process in a single step
  1499. //
  1500. // GGML_F32_EPR / GGML_F16_EPR
  1501. // number of elements to fit in a single register
  1502. //
  1503. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1504. #define GGML_SIMD
  1505. // F32 NEON
  1506. #define GGML_F32_STEP 16
  1507. #define GGML_F32_EPR 4
  1508. #define GGML_F32x4 float32x4_t
  1509. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1510. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1511. #define GGML_F32x4_LOAD vld1q_f32
  1512. #define GGML_F32x4_STORE vst1q_f32
  1513. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1514. #define GGML_F32x4_ADD vaddq_f32
  1515. #define GGML_F32x4_MUL vmulq_f32
  1516. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1517. #define GGML_F32x4_REDUCE(res, x) \
  1518. { \
  1519. int offset = GGML_F32_ARR >> 1; \
  1520. for (int i = 0; i < offset; ++i) { \
  1521. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1522. } \
  1523. offset >>= 1; \
  1524. for (int i = 0; i < offset; ++i) { \
  1525. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1526. } \
  1527. offset >>= 1; \
  1528. for (int i = 0; i < offset; ++i) { \
  1529. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1530. } \
  1531. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1532. }
  1533. #define GGML_F32_VEC GGML_F32x4
  1534. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1535. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1536. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1537. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1538. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1539. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1540. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1541. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1542. // F16 NEON
  1543. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1544. #define GGML_F16_STEP 32
  1545. #define GGML_F16_EPR 8
  1546. #define GGML_F16x8 float16x8_t
  1547. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1548. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1549. #define GGML_F16x8_LOAD vld1q_f16
  1550. #define GGML_F16x8_STORE vst1q_f16
  1551. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1552. #define GGML_F16x8_ADD vaddq_f16
  1553. #define GGML_F16x8_MUL vmulq_f16
  1554. #define GGML_F16x8_REDUCE(res, x) \
  1555. do { \
  1556. int offset = GGML_F16_ARR >> 1; \
  1557. for (int i = 0; i < offset; ++i) { \
  1558. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1559. } \
  1560. offset >>= 1; \
  1561. for (int i = 0; i < offset; ++i) { \
  1562. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1563. } \
  1564. offset >>= 1; \
  1565. for (int i = 0; i < offset; ++i) { \
  1566. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1567. } \
  1568. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1569. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1570. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1571. } while (0)
  1572. #define GGML_F16_VEC GGML_F16x8
  1573. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1574. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1575. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1576. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1577. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1578. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1579. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1580. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1581. #else
  1582. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1583. // and take advantage of the vcvt_ functions to convert to/from FP16
  1584. #define GGML_F16_STEP 16
  1585. #define GGML_F16_EPR 4
  1586. #define GGML_F32Cx4 float32x4_t
  1587. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1588. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1589. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1590. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1591. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1592. #define GGML_F32Cx4_ADD vaddq_f32
  1593. #define GGML_F32Cx4_MUL vmulq_f32
  1594. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1595. #define GGML_F16_VEC GGML_F32Cx4
  1596. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1597. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1598. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1599. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1600. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1601. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1602. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1603. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1604. #endif
  1605. #elif defined(__AVX__)
  1606. #define GGML_SIMD
  1607. // F32 AVX
  1608. #define GGML_F32_STEP 32
  1609. #define GGML_F32_EPR 8
  1610. #define GGML_F32x8 __m256
  1611. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1612. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1613. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1614. #define GGML_F32x8_STORE _mm256_storeu_ps
  1615. #if defined(__FMA__)
  1616. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1617. #else
  1618. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1619. #endif
  1620. #define GGML_F32x8_ADD _mm256_add_ps
  1621. #define GGML_F32x8_MUL _mm256_mul_ps
  1622. #define GGML_F32x8_REDUCE(res, x) \
  1623. do { \
  1624. int offset = GGML_F32_ARR >> 1; \
  1625. for (int i = 0; i < offset; ++i) { \
  1626. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1627. } \
  1628. offset >>= 1; \
  1629. for (int i = 0; i < offset; ++i) { \
  1630. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1631. } \
  1632. offset >>= 1; \
  1633. for (int i = 0; i < offset; ++i) { \
  1634. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1635. } \
  1636. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1637. _mm256_extractf128_ps(x[0], 1)); \
  1638. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1639. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1640. } while (0)
  1641. // TODO: is this optimal ?
  1642. #define GGML_F32_VEC GGML_F32x8
  1643. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1644. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1645. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1646. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1647. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1648. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1649. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1650. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1651. // F16 AVX
  1652. #define GGML_F16_STEP 32
  1653. #define GGML_F16_EPR 8
  1654. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1655. #define GGML_F32Cx8 __m256
  1656. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1657. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1658. #if defined(__F16C__)
  1659. // the _mm256_cvt intrinsics require F16C
  1660. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1661. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1662. #else
  1663. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1664. float tmp[8];
  1665. for (int i = 0; i < 8; i++) {
  1666. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1667. }
  1668. return _mm256_loadu_ps(tmp);
  1669. }
  1670. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1671. float arr[8];
  1672. _mm256_storeu_ps(arr, y);
  1673. for (int i = 0; i < 8; i++)
  1674. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1675. }
  1676. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1677. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1678. #endif
  1679. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1680. #define GGML_F32Cx8_ADD _mm256_add_ps
  1681. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1682. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1683. #define GGML_F16_VEC GGML_F32Cx8
  1684. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1685. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1686. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1687. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1688. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1689. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1690. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1691. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1692. #elif defined(__POWER9_VECTOR__)
  1693. #define GGML_SIMD
  1694. // F32 POWER9
  1695. #define GGML_F32_STEP 32
  1696. #define GGML_F32_EPR 4
  1697. #define GGML_F32x4 vector float
  1698. #define GGML_F32x4_ZERO 0.0f
  1699. #define GGML_F32x4_SET1 vec_splats
  1700. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1701. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1702. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1703. #define GGML_F32x4_ADD vec_add
  1704. #define GGML_F32x4_MUL vec_mul
  1705. #define GGML_F32x4_REDUCE(res, x) \
  1706. { \
  1707. int offset = GGML_F32_ARR >> 1; \
  1708. for (int i = 0; i < offset; ++i) { \
  1709. x[i] = vec_add(x[i], x[offset+i]); \
  1710. } \
  1711. offset >>= 1; \
  1712. for (int i = 0; i < offset; ++i) { \
  1713. x[i] = vec_add(x[i], x[offset+i]); \
  1714. } \
  1715. offset >>= 1; \
  1716. for (int i = 0; i < offset; ++i) { \
  1717. x[i] = vec_add(x[i], x[offset+i]); \
  1718. } \
  1719. res = vec_extract(x[0], 0) + \
  1720. vec_extract(x[0], 1) + \
  1721. vec_extract(x[0], 2) + \
  1722. vec_extract(x[0], 3); \
  1723. }
  1724. #define GGML_F32_VEC GGML_F32x4
  1725. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1726. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1727. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1728. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1729. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1730. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1731. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1732. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1733. // F16 POWER9
  1734. #define GGML_F16_STEP GGML_F32_STEP
  1735. #define GGML_F16_EPR GGML_F32_EPR
  1736. #define GGML_F16_VEC GGML_F32x4
  1737. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1738. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1739. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1740. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1741. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1742. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1743. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1744. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1745. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1746. #define GGML_F16_VEC_STORE(p, r, i) \
  1747. if (i & 0x1) \
  1748. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1749. r[i - GGML_ENDIAN_BYTE(0)]), \
  1750. 0, p - GGML_F16_EPR)
  1751. #elif defined(__wasm_simd128__)
  1752. #define GGML_SIMD
  1753. // F32 WASM
  1754. #define GGML_F32_STEP 16
  1755. #define GGML_F32_EPR 4
  1756. #define GGML_F32x4 v128_t
  1757. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1758. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1759. #define GGML_F32x4_LOAD wasm_v128_load
  1760. #define GGML_F32x4_STORE wasm_v128_store
  1761. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1762. #define GGML_F32x4_ADD wasm_f32x4_add
  1763. #define GGML_F32x4_MUL wasm_f32x4_mul
  1764. #define GGML_F32x4_REDUCE(res, x) \
  1765. { \
  1766. int offset = GGML_F32_ARR >> 1; \
  1767. for (int i = 0; i < offset; ++i) { \
  1768. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1769. } \
  1770. offset >>= 1; \
  1771. for (int i = 0; i < offset; ++i) { \
  1772. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1773. } \
  1774. offset >>= 1; \
  1775. for (int i = 0; i < offset; ++i) { \
  1776. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1777. } \
  1778. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1779. wasm_f32x4_extract_lane(x[0], 1) + \
  1780. wasm_f32x4_extract_lane(x[0], 2) + \
  1781. wasm_f32x4_extract_lane(x[0], 3); \
  1782. }
  1783. #define GGML_F32_VEC GGML_F32x4
  1784. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1785. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1786. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1787. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1788. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1789. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1790. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1791. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1792. // F16 WASM
  1793. #define GGML_F16_STEP 16
  1794. #define GGML_F16_EPR 4
  1795. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1796. float tmp[4];
  1797. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1798. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1799. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1800. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1801. return wasm_v128_load(tmp);
  1802. }
  1803. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1804. float tmp[4];
  1805. wasm_v128_store(tmp, x);
  1806. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1807. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1808. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1809. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1810. }
  1811. #define GGML_F16x4 v128_t
  1812. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1813. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1814. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1815. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1816. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1817. #define GGML_F16x4_ADD wasm_f32x4_add
  1818. #define GGML_F16x4_MUL wasm_f32x4_mul
  1819. #define GGML_F16x4_REDUCE(res, x) \
  1820. { \
  1821. int offset = GGML_F16_ARR >> 1; \
  1822. for (int i = 0; i < offset; ++i) { \
  1823. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1824. } \
  1825. offset >>= 1; \
  1826. for (int i = 0; i < offset; ++i) { \
  1827. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1828. } \
  1829. offset >>= 1; \
  1830. for (int i = 0; i < offset; ++i) { \
  1831. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1832. } \
  1833. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1834. wasm_f32x4_extract_lane(x[0], 1) + \
  1835. wasm_f32x4_extract_lane(x[0], 2) + \
  1836. wasm_f32x4_extract_lane(x[0], 3); \
  1837. }
  1838. #define GGML_F16_VEC GGML_F16x4
  1839. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1840. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1841. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1842. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1843. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1844. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1845. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1846. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1847. #elif defined(__SSE3__)
  1848. #define GGML_SIMD
  1849. // F32 SSE
  1850. #define GGML_F32_STEP 32
  1851. #define GGML_F32_EPR 4
  1852. #define GGML_F32x4 __m128
  1853. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1854. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1855. #define GGML_F32x4_LOAD _mm_loadu_ps
  1856. #define GGML_F32x4_STORE _mm_storeu_ps
  1857. #if defined(__FMA__)
  1858. // TODO: Does this work?
  1859. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1860. #else
  1861. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1862. #endif
  1863. #define GGML_F32x4_ADD _mm_add_ps
  1864. #define GGML_F32x4_MUL _mm_mul_ps
  1865. #define GGML_F32x4_REDUCE(res, x) \
  1866. { \
  1867. int offset = GGML_F32_ARR >> 1; \
  1868. for (int i = 0; i < offset; ++i) { \
  1869. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1870. } \
  1871. offset >>= 1; \
  1872. for (int i = 0; i < offset; ++i) { \
  1873. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1874. } \
  1875. offset >>= 1; \
  1876. for (int i = 0; i < offset; ++i) { \
  1877. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1878. } \
  1879. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1880. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1881. }
  1882. // TODO: is this optimal ?
  1883. #define GGML_F32_VEC GGML_F32x4
  1884. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1885. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1886. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1887. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1888. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1889. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1890. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1891. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1892. // F16 SSE
  1893. #define GGML_F16_STEP 32
  1894. #define GGML_F16_EPR 4
  1895. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1896. float tmp[4];
  1897. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1898. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1899. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1900. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1901. return _mm_loadu_ps(tmp);
  1902. }
  1903. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1904. float arr[4];
  1905. _mm_storeu_ps(arr, y);
  1906. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1907. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1908. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1909. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1910. }
  1911. #define GGML_F32Cx4 __m128
  1912. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1913. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1914. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1915. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1916. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1917. #define GGML_F32Cx4_ADD _mm_add_ps
  1918. #define GGML_F32Cx4_MUL _mm_mul_ps
  1919. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1920. #define GGML_F16_VEC GGML_F32Cx4
  1921. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1922. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1923. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1924. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1925. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1926. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1927. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1928. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1929. #endif
  1930. // GGML_F32_ARR / GGML_F16_ARR
  1931. // number of registers to use per step
  1932. #ifdef GGML_SIMD
  1933. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1934. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1935. #endif
  1936. //
  1937. // fundamental operations
  1938. //
  1939. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1940. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1941. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1942. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1943. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1944. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1945. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1946. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1947. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1948. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1949. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1950. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1951. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1952. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1953. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1954. #ifdef GGML_SIMD
  1955. float sumf = 0.0f;
  1956. const int np = (n & ~(GGML_F32_STEP - 1));
  1957. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1958. GGML_F32_VEC ax[GGML_F32_ARR];
  1959. GGML_F32_VEC ay[GGML_F32_ARR];
  1960. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1961. for (int j = 0; j < GGML_F32_ARR; j++) {
  1962. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1963. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1964. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1965. }
  1966. }
  1967. // reduce sum0..sum3 to sum0
  1968. GGML_F32_VEC_REDUCE(sumf, sum);
  1969. // leftovers
  1970. for (int i = np; i < n; ++i) {
  1971. sumf += x[i]*y[i];
  1972. }
  1973. #else
  1974. // scalar
  1975. ggml_float sumf = 0.0;
  1976. for (int i = 0; i < n; ++i) {
  1977. sumf += (ggml_float)(x[i]*y[i]);
  1978. }
  1979. #endif
  1980. *s = sumf;
  1981. }
  1982. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1983. ggml_float sumf = 0.0;
  1984. #if defined(GGML_SIMD)
  1985. const int np = (n & ~(GGML_F16_STEP - 1));
  1986. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1987. GGML_F16_VEC ax[GGML_F16_ARR];
  1988. GGML_F16_VEC ay[GGML_F16_ARR];
  1989. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1990. for (int j = 0; j < GGML_F16_ARR; j++) {
  1991. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1992. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1993. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1994. }
  1995. }
  1996. // reduce sum0..sum3 to sum0
  1997. GGML_F16_VEC_REDUCE(sumf, sum);
  1998. // leftovers
  1999. for (int i = np; i < n; ++i) {
  2000. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2001. }
  2002. #else
  2003. for (int i = 0; i < n; ++i) {
  2004. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2005. }
  2006. #endif
  2007. *s = sumf;
  2008. }
  2009. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2010. const int qk = QK8_0;
  2011. const int nb = n / qk;
  2012. assert(n % qk == 0);
  2013. const block_q4_0 * restrict x = vx;
  2014. const block_q8_0 * restrict y = vy;
  2015. #if defined(__ARM_NEON)
  2016. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2017. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2018. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2019. for (int i = 0; i < nb; i += 2) {
  2020. const block_q4_0 * restrict x0 = &x[i + 0];
  2021. const block_q4_0 * restrict x1 = &x[i + 1];
  2022. const block_q8_0 * restrict y0 = &y[i + 0];
  2023. const block_q8_0 * restrict y1 = &y[i + 1];
  2024. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2025. const int8x16_t s8b = vdupq_n_s8(0x8);
  2026. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2027. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2028. // 4-bit -> 8-bit
  2029. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2030. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2031. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2032. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2033. // sub 8
  2034. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2035. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2036. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2037. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2038. // load y
  2039. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2040. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2041. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2042. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2043. #if defined(__ARM_FEATURE_DOTPROD)
  2044. // dot product into int32x4_t
  2045. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  2046. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  2047. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2048. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2049. #else
  2050. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  2051. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  2052. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  2053. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  2054. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  2055. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  2056. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  2057. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  2058. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2059. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2060. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2061. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2062. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2063. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2064. #endif
  2065. }
  2066. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2067. #elif defined(__AVX2__)
  2068. // Initialize accumulator with zeros
  2069. __m256 acc = _mm256_setzero_ps();
  2070. // Main loop
  2071. for (int i = 0; i < nb; ++i) {
  2072. /* Compute combined scale for the block */
  2073. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2074. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2075. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2076. const __m256i off = _mm256_set1_epi8( 8 );
  2077. bx = _mm256_sub_epi8( bx, off );
  2078. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2079. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2080. /* Multiply q with scale and accumulate */
  2081. acc = _mm256_fmadd_ps( d, q, acc );
  2082. }
  2083. *s = hsum_float_8(acc);
  2084. #elif defined(__AVX__)
  2085. // Initialize accumulator with zeros
  2086. __m256 acc = _mm256_setzero_ps();
  2087. // Main loop
  2088. for (int i = 0; i < nb; ++i) {
  2089. // Compute combined scale for the block
  2090. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2091. const __m128i lowMask = _mm_set1_epi8(0xF);
  2092. const __m128i off = _mm_set1_epi8(8);
  2093. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  2094. __m128i bx = _mm_and_si128(lowMask, tmp);
  2095. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  2096. bx = _mm_sub_epi8(bx, off);
  2097. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  2098. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  2099. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2100. bx = _mm_sub_epi8(bx, off);
  2101. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  2102. // Convert int32_t to float
  2103. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  2104. // Apply the scale, and accumulate
  2105. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2106. }
  2107. *s = hsum_float_8(acc);
  2108. #elif defined(__SSSE3__)
  2109. // set constants
  2110. const __m128i lowMask = _mm_set1_epi8(0xF);
  2111. const __m128i off = _mm_set1_epi8(8);
  2112. // Initialize accumulator with zeros
  2113. __m128 acc_0 = _mm_setzero_ps();
  2114. __m128 acc_1 = _mm_setzero_ps();
  2115. __m128 acc_2 = _mm_setzero_ps();
  2116. __m128 acc_3 = _mm_setzero_ps();
  2117. // First round without accumulation
  2118. {
  2119. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  2120. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  2121. // Compute combined scale for the block 0 and 1
  2122. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  2123. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  2124. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2125. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  2126. bx_0 = _mm_sub_epi8(bx_0, off);
  2127. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2128. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2129. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  2130. bx_1 = _mm_sub_epi8(bx_1, off);
  2131. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2132. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  2133. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  2134. // Compute combined scale for the block 2 and 3
  2135. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  2136. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  2137. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2138. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  2139. bx_2 = _mm_sub_epi8(bx_2, off);
  2140. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2141. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2142. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  2143. bx_3 = _mm_sub_epi8(bx_3, off);
  2144. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2145. // Convert int32_t to float
  2146. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2147. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2148. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2149. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2150. // Apply the scale
  2151. acc_0 = _mm_mul_ps( d_0_1, p0 );
  2152. acc_1 = _mm_mul_ps( d_0_1, p1 );
  2153. acc_2 = _mm_mul_ps( d_2_3, p2 );
  2154. acc_3 = _mm_mul_ps( d_2_3, p3 );
  2155. }
  2156. // Main loop
  2157. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2158. for (int i = 2; i < nb; i+=2) {
  2159. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  2160. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  2161. // Compute combined scale for the block 0 and 1
  2162. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2163. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2164. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2165. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2166. bx_0 = _mm_sub_epi8(bx_0, off);
  2167. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2168. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2169. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2170. bx_1 = _mm_sub_epi8(bx_1, off);
  2171. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2172. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2173. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2174. // Compute combined scale for the block 2 and 3
  2175. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2176. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2177. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2178. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2179. bx_2 = _mm_sub_epi8(bx_2, off);
  2180. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2181. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2182. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2183. bx_3 = _mm_sub_epi8(bx_3, off);
  2184. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2185. // Convert int32_t to float
  2186. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2187. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2188. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2189. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2190. // Apply the scale
  2191. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2192. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2193. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2194. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2195. // Acummulate
  2196. acc_0 = _mm_add_ps(p0_d, acc_0);
  2197. acc_1 = _mm_add_ps(p1_d, acc_1);
  2198. acc_2 = _mm_add_ps(p2_d, acc_2);
  2199. acc_3 = _mm_add_ps(p3_d, acc_3);
  2200. }
  2201. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2202. #elif defined(__riscv_v_intrinsic)
  2203. float sumf = 0.0;
  2204. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2205. for (int i = 0; i < nb; i++) {
  2206. vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
  2207. vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2208. vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
  2209. vuint8m1_t x_a = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
  2210. vuint8m1_t x_l = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
  2211. vint8m1_t x_ai = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
  2212. vint8m1_t x_li = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
  2213. vint8m1_t v0 = __riscv_vsub_vx_i8m1(x_ai, 8, vl);
  2214. vint8m1_t v1 = __riscv_vsub_vx_i8m1(x_li, 8, vl);
  2215. vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
  2216. vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
  2217. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2218. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
  2219. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
  2220. int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
  2221. sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
  2222. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2223. }
  2224. *s = sumf;
  2225. #else
  2226. // scalar
  2227. float sumf = 0.0;
  2228. for (int i = 0; i < nb; i++) {
  2229. int sumi = 0;
  2230. for (int j = 0; j < qk/2; ++j) {
  2231. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2232. const int v1 = (x[i].qs[j] >> 4) - 8;
  2233. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2234. }
  2235. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2236. }
  2237. *s = sumf;
  2238. #endif
  2239. }
  2240. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2241. const int qk = QK8_1;
  2242. const int nb = n / qk;
  2243. assert(n % qk == 0);
  2244. const block_q4_1 * restrict x = vx;
  2245. const block_q8_1 * restrict y = vy;
  2246. // TODO: add WASM SIMD
  2247. #if defined(__ARM_NEON)
  2248. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2249. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2250. float summs = 0;
  2251. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2252. for (int i = 0; i < nb; i += 2) {
  2253. const block_q4_1 * restrict x0 = &x[i + 0];
  2254. const block_q4_1 * restrict x1 = &x[i + 1];
  2255. const block_q8_1 * restrict y0 = &y[i + 0];
  2256. const block_q8_1 * restrict y1 = &y[i + 1];
  2257. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2258. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2259. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2260. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2261. // 4-bit -> 8-bit
  2262. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2263. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2264. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2265. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2266. // load y
  2267. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2268. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2269. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2270. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2271. #if defined(__ARM_FEATURE_DOTPROD)
  2272. // dot product into int32x4_t
  2273. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2274. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2275. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2276. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2277. #else
  2278. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2279. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2280. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2281. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2282. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2283. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2284. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2285. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2286. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2287. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2288. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2289. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2290. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2291. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2292. #endif
  2293. }
  2294. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2295. #elif defined(__AVX2__) || defined(__AVX__)
  2296. // Initialize accumulator with zeros
  2297. __m256 acc = _mm256_setzero_ps();
  2298. float summs = 0;
  2299. // Main loop
  2300. for (int i = 0; i < nb; ++i) {
  2301. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2302. const float d1 = y[i].d;
  2303. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2304. const __m256 d0v = _mm256_set1_ps( d0 );
  2305. const __m256 d1v = _mm256_set1_ps( d1 );
  2306. // Compute combined scales
  2307. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2308. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2309. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2310. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2311. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2312. // Accumulate d0*d1*x*y
  2313. #if defined(__AVX2__)
  2314. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2315. #else
  2316. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2317. #endif
  2318. }
  2319. *s = hsum_float_8(acc) + summs;
  2320. #elif defined(__riscv_v_intrinsic)
  2321. float sumf = 0.0;
  2322. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2323. for (int i = 0; i < nb; i++) {
  2324. vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
  2325. vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2326. vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
  2327. vuint8m1_t x_a = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
  2328. vuint8m1_t x_l = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
  2329. vint8m1_t v0 = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
  2330. vint8m1_t v1 = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
  2331. vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
  2332. vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
  2333. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2334. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
  2335. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
  2336. int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
  2337. sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
  2338. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2339. }
  2340. *s = sumf;
  2341. #else
  2342. // scalar
  2343. float sumf = 0.0;
  2344. for (int i = 0; i < nb; i++) {
  2345. int sumi = 0;
  2346. for (int j = 0; j < qk/2; ++j) {
  2347. const int v0 = (x[i].qs[j] & 0x0F);
  2348. const int v1 = (x[i].qs[j] >> 4);
  2349. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2350. }
  2351. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2352. }
  2353. *s = sumf;
  2354. #endif
  2355. }
  2356. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2357. const int qk = QK8_0;
  2358. const int nb = n / qk;
  2359. assert(n % qk == 0);
  2360. assert(qk == QK5_0);
  2361. const block_q5_0 * restrict x = vx;
  2362. const block_q8_0 * restrict y = vy;
  2363. #if defined(__ARM_NEON)
  2364. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2365. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2366. uint32_t qh0;
  2367. uint32_t qh1;
  2368. uint64_t tmp0[4];
  2369. uint64_t tmp1[4];
  2370. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2371. for (int i = 0; i < nb; i += 2) {
  2372. const block_q5_0 * restrict x0 = &x[i];
  2373. const block_q5_0 * restrict x1 = &x[i + 1];
  2374. const block_q8_0 * restrict y0 = &y[i];
  2375. const block_q8_0 * restrict y1 = &y[i + 1];
  2376. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2377. // extract the 5th bit via lookup table ((!b) << 4)
  2378. memcpy(&qh0, x0->qh, sizeof(qh0));
  2379. memcpy(&qh1, x1->qh, sizeof(qh1));
  2380. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2381. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2382. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2383. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2384. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2385. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2386. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2387. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2388. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2389. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2390. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2391. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2392. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2393. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2394. // 4-bit -> 8-bit
  2395. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2396. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2397. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2398. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2399. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2400. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2401. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2402. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2403. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2404. // load y
  2405. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2406. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2407. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2408. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2409. #if defined(__ARM_FEATURE_DOTPROD)
  2410. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2411. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2412. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2413. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2414. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2415. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2416. #else
  2417. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2418. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2419. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2420. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2421. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2422. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2423. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2424. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2425. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2426. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2427. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2428. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2429. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2430. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2431. #endif
  2432. }
  2433. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2434. #elif defined(__wasm_simd128__)
  2435. v128_t sumv = wasm_f32x4_splat(0.0f);
  2436. uint32_t qh;
  2437. uint64_t tmp[4];
  2438. // TODO: check if unrolling this is better
  2439. for (int i = 0; i < nb; ++i) {
  2440. const block_q5_0 * restrict x0 = &x[i];
  2441. const block_q8_0 * restrict y0 = &y[i];
  2442. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2443. // extract the 5th bit
  2444. memcpy(&qh, x0->qh, sizeof(qh));
  2445. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2446. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2447. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2448. tmp[3] = table_b2b_1[(qh >> 24) ];
  2449. const v128_t qhl = wasm_v128_load(tmp + 0);
  2450. const v128_t qhh = wasm_v128_load(tmp + 2);
  2451. const v128_t v0 = wasm_v128_load(x0->qs);
  2452. // 4-bit -> 8-bit
  2453. const v128_t v0l = wasm_v128_and (v0, m4b);
  2454. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2455. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2456. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2457. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2458. // load y
  2459. const v128_t v1l = wasm_v128_load(y0->qs);
  2460. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2461. // int8x16 -> int16x8
  2462. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2463. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2464. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2465. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2466. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2467. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2468. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2469. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2470. // dot product
  2471. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2472. wasm_i32x4_add(
  2473. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2474. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2475. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2476. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2477. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2478. }
  2479. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2480. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2481. #elif defined(__AVX2__)
  2482. // Initialize accumulator with zeros
  2483. __m256 acc = _mm256_setzero_ps();
  2484. // Main loop
  2485. for (int i = 0; i < nb; i++) {
  2486. /* Compute combined scale for the block */
  2487. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2488. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2489. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2490. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2491. bx = _mm256_or_si256(bx, bxhi);
  2492. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2493. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2494. /* Multiply q with scale and accumulate */
  2495. acc = _mm256_fmadd_ps(d, q, acc);
  2496. }
  2497. *s = hsum_float_8(acc);
  2498. #elif defined(__AVX__)
  2499. // Initialize accumulator with zeros
  2500. __m256 acc = _mm256_setzero_ps();
  2501. __m128i mask = _mm_set1_epi8((char)0xF0);
  2502. // Main loop
  2503. for (int i = 0; i < nb; i++) {
  2504. /* Compute combined scale for the block */
  2505. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2506. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2507. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2508. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2509. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2510. bxhil = _mm_andnot_si128(bxhil, mask);
  2511. bxhih = _mm_andnot_si128(bxhih, mask);
  2512. __m128i bxl = _mm256_castsi256_si128(bx);
  2513. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2514. bxl = _mm_or_si128(bxl, bxhil);
  2515. bxh = _mm_or_si128(bxh, bxhih);
  2516. bx = MM256_SET_M128I(bxh, bxl);
  2517. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2518. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2519. /* Multiply q with scale and accumulate */
  2520. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2521. }
  2522. *s = hsum_float_8(acc);
  2523. #elif defined(__riscv_v_intrinsic)
  2524. float sumf = 0.0;
  2525. uint32_t qh;
  2526. // These temp values are for masking and shift operations
  2527. uint32_t temp_1[16] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
  2528. uint32_t temp_2[16] = {0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80,
  2529. 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000, 0x8000};
  2530. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2531. for (int i = 0; i < nb; i++) {
  2532. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  2533. // temporary registers
  2534. vuint32m4_t vt_1 = __riscv_vle32_v_u32m4(temp_2, vl);
  2535. vuint32m4_t vt_2 = __riscv_vle32_v_u32m4(temp_1, vl);
  2536. vuint32m4_t vt_3 = __riscv_vsll_vx_u32m4(vt_1, 16, vl);
  2537. vuint32m4_t vt_4 = __riscv_vadd_vx_u32m4(vt_2, 12, vl);
  2538. // ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2539. vuint32m4_t xha_0 = __riscv_vand_vx_u32m4(vt_1, qh, vl);
  2540. vuint32m4_t xhr_0 = __riscv_vsrl_vv_u32m4(xha_0, vt_2, vl);
  2541. vuint32m4_t xhl_0 = __riscv_vsll_vx_u32m4(xhr_0, 4, vl);
  2542. // ((qh & (1u << (j + 16))) >> (j + 12));
  2543. vuint32m4_t xha_1 = __riscv_vand_vx_u32m4(vt_3, qh, vl);
  2544. vuint32m4_t xhl_1 = __riscv_vsrl_vv_u32m4(xha_1, vt_4, vl);
  2545. // narrowing
  2546. vuint16m2_t xhc_0 = __riscv_vncvt_x_x_w_u16m2(xhl_0, vl);
  2547. vuint8m1_t xh_0 = __riscv_vncvt_x_x_w_u8m1(xhc_0, vl);
  2548. vuint16m2_t xhc_1 = __riscv_vncvt_x_x_w_u16m2(xhl_1, vl);
  2549. vuint8m1_t xh_1 = __riscv_vncvt_x_x_w_u8m1(xhc_1, vl);
  2550. // load
  2551. vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
  2552. vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2553. vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
  2554. vuint8m1_t x_at = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
  2555. vuint8m1_t x_lt = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
  2556. vuint8m1_t x_a = __riscv_vor_vv_u8m1(x_at, xh_0, vl);
  2557. vuint8m1_t x_l = __riscv_vor_vv_u8m1(x_lt, xh_1, vl);
  2558. vint8m1_t x_ai = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
  2559. vint8m1_t x_li = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
  2560. vint8m1_t v0 = __riscv_vsub_vx_i8m1(x_ai, 16, vl);
  2561. vint8m1_t v1 = __riscv_vsub_vx_i8m1(x_li, 16, vl);
  2562. vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
  2563. vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
  2564. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2565. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
  2566. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
  2567. int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
  2568. sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
  2569. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2570. }
  2571. *s = sumf;
  2572. #else
  2573. // scalar
  2574. float sumf = 0.0;
  2575. for (int i = 0; i < nb; i++) {
  2576. uint32_t qh;
  2577. memcpy(&qh, x[i].qh, sizeof(qh));
  2578. int sumi = 0;
  2579. for (int j = 0; j < qk/2; ++j) {
  2580. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2581. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2582. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2583. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2584. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2585. }
  2586. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2587. }
  2588. *s = sumf;
  2589. #endif
  2590. }
  2591. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2592. const int qk = QK8_1;
  2593. const int nb = n / qk;
  2594. assert(n % qk == 0);
  2595. assert(qk == QK5_1);
  2596. const block_q5_1 * restrict x = vx;
  2597. const block_q8_1 * restrict y = vy;
  2598. #if defined(__ARM_NEON)
  2599. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2600. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2601. float summs0 = 0.0f;
  2602. float summs1 = 0.0f;
  2603. uint32_t qh0;
  2604. uint32_t qh1;
  2605. uint64_t tmp0[4];
  2606. uint64_t tmp1[4];
  2607. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2608. for (int i = 0; i < nb; i += 2) {
  2609. const block_q5_1 * restrict x0 = &x[i];
  2610. const block_q5_1 * restrict x1 = &x[i + 1];
  2611. const block_q8_1 * restrict y0 = &y[i];
  2612. const block_q8_1 * restrict y1 = &y[i + 1];
  2613. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2614. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2615. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2616. // extract the 5th bit via lookup table ((b) << 4)
  2617. memcpy(&qh0, x0->qh, sizeof(qh0));
  2618. memcpy(&qh1, x1->qh, sizeof(qh1));
  2619. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2620. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2621. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2622. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2623. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2624. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2625. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2626. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2627. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2628. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2629. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2630. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2631. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2632. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2633. // 4-bit -> 8-bit
  2634. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2635. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2636. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2637. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2638. // add high bit
  2639. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2640. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2641. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2642. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2643. // load y
  2644. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2645. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2646. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2647. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2648. #if defined(__ARM_FEATURE_DOTPROD)
  2649. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2650. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2651. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2652. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2653. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2654. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2655. #else
  2656. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2657. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2658. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2659. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2660. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2661. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2662. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2663. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2664. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2665. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2666. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2667. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2668. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2669. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2670. #endif
  2671. }
  2672. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2673. #elif defined(__wasm_simd128__)
  2674. v128_t sumv = wasm_f32x4_splat(0.0f);
  2675. float summs = 0.0f;
  2676. uint32_t qh;
  2677. uint64_t tmp[4];
  2678. // TODO: check if unrolling this is better
  2679. for (int i = 0; i < nb; ++i) {
  2680. const block_q5_1 * restrict x0 = &x[i];
  2681. const block_q8_1 * restrict y0 = &y[i];
  2682. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2683. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2684. // extract the 5th bit
  2685. memcpy(&qh, x0->qh, sizeof(qh));
  2686. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2687. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2688. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2689. tmp[3] = table_b2b_0[(qh >> 24) ];
  2690. const v128_t qhl = wasm_v128_load(tmp + 0);
  2691. const v128_t qhh = wasm_v128_load(tmp + 2);
  2692. const v128_t v0 = wasm_v128_load(x0->qs);
  2693. // 4-bit -> 8-bit
  2694. const v128_t v0l = wasm_v128_and (v0, m4b);
  2695. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2696. // add high bit
  2697. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2698. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2699. // load y
  2700. const v128_t v1l = wasm_v128_load(y0->qs);
  2701. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2702. // int8x16 -> int16x8
  2703. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2704. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2705. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2706. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2707. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2708. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2709. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2710. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2711. // dot product
  2712. sumv = wasm_f32x4_add(sumv,
  2713. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2714. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2715. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2716. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2717. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2718. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2719. }
  2720. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2721. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2722. #elif defined(__AVX2__)
  2723. // Initialize accumulator with zeros
  2724. __m256 acc = _mm256_setzero_ps();
  2725. float summs = 0.0f;
  2726. // Main loop
  2727. for (int i = 0; i < nb; i++) {
  2728. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2729. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2730. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2731. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2732. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2733. bx = _mm256_or_si256(bx, bxhi);
  2734. const __m256 dy = _mm256_set1_ps(y[i].d);
  2735. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2736. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2737. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2738. }
  2739. *s = hsum_float_8(acc) + summs;
  2740. #elif defined(__AVX__)
  2741. // Initialize accumulator with zeros
  2742. __m256 acc = _mm256_setzero_ps();
  2743. __m128i mask = _mm_set1_epi8(0x10);
  2744. float summs = 0.0f;
  2745. // Main loop
  2746. for (int i = 0; i < nb; i++) {
  2747. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2748. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2749. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2750. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2751. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2752. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2753. bxhil = _mm_and_si128(bxhil, mask);
  2754. bxhih = _mm_and_si128(bxhih, mask);
  2755. __m128i bxl = _mm256_castsi256_si128(bx);
  2756. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2757. bxl = _mm_or_si128(bxl, bxhil);
  2758. bxh = _mm_or_si128(bxh, bxhih);
  2759. bx = MM256_SET_M128I(bxh, bxl);
  2760. const __m256 dy = _mm256_set1_ps(y[i].d);
  2761. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2762. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2763. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2764. }
  2765. *s = hsum_float_8(acc) + summs;
  2766. #elif defined(__riscv_v_intrinsic)
  2767. float sumf = 0.0;
  2768. uint32_t qh;
  2769. // These temp values are for shift operations
  2770. uint32_t temp_1[16] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
  2771. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2772. for (int i = 0; i < nb; i++) {
  2773. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  2774. // temporary registers
  2775. vuint32m4_t vt_1 = __riscv_vle32_v_u32m4(temp_1, vl);
  2776. vuint32m4_t vt_2 = __riscv_vadd_vx_u32m4(vt_1, 12, vl);
  2777. // load qh
  2778. vuint32m4_t vqh = __riscv_vmv_v_x_u32m4(qh, vl);
  2779. // ((qh >> (j + 0)) << 4) & 0x10;
  2780. vuint32m4_t xhr_0 = __riscv_vsrl_vv_u32m4(vqh, vt_1, vl);
  2781. vuint32m4_t xhl_0 = __riscv_vsll_vx_u32m4(xhr_0, 4, vl);
  2782. vuint32m4_t xha_0 = __riscv_vand_vx_u32m4(xhl_0, 0x10, vl);
  2783. // ((qh >> (j + 12)) ) & 0x10;
  2784. vuint32m4_t xhr_1 = __riscv_vsrl_vv_u32m4(vqh, vt_2, vl);
  2785. vuint32m4_t xha_1 = __riscv_vand_vx_u32m4(xhr_1, 0x10, vl);
  2786. // narrowing
  2787. vuint16m2_t xhc_0 = __riscv_vncvt_x_x_w_u16m2(xha_0, vl);
  2788. vuint8m1_t xh_0 = __riscv_vncvt_x_x_w_u8m1(xhc_0, vl);
  2789. vuint16m2_t xhc_1 = __riscv_vncvt_x_x_w_u16m2(xha_1, vl);
  2790. vuint8m1_t xh_1 = __riscv_vncvt_x_x_w_u8m1(xhc_1, vl);
  2791. // load
  2792. vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
  2793. vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2794. vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
  2795. vuint8m1_t x_at = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
  2796. vuint8m1_t x_lt = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
  2797. vuint8m1_t x_a = __riscv_vor_vv_u8m1(x_at, xh_0, vl);
  2798. vuint8m1_t x_l = __riscv_vor_vv_u8m1(x_lt, xh_1, vl);
  2799. vint8m1_t v0 = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
  2800. vint8m1_t v1 = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
  2801. vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
  2802. vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
  2803. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2804. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
  2805. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
  2806. int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
  2807. sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
  2808. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2809. }
  2810. *s = sumf;
  2811. #else
  2812. // scalar
  2813. float sumf = 0.0;
  2814. for (int i = 0; i < nb; i++) {
  2815. uint32_t qh;
  2816. memcpy(&qh, x[i].qh, sizeof(qh));
  2817. int sumi = 0;
  2818. for (int j = 0; j < qk/2; ++j) {
  2819. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2820. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2821. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2822. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2823. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2824. }
  2825. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2826. }
  2827. *s = sumf;
  2828. #endif
  2829. }
  2830. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2831. const int qk = QK8_0;
  2832. const int nb = n / qk;
  2833. assert(n % qk == 0);
  2834. const block_q8_0 * restrict x = vx;
  2835. const block_q8_0 * restrict y = vy;
  2836. #if defined(__ARM_NEON)
  2837. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2838. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2839. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2840. for (int i = 0; i < nb; i += 2) {
  2841. const block_q8_0 * restrict x0 = &x[i + 0];
  2842. const block_q8_0 * restrict x1 = &x[i + 1];
  2843. const block_q8_0 * restrict y0 = &y[i + 0];
  2844. const block_q8_0 * restrict y1 = &y[i + 1];
  2845. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2846. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2847. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2848. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2849. // load y
  2850. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2851. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2852. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2853. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2854. #if defined(__ARM_FEATURE_DOTPROD)
  2855. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2856. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2857. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2858. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2859. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2860. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2861. #else
  2862. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2863. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2864. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2865. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2866. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2867. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2868. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2869. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2870. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2871. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2872. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2873. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2874. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2875. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2876. #endif
  2877. }
  2878. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2879. #elif defined(__AVX2__) || defined(__AVX__)
  2880. // Initialize accumulator with zeros
  2881. __m256 acc = _mm256_setzero_ps();
  2882. // Main loop
  2883. for (int i = 0; i < nb; ++i) {
  2884. // Compute combined scale for the block
  2885. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2886. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2887. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2888. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2889. // Multiply q with scale and accumulate
  2890. #if defined(__AVX2__)
  2891. acc = _mm256_fmadd_ps( d, q, acc );
  2892. #else
  2893. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2894. #endif
  2895. }
  2896. *s = hsum_float_8(acc);
  2897. #elif defined(__riscv_v_intrinsic)
  2898. float sumf = 0.0;
  2899. size_t vl = __riscv_vsetvl_e8m1(qk);
  2900. for (int i = 0; i < nb; i++) {
  2901. // load elements
  2902. vint8m1_t bx = __riscv_vle8_v_i8m1(x[i].qs, vl);
  2903. vint8m1_t by = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2904. vint16m2_t vw_mul = __riscv_vwmul_vv_i16m2(bx, by, vl);
  2905. vint32m1_t v_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2906. vint32m1_t v_sum = __riscv_vwredsum_vs_i16m2_i32m1(vw_mul, v_zero, vl);
  2907. int sumi = __riscv_vmv_x_s_i32m1_i32(v_sum);
  2908. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2909. }
  2910. *s = sumf;
  2911. #else
  2912. // scalar
  2913. float sumf = 0.0;
  2914. for (int i = 0; i < nb; i++) {
  2915. int sumi = 0;
  2916. for (int j = 0; j < qk; j++) {
  2917. sumi += x[i].qs[j]*y[i].qs[j];
  2918. }
  2919. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2920. }
  2921. *s = sumf;
  2922. #endif
  2923. }
  2924. // compute GGML_VEC_DOT_UNROLL dot products at once
  2925. // xs - x row stride in bytes
  2926. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2927. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2928. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2929. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2930. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2931. }
  2932. #if defined(GGML_SIMD)
  2933. const int np = (n & ~(GGML_F16_STEP - 1));
  2934. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2935. GGML_F16_VEC ax[GGML_F16_ARR];
  2936. GGML_F16_VEC ay[GGML_F16_ARR];
  2937. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2938. for (int j = 0; j < GGML_F16_ARR; j++) {
  2939. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2940. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2941. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2942. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2943. }
  2944. }
  2945. }
  2946. // reduce sum0..sum3 to sum0
  2947. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2948. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2949. }
  2950. // leftovers
  2951. for (int i = np; i < n; ++i) {
  2952. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2953. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2954. }
  2955. }
  2956. #else
  2957. for (int i = 0; i < n; ++i) {
  2958. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2959. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2960. }
  2961. }
  2962. #endif
  2963. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2964. s[i] = sumf[i];
  2965. }
  2966. }
  2967. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2968. #if defined(GGML_SIMD)
  2969. const int np = (n & ~(GGML_F32_STEP - 1));
  2970. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2971. GGML_F32_VEC ax[GGML_F32_ARR];
  2972. GGML_F32_VEC ay[GGML_F32_ARR];
  2973. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2974. for (int j = 0; j < GGML_F32_ARR; j++) {
  2975. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2976. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2977. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2978. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2979. }
  2980. }
  2981. // leftovers
  2982. for (int i = np; i < n; ++i) {
  2983. y[i] += x[i]*v;
  2984. }
  2985. #else
  2986. // scalar
  2987. for (int i = 0; i < n; ++i) {
  2988. y[i] += x[i]*v;
  2989. }
  2990. #endif
  2991. }
  2992. // xs and vs are byte strides of x and v
  2993. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  2994. const float * restrict x[GGML_VEC_MAD_UNROLL];
  2995. const float * restrict v[GGML_VEC_MAD_UNROLL];
  2996. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  2997. x[i] = (const float *) ((const char *) xv + i*xs);
  2998. v[i] = (const float *) ((const char *) vv + i*vs);
  2999. }
  3000. #if defined(GGML_SIMD)
  3001. const int np = (n & ~(GGML_F32_STEP - 1));
  3002. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  3003. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  3004. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  3005. }
  3006. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  3007. GGML_F32_VEC ay[GGML_F32_ARR];
  3008. for (int i = 0; i < np; i += GGML_F32_STEP) {
  3009. for (int j = 0; j < GGML_F32_ARR; j++) {
  3010. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  3011. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  3012. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  3013. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  3014. }
  3015. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  3016. }
  3017. }
  3018. // leftovers
  3019. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  3020. for (int i = np; i < n; ++i) {
  3021. y[i] += x[k][i]*v[k][0];
  3022. }
  3023. }
  3024. #else
  3025. // scalar
  3026. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  3027. for (int i = 0; i < n; ++i) {
  3028. y[i] += x[k][i]*v[k][0];
  3029. }
  3030. }
  3031. #endif
  3032. }
  3033. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  3034. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  3035. #if defined(GGML_USE_ACCELERATE)
  3036. vDSP_vsmul(y, 1, &v, y, 1, n);
  3037. #elif defined(GGML_SIMD)
  3038. const int np = (n & ~(GGML_F32_STEP - 1));
  3039. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  3040. GGML_F32_VEC ay[GGML_F32_ARR];
  3041. for (int i = 0; i < np; i += GGML_F32_STEP) {
  3042. for (int j = 0; j < GGML_F32_ARR; j++) {
  3043. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  3044. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  3045. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  3046. }
  3047. }
  3048. // leftovers
  3049. for (int i = np; i < n; ++i) {
  3050. y[i] *= v;
  3051. }
  3052. #else
  3053. // scalar
  3054. for (int i = 0; i < n; ++i) {
  3055. y[i] *= v;
  3056. }
  3057. #endif
  3058. }
  3059. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  3060. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  3061. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  3062. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  3063. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  3064. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  3065. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  3066. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  3067. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  3068. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  3069. static const float GELU_COEF_A = 0.044715f;
  3070. static const float GELU_QUICK_COEF = -1.702f;
  3071. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  3072. inline static float ggml_gelu_f32(float x) {
  3073. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  3074. }
  3075. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3076. const uint16_t * i16 = (const uint16_t *) x;
  3077. for (int i = 0; i < n; ++i) {
  3078. y[i] = table_gelu_f16[i16[i]];
  3079. }
  3080. }
  3081. #ifdef GGML_GELU_FP16
  3082. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3083. uint16_t t;
  3084. for (int i = 0; i < n; ++i) {
  3085. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3086. memcpy(&t, &fp16, sizeof(uint16_t));
  3087. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  3088. }
  3089. }
  3090. #else
  3091. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3092. for (int i = 0; i < n; ++i) {
  3093. y[i] = ggml_gelu_f32(x[i]);
  3094. }
  3095. }
  3096. #endif
  3097. inline static float ggml_gelu_quick_f32(float x) {
  3098. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  3099. }
  3100. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3101. // const uint16_t * i16 = (const uint16_t *) x;
  3102. // for (int i = 0; i < n; ++i) {
  3103. // y[i] = table_gelu_quick_f16[i16[i]];
  3104. // }
  3105. //}
  3106. #ifdef GGML_GELU_QUICK_FP16
  3107. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  3108. uint16_t t;
  3109. for (int i = 0; i < n; ++i) {
  3110. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3111. memcpy(&t, &fp16, sizeof(uint16_t));
  3112. y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
  3113. }
  3114. }
  3115. #else
  3116. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  3117. for (int i = 0; i < n; ++i) {
  3118. y[i] = ggml_gelu_quick_f32(x[i]);
  3119. }
  3120. }
  3121. #endif
  3122. // Sigmoid Linear Unit (SiLU) function
  3123. inline static float ggml_silu_f32(float x) {
  3124. return x/(1.0f + expf(-x));
  3125. }
  3126. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3127. // const uint16_t * i16 = (const uint16_t *) x;
  3128. // for (int i = 0; i < n; ++i) {
  3129. // y[i] = table_silu_f16[i16[i]];
  3130. // }
  3131. //}
  3132. #ifdef GGML_SILU_FP16
  3133. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3134. uint16_t t;
  3135. for (int i = 0; i < n; ++i) {
  3136. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3137. memcpy(&t, &fp16, sizeof(uint16_t));
  3138. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  3139. }
  3140. }
  3141. #else
  3142. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3143. for (int i = 0; i < n; ++i) {
  3144. y[i] = ggml_silu_f32(x[i]);
  3145. }
  3146. }
  3147. #endif
  3148. inline static float ggml_silu_backward_f32(float x, float dy) {
  3149. const float s = 1.0f/(1.0f + expf(-x));
  3150. return dy*s*(1.0f + x*(1.0f - s));
  3151. }
  3152. #ifdef GGML_SILU_FP16
  3153. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  3154. for (int i = 0; i < n; ++i) {
  3155. // we did not use x[i] to compute forward silu but its f16 equivalent
  3156. // take derivative at f16 of x[i]:
  3157. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3158. float usedx = GGML_FP16_TO_FP32(fp16);
  3159. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  3160. }
  3161. }
  3162. #else
  3163. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  3164. for (int i = 0; i < n; ++i) {
  3165. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  3166. }
  3167. }
  3168. #endif
  3169. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  3170. #ifndef GGML_USE_ACCELERATE
  3171. ggml_float sum = 0.0;
  3172. for (int i = 0; i < n; ++i) {
  3173. sum += (ggml_float)x[i];
  3174. }
  3175. *s = sum;
  3176. #else
  3177. vDSP_sve(x, 1, s, n);
  3178. #endif
  3179. }
  3180. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  3181. ggml_float sum = 0.0;
  3182. for (int i = 0; i < n; ++i) {
  3183. sum += (ggml_float)x[i];
  3184. }
  3185. *s = sum;
  3186. }
  3187. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  3188. float sum = 0.0f;
  3189. for (int i = 0; i < n; ++i) {
  3190. sum += GGML_FP16_TO_FP32(x[i]);
  3191. }
  3192. *s = sum;
  3193. }
  3194. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  3195. #ifndef GGML_USE_ACCELERATE
  3196. float max = -INFINITY;
  3197. for (int i = 0; i < n; ++i) {
  3198. max = MAX(max, x[i]);
  3199. }
  3200. *s = max;
  3201. #else
  3202. vDSP_maxv(x, 1, s, n);
  3203. #endif
  3204. }
  3205. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  3206. ggml_vec_norm_f32(n, s, x);
  3207. *s = 1.f/(*s);
  3208. }
  3209. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  3210. float max = -INFINITY;
  3211. int idx = 0;
  3212. for (int i = 0; i < n; ++i) {
  3213. max = MAX(max, x[i]);
  3214. if (max == x[i]) { idx = i; }
  3215. }
  3216. *s = idx;
  3217. }
  3218. //
  3219. // data types
  3220. //
  3221. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  3222. "NONE",
  3223. "DUP",
  3224. "ADD",
  3225. "ADD1",
  3226. "ACC",
  3227. "SUB",
  3228. "MUL",
  3229. "DIV",
  3230. "SQR",
  3231. "SQRT",
  3232. "LOG",
  3233. "SUM",
  3234. "SUM_ROWS",
  3235. "MEAN",
  3236. "ARGMAX",
  3237. "REPEAT",
  3238. "REPEAT_BACK",
  3239. "CONCAT",
  3240. "SILU_BACK",
  3241. "NORM",
  3242. "RMS_NORM",
  3243. "RMS_NORM_BACK",
  3244. "GROUP_NORM",
  3245. "MUL_MAT",
  3246. "OUT_PROD",
  3247. "SCALE",
  3248. "SET",
  3249. "CPY",
  3250. "CONT",
  3251. "RESHAPE",
  3252. "VIEW",
  3253. "PERMUTE",
  3254. "TRANSPOSE",
  3255. "GET_ROWS",
  3256. "GET_ROWS_BACK",
  3257. "DIAG",
  3258. "DIAG_MASK_INF",
  3259. "DIAG_MASK_ZERO",
  3260. "SOFT_MAX",
  3261. "SOFT_MAX_BACK",
  3262. "ROPE",
  3263. "ROPE_BACK",
  3264. "ALIBI",
  3265. "CLAMP",
  3266. "CONV_1D",
  3267. "CONV_2D",
  3268. "CONV_TRANSPOSE_2D",
  3269. "POOL_1D",
  3270. "POOL_2D",
  3271. "UPSCALE",
  3272. "FLASH_ATTN",
  3273. "FLASH_FF",
  3274. "FLASH_ATTN_BACK",
  3275. "WIN_PART",
  3276. "WIN_UNPART",
  3277. "GET_REL_POS",
  3278. "ADD_REL_POS",
  3279. "UNARY",
  3280. "MAP_UNARY",
  3281. "MAP_BINARY",
  3282. "MAP_CUSTOM1_F32",
  3283. "MAP_CUSTOM2_F32",
  3284. "MAP_CUSTOM3_F32",
  3285. "MAP_CUSTOM1",
  3286. "MAP_CUSTOM2",
  3287. "MAP_CUSTOM3",
  3288. "CROSS_ENTROPY_LOSS",
  3289. "CROSS_ENTROPY_LOSS_BACK",
  3290. };
  3291. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  3292. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3293. "none",
  3294. "x",
  3295. "x+y",
  3296. "x+y",
  3297. "view(x,nb,offset)+=y->x",
  3298. "x-y",
  3299. "x*y",
  3300. "x/y",
  3301. "x^2",
  3302. "√x",
  3303. "log(x)",
  3304. "Σx",
  3305. "Σx_k",
  3306. "Σx/n",
  3307. "argmax(x)",
  3308. "repeat(x)",
  3309. "repeat_back(x)",
  3310. "concat(x, y)",
  3311. "silu_back(x)",
  3312. "norm(x)",
  3313. "rms_norm(x)",
  3314. "rms_norm_back(x)",
  3315. "group_norm(x)",
  3316. "X*Y",
  3317. "X*Y",
  3318. "x*v",
  3319. "y-\\>view(x)",
  3320. "x-\\>y",
  3321. "cont(x)",
  3322. "reshape(x)",
  3323. "view(x)",
  3324. "permute(x)",
  3325. "transpose(x)",
  3326. "get_rows(x)",
  3327. "get_rows_back(x)",
  3328. "diag(x)",
  3329. "diag_mask_inf(x)",
  3330. "diag_mask_zero(x)",
  3331. "soft_max(x)",
  3332. "soft_max_back(x)",
  3333. "rope(x)",
  3334. "rope_back(x)",
  3335. "alibi(x)",
  3336. "clamp(x)",
  3337. "conv_1d(x)",
  3338. "conv_2d(x)",
  3339. "conv_transpose_2d(x)",
  3340. "pool_1d(x)",
  3341. "pool_2d(x)",
  3342. "upscale(x)",
  3343. "flash_attn(x)",
  3344. "flash_ff(x)",
  3345. "flash_attn_back(x)",
  3346. "win_part(x)",
  3347. "win_unpart(x)",
  3348. "get_rel_pos(x)",
  3349. "add_rel_pos(x)",
  3350. "unary(x)",
  3351. "f(x)",
  3352. "f(x,y)",
  3353. "custom_f32(x)",
  3354. "custom_f32(x,y)",
  3355. "custom_f32(x,y,z)",
  3356. "custom(x)",
  3357. "custom(x,y)",
  3358. "custom(x,y,z)",
  3359. "cross_entropy_loss(x,y)",
  3360. "cross_entropy_loss_back(x,y)",
  3361. };
  3362. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  3363. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  3364. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3365. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3366. // WARN:
  3367. // Mis-confguration can lead to problem that's hard to reason about:
  3368. // * At best it crash or talks nosense.
  3369. // * At worst it talks slightly difference but hard to perceive.
  3370. //
  3371. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  3372. // Take care about compile options (e.g., GGML_USE_xxx).
  3373. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  3374. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  3375. static void ggml_setup_op_has_task_pass(void) {
  3376. { // INIT
  3377. bool * p = GGML_OP_HAS_INIT;
  3378. p[GGML_OP_ACC ] = true;
  3379. p[GGML_OP_MUL_MAT ] = true;
  3380. p[GGML_OP_OUT_PROD ] = true;
  3381. p[GGML_OP_SET ] = true;
  3382. p[GGML_OP_GET_ROWS_BACK ] = true;
  3383. p[GGML_OP_DIAG_MASK_INF ] = true;
  3384. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  3385. p[GGML_OP_CONV_1D ] = true;
  3386. p[GGML_OP_CONV_2D ] = true;
  3387. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  3388. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  3389. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3390. p[GGML_OP_ADD_REL_POS ] = true;
  3391. }
  3392. { // FINALIZE
  3393. bool * p = GGML_OP_HAS_FINALIZE;
  3394. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3395. }
  3396. }
  3397. //
  3398. // ggml context
  3399. //
  3400. struct ggml_context {
  3401. size_t mem_size;
  3402. void * mem_buffer;
  3403. bool mem_buffer_owned;
  3404. bool no_alloc;
  3405. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3406. int n_objects;
  3407. struct ggml_object * objects_begin;
  3408. struct ggml_object * objects_end;
  3409. struct ggml_scratch scratch;
  3410. struct ggml_scratch scratch_save;
  3411. };
  3412. struct ggml_context_container {
  3413. bool used;
  3414. struct ggml_context context;
  3415. };
  3416. //
  3417. // NUMA support
  3418. //
  3419. #define GGML_NUMA_MAX_NODES 8
  3420. #define GGML_NUMA_MAX_CPUS 512
  3421. struct ggml_numa_node {
  3422. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  3423. uint32_t n_cpus;
  3424. };
  3425. struct ggml_numa_nodes {
  3426. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  3427. uint32_t n_nodes;
  3428. uint32_t total_cpus; // hardware threads on system
  3429. };
  3430. //
  3431. // ggml state
  3432. //
  3433. struct ggml_state {
  3434. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3435. struct ggml_numa_nodes numa;
  3436. };
  3437. // global state
  3438. static struct ggml_state g_state;
  3439. static atomic_int g_state_barrier = 0;
  3440. // barrier via spin lock
  3441. inline static void ggml_critical_section_start(void) {
  3442. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3443. while (processing > 0) {
  3444. // wait for other threads to finish
  3445. atomic_fetch_sub(&g_state_barrier, 1);
  3446. sched_yield(); // TODO: reconsider this
  3447. processing = atomic_fetch_add(&g_state_barrier, 1);
  3448. }
  3449. }
  3450. // TODO: make this somehow automatically executed
  3451. // some sort of "sentry" mechanism
  3452. inline static void ggml_critical_section_end(void) {
  3453. atomic_fetch_sub(&g_state_barrier, 1);
  3454. }
  3455. void ggml_numa_init(void) {
  3456. if (g_state.numa.n_nodes > 0) {
  3457. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  3458. return;
  3459. }
  3460. #ifdef __linux__
  3461. struct stat st;
  3462. char path[256];
  3463. int rv;
  3464. // enumerate nodes
  3465. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  3466. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  3467. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3468. if (stat(path, &st) != 0) { break; }
  3469. ++g_state.numa.n_nodes;
  3470. }
  3471. // enumerate CPUs
  3472. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  3473. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  3474. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3475. if (stat(path, &st) != 0) { break; }
  3476. ++g_state.numa.total_cpus;
  3477. }
  3478. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  3479. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  3480. g_state.numa.n_nodes = 0;
  3481. return;
  3482. }
  3483. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  3484. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  3485. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  3486. node->n_cpus = 0;
  3487. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  3488. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  3489. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3490. if (stat(path, &st) == 0) {
  3491. node->cpus[node->n_cpus++] = c;
  3492. GGML_PRINT_DEBUG(" %u", c);
  3493. }
  3494. }
  3495. GGML_PRINT_DEBUG("\n");
  3496. }
  3497. if (ggml_is_numa()) {
  3498. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  3499. if (fptr != NULL) {
  3500. char buf[42];
  3501. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  3502. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  3503. }
  3504. fclose(fptr);
  3505. }
  3506. }
  3507. #else
  3508. // TODO
  3509. #endif
  3510. }
  3511. bool ggml_is_numa(void) {
  3512. return g_state.numa.n_nodes > 1;
  3513. }
  3514. ////////////////////////////////////////////////////////////////////////////////
  3515. void ggml_print_object(const struct ggml_object * obj) {
  3516. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  3517. obj->type, obj->offs, obj->size, (const void *) obj->next);
  3518. }
  3519. void ggml_print_objects(const struct ggml_context * ctx) {
  3520. struct ggml_object * obj = ctx->objects_begin;
  3521. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3522. while (obj != NULL) {
  3523. ggml_print_object(obj);
  3524. obj = obj->next;
  3525. }
  3526. GGML_PRINT("%s: --- end ---\n", __func__);
  3527. }
  3528. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3529. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3530. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3531. }
  3532. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3533. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3534. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3535. }
  3536. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3537. size_t nbytes;
  3538. size_t blck_size = ggml_blck_size(tensor->type);
  3539. if (blck_size == 1) {
  3540. nbytes = ggml_type_size(tensor->type);
  3541. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  3542. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  3543. }
  3544. }
  3545. else {
  3546. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  3547. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3548. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  3549. }
  3550. }
  3551. return nbytes;
  3552. }
  3553. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  3554. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  3555. }
  3556. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3557. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3558. return (nrows_split*tensor->ne[0]*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type);
  3559. }
  3560. int ggml_blck_size(enum ggml_type type) {
  3561. return type_traits[type].blck_size;
  3562. }
  3563. size_t ggml_type_size(enum ggml_type type) {
  3564. return type_traits[type].type_size;
  3565. }
  3566. float ggml_type_sizef(enum ggml_type type) {
  3567. return ((float)(type_traits[type].type_size))/type_traits[type].blck_size;
  3568. }
  3569. const char * ggml_type_name(enum ggml_type type) {
  3570. return type_traits[type].type_name;
  3571. }
  3572. bool ggml_is_quantized(enum ggml_type type) {
  3573. return type_traits[type].is_quantized;
  3574. }
  3575. const char * ggml_op_name(enum ggml_op op) {
  3576. return GGML_OP_NAME[op];
  3577. }
  3578. const char * ggml_op_symbol(enum ggml_op op) {
  3579. return GGML_OP_SYMBOL[op];
  3580. }
  3581. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3582. return ggml_type_size(tensor->type);
  3583. }
  3584. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3585. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3586. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3587. }
  3588. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3589. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3590. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3591. }
  3592. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3593. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3594. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3595. }
  3596. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3597. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3598. return (t0->ne[0] == t1->ne[0]) &&
  3599. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  3600. (t1->ne[3]%t0->ne[3] == 0);
  3601. }
  3602. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3603. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3604. return (t0->ne[1] == t1->ne[1]) &&
  3605. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  3606. (t1->ne[3]%t0->ne[3] == 0);
  3607. }
  3608. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3609. enum ggml_type wtype = GGML_TYPE_COUNT;
  3610. switch (ftype) {
  3611. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3612. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3613. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3614. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3615. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3616. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3617. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3618. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3619. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3620. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3621. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3622. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3623. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3624. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3625. }
  3626. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3627. return wtype;
  3628. }
  3629. size_t ggml_tensor_overhead(void) {
  3630. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  3631. }
  3632. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3633. return tensor->nb[0] > tensor->nb[1];
  3634. }
  3635. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3636. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3637. return
  3638. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3639. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  3640. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3641. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3642. }
  3643. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  3644. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3645. return
  3646. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3647. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3648. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3649. }
  3650. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3651. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3652. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3653. }
  3654. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3655. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3656. return
  3657. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3658. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3659. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3660. }
  3661. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3662. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3663. return
  3664. (t0->ne[0] == t1->ne[0] ) &&
  3665. (t0->ne[1] == t1->ne[1] ) &&
  3666. (t0->ne[2] == t1->ne[2] ) &&
  3667. (t0->ne[3] == t1->ne[3] );
  3668. }
  3669. // check if t1 can be represented as a repeatition of t0
  3670. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3671. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3672. return
  3673. (t1->ne[0]%t0->ne[0] == 0) &&
  3674. (t1->ne[1]%t0->ne[1] == 0) &&
  3675. (t1->ne[2]%t0->ne[2] == 0) &&
  3676. (t1->ne[3]%t0->ne[3] == 0);
  3677. }
  3678. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3679. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3680. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3681. }
  3682. static inline int ggml_up32(int n) {
  3683. return (n + 31) & ~31;
  3684. }
  3685. //static inline int ggml_up64(int n) {
  3686. // return (n + 63) & ~63;
  3687. //}
  3688. static inline int ggml_up(int n, int m) {
  3689. // assert m is a power of 2
  3690. GGML_ASSERT((m & (m - 1)) == 0);
  3691. return (n + m - 1) & ~(m - 1);
  3692. }
  3693. // assert that pointer is aligned to GGML_MEM_ALIGN
  3694. #define ggml_assert_aligned(ptr) \
  3695. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3696. ////////////////////////////////////////////////////////////////////////////////
  3697. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3698. // make this function thread safe
  3699. ggml_critical_section_start();
  3700. static bool is_first_call = true;
  3701. if (is_first_call) {
  3702. // initialize time system (required on Windows)
  3703. ggml_time_init();
  3704. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3705. {
  3706. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3707. ggml_fp16_t ii;
  3708. for (int i = 0; i < (1 << 16); ++i) {
  3709. uint16_t ui = i;
  3710. memcpy(&ii, &ui, sizeof(ii));
  3711. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3712. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3713. table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3714. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3715. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3716. }
  3717. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3718. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3719. }
  3720. // initialize g_state
  3721. {
  3722. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3723. g_state = (struct ggml_state) {
  3724. /*.contexts =*/ { { 0 } },
  3725. /*.numa =*/ {
  3726. .n_nodes = 0,
  3727. .total_cpus = 0,
  3728. },
  3729. };
  3730. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3731. g_state.contexts[i].used = false;
  3732. }
  3733. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3734. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3735. }
  3736. #if defined(GGML_USE_CUBLAS)
  3737. ggml_init_cublas();
  3738. #elif defined(GGML_USE_CLBLAST)
  3739. ggml_cl_init();
  3740. #endif
  3741. ggml_setup_op_has_task_pass();
  3742. is_first_call = false;
  3743. }
  3744. // find non-used context in g_state
  3745. struct ggml_context * ctx = NULL;
  3746. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3747. if (!g_state.contexts[i].used) {
  3748. g_state.contexts[i].used = true;
  3749. ctx = &g_state.contexts[i].context;
  3750. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3751. break;
  3752. }
  3753. }
  3754. if (ctx == NULL) {
  3755. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3756. ggml_critical_section_end();
  3757. return NULL;
  3758. }
  3759. // allow to call ggml_init with 0 size
  3760. if (params.mem_size == 0) {
  3761. params.mem_size = GGML_MEM_ALIGN;
  3762. }
  3763. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  3764. *ctx = (struct ggml_context) {
  3765. /*.mem_size =*/ mem_size,
  3766. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3767. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3768. /*.no_alloc =*/ params.no_alloc,
  3769. /*.no_alloc_save =*/ params.no_alloc,
  3770. /*.n_objects =*/ 0,
  3771. /*.objects_begin =*/ NULL,
  3772. /*.objects_end =*/ NULL,
  3773. /*.scratch =*/ { 0, 0, NULL, },
  3774. /*.scratch_save =*/ { 0, 0, NULL, },
  3775. };
  3776. GGML_ASSERT(ctx->mem_buffer != NULL);
  3777. ggml_assert_aligned(ctx->mem_buffer);
  3778. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3779. ggml_critical_section_end();
  3780. return ctx;
  3781. }
  3782. void ggml_free(struct ggml_context * ctx) {
  3783. // make this function thread safe
  3784. ggml_critical_section_start();
  3785. bool found = false;
  3786. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3787. if (&g_state.contexts[i].context == ctx) {
  3788. g_state.contexts[i].used = false;
  3789. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  3790. __func__, i, ggml_used_mem(ctx));
  3791. if (ctx->mem_buffer_owned) {
  3792. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3793. }
  3794. found = true;
  3795. break;
  3796. }
  3797. }
  3798. if (!found) {
  3799. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3800. }
  3801. ggml_critical_section_end();
  3802. }
  3803. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3804. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3805. }
  3806. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3807. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3808. ctx->scratch = scratch;
  3809. return result;
  3810. }
  3811. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  3812. return ctx->no_alloc;
  3813. }
  3814. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3815. ctx->no_alloc = no_alloc;
  3816. }
  3817. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3818. return ctx->mem_buffer;
  3819. }
  3820. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3821. return ctx->mem_size;
  3822. }
  3823. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3824. size_t max_size = 0;
  3825. struct ggml_object * obj = ctx->objects_begin;
  3826. while (obj != NULL) {
  3827. if (obj->type == GGML_OBJECT_TENSOR) {
  3828. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  3829. const size_t size = ggml_nbytes(tensor);
  3830. if (max_size < size) {
  3831. max_size = size;
  3832. }
  3833. }
  3834. obj = obj->next;
  3835. }
  3836. return max_size;
  3837. }
  3838. // IMPORTANT:
  3839. // when creating "opt" tensors, always save and load the scratch buffer
  3840. // this is an error prone process, but it is necessary to support inplace
  3841. // operators when using scratch buffers
  3842. // TODO: implement a better way
  3843. static void ggml_scratch_save(struct ggml_context * ctx) {
  3844. // this is needed to allow opt tensors to store their data
  3845. // TODO: again, need to find a better way
  3846. ctx->no_alloc_save = ctx->no_alloc;
  3847. ctx->no_alloc = false;
  3848. ctx->scratch_save = ctx->scratch;
  3849. ctx->scratch.data = NULL;
  3850. }
  3851. static void ggml_scratch_load(struct ggml_context * ctx) {
  3852. ctx->no_alloc = ctx->no_alloc_save;
  3853. ctx->scratch = ctx->scratch_save;
  3854. }
  3855. ////////////////////////////////////////////////////////////////////////////////
  3856. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3857. // always insert objects at the end of the context's memory pool
  3858. struct ggml_object * obj_cur = ctx->objects_end;
  3859. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3860. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3861. const size_t cur_end = cur_offs + cur_size;
  3862. // align to GGML_MEM_ALIGN
  3863. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3864. char * const mem_buffer = ctx->mem_buffer;
  3865. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3866. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3867. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3868. __func__, cur_end + size_needed, ctx->mem_size);
  3869. assert(false);
  3870. return NULL;
  3871. }
  3872. *obj_new = (struct ggml_object) {
  3873. .offs = cur_end + GGML_OBJECT_SIZE,
  3874. .size = size_needed,
  3875. .next = NULL,
  3876. .type = type,
  3877. };
  3878. ggml_assert_aligned(mem_buffer + obj_new->offs);
  3879. if (obj_cur != NULL) {
  3880. obj_cur->next = obj_new;
  3881. } else {
  3882. // this is the first object in this context
  3883. ctx->objects_begin = obj_new;
  3884. }
  3885. ctx->objects_end = obj_new;
  3886. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3887. return obj_new;
  3888. }
  3889. static struct ggml_tensor * ggml_new_tensor_impl(
  3890. struct ggml_context * ctx,
  3891. enum ggml_type type,
  3892. int n_dims,
  3893. const int64_t * ne,
  3894. struct ggml_tensor * view_src,
  3895. size_t view_offs) {
  3896. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3897. // find the base tensor and absolute offset
  3898. if (view_src != NULL && view_src->view_src != NULL) {
  3899. view_offs += view_src->view_offs;
  3900. view_src = view_src->view_src;
  3901. }
  3902. size_t data_size = ggml_type_size(type)*(ne[0]/ggml_blck_size(type));
  3903. for (int i = 1; i < n_dims; i++) {
  3904. data_size *= ne[i];
  3905. }
  3906. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  3907. void * data = view_src != NULL ? view_src->data : NULL;
  3908. if (data != NULL) {
  3909. data = (char *) data + view_offs;
  3910. }
  3911. size_t obj_alloc_size = 0;
  3912. if (view_src == NULL && !ctx->no_alloc) {
  3913. if (ctx->scratch.data != NULL) {
  3914. // allocate tensor data in the scratch buffer
  3915. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3916. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3917. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3918. assert(false);
  3919. return NULL;
  3920. }
  3921. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3922. ctx->scratch.offs += data_size;
  3923. } else {
  3924. // allocate tensor data in the context's memory pool
  3925. obj_alloc_size = data_size;
  3926. }
  3927. }
  3928. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  3929. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3930. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3931. *result = (struct ggml_tensor) {
  3932. /*.type =*/ type,
  3933. /*.backend =*/ GGML_BACKEND_CPU,
  3934. /*.n_dims =*/ n_dims,
  3935. /*.ne =*/ { 1, 1, 1, 1 },
  3936. /*.nb =*/ { 0, 0, 0, 0 },
  3937. /*.op =*/ GGML_OP_NONE,
  3938. /*.op_params =*/ { 0 },
  3939. /*.is_param =*/ false,
  3940. /*.grad =*/ NULL,
  3941. /*.src =*/ { NULL },
  3942. /*.perf_runs =*/ 0,
  3943. /*.perf_cycles =*/ 0,
  3944. /*.perf_time_us =*/ 0,
  3945. /*.view_src =*/ view_src,
  3946. /*.view_offs =*/ view_offs,
  3947. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  3948. /*.name =*/ { 0 },
  3949. /*.extra =*/ NULL,
  3950. /*.padding =*/ { 0 },
  3951. };
  3952. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3953. //ggml_assert_aligned(result->data);
  3954. for (int i = 0; i < n_dims; i++) {
  3955. result->ne[i] = ne[i];
  3956. }
  3957. result->nb[0] = ggml_type_size(type);
  3958. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3959. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3960. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3961. }
  3962. ctx->n_objects++;
  3963. return result;
  3964. }
  3965. struct ggml_tensor * ggml_new_tensor(
  3966. struct ggml_context * ctx,
  3967. enum ggml_type type,
  3968. int n_dims,
  3969. const int64_t * ne) {
  3970. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  3971. }
  3972. struct ggml_tensor * ggml_new_tensor_1d(
  3973. struct ggml_context * ctx,
  3974. enum ggml_type type,
  3975. int64_t ne0) {
  3976. return ggml_new_tensor(ctx, type, 1, &ne0);
  3977. }
  3978. struct ggml_tensor * ggml_new_tensor_2d(
  3979. struct ggml_context * ctx,
  3980. enum ggml_type type,
  3981. int64_t ne0,
  3982. int64_t ne1) {
  3983. const int64_t ne[2] = { ne0, ne1 };
  3984. return ggml_new_tensor(ctx, type, 2, ne);
  3985. }
  3986. struct ggml_tensor * ggml_new_tensor_3d(
  3987. struct ggml_context * ctx,
  3988. enum ggml_type type,
  3989. int64_t ne0,
  3990. int64_t ne1,
  3991. int64_t ne2) {
  3992. const int64_t ne[3] = { ne0, ne1, ne2 };
  3993. return ggml_new_tensor(ctx, type, 3, ne);
  3994. }
  3995. struct ggml_tensor * ggml_new_tensor_4d(
  3996. struct ggml_context * ctx,
  3997. enum ggml_type type,
  3998. int64_t ne0,
  3999. int64_t ne1,
  4000. int64_t ne2,
  4001. int64_t ne3) {
  4002. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4003. return ggml_new_tensor(ctx, type, 4, ne);
  4004. }
  4005. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  4006. ggml_scratch_save(ctx);
  4007. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  4008. ggml_scratch_load(ctx);
  4009. ggml_set_i32(result, value);
  4010. return result;
  4011. }
  4012. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  4013. ggml_scratch_save(ctx);
  4014. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  4015. ggml_scratch_load(ctx);
  4016. ggml_set_f32(result, value);
  4017. return result;
  4018. }
  4019. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  4020. return ggml_new_tensor(ctx, src->type, src->n_dims, src->ne);
  4021. }
  4022. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  4023. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  4024. assert(params_size <= GGML_MAX_OP_PARAMS);
  4025. memcpy(tensor->op_params, params, params_size);
  4026. }
  4027. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  4028. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  4029. return ((const int32_t *)(tensor->op_params))[i];
  4030. }
  4031. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  4032. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  4033. ((int32_t *)(tensor->op_params))[i] = value;
  4034. }
  4035. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  4036. memset(tensor->data, 0, ggml_nbytes(tensor));
  4037. return tensor;
  4038. }
  4039. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  4040. const int n = ggml_nrows(tensor);
  4041. const int nc = tensor->ne[0];
  4042. const size_t n1 = tensor->nb[1];
  4043. char * const data = tensor->data;
  4044. switch (tensor->type) {
  4045. case GGML_TYPE_I8:
  4046. {
  4047. assert(tensor->nb[0] == sizeof(int8_t));
  4048. for (int i = 0; i < n; i++) {
  4049. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  4050. }
  4051. } break;
  4052. case GGML_TYPE_I16:
  4053. {
  4054. assert(tensor->nb[0] == sizeof(int16_t));
  4055. for (int i = 0; i < n; i++) {
  4056. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  4057. }
  4058. } break;
  4059. case GGML_TYPE_I32:
  4060. {
  4061. assert(tensor->nb[0] == sizeof(int32_t));
  4062. for (int i = 0; i < n; i++) {
  4063. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  4064. }
  4065. } break;
  4066. case GGML_TYPE_F16:
  4067. {
  4068. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  4069. for (int i = 0; i < n; i++) {
  4070. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  4071. }
  4072. } break;
  4073. case GGML_TYPE_F32:
  4074. {
  4075. assert(tensor->nb[0] == sizeof(float));
  4076. for (int i = 0; i < n; i++) {
  4077. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  4078. }
  4079. } break;
  4080. default:
  4081. {
  4082. GGML_ASSERT(false);
  4083. } break;
  4084. }
  4085. return tensor;
  4086. }
  4087. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  4088. const int n = ggml_nrows(tensor);
  4089. const int nc = tensor->ne[0];
  4090. const size_t n1 = tensor->nb[1];
  4091. char * const data = tensor->data;
  4092. switch (tensor->type) {
  4093. case GGML_TYPE_I8:
  4094. {
  4095. assert(tensor->nb[0] == sizeof(int8_t));
  4096. for (int i = 0; i < n; i++) {
  4097. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  4098. }
  4099. } break;
  4100. case GGML_TYPE_I16:
  4101. {
  4102. assert(tensor->nb[0] == sizeof(int16_t));
  4103. for (int i = 0; i < n; i++) {
  4104. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  4105. }
  4106. } break;
  4107. case GGML_TYPE_I32:
  4108. {
  4109. assert(tensor->nb[0] == sizeof(int32_t));
  4110. for (int i = 0; i < n; i++) {
  4111. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  4112. }
  4113. } break;
  4114. case GGML_TYPE_F16:
  4115. {
  4116. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  4117. for (int i = 0; i < n; i++) {
  4118. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  4119. }
  4120. } break;
  4121. case GGML_TYPE_F32:
  4122. {
  4123. assert(tensor->nb[0] == sizeof(float));
  4124. for (int i = 0; i < n; i++) {
  4125. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  4126. }
  4127. } break;
  4128. default:
  4129. {
  4130. GGML_ASSERT(false);
  4131. } break;
  4132. }
  4133. return tensor;
  4134. }
  4135. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  4136. const int64_t ne2 = tensor->ne[2];
  4137. const int64_t ne1 = tensor->ne[1];
  4138. const int64_t ne0 = tensor->ne[0];
  4139. const int64_t i3_ = (i/(ne2*ne1*ne0));
  4140. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  4141. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  4142. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  4143. if (i0) {
  4144. * i0 = i0_;
  4145. }
  4146. if (i1) {
  4147. * i1 = i1_;
  4148. }
  4149. if (i2) {
  4150. * i2 = i2_;
  4151. }
  4152. if (i3) {
  4153. * i3 = i3_;
  4154. }
  4155. }
  4156. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  4157. if (!ggml_is_contiguous(tensor)) {
  4158. int64_t id[4] = { 0, 0, 0, 0 };
  4159. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  4160. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  4161. }
  4162. switch (tensor->type) {
  4163. case GGML_TYPE_I8:
  4164. {
  4165. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4166. return ((int8_t *)(tensor->data))[i];
  4167. }
  4168. case GGML_TYPE_I16:
  4169. {
  4170. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4171. return ((int16_t *)(tensor->data))[i];
  4172. }
  4173. case GGML_TYPE_I32:
  4174. {
  4175. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4176. return ((int32_t *)(tensor->data))[i];
  4177. }
  4178. case GGML_TYPE_F16:
  4179. {
  4180. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4181. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  4182. }
  4183. case GGML_TYPE_F32:
  4184. {
  4185. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4186. return ((float *)(tensor->data))[i];
  4187. }
  4188. default:
  4189. {
  4190. GGML_ASSERT(false);
  4191. }
  4192. }
  4193. return 0.0f;
  4194. }
  4195. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  4196. if (!ggml_is_contiguous(tensor)) {
  4197. int64_t id[4] = { 0, 0, 0, 0 };
  4198. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  4199. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  4200. return;
  4201. }
  4202. switch (tensor->type) {
  4203. case GGML_TYPE_I8:
  4204. {
  4205. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4206. ((int8_t *)(tensor->data))[i] = value;
  4207. } break;
  4208. case GGML_TYPE_I16:
  4209. {
  4210. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4211. ((int16_t *)(tensor->data))[i] = value;
  4212. } break;
  4213. case GGML_TYPE_I32:
  4214. {
  4215. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4216. ((int32_t *)(tensor->data))[i] = value;
  4217. } break;
  4218. case GGML_TYPE_F16:
  4219. {
  4220. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4221. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4222. } break;
  4223. case GGML_TYPE_F32:
  4224. {
  4225. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4226. ((float *)(tensor->data))[i] = value;
  4227. } break;
  4228. default:
  4229. {
  4230. GGML_ASSERT(false);
  4231. } break;
  4232. }
  4233. }
  4234. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  4235. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  4236. switch (tensor->type) {
  4237. case GGML_TYPE_I8:
  4238. return ((int8_t *) data)[0];
  4239. case GGML_TYPE_I16:
  4240. return ((int16_t *) data)[0];
  4241. case GGML_TYPE_I32:
  4242. return ((int32_t *) data)[0];
  4243. case GGML_TYPE_F16:
  4244. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  4245. case GGML_TYPE_F32:
  4246. return ((float *) data)[0];
  4247. default:
  4248. GGML_ASSERT(false);
  4249. }
  4250. return 0.0f;
  4251. }
  4252. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  4253. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  4254. switch (tensor->type) {
  4255. case GGML_TYPE_I8:
  4256. {
  4257. ((int8_t *)(data))[0] = value;
  4258. } break;
  4259. case GGML_TYPE_I16:
  4260. {
  4261. ((int16_t *)(data))[0] = value;
  4262. } break;
  4263. case GGML_TYPE_I32:
  4264. {
  4265. ((int32_t *)(data))[0] = value;
  4266. } break;
  4267. case GGML_TYPE_F16:
  4268. {
  4269. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  4270. } break;
  4271. case GGML_TYPE_F32:
  4272. {
  4273. ((float *)(data))[0] = value;
  4274. } break;
  4275. default:
  4276. {
  4277. GGML_ASSERT(false);
  4278. } break;
  4279. }
  4280. }
  4281. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  4282. if (!ggml_is_contiguous(tensor)) {
  4283. int64_t id[4] = { 0, 0, 0, 0 };
  4284. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  4285. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  4286. }
  4287. switch (tensor->type) {
  4288. case GGML_TYPE_I8:
  4289. {
  4290. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4291. return ((int8_t *)(tensor->data))[i];
  4292. }
  4293. case GGML_TYPE_I16:
  4294. {
  4295. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4296. return ((int16_t *)(tensor->data))[i];
  4297. }
  4298. case GGML_TYPE_I32:
  4299. {
  4300. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4301. return ((int32_t *)(tensor->data))[i];
  4302. }
  4303. case GGML_TYPE_F16:
  4304. {
  4305. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4306. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  4307. }
  4308. case GGML_TYPE_F32:
  4309. {
  4310. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4311. return ((float *)(tensor->data))[i];
  4312. }
  4313. default:
  4314. {
  4315. GGML_ASSERT(false);
  4316. }
  4317. }
  4318. return 0.0f;
  4319. }
  4320. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  4321. if (!ggml_is_contiguous(tensor)) {
  4322. int64_t id[4] = { 0, 0, 0, 0 };
  4323. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  4324. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  4325. return;
  4326. }
  4327. switch (tensor->type) {
  4328. case GGML_TYPE_I8:
  4329. {
  4330. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4331. ((int8_t *)(tensor->data))[i] = value;
  4332. } break;
  4333. case GGML_TYPE_I16:
  4334. {
  4335. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4336. ((int16_t *)(tensor->data))[i] = value;
  4337. } break;
  4338. case GGML_TYPE_I32:
  4339. {
  4340. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4341. ((int32_t *)(tensor->data))[i] = value;
  4342. } break;
  4343. case GGML_TYPE_F16:
  4344. {
  4345. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4346. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4347. } break;
  4348. case GGML_TYPE_F32:
  4349. {
  4350. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4351. ((float *)(tensor->data))[i] = value;
  4352. } break;
  4353. default:
  4354. {
  4355. GGML_ASSERT(false);
  4356. } break;
  4357. }
  4358. }
  4359. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  4360. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  4361. switch (tensor->type) {
  4362. case GGML_TYPE_I8:
  4363. return ((int8_t *) data)[0];
  4364. case GGML_TYPE_I16:
  4365. return ((int16_t *) data)[0];
  4366. case GGML_TYPE_I32:
  4367. return ((int32_t *) data)[0];
  4368. case GGML_TYPE_F16:
  4369. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  4370. case GGML_TYPE_F32:
  4371. return ((float *) data)[0];
  4372. default:
  4373. GGML_ASSERT(false);
  4374. }
  4375. return 0.0f;
  4376. }
  4377. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  4378. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  4379. switch (tensor->type) {
  4380. case GGML_TYPE_I8:
  4381. {
  4382. ((int8_t *)(data))[0] = value;
  4383. } break;
  4384. case GGML_TYPE_I16:
  4385. {
  4386. ((int16_t *)(data))[0] = value;
  4387. } break;
  4388. case GGML_TYPE_I32:
  4389. {
  4390. ((int32_t *)(data))[0] = value;
  4391. } break;
  4392. case GGML_TYPE_F16:
  4393. {
  4394. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  4395. } break;
  4396. case GGML_TYPE_F32:
  4397. {
  4398. ((float *)(data))[0] = value;
  4399. } break;
  4400. default:
  4401. {
  4402. GGML_ASSERT(false);
  4403. } break;
  4404. }
  4405. }
  4406. void * ggml_get_data(const struct ggml_tensor * tensor) {
  4407. return tensor->data;
  4408. }
  4409. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  4410. assert(tensor->type == GGML_TYPE_F32);
  4411. return (float *)(tensor->data);
  4412. }
  4413. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  4414. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  4415. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  4416. }
  4417. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  4418. return tensor->name;
  4419. }
  4420. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  4421. strncpy(tensor->name, name, sizeof(tensor->name));
  4422. tensor->name[sizeof(tensor->name) - 1] = '\0';
  4423. return tensor;
  4424. }
  4425. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  4426. va_list args;
  4427. va_start(args, fmt);
  4428. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  4429. va_end(args);
  4430. return tensor;
  4431. }
  4432. struct ggml_tensor * ggml_view_tensor(
  4433. struct ggml_context * ctx,
  4434. struct ggml_tensor * src) {
  4435. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src, 0);
  4436. ggml_format_name(result, "%s (view)", src->name);
  4437. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  4438. result->nb[i] = src->nb[i];
  4439. }
  4440. return result;
  4441. }
  4442. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  4443. struct ggml_object * obj = ctx->objects_begin;
  4444. char * const mem_buffer = ctx->mem_buffer;
  4445. while (obj != NULL) {
  4446. if (obj->type == GGML_OBJECT_TENSOR) {
  4447. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  4448. if (strcmp(cur->name, name) == 0) {
  4449. return cur;
  4450. }
  4451. }
  4452. obj = obj->next;
  4453. }
  4454. return NULL;
  4455. }
  4456. ////////////////////////////////////////////////////////////////////////////////
  4457. // ggml_dup
  4458. static struct ggml_tensor * ggml_dup_impl(
  4459. struct ggml_context * ctx,
  4460. struct ggml_tensor * a,
  4461. bool inplace) {
  4462. bool is_node = false;
  4463. if (!inplace && (a->grad)) {
  4464. is_node = true;
  4465. }
  4466. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4467. result->op = GGML_OP_DUP;
  4468. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4469. result->src[0] = a;
  4470. return result;
  4471. }
  4472. struct ggml_tensor * ggml_dup(
  4473. struct ggml_context * ctx,
  4474. struct ggml_tensor * a) {
  4475. return ggml_dup_impl(ctx, a, false);
  4476. }
  4477. struct ggml_tensor * ggml_dup_inplace(
  4478. struct ggml_context * ctx,
  4479. struct ggml_tensor * a) {
  4480. return ggml_dup_impl(ctx, a, true);
  4481. }
  4482. // ggml_add
  4483. static struct ggml_tensor * ggml_add_impl(
  4484. struct ggml_context * ctx,
  4485. struct ggml_tensor * a,
  4486. struct ggml_tensor * b,
  4487. bool inplace) {
  4488. // TODO: support less-strict constraint
  4489. // GGML_ASSERT(ggml_can_repeat(b, a));
  4490. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4491. bool is_node = false;
  4492. if (!inplace && (a->grad || b->grad)) {
  4493. // TODO: support backward pass for broadcasting
  4494. GGML_ASSERT(ggml_are_same_shape(a, b));
  4495. is_node = true;
  4496. }
  4497. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4498. result->op = GGML_OP_ADD;
  4499. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4500. result->src[0] = a;
  4501. result->src[1] = b;
  4502. return result;
  4503. }
  4504. struct ggml_tensor * ggml_add(
  4505. struct ggml_context * ctx,
  4506. struct ggml_tensor * a,
  4507. struct ggml_tensor * b) {
  4508. return ggml_add_impl(ctx, a, b, false);
  4509. }
  4510. struct ggml_tensor * ggml_add_inplace(
  4511. struct ggml_context * ctx,
  4512. struct ggml_tensor * a,
  4513. struct ggml_tensor * b) {
  4514. return ggml_add_impl(ctx, a, b, true);
  4515. }
  4516. // ggml_add_cast
  4517. static struct ggml_tensor * ggml_add_cast_impl(
  4518. struct ggml_context * ctx,
  4519. struct ggml_tensor * a,
  4520. struct ggml_tensor * b,
  4521. enum ggml_type type) {
  4522. // TODO: support less-strict constraint
  4523. // GGML_ASSERT(ggml_can_repeat(b, a));
  4524. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4525. GGML_ASSERT(ggml_is_quantized(a->type)); // currently only supported for quantized input
  4526. bool is_node = false;
  4527. if (a->grad || b->grad) {
  4528. // TODO: support backward pass for broadcasting
  4529. GGML_ASSERT(ggml_are_same_shape(a, b));
  4530. is_node = true;
  4531. }
  4532. struct ggml_tensor * result = ggml_new_tensor(ctx, type, a->n_dims, a->ne);
  4533. result->op = GGML_OP_ADD;
  4534. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne) : NULL;
  4535. result->src[0] = a;
  4536. result->src[1] = b;
  4537. return result;
  4538. }
  4539. struct ggml_tensor * ggml_add_cast(
  4540. struct ggml_context * ctx,
  4541. struct ggml_tensor * a,
  4542. struct ggml_tensor * b,
  4543. enum ggml_type type) {
  4544. return ggml_add_cast_impl(ctx, a, b, type);
  4545. }
  4546. // ggml_add1
  4547. static struct ggml_tensor * ggml_add1_impl(
  4548. struct ggml_context * ctx,
  4549. struct ggml_tensor * a,
  4550. struct ggml_tensor * b,
  4551. bool inplace) {
  4552. GGML_ASSERT(ggml_is_scalar(b));
  4553. GGML_ASSERT(ggml_is_padded_1d(a));
  4554. bool is_node = false;
  4555. if (a->grad || b->grad) {
  4556. is_node = true;
  4557. }
  4558. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4559. result->op = GGML_OP_ADD1;
  4560. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4561. result->src[0] = a;
  4562. result->src[1] = b;
  4563. return result;
  4564. }
  4565. struct ggml_tensor * ggml_add1(
  4566. struct ggml_context * ctx,
  4567. struct ggml_tensor * a,
  4568. struct ggml_tensor * b) {
  4569. return ggml_add1_impl(ctx, a, b, false);
  4570. }
  4571. struct ggml_tensor * ggml_add1_inplace(
  4572. struct ggml_context * ctx,
  4573. struct ggml_tensor * a,
  4574. struct ggml_tensor * b) {
  4575. return ggml_add1_impl(ctx, a, b, true);
  4576. }
  4577. // ggml_acc
  4578. static struct ggml_tensor * ggml_acc_impl(
  4579. struct ggml_context * ctx,
  4580. struct ggml_tensor * a,
  4581. struct ggml_tensor * b,
  4582. size_t nb1,
  4583. size_t nb2,
  4584. size_t nb3,
  4585. size_t offset,
  4586. bool inplace) {
  4587. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4588. GGML_ASSERT(ggml_is_contiguous(a));
  4589. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4590. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4591. bool is_node = false;
  4592. if (!inplace && (a->grad || b->grad)) {
  4593. is_node = true;
  4594. }
  4595. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4596. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4597. ggml_set_op_params(result, params, sizeof(params));
  4598. result->op = GGML_OP_ACC;
  4599. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4600. result->src[0] = a;
  4601. result->src[1] = b;
  4602. return result;
  4603. }
  4604. struct ggml_tensor * ggml_acc(
  4605. struct ggml_context * ctx,
  4606. struct ggml_tensor * a,
  4607. struct ggml_tensor * b,
  4608. size_t nb1,
  4609. size_t nb2,
  4610. size_t nb3,
  4611. size_t offset) {
  4612. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4613. }
  4614. struct ggml_tensor * ggml_acc_inplace(
  4615. struct ggml_context * ctx,
  4616. struct ggml_tensor * a,
  4617. struct ggml_tensor * b,
  4618. size_t nb1,
  4619. size_t nb2,
  4620. size_t nb3,
  4621. size_t offset) {
  4622. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4623. }
  4624. // ggml_sub
  4625. static struct ggml_tensor * ggml_sub_impl(
  4626. struct ggml_context * ctx,
  4627. struct ggml_tensor * a,
  4628. struct ggml_tensor * b,
  4629. bool inplace) {
  4630. GGML_ASSERT(ggml_are_same_shape(a, b));
  4631. bool is_node = false;
  4632. if (!inplace && (a->grad || b->grad)) {
  4633. is_node = true;
  4634. }
  4635. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4636. result->op = GGML_OP_SUB;
  4637. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4638. result->src[0] = a;
  4639. result->src[1] = b;
  4640. return result;
  4641. }
  4642. struct ggml_tensor * ggml_sub(
  4643. struct ggml_context * ctx,
  4644. struct ggml_tensor * a,
  4645. struct ggml_tensor * b) {
  4646. return ggml_sub_impl(ctx, a, b, false);
  4647. }
  4648. struct ggml_tensor * ggml_sub_inplace(
  4649. struct ggml_context * ctx,
  4650. struct ggml_tensor * a,
  4651. struct ggml_tensor * b) {
  4652. return ggml_sub_impl(ctx, a, b, true);
  4653. }
  4654. // ggml_mul
  4655. static struct ggml_tensor * ggml_mul_impl(
  4656. struct ggml_context * ctx,
  4657. struct ggml_tensor * a,
  4658. struct ggml_tensor * b,
  4659. bool inplace) {
  4660. // TODO: support less-strict constraint
  4661. // GGML_ASSERT(ggml_can_repeat(b, a));
  4662. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4663. bool is_node = false;
  4664. if (!inplace && (a->grad || b->grad)) {
  4665. // TODO: support backward pass for broadcasting
  4666. GGML_ASSERT(ggml_are_same_shape(a, b));
  4667. is_node = true;
  4668. }
  4669. if (inplace) {
  4670. GGML_ASSERT(!is_node);
  4671. }
  4672. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4673. result->op = GGML_OP_MUL;
  4674. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4675. result->src[0] = a;
  4676. result->src[1] = b;
  4677. return result;
  4678. }
  4679. struct ggml_tensor * ggml_mul(
  4680. struct ggml_context * ctx,
  4681. struct ggml_tensor * a,
  4682. struct ggml_tensor * b) {
  4683. return ggml_mul_impl(ctx, a, b, false);
  4684. }
  4685. struct ggml_tensor * ggml_mul_inplace(
  4686. struct ggml_context * ctx,
  4687. struct ggml_tensor * a,
  4688. struct ggml_tensor * b) {
  4689. return ggml_mul_impl(ctx, a, b, true);
  4690. }
  4691. // ggml_div
  4692. static struct ggml_tensor * ggml_div_impl(
  4693. struct ggml_context * ctx,
  4694. struct ggml_tensor * a,
  4695. struct ggml_tensor * b,
  4696. bool inplace) {
  4697. GGML_ASSERT(ggml_are_same_shape(a, b));
  4698. bool is_node = false;
  4699. if (!inplace && (a->grad || b->grad)) {
  4700. is_node = true;
  4701. }
  4702. if (inplace) {
  4703. GGML_ASSERT(!is_node);
  4704. }
  4705. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4706. result->op = GGML_OP_DIV;
  4707. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4708. result->src[0] = a;
  4709. result->src[1] = b;
  4710. return result;
  4711. }
  4712. struct ggml_tensor * ggml_div(
  4713. struct ggml_context * ctx,
  4714. struct ggml_tensor * a,
  4715. struct ggml_tensor * b) {
  4716. return ggml_div_impl(ctx, a, b, false);
  4717. }
  4718. struct ggml_tensor * ggml_div_inplace(
  4719. struct ggml_context * ctx,
  4720. struct ggml_tensor * a,
  4721. struct ggml_tensor * b) {
  4722. return ggml_div_impl(ctx, a, b, true);
  4723. }
  4724. // ggml_sqr
  4725. static struct ggml_tensor * ggml_sqr_impl(
  4726. struct ggml_context * ctx,
  4727. struct ggml_tensor * a,
  4728. bool inplace) {
  4729. bool is_node = false;
  4730. if (!inplace && (a->grad)) {
  4731. is_node = true;
  4732. }
  4733. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4734. result->op = GGML_OP_SQR;
  4735. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4736. result->src[0] = a;
  4737. return result;
  4738. }
  4739. struct ggml_tensor * ggml_sqr(
  4740. struct ggml_context * ctx,
  4741. struct ggml_tensor * a) {
  4742. return ggml_sqr_impl(ctx, a, false);
  4743. }
  4744. struct ggml_tensor * ggml_sqr_inplace(
  4745. struct ggml_context * ctx,
  4746. struct ggml_tensor * a) {
  4747. return ggml_sqr_impl(ctx, a, true);
  4748. }
  4749. // ggml_sqrt
  4750. static struct ggml_tensor * ggml_sqrt_impl(
  4751. struct ggml_context * ctx,
  4752. struct ggml_tensor * a,
  4753. bool inplace) {
  4754. bool is_node = false;
  4755. if (!inplace && (a->grad)) {
  4756. is_node = true;
  4757. }
  4758. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4759. result->op = GGML_OP_SQRT;
  4760. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4761. result->src[0] = a;
  4762. return result;
  4763. }
  4764. struct ggml_tensor * ggml_sqrt(
  4765. struct ggml_context * ctx,
  4766. struct ggml_tensor * a) {
  4767. return ggml_sqrt_impl(ctx, a, false);
  4768. }
  4769. struct ggml_tensor * ggml_sqrt_inplace(
  4770. struct ggml_context * ctx,
  4771. struct ggml_tensor * a) {
  4772. return ggml_sqrt_impl(ctx, a, true);
  4773. }
  4774. // ggml_log
  4775. static struct ggml_tensor * ggml_log_impl(
  4776. struct ggml_context * ctx,
  4777. struct ggml_tensor * a,
  4778. bool inplace) {
  4779. bool is_node = false;
  4780. if (!inplace && (a->grad)) {
  4781. is_node = true;
  4782. }
  4783. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4784. result->op = GGML_OP_LOG;
  4785. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4786. result->src[0] = a;
  4787. return result;
  4788. }
  4789. struct ggml_tensor * ggml_log(
  4790. struct ggml_context * ctx,
  4791. struct ggml_tensor * a) {
  4792. return ggml_log_impl(ctx, a, false);
  4793. }
  4794. struct ggml_tensor * ggml_log_inplace(
  4795. struct ggml_context * ctx,
  4796. struct ggml_tensor * a) {
  4797. return ggml_log_impl(ctx, a, true);
  4798. }
  4799. // ggml_sum
  4800. struct ggml_tensor * ggml_sum(
  4801. struct ggml_context * ctx,
  4802. struct ggml_tensor * a) {
  4803. bool is_node = false;
  4804. if (a->grad) {
  4805. is_node = true;
  4806. }
  4807. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4808. result->op = GGML_OP_SUM;
  4809. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4810. result->src[0] = a;
  4811. return result;
  4812. }
  4813. // ggml_sum_rows
  4814. struct ggml_tensor * ggml_sum_rows(
  4815. struct ggml_context * ctx,
  4816. struct ggml_tensor * a) {
  4817. bool is_node = false;
  4818. if (a->grad) {
  4819. is_node = true;
  4820. }
  4821. int64_t ne[4] = {1,1,1,1};
  4822. for (int i=1; i<a->n_dims; ++i) {
  4823. ne[i] = a->ne[i];
  4824. }
  4825. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4826. result->op = GGML_OP_SUM_ROWS;
  4827. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4828. result->src[0] = a;
  4829. return result;
  4830. }
  4831. // ggml_mean
  4832. struct ggml_tensor * ggml_mean(
  4833. struct ggml_context * ctx,
  4834. struct ggml_tensor * a) {
  4835. bool is_node = false;
  4836. if (a->grad) {
  4837. GGML_ASSERT(false); // TODO: implement
  4838. is_node = true;
  4839. }
  4840. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4841. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4842. result->op = GGML_OP_MEAN;
  4843. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4844. result->src[0] = a;
  4845. return result;
  4846. }
  4847. // ggml_argmax
  4848. struct ggml_tensor * ggml_argmax(
  4849. struct ggml_context * ctx,
  4850. struct ggml_tensor * a) {
  4851. GGML_ASSERT(ggml_is_matrix(a));
  4852. bool is_node = false;
  4853. if (a->grad) {
  4854. GGML_ASSERT(false);
  4855. is_node = true;
  4856. }
  4857. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  4858. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  4859. result->op = GGML_OP_ARGMAX;
  4860. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4861. result->src[0] = a;
  4862. return result;
  4863. }
  4864. // ggml_repeat
  4865. struct ggml_tensor * ggml_repeat(
  4866. struct ggml_context * ctx,
  4867. struct ggml_tensor * a,
  4868. struct ggml_tensor * b) {
  4869. GGML_ASSERT(ggml_can_repeat(a, b));
  4870. bool is_node = false;
  4871. if (a->grad) {
  4872. is_node = true;
  4873. }
  4874. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4875. result->op = GGML_OP_REPEAT;
  4876. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4877. result->src[0] = a;
  4878. return result;
  4879. }
  4880. // ggml_repeat_back
  4881. struct ggml_tensor * ggml_repeat_back(
  4882. struct ggml_context * ctx,
  4883. struct ggml_tensor * a,
  4884. struct ggml_tensor * b) {
  4885. GGML_ASSERT(ggml_can_repeat(b, a));
  4886. bool is_node = false;
  4887. if (a->grad) {
  4888. is_node = true;
  4889. }
  4890. if (ggml_are_same_shape(a, b) && !is_node) {
  4891. return a;
  4892. }
  4893. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4894. result->op = GGML_OP_REPEAT_BACK;
  4895. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4896. result->src[0] = a;
  4897. return result;
  4898. }
  4899. // ggml_concat
  4900. struct ggml_tensor * ggml_concat(
  4901. struct ggml_context* ctx,
  4902. struct ggml_tensor* a,
  4903. struct ggml_tensor* b) {
  4904. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  4905. bool is_node = false;
  4906. if (a->grad || b->grad) {
  4907. is_node = true;
  4908. }
  4909. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  4910. result->op = GGML_OP_CONCAT;
  4911. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4912. result->src[0] = a;
  4913. result->src[1] = b;
  4914. return result;
  4915. }
  4916. // ggml_abs
  4917. struct ggml_tensor * ggml_abs(
  4918. struct ggml_context * ctx,
  4919. struct ggml_tensor * a) {
  4920. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4921. }
  4922. struct ggml_tensor * ggml_abs_inplace(
  4923. struct ggml_context * ctx,
  4924. struct ggml_tensor * a) {
  4925. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4926. }
  4927. // ggml_sgn
  4928. struct ggml_tensor * ggml_sgn(
  4929. struct ggml_context * ctx,
  4930. struct ggml_tensor * a) {
  4931. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4932. }
  4933. struct ggml_tensor * ggml_sgn_inplace(
  4934. struct ggml_context * ctx,
  4935. struct ggml_tensor * a) {
  4936. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4937. }
  4938. // ggml_neg
  4939. struct ggml_tensor * ggml_neg(
  4940. struct ggml_context * ctx,
  4941. struct ggml_tensor * a) {
  4942. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4943. }
  4944. struct ggml_tensor * ggml_neg_inplace(
  4945. struct ggml_context * ctx,
  4946. struct ggml_tensor * a) {
  4947. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4948. }
  4949. // ggml_step
  4950. struct ggml_tensor * ggml_step(
  4951. struct ggml_context * ctx,
  4952. struct ggml_tensor * a) {
  4953. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4954. }
  4955. struct ggml_tensor * ggml_step_inplace(
  4956. struct ggml_context * ctx,
  4957. struct ggml_tensor * a) {
  4958. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4959. }
  4960. // ggml_tanh
  4961. struct ggml_tensor * ggml_tanh(
  4962. struct ggml_context * ctx,
  4963. struct ggml_tensor * a) {
  4964. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4965. }
  4966. struct ggml_tensor * ggml_tanh_inplace(
  4967. struct ggml_context * ctx,
  4968. struct ggml_tensor * a) {
  4969. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4970. }
  4971. // ggml_elu
  4972. struct ggml_tensor * ggml_elu(
  4973. struct ggml_context * ctx,
  4974. struct ggml_tensor * a) {
  4975. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4976. }
  4977. struct ggml_tensor * ggml_elu_inplace(
  4978. struct ggml_context * ctx,
  4979. struct ggml_tensor * a) {
  4980. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4981. }
  4982. // ggml_relu
  4983. struct ggml_tensor * ggml_relu(
  4984. struct ggml_context * ctx,
  4985. struct ggml_tensor * a) {
  4986. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4987. }
  4988. struct ggml_tensor * ggml_relu_inplace(
  4989. struct ggml_context * ctx,
  4990. struct ggml_tensor * a) {
  4991. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4992. }
  4993. // ggml_gelu
  4994. struct ggml_tensor * ggml_gelu(
  4995. struct ggml_context * ctx,
  4996. struct ggml_tensor * a) {
  4997. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4998. }
  4999. struct ggml_tensor * ggml_gelu_inplace(
  5000. struct ggml_context * ctx,
  5001. struct ggml_tensor * a) {
  5002. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  5003. }
  5004. // ggml_gelu_quick
  5005. struct ggml_tensor * ggml_gelu_quick(
  5006. struct ggml_context * ctx,
  5007. struct ggml_tensor * a) {
  5008. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  5009. }
  5010. struct ggml_tensor * ggml_gelu_quick_inplace(
  5011. struct ggml_context * ctx,
  5012. struct ggml_tensor * a) {
  5013. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  5014. }
  5015. // ggml_silu
  5016. struct ggml_tensor * ggml_silu(
  5017. struct ggml_context * ctx,
  5018. struct ggml_tensor * a) {
  5019. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  5020. }
  5021. struct ggml_tensor * ggml_silu_inplace(
  5022. struct ggml_context * ctx,
  5023. struct ggml_tensor * a) {
  5024. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  5025. }
  5026. // ggml_silu_back
  5027. struct ggml_tensor * ggml_silu_back(
  5028. struct ggml_context * ctx,
  5029. struct ggml_tensor * a,
  5030. struct ggml_tensor * b) {
  5031. bool is_node = false;
  5032. if (a->grad || b->grad) {
  5033. // TODO: implement backward
  5034. is_node = true;
  5035. }
  5036. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5037. result->op = GGML_OP_SILU_BACK;
  5038. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5039. result->src[0] = a;
  5040. result->src[1] = b;
  5041. return result;
  5042. }
  5043. // ggml_norm
  5044. static struct ggml_tensor * ggml_norm_impl(
  5045. struct ggml_context * ctx,
  5046. struct ggml_tensor * a,
  5047. float eps,
  5048. bool inplace) {
  5049. bool is_node = false;
  5050. if (!inplace && (a->grad)) {
  5051. GGML_ASSERT(false); // TODO: implement backward
  5052. is_node = true;
  5053. }
  5054. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5055. ggml_set_op_params(result, &eps, sizeof(eps));
  5056. result->op = GGML_OP_NORM;
  5057. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5058. result->src[0] = a;
  5059. return result;
  5060. }
  5061. struct ggml_tensor * ggml_norm(
  5062. struct ggml_context * ctx,
  5063. struct ggml_tensor * a,
  5064. float eps) {
  5065. return ggml_norm_impl(ctx, a, eps, false);
  5066. }
  5067. struct ggml_tensor * ggml_norm_inplace(
  5068. struct ggml_context * ctx,
  5069. struct ggml_tensor * a,
  5070. float eps) {
  5071. return ggml_norm_impl(ctx, a, eps, true);
  5072. }
  5073. // ggml_rms_norm
  5074. static struct ggml_tensor * ggml_rms_norm_impl(
  5075. struct ggml_context * ctx,
  5076. struct ggml_tensor * a,
  5077. float eps,
  5078. bool inplace) {
  5079. bool is_node = false;
  5080. if (!inplace && (a->grad)) {
  5081. is_node = true;
  5082. }
  5083. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5084. ggml_set_op_params(result, &eps, sizeof(eps));
  5085. result->op = GGML_OP_RMS_NORM;
  5086. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5087. result->src[0] = a;
  5088. return result;
  5089. }
  5090. struct ggml_tensor * ggml_rms_norm(
  5091. struct ggml_context * ctx,
  5092. struct ggml_tensor * a,
  5093. float eps) {
  5094. return ggml_rms_norm_impl(ctx, a, eps, false);
  5095. }
  5096. struct ggml_tensor * ggml_rms_norm_inplace(
  5097. struct ggml_context * ctx,
  5098. struct ggml_tensor * a,
  5099. float eps) {
  5100. return ggml_rms_norm_impl(ctx, a, eps, true);
  5101. }
  5102. // ggml_rms_norm_back
  5103. struct ggml_tensor * ggml_rms_norm_back(
  5104. struct ggml_context * ctx,
  5105. struct ggml_tensor * a,
  5106. struct ggml_tensor * b,
  5107. float eps) {
  5108. bool is_node = false;
  5109. if (a->grad) {
  5110. // TODO: implement backward
  5111. is_node = true;
  5112. }
  5113. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5114. ggml_set_op_params(result, &eps, sizeof(eps));
  5115. result->op = GGML_OP_RMS_NORM_BACK;
  5116. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5117. result->src[0] = a;
  5118. result->src[1] = b;
  5119. return result;
  5120. }
  5121. // ggml_group_norm
  5122. static struct ggml_tensor * ggml_group_norm_impl(
  5123. struct ggml_context * ctx,
  5124. struct ggml_tensor * a,
  5125. int n_groups,
  5126. bool inplace) {
  5127. bool is_node = false;
  5128. if (!inplace && (a->grad)) {
  5129. GGML_ASSERT(false); // TODO: implement backward
  5130. is_node = true;
  5131. }
  5132. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5133. result->op = GGML_OP_GROUP_NORM;
  5134. result->op_params[0] = n_groups;
  5135. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5136. result->src[0] = a;
  5137. result->src[1] = NULL; // TODO: maybe store epsilon here?
  5138. return result;
  5139. }
  5140. struct ggml_tensor * ggml_group_norm(
  5141. struct ggml_context * ctx,
  5142. struct ggml_tensor * a,
  5143. int n_groups) {
  5144. return ggml_group_norm_impl(ctx, a, n_groups, false);
  5145. }
  5146. struct ggml_tensor * ggml_group_norm_inplace(
  5147. struct ggml_context * ctx,
  5148. struct ggml_tensor * a,
  5149. int n_groups) {
  5150. return ggml_group_norm_impl(ctx, a, n_groups, true);
  5151. }
  5152. // ggml_mul_mat
  5153. struct ggml_tensor * ggml_mul_mat(
  5154. struct ggml_context * ctx,
  5155. struct ggml_tensor * a,
  5156. struct ggml_tensor * b) {
  5157. GGML_ASSERT(ggml_can_mul_mat(a, b));
  5158. GGML_ASSERT(!ggml_is_transposed(a));
  5159. bool is_node = false;
  5160. if (a->grad || b->grad) {
  5161. is_node = true;
  5162. }
  5163. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  5164. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  5165. result->op = GGML_OP_MUL_MAT;
  5166. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5167. result->src[0] = a;
  5168. result->src[1] = b;
  5169. return result;
  5170. }
  5171. // ggml_out_prod
  5172. struct ggml_tensor * ggml_out_prod(
  5173. struct ggml_context * ctx,
  5174. struct ggml_tensor * a,
  5175. struct ggml_tensor * b) {
  5176. GGML_ASSERT(ggml_can_out_prod(a, b));
  5177. GGML_ASSERT(!ggml_is_transposed(a));
  5178. bool is_node = false;
  5179. if (a->grad || b->grad) {
  5180. is_node = true;
  5181. }
  5182. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  5183. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  5184. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  5185. result->op = GGML_OP_OUT_PROD;
  5186. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5187. result->src[0] = a;
  5188. result->src[1] = b;
  5189. return result;
  5190. }
  5191. // ggml_scale
  5192. static struct ggml_tensor * ggml_scale_impl(
  5193. struct ggml_context * ctx,
  5194. struct ggml_tensor * a,
  5195. struct ggml_tensor * b,
  5196. bool inplace) {
  5197. GGML_ASSERT(ggml_is_scalar(b));
  5198. GGML_ASSERT(ggml_is_padded_1d(a));
  5199. bool is_node = false;
  5200. if (a->grad || b->grad) {
  5201. is_node = true;
  5202. }
  5203. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5204. result->op = GGML_OP_SCALE;
  5205. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5206. result->src[0] = a;
  5207. result->src[1] = b;
  5208. return result;
  5209. }
  5210. struct ggml_tensor * ggml_scale(
  5211. struct ggml_context * ctx,
  5212. struct ggml_tensor * a,
  5213. struct ggml_tensor * b) {
  5214. return ggml_scale_impl(ctx, a, b, false);
  5215. }
  5216. struct ggml_tensor * ggml_scale_inplace(
  5217. struct ggml_context * ctx,
  5218. struct ggml_tensor * a,
  5219. struct ggml_tensor * b) {
  5220. return ggml_scale_impl(ctx, a, b, true);
  5221. }
  5222. // ggml_set
  5223. static struct ggml_tensor * ggml_set_impl(
  5224. struct ggml_context * ctx,
  5225. struct ggml_tensor * a,
  5226. struct ggml_tensor * b,
  5227. size_t nb1,
  5228. size_t nb2,
  5229. size_t nb3,
  5230. size_t offset,
  5231. bool inplace) {
  5232. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  5233. bool is_node = false;
  5234. if (a->grad || b->grad) {
  5235. is_node = true;
  5236. }
  5237. // make a view of the destination
  5238. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5239. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  5240. ggml_set_op_params(result, params, sizeof(params));
  5241. result->op = GGML_OP_SET;
  5242. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5243. result->src[0] = a;
  5244. result->src[1] = b;
  5245. return result;
  5246. }
  5247. struct ggml_tensor * ggml_set(
  5248. struct ggml_context * ctx,
  5249. struct ggml_tensor * a,
  5250. struct ggml_tensor * b,
  5251. size_t nb1,
  5252. size_t nb2,
  5253. size_t nb3,
  5254. size_t offset) {
  5255. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  5256. }
  5257. struct ggml_tensor * ggml_set_inplace(
  5258. struct ggml_context * ctx,
  5259. struct ggml_tensor * a,
  5260. struct ggml_tensor * b,
  5261. size_t nb1,
  5262. size_t nb2,
  5263. size_t nb3,
  5264. size_t offset) {
  5265. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  5266. }
  5267. struct ggml_tensor * ggml_set_1d(
  5268. struct ggml_context * ctx,
  5269. struct ggml_tensor * a,
  5270. struct ggml_tensor * b,
  5271. size_t offset) {
  5272. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  5273. }
  5274. struct ggml_tensor * ggml_set_1d_inplace(
  5275. struct ggml_context * ctx,
  5276. struct ggml_tensor * a,
  5277. struct ggml_tensor * b,
  5278. size_t offset) {
  5279. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  5280. }
  5281. struct ggml_tensor * ggml_set_2d(
  5282. struct ggml_context * ctx,
  5283. struct ggml_tensor * a,
  5284. struct ggml_tensor * b,
  5285. size_t nb1,
  5286. size_t offset) {
  5287. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  5288. }
  5289. struct ggml_tensor * ggml_set_2d_inplace(
  5290. struct ggml_context * ctx,
  5291. struct ggml_tensor * a,
  5292. struct ggml_tensor * b,
  5293. size_t nb1,
  5294. size_t offset) {
  5295. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  5296. }
  5297. // ggml_cpy
  5298. static struct ggml_tensor * ggml_cpy_impl(
  5299. struct ggml_context * ctx,
  5300. struct ggml_tensor * a,
  5301. struct ggml_tensor * b,
  5302. bool inplace) {
  5303. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5304. bool is_node = false;
  5305. if (!inplace && (a->grad || b->grad)) {
  5306. is_node = true;
  5307. }
  5308. // make a view of the destination
  5309. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  5310. if (strlen(b->name) > 0) {
  5311. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  5312. } else {
  5313. ggml_format_name(result, "%s (copy)", a->name);
  5314. }
  5315. result->op = GGML_OP_CPY;
  5316. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5317. result->src[0] = a;
  5318. result->src[1] = b;
  5319. return result;
  5320. }
  5321. struct ggml_tensor * ggml_cpy(
  5322. struct ggml_context * ctx,
  5323. struct ggml_tensor * a,
  5324. struct ggml_tensor * b) {
  5325. return ggml_cpy_impl(ctx, a, b, false);
  5326. }
  5327. struct ggml_tensor * ggml_cpy_inplace(
  5328. struct ggml_context * ctx,
  5329. struct ggml_tensor * a,
  5330. struct ggml_tensor * b) {
  5331. return ggml_cpy_impl(ctx, a, b, true);
  5332. }
  5333. // ggml_cont
  5334. static struct ggml_tensor * ggml_cont_impl(
  5335. struct ggml_context * ctx,
  5336. struct ggml_tensor * a,
  5337. bool inplace) {
  5338. bool is_node = false;
  5339. if (!inplace && a->grad) {
  5340. is_node = true;
  5341. }
  5342. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5343. ggml_format_name(result, "%s (cont)", a->name);
  5344. result->op = GGML_OP_CONT;
  5345. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5346. result->src[0] = a;
  5347. return result;
  5348. }
  5349. struct ggml_tensor * ggml_cont(
  5350. struct ggml_context * ctx,
  5351. struct ggml_tensor * a) {
  5352. return ggml_cont_impl(ctx, a, false);
  5353. }
  5354. struct ggml_tensor * ggml_cont_inplace(
  5355. struct ggml_context * ctx,
  5356. struct ggml_tensor * a) {
  5357. return ggml_cont_impl(ctx, a, true);
  5358. }
  5359. // make contiguous, with new shape
  5360. GGML_API struct ggml_tensor * ggml_cont_1d(
  5361. struct ggml_context * ctx,
  5362. struct ggml_tensor * a,
  5363. int64_t ne0) {
  5364. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  5365. }
  5366. GGML_API struct ggml_tensor * ggml_cont_2d(
  5367. struct ggml_context * ctx,
  5368. struct ggml_tensor * a,
  5369. int64_t ne0,
  5370. int64_t ne1) {
  5371. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  5372. }
  5373. GGML_API struct ggml_tensor * ggml_cont_3d(
  5374. struct ggml_context * ctx,
  5375. struct ggml_tensor * a,
  5376. int64_t ne0,
  5377. int64_t ne1,
  5378. int64_t ne2) {
  5379. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  5380. }
  5381. struct ggml_tensor * ggml_cont_4d(
  5382. struct ggml_context * ctx,
  5383. struct ggml_tensor * a,
  5384. int64_t ne0,
  5385. int64_t ne1,
  5386. int64_t ne2,
  5387. int64_t ne3) {
  5388. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  5389. bool is_node = false;
  5390. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  5391. ggml_format_name(result, "%s (cont)", a->name);
  5392. result->op = GGML_OP_CONT;
  5393. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5394. result->src[0] = a;
  5395. return result;
  5396. }
  5397. // ggml_reshape
  5398. struct ggml_tensor * ggml_reshape(
  5399. struct ggml_context * ctx,
  5400. struct ggml_tensor * a,
  5401. struct ggml_tensor * b) {
  5402. GGML_ASSERT(ggml_is_contiguous(a));
  5403. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  5404. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5405. bool is_node = false;
  5406. if (a->grad) {
  5407. is_node = true;
  5408. }
  5409. if (b->grad) {
  5410. // gradient propagation is not supported
  5411. //GGML_ASSERT(false);
  5412. }
  5413. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a, 0);
  5414. ggml_format_name(result, "%s (reshaped)", a->name);
  5415. result->op = GGML_OP_RESHAPE;
  5416. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5417. result->src[0] = a;
  5418. return result;
  5419. }
  5420. struct ggml_tensor * ggml_reshape_1d(
  5421. struct ggml_context * ctx,
  5422. struct ggml_tensor * a,
  5423. int64_t ne0) {
  5424. GGML_ASSERT(ggml_is_contiguous(a));
  5425. GGML_ASSERT(ggml_nelements(a) == ne0);
  5426. bool is_node = false;
  5427. if (a->grad) {
  5428. is_node = true;
  5429. }
  5430. const int64_t ne[1] = { ne0 };
  5431. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  5432. ggml_format_name(result, "%s (reshaped)", a->name);
  5433. result->op = GGML_OP_RESHAPE;
  5434. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5435. result->src[0] = a;
  5436. return result;
  5437. }
  5438. struct ggml_tensor * ggml_reshape_2d(
  5439. struct ggml_context * ctx,
  5440. struct ggml_tensor * a,
  5441. int64_t ne0,
  5442. int64_t ne1) {
  5443. GGML_ASSERT(ggml_is_contiguous(a));
  5444. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  5445. bool is_node = false;
  5446. if (a->grad) {
  5447. is_node = true;
  5448. }
  5449. const int64_t ne[2] = { ne0, ne1 };
  5450. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  5451. ggml_format_name(result, "%s (reshaped)", a->name);
  5452. result->op = GGML_OP_RESHAPE;
  5453. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5454. result->src[0] = a;
  5455. return result;
  5456. }
  5457. struct ggml_tensor * ggml_reshape_3d(
  5458. struct ggml_context * ctx,
  5459. struct ggml_tensor * a,
  5460. int64_t ne0,
  5461. int64_t ne1,
  5462. int64_t ne2) {
  5463. GGML_ASSERT(ggml_is_contiguous(a));
  5464. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  5465. bool is_node = false;
  5466. if (a->grad) {
  5467. is_node = true;
  5468. }
  5469. const int64_t ne[3] = { ne0, ne1, ne2 };
  5470. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  5471. ggml_format_name(result, "%s (reshaped)", a->name);
  5472. result->op = GGML_OP_RESHAPE;
  5473. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5474. result->src[0] = a;
  5475. return result;
  5476. }
  5477. struct ggml_tensor * ggml_reshape_4d(
  5478. struct ggml_context * ctx,
  5479. struct ggml_tensor * a,
  5480. int64_t ne0,
  5481. int64_t ne1,
  5482. int64_t ne2,
  5483. int64_t ne3) {
  5484. GGML_ASSERT(ggml_is_contiguous(a));
  5485. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  5486. bool is_node = false;
  5487. if (a->grad) {
  5488. is_node = true;
  5489. }
  5490. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5491. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  5492. ggml_format_name(result, "%s (reshaped)", a->name);
  5493. result->op = GGML_OP_RESHAPE;
  5494. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5495. result->src[0] = a;
  5496. return result;
  5497. }
  5498. static struct ggml_tensor * ggml_view_impl(
  5499. struct ggml_context * ctx,
  5500. struct ggml_tensor * a,
  5501. int n_dims,
  5502. const int64_t * ne,
  5503. size_t offset) {
  5504. bool is_node = false;
  5505. if (a->grad) {
  5506. is_node = true;
  5507. }
  5508. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  5509. ggml_format_name(result, "%s (view)", a->name);
  5510. ggml_set_op_params(result, &offset, sizeof(offset));
  5511. result->op = GGML_OP_VIEW;
  5512. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5513. result->src[0] = a;
  5514. return result;
  5515. }
  5516. // ggml_view_1d
  5517. struct ggml_tensor * ggml_view_1d(
  5518. struct ggml_context * ctx,
  5519. struct ggml_tensor * a,
  5520. int64_t ne0,
  5521. size_t offset) {
  5522. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  5523. return result;
  5524. }
  5525. // ggml_view_2d
  5526. struct ggml_tensor * ggml_view_2d(
  5527. struct ggml_context * ctx,
  5528. struct ggml_tensor * a,
  5529. int64_t ne0,
  5530. int64_t ne1,
  5531. size_t nb1,
  5532. size_t offset) {
  5533. const int64_t ne[2] = { ne0, ne1 };
  5534. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  5535. result->nb[1] = nb1;
  5536. result->nb[2] = result->nb[1]*ne1;
  5537. result->nb[3] = result->nb[2];
  5538. return result;
  5539. }
  5540. // ggml_view_3d
  5541. struct ggml_tensor * ggml_view_3d(
  5542. struct ggml_context * ctx,
  5543. struct ggml_tensor * a,
  5544. int64_t ne0,
  5545. int64_t ne1,
  5546. int64_t ne2,
  5547. size_t nb1,
  5548. size_t nb2,
  5549. size_t offset) {
  5550. const int64_t ne[3] = { ne0, ne1, ne2 };
  5551. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  5552. result->nb[1] = nb1;
  5553. result->nb[2] = nb2;
  5554. result->nb[3] = result->nb[2]*ne2;
  5555. return result;
  5556. }
  5557. // ggml_view_4d
  5558. struct ggml_tensor * ggml_view_4d(
  5559. struct ggml_context * ctx,
  5560. struct ggml_tensor * a,
  5561. int64_t ne0,
  5562. int64_t ne1,
  5563. int64_t ne2,
  5564. int64_t ne3,
  5565. size_t nb1,
  5566. size_t nb2,
  5567. size_t nb3,
  5568. size_t offset) {
  5569. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5570. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  5571. result->nb[1] = nb1;
  5572. result->nb[2] = nb2;
  5573. result->nb[3] = nb3;
  5574. return result;
  5575. }
  5576. // ggml_permute
  5577. struct ggml_tensor * ggml_permute(
  5578. struct ggml_context * ctx,
  5579. struct ggml_tensor * a,
  5580. int axis0,
  5581. int axis1,
  5582. int axis2,
  5583. int axis3) {
  5584. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5585. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5586. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5587. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5588. GGML_ASSERT(axis0 != axis1);
  5589. GGML_ASSERT(axis0 != axis2);
  5590. GGML_ASSERT(axis0 != axis3);
  5591. GGML_ASSERT(axis1 != axis2);
  5592. GGML_ASSERT(axis1 != axis3);
  5593. GGML_ASSERT(axis2 != axis3);
  5594. bool is_node = false;
  5595. if (a->grad) {
  5596. is_node = true;
  5597. }
  5598. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5599. ggml_format_name(result, "%s (permuted)", a->name);
  5600. int ne[GGML_MAX_DIMS];
  5601. int nb[GGML_MAX_DIMS];
  5602. ne[axis0] = a->ne[0];
  5603. ne[axis1] = a->ne[1];
  5604. ne[axis2] = a->ne[2];
  5605. ne[axis3] = a->ne[3];
  5606. nb[axis0] = a->nb[0];
  5607. nb[axis1] = a->nb[1];
  5608. nb[axis2] = a->nb[2];
  5609. nb[axis3] = a->nb[3];
  5610. result->ne[0] = ne[0];
  5611. result->ne[1] = ne[1];
  5612. result->ne[2] = ne[2];
  5613. result->ne[3] = ne[3];
  5614. result->nb[0] = nb[0];
  5615. result->nb[1] = nb[1];
  5616. result->nb[2] = nb[2];
  5617. result->nb[3] = nb[3];
  5618. result->op = GGML_OP_PERMUTE;
  5619. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5620. result->src[0] = a;
  5621. int32_t params[] = { axis0, axis1, axis2, axis3 };
  5622. ggml_set_op_params(result, params, sizeof(params));
  5623. return result;
  5624. }
  5625. // ggml_transpose
  5626. struct ggml_tensor * ggml_transpose(
  5627. struct ggml_context * ctx,
  5628. struct ggml_tensor * a) {
  5629. bool is_node = false;
  5630. if (a->grad) {
  5631. is_node = true;
  5632. }
  5633. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5634. ggml_format_name(result, "%s (transposed)", a->name);
  5635. result->ne[0] = a->ne[1];
  5636. result->ne[1] = a->ne[0];
  5637. result->nb[0] = a->nb[1];
  5638. result->nb[1] = a->nb[0];
  5639. result->op = GGML_OP_TRANSPOSE;
  5640. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5641. result->src[0] = a;
  5642. return result;
  5643. }
  5644. // ggml_get_rows
  5645. struct ggml_tensor * ggml_get_rows(
  5646. struct ggml_context * ctx,
  5647. struct ggml_tensor * a,
  5648. struct ggml_tensor * b) {
  5649. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5650. bool is_node = false;
  5651. if (a->grad || b->grad) {
  5652. is_node = true;
  5653. }
  5654. // TODO: implement non F32 return
  5655. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5656. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  5657. result->op = GGML_OP_GET_ROWS;
  5658. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5659. result->src[0] = a;
  5660. result->src[1] = b;
  5661. return result;
  5662. }
  5663. // ggml_get_rows_back
  5664. struct ggml_tensor * ggml_get_rows_back(
  5665. struct ggml_context * ctx,
  5666. struct ggml_tensor * a,
  5667. struct ggml_tensor * b,
  5668. struct ggml_tensor * c) {
  5669. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5670. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5671. bool is_node = false;
  5672. if (a->grad || b->grad) {
  5673. is_node = true;
  5674. }
  5675. // TODO: implement non F32 return
  5676. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5677. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5678. result->op = GGML_OP_GET_ROWS_BACK;
  5679. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5680. result->src[0] = a;
  5681. result->src[1] = b;
  5682. return result;
  5683. }
  5684. // ggml_diag
  5685. struct ggml_tensor * ggml_diag(
  5686. struct ggml_context * ctx,
  5687. struct ggml_tensor * a) {
  5688. GGML_ASSERT(a->ne[1] == 1);
  5689. bool is_node = false;
  5690. if (a->grad) {
  5691. is_node = true;
  5692. }
  5693. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5694. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5695. result->op = GGML_OP_DIAG;
  5696. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5697. result->src[0] = a;
  5698. return result;
  5699. }
  5700. // ggml_diag_mask_inf
  5701. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5702. struct ggml_context * ctx,
  5703. struct ggml_tensor * a,
  5704. int n_past,
  5705. bool inplace) {
  5706. bool is_node = false;
  5707. if (a->grad) {
  5708. is_node = true;
  5709. }
  5710. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5711. int32_t params[] = { n_past };
  5712. ggml_set_op_params(result, params, sizeof(params));
  5713. result->op = GGML_OP_DIAG_MASK_INF;
  5714. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5715. result->src[0] = a;
  5716. return result;
  5717. }
  5718. struct ggml_tensor * ggml_diag_mask_inf(
  5719. struct ggml_context * ctx,
  5720. struct ggml_tensor * a,
  5721. int n_past) {
  5722. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5723. }
  5724. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5725. struct ggml_context * ctx,
  5726. struct ggml_tensor * a,
  5727. int n_past) {
  5728. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5729. }
  5730. // ggml_diag_mask_zero
  5731. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5732. struct ggml_context * ctx,
  5733. struct ggml_tensor * a,
  5734. int n_past,
  5735. bool inplace) {
  5736. bool is_node = false;
  5737. if (a->grad) {
  5738. is_node = true;
  5739. }
  5740. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5741. int32_t params[] = { n_past };
  5742. ggml_set_op_params(result, params, sizeof(params));
  5743. result->op = GGML_OP_DIAG_MASK_ZERO;
  5744. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5745. result->src[0] = a;
  5746. return result;
  5747. }
  5748. struct ggml_tensor * ggml_diag_mask_zero(
  5749. struct ggml_context * ctx,
  5750. struct ggml_tensor * a,
  5751. int n_past) {
  5752. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5753. }
  5754. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5755. struct ggml_context * ctx,
  5756. struct ggml_tensor * a,
  5757. int n_past) {
  5758. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5759. }
  5760. // ggml_soft_max
  5761. static struct ggml_tensor * ggml_soft_max_impl(
  5762. struct ggml_context * ctx,
  5763. struct ggml_tensor * a,
  5764. bool inplace) {
  5765. bool is_node = false;
  5766. if (a->grad) {
  5767. is_node = true;
  5768. }
  5769. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5770. result->op = GGML_OP_SOFT_MAX;
  5771. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5772. result->src[0] = a;
  5773. return result;
  5774. }
  5775. struct ggml_tensor * ggml_soft_max(
  5776. struct ggml_context * ctx,
  5777. struct ggml_tensor * a) {
  5778. return ggml_soft_max_impl(ctx, a, false);
  5779. }
  5780. struct ggml_tensor * ggml_soft_max_inplace(
  5781. struct ggml_context * ctx,
  5782. struct ggml_tensor * a) {
  5783. return ggml_soft_max_impl(ctx, a, true);
  5784. }
  5785. // ggml_soft_max_back
  5786. static struct ggml_tensor * ggml_soft_max_back_impl(
  5787. struct ggml_context * ctx,
  5788. struct ggml_tensor * a,
  5789. struct ggml_tensor * b,
  5790. bool inplace) {
  5791. bool is_node = false;
  5792. if (a->grad || b->grad) {
  5793. is_node = true; // TODO : implement backward pass
  5794. }
  5795. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5796. result->op = GGML_OP_SOFT_MAX_BACK;
  5797. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5798. result->src[0] = a;
  5799. result->src[1] = b;
  5800. return result;
  5801. }
  5802. struct ggml_tensor * ggml_soft_max_back(
  5803. struct ggml_context * ctx,
  5804. struct ggml_tensor * a,
  5805. struct ggml_tensor * b) {
  5806. return ggml_soft_max_back_impl(ctx, a, b, false);
  5807. }
  5808. struct ggml_tensor * ggml_soft_max_back_inplace(
  5809. struct ggml_context * ctx,
  5810. struct ggml_tensor * a,
  5811. struct ggml_tensor * b) {
  5812. return ggml_soft_max_back_impl(ctx, a, b, true);
  5813. }
  5814. // ggml_rope
  5815. static struct ggml_tensor * ggml_rope_impl(
  5816. struct ggml_context * ctx,
  5817. struct ggml_tensor * a,
  5818. struct ggml_tensor * b,
  5819. int n_dims,
  5820. int mode,
  5821. int n_ctx,
  5822. float freq_base,
  5823. float freq_scale,
  5824. float xpos_base,
  5825. bool xpos_down,
  5826. bool inplace) {
  5827. GGML_ASSERT(ggml_is_vector(b));
  5828. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5829. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5830. bool is_node = false;
  5831. if (a->grad) {
  5832. is_node = true;
  5833. }
  5834. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5835. int32_t params[8] = { /*n_past*/ 0, n_dims, mode, n_ctx };
  5836. memcpy(params + 4, &freq_base, sizeof(float));
  5837. memcpy(params + 5, &freq_scale, sizeof(float));
  5838. memcpy(params + 6, &xpos_base, sizeof(float));
  5839. memcpy(params + 7, &xpos_down, sizeof(bool));
  5840. ggml_set_op_params(result, params, sizeof(params));
  5841. result->op = GGML_OP_ROPE;
  5842. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5843. result->src[0] = a;
  5844. result->src[1] = b;
  5845. return result;
  5846. }
  5847. struct ggml_tensor * ggml_rope(
  5848. struct ggml_context * ctx,
  5849. struct ggml_tensor * a,
  5850. struct ggml_tensor * b,
  5851. int n_dims,
  5852. int mode,
  5853. int n_ctx) {
  5854. return ggml_rope_impl(ctx, a, b, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, false);
  5855. }
  5856. struct ggml_tensor * ggml_rope_inplace(
  5857. struct ggml_context * ctx,
  5858. struct ggml_tensor * a,
  5859. struct ggml_tensor * b,
  5860. int n_dims,
  5861. int mode,
  5862. int n_ctx) {
  5863. return ggml_rope_impl(ctx, a, b, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, true);
  5864. }
  5865. struct ggml_tensor * ggml_rope_custom(
  5866. struct ggml_context * ctx,
  5867. struct ggml_tensor * a,
  5868. struct ggml_tensor * b,
  5869. int n_dims,
  5870. int mode,
  5871. int n_ctx,
  5872. float freq_base,
  5873. float freq_scale) {
  5874. return ggml_rope_impl(ctx, a, b, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, false);
  5875. }
  5876. struct ggml_tensor * ggml_rope_custom_inplace(
  5877. struct ggml_context * ctx,
  5878. struct ggml_tensor * a,
  5879. struct ggml_tensor * b,
  5880. int n_dims,
  5881. int mode,
  5882. int n_ctx,
  5883. float freq_base,
  5884. float freq_scale) {
  5885. return ggml_rope_impl(ctx, a, b, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, true);
  5886. }
  5887. struct ggml_tensor * ggml_rope_xpos_inplace(
  5888. struct ggml_context * ctx,
  5889. struct ggml_tensor * a,
  5890. struct ggml_tensor * b,
  5891. int n_dims,
  5892. float base,
  5893. bool down) {
  5894. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 10000.0f, 1.0f, base, down, true);
  5895. }
  5896. // ggml_rope_back
  5897. struct ggml_tensor * ggml_rope_back(
  5898. struct ggml_context * ctx,
  5899. struct ggml_tensor * a,
  5900. struct ggml_tensor * b,
  5901. int n_dims,
  5902. int mode,
  5903. int n_ctx,
  5904. float freq_base,
  5905. float freq_scale,
  5906. float xpos_base,
  5907. bool xpos_down) {
  5908. GGML_ASSERT(ggml_is_vector(b));
  5909. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5910. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5911. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5912. bool is_node = false;
  5913. if (a->grad) {
  5914. is_node = false; // TODO: implement backward
  5915. }
  5916. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5917. int32_t params[8] = { /*n_past*/ 0, n_dims, mode, n_ctx };
  5918. memcpy(params + 4, &freq_base, sizeof(float));
  5919. memcpy(params + 5, &freq_scale, sizeof(float));
  5920. memcpy(params + 6, &xpos_base, sizeof(float));
  5921. memcpy(params + 7, &xpos_down, sizeof(bool));
  5922. ggml_set_op_params(result, params, sizeof(params));
  5923. result->op = GGML_OP_ROPE_BACK;
  5924. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5925. result->src[0] = a;
  5926. result->src[1] = b;
  5927. return result;
  5928. }
  5929. // ggml_alibi
  5930. struct ggml_tensor * ggml_alibi(
  5931. struct ggml_context * ctx,
  5932. struct ggml_tensor * a,
  5933. int n_past,
  5934. int n_head,
  5935. float bias_max) {
  5936. GGML_ASSERT(n_past >= 0);
  5937. bool is_node = false;
  5938. if (a->grad) {
  5939. GGML_ASSERT(false); // TODO: implement backward
  5940. is_node = true;
  5941. }
  5942. // TODO: when implement backward, fix this:
  5943. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5944. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5945. int32_t op_params[3] = { n_past, n_head };
  5946. memcpy(op_params + 2, &bias_max, sizeof(float));
  5947. ggml_set_op_params(result, op_params, sizeof(op_params));
  5948. result->op = GGML_OP_ALIBI;
  5949. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5950. result->src[0] = a;
  5951. return result;
  5952. }
  5953. // ggml_clamp
  5954. struct ggml_tensor * ggml_clamp(
  5955. struct ggml_context * ctx,
  5956. struct ggml_tensor * a,
  5957. float min,
  5958. float max) {
  5959. bool is_node = false;
  5960. if (a->grad) {
  5961. GGML_ASSERT(false); // TODO: implement backward
  5962. is_node = true;
  5963. }
  5964. // TODO: when implement backward, fix this:
  5965. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5966. float params[] = { min, max };
  5967. ggml_set_op_params(result, params, sizeof(params));
  5968. result->op = GGML_OP_CLAMP;
  5969. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5970. result->src[0] = a;
  5971. return result;
  5972. }
  5973. // ggml_conv_1d
  5974. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5975. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5976. }
  5977. GGML_API struct ggml_tensor * ggml_conv_1d(
  5978. struct ggml_context * ctx,
  5979. struct ggml_tensor * a,
  5980. struct ggml_tensor * b,
  5981. int s0,
  5982. int p0,
  5983. int d0) {
  5984. GGML_ASSERT(ggml_is_matrix(b));
  5985. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5986. bool is_node = false;
  5987. if (a->grad || b->grad) {
  5988. GGML_ASSERT(false); // TODO: implement backward
  5989. is_node = true;
  5990. }
  5991. const int64_t ne[4] = {
  5992. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5993. a->ne[2], 1, 1,
  5994. };
  5995. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5996. int32_t params[] = { s0, p0, d0 };
  5997. ggml_set_op_params(result, params, sizeof(params));
  5998. result->op = GGML_OP_CONV_1D;
  5999. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6000. result->src[0] = a;
  6001. result->src[1] = b;
  6002. return result;
  6003. }
  6004. // ggml_conv_1d_ph
  6005. struct ggml_tensor* ggml_conv_1d_ph(
  6006. struct ggml_context * ctx,
  6007. struct ggml_tensor * a,
  6008. struct ggml_tensor * b,
  6009. int s,
  6010. int d) {
  6011. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  6012. }
  6013. // ggml_conv_2d
  6014. struct ggml_tensor * ggml_conv_2d(
  6015. struct ggml_context * ctx,
  6016. struct ggml_tensor * a,
  6017. struct ggml_tensor * b,
  6018. int s0,
  6019. int s1,
  6020. int p0,
  6021. int p1,
  6022. int d0,
  6023. int d1) {
  6024. GGML_ASSERT(a->ne[2] == b->ne[2]);
  6025. bool is_node = false;
  6026. if (a->grad || b->grad) {
  6027. GGML_ASSERT(false); // TODO: implement backward
  6028. is_node = true;
  6029. }
  6030. const int64_t ne[4] = {
  6031. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  6032. ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
  6033. a->ne[3], b->ne[3],
  6034. };
  6035. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6036. int32_t params[] = { s0, s1, p0, p1, d0, d1 };
  6037. ggml_set_op_params(result, params, sizeof(params));
  6038. result->op = GGML_OP_CONV_2D;
  6039. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6040. result->src[0] = a;
  6041. result->src[1] = b;
  6042. return result;
  6043. }
  6044. // ggml_conv_2d_sk_p0
  6045. struct ggml_tensor * ggml_conv_2d_sk_p0(
  6046. struct ggml_context * ctx,
  6047. struct ggml_tensor * a,
  6048. struct ggml_tensor * b) {
  6049. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  6050. }
  6051. // ggml_conv_2d_s1_ph
  6052. struct ggml_tensor * ggml_conv_2d_s1_ph(
  6053. struct ggml_context * ctx,
  6054. struct ggml_tensor * a,
  6055. struct ggml_tensor * b) {
  6056. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  6057. }
  6058. // ggml_conv_transpose_2d_p0
  6059. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  6060. return (ins - 1) * s - 2 * p + ks;
  6061. }
  6062. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  6063. struct ggml_context * ctx,
  6064. struct ggml_tensor * a,
  6065. struct ggml_tensor * b,
  6066. int stride) {
  6067. GGML_ASSERT(a->ne[3] == b->ne[2]);
  6068. bool is_node = false;
  6069. if (a->grad || b->grad) {
  6070. GGML_ASSERT(false); // TODO: implement backward
  6071. is_node = true;
  6072. }
  6073. const int64_t ne[4] = {
  6074. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  6075. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  6076. a->ne[2], b->ne[3],
  6077. };
  6078. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6079. ggml_set_op_params_i32(result, 0, stride);
  6080. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  6081. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6082. result->src[0] = a;
  6083. result->src[1] = b;
  6084. return result;
  6085. }
  6086. // ggml_pool_*
  6087. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, int p) {
  6088. return (ins + 2 * p - ks) / s + 1;
  6089. }
  6090. // ggml_pool_1d
  6091. struct ggml_tensor * ggml_pool_1d(
  6092. struct ggml_context * ctx,
  6093. struct ggml_tensor * a,
  6094. enum ggml_op_pool op,
  6095. int k0,
  6096. int s0,
  6097. int p0) {
  6098. bool is_node = false;
  6099. if (a->grad) {
  6100. GGML_ASSERT(false); // TODO: implement backward
  6101. is_node = true;
  6102. }
  6103. const int64_t ne[3] = {
  6104. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  6105. a->ne[1],
  6106. };
  6107. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  6108. int32_t params[] = { op, k0, s0, p0 };
  6109. ggml_set_op_params(result, params, sizeof(params));
  6110. result->op = GGML_OP_POOL_1D;
  6111. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6112. result->src[0] = a;
  6113. return result;
  6114. }
  6115. // ggml_pool_2d
  6116. struct ggml_tensor * ggml_pool_2d(
  6117. struct ggml_context * ctx,
  6118. struct ggml_tensor * a,
  6119. enum ggml_op_pool op,
  6120. int k0,
  6121. int k1,
  6122. int s0,
  6123. int s1,
  6124. int p0,
  6125. int p1) {
  6126. bool is_node = false;
  6127. if (a->grad) {
  6128. GGML_ASSERT(false); // TODO: implement backward
  6129. is_node = true;
  6130. }
  6131. const int64_t ne[3] = {
  6132. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  6133. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  6134. a->ne[2],
  6135. };
  6136. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  6137. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  6138. ggml_set_op_params(result, params, sizeof(params));
  6139. result->op = GGML_OP_POOL_2D;
  6140. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6141. result->src[0] = a;
  6142. return result;
  6143. }
  6144. // ggml_upscale
  6145. static struct ggml_tensor * ggml_upscale_impl(
  6146. struct ggml_context * ctx,
  6147. struct ggml_tensor * a,
  6148. int scale_factor) {
  6149. bool is_node = false;
  6150. if (a->grad) {
  6151. GGML_ASSERT(false); // TODO: implement backward
  6152. is_node = true;
  6153. }
  6154. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  6155. a->ne[0] * scale_factor,
  6156. a->ne[1] * scale_factor,
  6157. a->ne[2], a->ne[3]);
  6158. result->op = GGML_OP_UPSCALE;
  6159. result->op_params[0] = scale_factor;
  6160. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6161. result->src[0] = a;
  6162. result->src[1] = NULL;
  6163. return result;
  6164. }
  6165. struct ggml_tensor * ggml_upscale(
  6166. struct ggml_context * ctx,
  6167. struct ggml_tensor * a,
  6168. int scale_factor) {
  6169. return ggml_upscale_impl(ctx, a, scale_factor);
  6170. }
  6171. // ggml_flash_attn
  6172. struct ggml_tensor * ggml_flash_attn(
  6173. struct ggml_context * ctx,
  6174. struct ggml_tensor * q,
  6175. struct ggml_tensor * k,
  6176. struct ggml_tensor * v,
  6177. bool masked) {
  6178. GGML_ASSERT(ggml_can_mul_mat(k, q));
  6179. // TODO: check if vT can be multiplied by (k*qT)
  6180. bool is_node = false;
  6181. if (q->grad || k->grad || v->grad) {
  6182. is_node = true;
  6183. }
  6184. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  6185. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, q->n_dims, q->ne);
  6186. int32_t t = masked ? 1 : 0;
  6187. ggml_set_op_params(result, &t, sizeof(t));
  6188. result->op = GGML_OP_FLASH_ATTN;
  6189. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6190. result->src[0] = q;
  6191. result->src[1] = k;
  6192. result->src[2] = v;
  6193. return result;
  6194. }
  6195. // ggml_flash_ff
  6196. struct ggml_tensor * ggml_flash_ff(
  6197. struct ggml_context * ctx,
  6198. struct ggml_tensor * a,
  6199. struct ggml_tensor * b0,
  6200. struct ggml_tensor * b1,
  6201. struct ggml_tensor * c0,
  6202. struct ggml_tensor * c1) {
  6203. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  6204. // TODO: more checks
  6205. bool is_node = false;
  6206. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  6207. is_node = true;
  6208. }
  6209. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6210. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne);
  6211. result->op = GGML_OP_FLASH_FF;
  6212. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6213. result->src[0] = a;
  6214. result->src[1] = b0;
  6215. result->src[2] = b1;
  6216. result->src[3] = c0;
  6217. result->src[4] = c1;
  6218. return result;
  6219. }
  6220. // ggml_flash_attn_back
  6221. struct ggml_tensor * ggml_flash_attn_back(
  6222. struct ggml_context * ctx,
  6223. struct ggml_tensor * q,
  6224. struct ggml_tensor * k,
  6225. struct ggml_tensor * v,
  6226. struct ggml_tensor * d,
  6227. bool masked) {
  6228. GGML_ASSERT(ggml_can_mul_mat(k, q));
  6229. // TODO: check if vT can be multiplied by (k*qT)
  6230. // d shape [D,N,ne2,ne3]
  6231. // q shape [D,N,ne2,ne3]
  6232. // k shape [D,M,kvne2,ne3]
  6233. // v shape [M,D,kvne2,ne3]
  6234. const int64_t D = q->ne[0];
  6235. const int64_t N = q->ne[1];
  6236. const int64_t M = k->ne[1];
  6237. const int64_t ne2 = q->ne[2];
  6238. const int64_t ne3 = q->ne[3];
  6239. const int64_t kvne2 = k->ne[2];
  6240. GGML_ASSERT(k->ne[0] == D);
  6241. GGML_ASSERT(v->ne[0] == M);
  6242. GGML_ASSERT(v->ne[1] == D);
  6243. GGML_ASSERT(d->ne[0] == D);
  6244. GGML_ASSERT(d->ne[1] == N);
  6245. GGML_ASSERT(k->ne[2] == kvne2);
  6246. GGML_ASSERT(k->ne[3] == ne3);
  6247. GGML_ASSERT(v->ne[2] == kvne2);
  6248. GGML_ASSERT(v->ne[3] == ne3);
  6249. GGML_ASSERT(d->ne[2] == ne2);
  6250. GGML_ASSERT(d->ne[3] == ne3);
  6251. GGML_ASSERT(ne2 % kvne2 == 0);
  6252. bool is_node = false;
  6253. if (q->grad || k->grad || v->grad) {
  6254. // when using this operation (in backwards pass) these grads are set.
  6255. // we don't want to create (big) grad of our result, so is_node is false.
  6256. is_node = false;
  6257. }
  6258. // store gradients of q, k and v as continuous tensors concatenated in result.
  6259. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  6260. const int64_t elem_q = ggml_nelements(q);
  6261. const int64_t elem_k = ggml_nelements(k);
  6262. const int64_t elem_v = ggml_nelements(v);
  6263. enum ggml_type result_type = GGML_TYPE_F32;
  6264. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  6265. const size_t tsize = ggml_type_size(result_type);
  6266. const size_t offs_q = 0;
  6267. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  6268. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  6269. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  6270. const size_t nelements = (end + tsize - 1)/tsize;
  6271. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  6272. int32_t masked_i = masked ? 1 : 0;
  6273. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  6274. result->op = GGML_OP_FLASH_ATTN_BACK;
  6275. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6276. result->src[0] = q;
  6277. result->src[1] = k;
  6278. result->src[2] = v;
  6279. result->src[3] = d;
  6280. return result;
  6281. }
  6282. // ggml_win_part
  6283. struct ggml_tensor * ggml_win_part(
  6284. struct ggml_context * ctx,
  6285. struct ggml_tensor * a,
  6286. int w) {
  6287. GGML_ASSERT(a->ne[3] == 1);
  6288. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6289. bool is_node = false;
  6290. if (a->grad) {
  6291. GGML_ASSERT(false); // TODO: implement backward
  6292. is_node = true;
  6293. }
  6294. // padding
  6295. const int px = (w - a->ne[1]%w)%w;
  6296. const int py = (w - a->ne[2]%w)%w;
  6297. const int npx = (px + a->ne[1])/w;
  6298. const int npy = (py + a->ne[2])/w;
  6299. const int np = npx*npy;
  6300. const int64_t ne[4] = { a->ne[0], w, w, np, };
  6301. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6302. int32_t params[] = { npx, npy, w };
  6303. ggml_set_op_params(result, params, sizeof(params));
  6304. result->op = GGML_OP_WIN_PART;
  6305. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6306. result->src[0] = a;
  6307. return result;
  6308. }
  6309. // ggml_win_unpart
  6310. struct ggml_tensor * ggml_win_unpart(
  6311. struct ggml_context * ctx,
  6312. struct ggml_tensor * a,
  6313. int w0,
  6314. int h0,
  6315. int w) {
  6316. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6317. bool is_node = false;
  6318. if (a->grad) {
  6319. GGML_ASSERT(false); // TODO: implement backward
  6320. is_node = true;
  6321. }
  6322. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  6323. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  6324. int32_t params[] = { w };
  6325. ggml_set_op_params(result, params, sizeof(params));
  6326. result->op = GGML_OP_WIN_UNPART;
  6327. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6328. result->src[0] = a;
  6329. return result;
  6330. }
  6331. // ggml_get_rel_pos
  6332. struct ggml_tensor * ggml_get_rel_pos(
  6333. struct ggml_context * ctx,
  6334. struct ggml_tensor * a,
  6335. int qh,
  6336. int kh) {
  6337. GGML_ASSERT(qh == kh);
  6338. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  6339. bool is_node = false;
  6340. if (a->grad) {
  6341. GGML_ASSERT(false); // TODO: implement backward
  6342. is_node = true;
  6343. }
  6344. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  6345. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  6346. result->op = GGML_OP_GET_REL_POS;
  6347. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6348. result->src[0] = a;
  6349. result->src[1] = NULL;
  6350. return result;
  6351. }
  6352. // ggml_add_rel_pos
  6353. static struct ggml_tensor * ggml_add_rel_pos_impl(
  6354. struct ggml_context * ctx,
  6355. struct ggml_tensor * a,
  6356. struct ggml_tensor * pw,
  6357. struct ggml_tensor * ph,
  6358. bool inplace) {
  6359. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  6360. GGML_ASSERT(ggml_is_contiguous(a));
  6361. GGML_ASSERT(ggml_is_contiguous(pw));
  6362. GGML_ASSERT(ggml_is_contiguous(ph));
  6363. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  6364. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  6365. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  6366. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  6367. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  6368. bool is_node = false;
  6369. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  6370. is_node = true;
  6371. }
  6372. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6373. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  6374. result->op = GGML_OP_ADD_REL_POS;
  6375. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6376. result->src[0] = a;
  6377. result->src[1] = pw;
  6378. result->src[2] = ph;
  6379. return result;
  6380. }
  6381. struct ggml_tensor * ggml_add_rel_pos(
  6382. struct ggml_context * ctx,
  6383. struct ggml_tensor * a,
  6384. struct ggml_tensor * pw,
  6385. struct ggml_tensor * ph) {
  6386. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  6387. }
  6388. struct ggml_tensor * ggml_add_rel_pos_inplace(
  6389. struct ggml_context * ctx,
  6390. struct ggml_tensor * a,
  6391. struct ggml_tensor * pw,
  6392. struct ggml_tensor * ph) {
  6393. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  6394. }
  6395. // gmml_unary
  6396. static struct ggml_tensor * ggml_unary_impl(
  6397. struct ggml_context * ctx,
  6398. struct ggml_tensor * a,
  6399. enum ggml_unary_op op,
  6400. bool inplace) {
  6401. bool is_node = false;
  6402. if (!inplace && (a->grad)) {
  6403. is_node = true;
  6404. }
  6405. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6406. ggml_set_op_params_i32(result, 0, (int32_t) op);
  6407. result->op = GGML_OP_UNARY;
  6408. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6409. result->src[0] = a;
  6410. return result;
  6411. }
  6412. struct ggml_tensor * ggml_unary(
  6413. struct ggml_context * ctx,
  6414. struct ggml_tensor * a,
  6415. enum ggml_unary_op op) {
  6416. return ggml_unary_impl(ctx, a, op, false);
  6417. }
  6418. struct ggml_tensor * ggml_unary_inplace(
  6419. struct ggml_context * ctx,
  6420. struct ggml_tensor * a,
  6421. enum ggml_unary_op op) {
  6422. return ggml_unary_impl(ctx, a, op, true);
  6423. }
  6424. // ggml_map_unary
  6425. static struct ggml_tensor * ggml_map_unary_impl_f32(
  6426. struct ggml_context * ctx,
  6427. struct ggml_tensor * a,
  6428. const ggml_unary_op_f32_t fun,
  6429. bool inplace) {
  6430. bool is_node = false;
  6431. if (!inplace && a->grad) {
  6432. is_node = true;
  6433. }
  6434. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6435. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6436. result->op = GGML_OP_MAP_UNARY;
  6437. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6438. result->src[0] = a;
  6439. return result;
  6440. }
  6441. struct ggml_tensor * ggml_map_unary_f32(
  6442. struct ggml_context * ctx,
  6443. struct ggml_tensor * a,
  6444. const ggml_unary_op_f32_t fun) {
  6445. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6446. }
  6447. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6448. struct ggml_context * ctx,
  6449. struct ggml_tensor * a,
  6450. const ggml_unary_op_f32_t fun) {
  6451. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6452. }
  6453. // ggml_map_binary
  6454. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6455. struct ggml_context * ctx,
  6456. struct ggml_tensor * a,
  6457. struct ggml_tensor * b,
  6458. const ggml_binary_op_f32_t fun,
  6459. bool inplace) {
  6460. GGML_ASSERT(ggml_are_same_shape(a, b));
  6461. bool is_node = false;
  6462. if (!inplace && (a->grad || b->grad)) {
  6463. is_node = true;
  6464. }
  6465. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6466. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6467. result->op = GGML_OP_MAP_BINARY;
  6468. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6469. result->src[0] = a;
  6470. result->src[1] = b;
  6471. return result;
  6472. }
  6473. struct ggml_tensor * ggml_map_binary_f32(
  6474. struct ggml_context * ctx,
  6475. struct ggml_tensor * a,
  6476. struct ggml_tensor * b,
  6477. const ggml_binary_op_f32_t fun) {
  6478. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6479. }
  6480. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6481. struct ggml_context * ctx,
  6482. struct ggml_tensor * a,
  6483. struct ggml_tensor * b,
  6484. const ggml_binary_op_f32_t fun) {
  6485. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6486. }
  6487. // ggml_map_custom1_f32
  6488. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6489. struct ggml_context * ctx,
  6490. struct ggml_tensor * a,
  6491. const ggml_custom1_op_f32_t fun,
  6492. bool inplace) {
  6493. bool is_node = false;
  6494. if (!inplace && a->grad) {
  6495. is_node = true;
  6496. }
  6497. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6498. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6499. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6500. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6501. result->src[0] = a;
  6502. return result;
  6503. }
  6504. struct ggml_tensor * ggml_map_custom1_f32(
  6505. struct ggml_context * ctx,
  6506. struct ggml_tensor * a,
  6507. const ggml_custom1_op_f32_t fun) {
  6508. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6509. }
  6510. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6511. struct ggml_context * ctx,
  6512. struct ggml_tensor * a,
  6513. const ggml_custom1_op_f32_t fun) {
  6514. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6515. }
  6516. // ggml_map_custom2_f32
  6517. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6518. struct ggml_context * ctx,
  6519. struct ggml_tensor * a,
  6520. struct ggml_tensor * b,
  6521. const ggml_custom2_op_f32_t fun,
  6522. bool inplace) {
  6523. bool is_node = false;
  6524. if (!inplace && (a->grad || b->grad)) {
  6525. is_node = true;
  6526. }
  6527. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6528. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6529. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6530. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6531. result->src[0] = a;
  6532. result->src[1] = b;
  6533. return result;
  6534. }
  6535. struct ggml_tensor * ggml_map_custom2_f32(
  6536. struct ggml_context * ctx,
  6537. struct ggml_tensor * a,
  6538. struct ggml_tensor * b,
  6539. const ggml_custom2_op_f32_t fun) {
  6540. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6541. }
  6542. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6543. struct ggml_context * ctx,
  6544. struct ggml_tensor * a,
  6545. struct ggml_tensor * b,
  6546. const ggml_custom2_op_f32_t fun) {
  6547. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6548. }
  6549. // ggml_map_custom3_f32
  6550. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6551. struct ggml_context * ctx,
  6552. struct ggml_tensor * a,
  6553. struct ggml_tensor * b,
  6554. struct ggml_tensor * c,
  6555. const ggml_custom3_op_f32_t fun,
  6556. bool inplace) {
  6557. bool is_node = false;
  6558. if (!inplace && (a->grad || b->grad || c->grad)) {
  6559. is_node = true;
  6560. }
  6561. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6562. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6563. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6564. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6565. result->src[0] = a;
  6566. result->src[1] = b;
  6567. result->src[2] = c;
  6568. return result;
  6569. }
  6570. struct ggml_tensor * ggml_map_custom3_f32(
  6571. struct ggml_context * ctx,
  6572. struct ggml_tensor * a,
  6573. struct ggml_tensor * b,
  6574. struct ggml_tensor * c,
  6575. const ggml_custom3_op_f32_t fun) {
  6576. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6577. }
  6578. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6579. struct ggml_context * ctx,
  6580. struct ggml_tensor * a,
  6581. struct ggml_tensor * b,
  6582. struct ggml_tensor * c,
  6583. const ggml_custom3_op_f32_t fun) {
  6584. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6585. }
  6586. // ggml_map_custom1
  6587. struct ggml_map_custom1_op_params {
  6588. ggml_custom1_op_t fun;
  6589. int n_tasks;
  6590. void * userdata;
  6591. };
  6592. static struct ggml_tensor * ggml_map_custom1_impl(
  6593. struct ggml_context * ctx,
  6594. struct ggml_tensor * a,
  6595. const ggml_custom1_op_t fun,
  6596. int n_tasks,
  6597. void * userdata,
  6598. bool inplace) {
  6599. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6600. bool is_node = false;
  6601. if (!inplace && a->grad) {
  6602. is_node = true;
  6603. }
  6604. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6605. struct ggml_map_custom1_op_params params = {
  6606. /*.fun =*/ fun,
  6607. /*.n_tasks =*/ n_tasks,
  6608. /*.userdata =*/ userdata
  6609. };
  6610. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6611. result->op = GGML_OP_MAP_CUSTOM1;
  6612. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6613. result->src[0] = a;
  6614. return result;
  6615. }
  6616. struct ggml_tensor * ggml_map_custom1(
  6617. struct ggml_context * ctx,
  6618. struct ggml_tensor * a,
  6619. const ggml_custom1_op_t fun,
  6620. int n_tasks,
  6621. void * userdata) {
  6622. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6623. }
  6624. struct ggml_tensor * ggml_map_custom1_inplace(
  6625. struct ggml_context * ctx,
  6626. struct ggml_tensor * a,
  6627. const ggml_custom1_op_t fun,
  6628. int n_tasks,
  6629. void * userdata) {
  6630. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6631. }
  6632. // ggml_map_custom2
  6633. struct ggml_map_custom2_op_params {
  6634. ggml_custom2_op_t fun;
  6635. int n_tasks;
  6636. void * userdata;
  6637. };
  6638. static struct ggml_tensor * ggml_map_custom2_impl(
  6639. struct ggml_context * ctx,
  6640. struct ggml_tensor * a,
  6641. struct ggml_tensor * b,
  6642. const ggml_custom2_op_t fun,
  6643. int n_tasks,
  6644. void * userdata,
  6645. bool inplace) {
  6646. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6647. bool is_node = false;
  6648. if (!inplace && (a->grad || b->grad)) {
  6649. is_node = true;
  6650. }
  6651. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6652. struct ggml_map_custom2_op_params params = {
  6653. /*.fun =*/ fun,
  6654. /*.n_tasks =*/ n_tasks,
  6655. /*.userdata =*/ userdata
  6656. };
  6657. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6658. result->op = GGML_OP_MAP_CUSTOM2;
  6659. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6660. result->src[0] = a;
  6661. result->src[1] = b;
  6662. return result;
  6663. }
  6664. struct ggml_tensor * ggml_map_custom2(
  6665. struct ggml_context * ctx,
  6666. struct ggml_tensor * a,
  6667. struct ggml_tensor * b,
  6668. const ggml_custom2_op_t fun,
  6669. int n_tasks,
  6670. void * userdata) {
  6671. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6672. }
  6673. struct ggml_tensor * ggml_map_custom2_inplace(
  6674. struct ggml_context * ctx,
  6675. struct ggml_tensor * a,
  6676. struct ggml_tensor * b,
  6677. const ggml_custom2_op_t fun,
  6678. int n_tasks,
  6679. void * userdata) {
  6680. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6681. }
  6682. // ggml_map_custom3
  6683. struct ggml_map_custom3_op_params {
  6684. ggml_custom3_op_t fun;
  6685. int n_tasks;
  6686. void * userdata;
  6687. };
  6688. static struct ggml_tensor * ggml_map_custom3_impl(
  6689. struct ggml_context * ctx,
  6690. struct ggml_tensor * a,
  6691. struct ggml_tensor * b,
  6692. struct ggml_tensor * c,
  6693. const ggml_custom3_op_t fun,
  6694. int n_tasks,
  6695. void * userdata,
  6696. bool inplace) {
  6697. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6698. bool is_node = false;
  6699. if (!inplace && (a->grad || b->grad || c->grad)) {
  6700. is_node = true;
  6701. }
  6702. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6703. struct ggml_map_custom3_op_params params = {
  6704. /*.fun =*/ fun,
  6705. /*.n_tasks =*/ n_tasks,
  6706. /*.userdata =*/ userdata
  6707. };
  6708. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6709. result->op = GGML_OP_MAP_CUSTOM3;
  6710. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6711. result->src[0] = a;
  6712. result->src[1] = b;
  6713. result->src[2] = c;
  6714. return result;
  6715. }
  6716. struct ggml_tensor * ggml_map_custom3(
  6717. struct ggml_context * ctx,
  6718. struct ggml_tensor * a,
  6719. struct ggml_tensor * b,
  6720. struct ggml_tensor * c,
  6721. const ggml_custom3_op_t fun,
  6722. int n_tasks,
  6723. void * userdata) {
  6724. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6725. }
  6726. struct ggml_tensor * ggml_map_custom3_inplace(
  6727. struct ggml_context * ctx,
  6728. struct ggml_tensor * a,
  6729. struct ggml_tensor * b,
  6730. struct ggml_tensor * c,
  6731. const ggml_custom3_op_t fun,
  6732. int n_tasks,
  6733. void * userdata) {
  6734. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6735. }
  6736. // ggml_cross_entropy_loss
  6737. struct ggml_tensor * ggml_cross_entropy_loss(
  6738. struct ggml_context * ctx,
  6739. struct ggml_tensor * a,
  6740. struct ggml_tensor * b) {
  6741. GGML_ASSERT(ggml_are_same_shape(a, b));
  6742. bool is_node = false;
  6743. if (a->grad || b->grad) {
  6744. is_node = true;
  6745. }
  6746. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6747. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6748. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6749. result->src[0] = a;
  6750. result->src[1] = b;
  6751. return result;
  6752. }
  6753. // ggml_cross_entropy_loss_back
  6754. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6755. struct ggml_context * ctx,
  6756. struct ggml_tensor * a,
  6757. struct ggml_tensor * b,
  6758. struct ggml_tensor * c) {
  6759. GGML_ASSERT(ggml_are_same_shape(a, b));
  6760. GGML_ASSERT(ggml_is_scalar(c));
  6761. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6762. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6763. result->grad = NULL;
  6764. result->src[0] = a;
  6765. result->src[1] = b;
  6766. result->src[2] = c;
  6767. return result;
  6768. }
  6769. ////////////////////////////////////////////////////////////////////////////////
  6770. void ggml_set_param(
  6771. struct ggml_context * ctx,
  6772. struct ggml_tensor * tensor) {
  6773. tensor->is_param = true;
  6774. GGML_ASSERT(tensor->grad == NULL);
  6775. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6776. }
  6777. // ggml_compute_forward_dup
  6778. static void ggml_compute_forward_dup_same_cont(
  6779. const struct ggml_compute_params * params,
  6780. const struct ggml_tensor * src0,
  6781. struct ggml_tensor * dst) {
  6782. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6783. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6784. GGML_ASSERT(src0->type == dst->type);
  6785. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6786. return;
  6787. }
  6788. const size_t nb00 = src0->nb[0];
  6789. const size_t nb0 = dst->nb[0];
  6790. const int ith = params->ith; // thread index
  6791. const int nth = params->nth; // number of threads
  6792. // parallelize by elements
  6793. const int ne = ggml_nelements(dst);
  6794. const int dr = (ne + nth - 1) / nth;
  6795. const int ie0 = dr * ith;
  6796. const int ie1 = MIN(ie0 + dr, ne);
  6797. if (ie0 < ie1) {
  6798. memcpy(
  6799. ((char *) dst->data + ie0*nb0),
  6800. ((char *) src0->data + ie0*nb00),
  6801. (ie1 - ie0) * ggml_type_size(src0->type));
  6802. }
  6803. }
  6804. static void ggml_compute_forward_dup_f16(
  6805. const struct ggml_compute_params * params,
  6806. const struct ggml_tensor * src0,
  6807. struct ggml_tensor * dst) {
  6808. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6809. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6810. return;
  6811. }
  6812. GGML_TENSOR_UNARY_OP_LOCALS
  6813. const int ith = params->ith; // thread index
  6814. const int nth = params->nth; // number of threads
  6815. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6816. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6817. return;
  6818. }
  6819. // parallelize by rows
  6820. const int nr = ne01;
  6821. // number of rows per thread
  6822. const int dr = (nr + nth - 1) / nth;
  6823. // row range for this thread
  6824. const int ir0 = dr * ith;
  6825. const int ir1 = MIN(ir0 + dr, nr);
  6826. if (src0->type == dst->type &&
  6827. ne00 == ne0 &&
  6828. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6829. // copy by rows
  6830. const size_t rs = ne00*nb00;
  6831. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6832. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6833. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6834. memcpy(
  6835. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6836. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6837. rs);
  6838. }
  6839. }
  6840. }
  6841. return;
  6842. }
  6843. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6844. if (ggml_is_contiguous(dst)) {
  6845. if (nb00 == sizeof(ggml_fp16_t)) {
  6846. if (dst->type == GGML_TYPE_F16) {
  6847. size_t id = 0;
  6848. const size_t rs = ne00 * nb00;
  6849. char * dst_ptr = (char *) dst->data;
  6850. for (int i03 = 0; i03 < ne03; i03++) {
  6851. for (int i02 = 0; i02 < ne02; i02++) {
  6852. id += rs * ir0;
  6853. for (int i01 = ir0; i01 < ir1; i01++) {
  6854. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6855. memcpy(dst_ptr + id, src0_ptr, rs);
  6856. id += rs;
  6857. }
  6858. id += rs * (ne01 - ir1);
  6859. }
  6860. }
  6861. } else if (dst->type == GGML_TYPE_F32) {
  6862. size_t id = 0;
  6863. float * dst_ptr = (float *) dst->data;
  6864. for (int i03 = 0; i03 < ne03; i03++) {
  6865. for (int i02 = 0; i02 < ne02; i02++) {
  6866. id += ne00 * ir0;
  6867. for (int i01 = ir0; i01 < ir1; i01++) {
  6868. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6869. for (int i00 = 0; i00 < ne00; i00++) {
  6870. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6871. id++;
  6872. }
  6873. }
  6874. id += ne00 * (ne01 - ir1);
  6875. }
  6876. }
  6877. } else if (type_traits[dst->type].from_float) {
  6878. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6879. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6880. size_t id = 0;
  6881. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6882. char * dst_ptr = (char *) dst->data;
  6883. for (int i03 = 0; i03 < ne03; i03++) {
  6884. for (int i02 = 0; i02 < ne02; i02++) {
  6885. id += rs * ir0;
  6886. for (int i01 = ir0; i01 < ir1; i01++) {
  6887. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6888. for (int i00 = 0; i00 < ne00; i00++) {
  6889. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6890. }
  6891. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6892. id += rs;
  6893. }
  6894. id += rs * (ne01 - ir1);
  6895. }
  6896. }
  6897. } else {
  6898. GGML_ASSERT(false); // TODO: implement
  6899. }
  6900. } else {
  6901. //printf("%s: this is not optimal - fix me\n", __func__);
  6902. if (dst->type == GGML_TYPE_F32) {
  6903. size_t id = 0;
  6904. float * dst_ptr = (float *) dst->data;
  6905. for (int i03 = 0; i03 < ne03; i03++) {
  6906. for (int i02 = 0; i02 < ne02; i02++) {
  6907. id += ne00 * ir0;
  6908. for (int i01 = ir0; i01 < ir1; i01++) {
  6909. for (int i00 = 0; i00 < ne00; i00++) {
  6910. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6911. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6912. id++;
  6913. }
  6914. }
  6915. id += ne00 * (ne01 - ir1);
  6916. }
  6917. }
  6918. } else if (dst->type == GGML_TYPE_F16) {
  6919. size_t id = 0;
  6920. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6921. for (int i03 = 0; i03 < ne03; i03++) {
  6922. for (int i02 = 0; i02 < ne02; i02++) {
  6923. id += ne00 * ir0;
  6924. for (int i01 = ir0; i01 < ir1; i01++) {
  6925. for (int i00 = 0; i00 < ne00; i00++) {
  6926. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6927. dst_ptr[id] = *src0_ptr;
  6928. id++;
  6929. }
  6930. }
  6931. id += ne00 * (ne01 - ir1);
  6932. }
  6933. }
  6934. } else {
  6935. GGML_ASSERT(false); // TODO: implement
  6936. }
  6937. }
  6938. return;
  6939. }
  6940. // dst counters
  6941. int64_t i10 = 0;
  6942. int64_t i11 = 0;
  6943. int64_t i12 = 0;
  6944. int64_t i13 = 0;
  6945. if (dst->type == GGML_TYPE_F16) {
  6946. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6947. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6948. i10 += ne00 * ir0;
  6949. while (i10 >= ne0) {
  6950. i10 -= ne0;
  6951. if (++i11 == ne1) {
  6952. i11 = 0;
  6953. if (++i12 == ne2) {
  6954. i12 = 0;
  6955. if (++i13 == ne3) {
  6956. i13 = 0;
  6957. }
  6958. }
  6959. }
  6960. }
  6961. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6962. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6963. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6964. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6965. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6966. if (++i10 == ne00) {
  6967. i10 = 0;
  6968. if (++i11 == ne01) {
  6969. i11 = 0;
  6970. if (++i12 == ne02) {
  6971. i12 = 0;
  6972. if (++i13 == ne03) {
  6973. i13 = 0;
  6974. }
  6975. }
  6976. }
  6977. }
  6978. }
  6979. }
  6980. i10 += ne00 * (ne01 - ir1);
  6981. while (i10 >= ne0) {
  6982. i10 -= ne0;
  6983. if (++i11 == ne1) {
  6984. i11 = 0;
  6985. if (++i12 == ne2) {
  6986. i12 = 0;
  6987. if (++i13 == ne3) {
  6988. i13 = 0;
  6989. }
  6990. }
  6991. }
  6992. }
  6993. }
  6994. }
  6995. } else if (dst->type == GGML_TYPE_F32) {
  6996. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6997. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6998. i10 += ne00 * ir0;
  6999. while (i10 >= ne0) {
  7000. i10 -= ne0;
  7001. if (++i11 == ne1) {
  7002. i11 = 0;
  7003. if (++i12 == ne2) {
  7004. i12 = 0;
  7005. if (++i13 == ne3) {
  7006. i13 = 0;
  7007. }
  7008. }
  7009. }
  7010. }
  7011. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7012. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7013. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7014. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7015. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  7016. if (++i10 == ne0) {
  7017. i10 = 0;
  7018. if (++i11 == ne1) {
  7019. i11 = 0;
  7020. if (++i12 == ne2) {
  7021. i12 = 0;
  7022. if (++i13 == ne3) {
  7023. i13 = 0;
  7024. }
  7025. }
  7026. }
  7027. }
  7028. }
  7029. }
  7030. i10 += ne00 * (ne01 - ir1);
  7031. while (i10 >= ne0) {
  7032. i10 -= ne0;
  7033. if (++i11 == ne1) {
  7034. i11 = 0;
  7035. if (++i12 == ne2) {
  7036. i12 = 0;
  7037. if (++i13 == ne3) {
  7038. i13 = 0;
  7039. }
  7040. }
  7041. }
  7042. }
  7043. }
  7044. }
  7045. } else {
  7046. GGML_ASSERT(false); // TODO: implement
  7047. }
  7048. }
  7049. static void ggml_compute_forward_dup_f32(
  7050. const struct ggml_compute_params * params,
  7051. const struct ggml_tensor * src0,
  7052. struct ggml_tensor * dst) {
  7053. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7054. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7055. return;
  7056. }
  7057. GGML_TENSOR_UNARY_OP_LOCALS
  7058. const int ith = params->ith; // thread index
  7059. const int nth = params->nth; // number of threads
  7060. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  7061. ggml_compute_forward_dup_same_cont(params, src0, dst);
  7062. return;
  7063. }
  7064. // parallelize by rows
  7065. const int nr = ne01;
  7066. // number of rows per thread
  7067. const int dr = (nr + nth - 1) / nth;
  7068. // row range for this thread
  7069. const int ir0 = dr * ith;
  7070. const int ir1 = MIN(ir0 + dr, nr);
  7071. if (src0->type == dst->type &&
  7072. ne00 == ne0 &&
  7073. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  7074. // copy by rows
  7075. const size_t rs = ne00*nb00;
  7076. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7077. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7078. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7079. memcpy(
  7080. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7081. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7082. rs);
  7083. }
  7084. }
  7085. }
  7086. return;
  7087. }
  7088. if (ggml_is_contiguous(dst)) {
  7089. // TODO: simplify
  7090. if (nb00 == sizeof(float)) {
  7091. if (dst->type == GGML_TYPE_F32) {
  7092. size_t id = 0;
  7093. const size_t rs = ne00 * nb00;
  7094. char * dst_ptr = (char *) dst->data;
  7095. for (int i03 = 0; i03 < ne03; i03++) {
  7096. for (int i02 = 0; i02 < ne02; i02++) {
  7097. id += rs * ir0;
  7098. for (int i01 = ir0; i01 < ir1; i01++) {
  7099. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7100. memcpy(dst_ptr + id, src0_ptr, rs);
  7101. id += rs;
  7102. }
  7103. id += rs * (ne01 - ir1);
  7104. }
  7105. }
  7106. } else if (type_traits[dst->type].from_float) {
  7107. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  7108. size_t id = 0;
  7109. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  7110. char * dst_ptr = (char *) dst->data;
  7111. for (int i03 = 0; i03 < ne03; i03++) {
  7112. for (int i02 = 0; i02 < ne02; i02++) {
  7113. id += rs * ir0;
  7114. for (int i01 = ir0; i01 < ir1; i01++) {
  7115. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7116. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  7117. id += rs;
  7118. }
  7119. id += rs * (ne01 - ir1);
  7120. }
  7121. }
  7122. } else {
  7123. GGML_ASSERT(false); // TODO: implement
  7124. }
  7125. } else {
  7126. //printf("%s: this is not optimal - fix me\n", __func__);
  7127. if (dst->type == GGML_TYPE_F32) {
  7128. size_t id = 0;
  7129. float * dst_ptr = (float *) dst->data;
  7130. for (int i03 = 0; i03 < ne03; i03++) {
  7131. for (int i02 = 0; i02 < ne02; i02++) {
  7132. id += ne00 * ir0;
  7133. for (int i01 = ir0; i01 < ir1; i01++) {
  7134. for (int i00 = 0; i00 < ne00; i00++) {
  7135. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7136. dst_ptr[id] = *src0_ptr;
  7137. id++;
  7138. }
  7139. }
  7140. id += ne00 * (ne01 - ir1);
  7141. }
  7142. }
  7143. } else if (dst->type == GGML_TYPE_F16) {
  7144. size_t id = 0;
  7145. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  7146. for (int i03 = 0; i03 < ne03; i03++) {
  7147. for (int i02 = 0; i02 < ne02; i02++) {
  7148. id += ne00 * ir0;
  7149. for (int i01 = ir0; i01 < ir1; i01++) {
  7150. for (int i00 = 0; i00 < ne00; i00++) {
  7151. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7152. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  7153. id++;
  7154. }
  7155. }
  7156. id += ne00 * (ne01 - ir1);
  7157. }
  7158. }
  7159. } else {
  7160. GGML_ASSERT(false); // TODO: implement
  7161. }
  7162. }
  7163. return;
  7164. }
  7165. // dst counters
  7166. int64_t i10 = 0;
  7167. int64_t i11 = 0;
  7168. int64_t i12 = 0;
  7169. int64_t i13 = 0;
  7170. if (dst->type == GGML_TYPE_F32) {
  7171. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7172. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7173. i10 += ne00 * ir0;
  7174. while (i10 >= ne0) {
  7175. i10 -= ne0;
  7176. if (++i11 == ne1) {
  7177. i11 = 0;
  7178. if (++i12 == ne2) {
  7179. i12 = 0;
  7180. if (++i13 == ne3) {
  7181. i13 = 0;
  7182. }
  7183. }
  7184. }
  7185. }
  7186. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7187. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7188. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7189. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7190. memcpy(dst_ptr, src0_ptr, sizeof(float));
  7191. if (++i10 == ne0) {
  7192. i10 = 0;
  7193. if (++i11 == ne1) {
  7194. i11 = 0;
  7195. if (++i12 == ne2) {
  7196. i12 = 0;
  7197. if (++i13 == ne3) {
  7198. i13 = 0;
  7199. }
  7200. }
  7201. }
  7202. }
  7203. }
  7204. }
  7205. i10 += ne00 * (ne01 - ir1);
  7206. while (i10 >= ne0) {
  7207. i10 -= ne0;
  7208. if (++i11 == ne1) {
  7209. i11 = 0;
  7210. if (++i12 == ne2) {
  7211. i12 = 0;
  7212. if (++i13 == ne3) {
  7213. i13 = 0;
  7214. }
  7215. }
  7216. }
  7217. }
  7218. }
  7219. }
  7220. } else if (dst->type == GGML_TYPE_F16) {
  7221. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7222. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7223. i10 += ne00 * ir0;
  7224. while (i10 >= ne0) {
  7225. i10 -= ne0;
  7226. if (++i11 == ne1) {
  7227. i11 = 0;
  7228. if (++i12 == ne2) {
  7229. i12 = 0;
  7230. if (++i13 == ne3) {
  7231. i13 = 0;
  7232. }
  7233. }
  7234. }
  7235. }
  7236. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7237. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7238. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7239. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7240. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  7241. if (++i10 == ne0) {
  7242. i10 = 0;
  7243. if (++i11 == ne1) {
  7244. i11 = 0;
  7245. if (++i12 == ne2) {
  7246. i12 = 0;
  7247. if (++i13 == ne3) {
  7248. i13 = 0;
  7249. }
  7250. }
  7251. }
  7252. }
  7253. }
  7254. }
  7255. i10 += ne00 * (ne01 - ir1);
  7256. while (i10 >= ne0) {
  7257. i10 -= ne0;
  7258. if (++i11 == ne1) {
  7259. i11 = 0;
  7260. if (++i12 == ne2) {
  7261. i12 = 0;
  7262. if (++i13 == ne3) {
  7263. i13 = 0;
  7264. }
  7265. }
  7266. }
  7267. }
  7268. }
  7269. }
  7270. } else {
  7271. GGML_ASSERT(false); // TODO: implement
  7272. }
  7273. }
  7274. static void ggml_compute_forward_dup(
  7275. const struct ggml_compute_params * params,
  7276. const struct ggml_tensor * src0,
  7277. struct ggml_tensor * dst) {
  7278. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  7279. ggml_compute_forward_dup_same_cont(params, src0, dst);
  7280. return;
  7281. }
  7282. switch (src0->type) {
  7283. case GGML_TYPE_F16:
  7284. {
  7285. ggml_compute_forward_dup_f16(params, src0, dst);
  7286. } break;
  7287. case GGML_TYPE_F32:
  7288. {
  7289. ggml_compute_forward_dup_f32(params, src0, dst);
  7290. } break;
  7291. default:
  7292. {
  7293. GGML_ASSERT(false);
  7294. } break;
  7295. }
  7296. }
  7297. // ggml_compute_forward_add
  7298. static void ggml_compute_forward_add_f32(
  7299. const struct ggml_compute_params * params,
  7300. const struct ggml_tensor * src0,
  7301. const struct ggml_tensor * src1,
  7302. struct ggml_tensor * dst) {
  7303. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7304. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7305. return;
  7306. }
  7307. const int ith = params->ith;
  7308. const int nth = params->nth;
  7309. const int nr = ggml_nrows(src0);
  7310. GGML_TENSOR_BINARY_OP_LOCALS
  7311. GGML_ASSERT( nb0 == sizeof(float));
  7312. GGML_ASSERT(nb00 == sizeof(float));
  7313. // rows per thread
  7314. const int dr = (nr + nth - 1)/nth;
  7315. // row range for this thread
  7316. const int ir0 = dr*ith;
  7317. const int ir1 = MIN(ir0 + dr, nr);
  7318. if (nb10 == sizeof(float)) {
  7319. for (int ir = ir0; ir < ir1; ++ir) {
  7320. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7321. const int64_t i03 = ir/(ne02*ne01);
  7322. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7323. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7324. const int64_t i13 = i03 % ne13;
  7325. const int64_t i12 = i02 % ne12;
  7326. const int64_t i11 = i01 % ne11;
  7327. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7328. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7329. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7330. #ifdef GGML_USE_ACCELERATE
  7331. vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7332. #else
  7333. ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7334. #endif
  7335. }
  7336. } else {
  7337. // src1 is not contiguous
  7338. for (int ir = ir0; ir < ir1; ++ir) {
  7339. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7340. const int64_t i03 = ir/(ne02*ne01);
  7341. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7342. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7343. const int64_t i13 = i03 % ne13;
  7344. const int64_t i12 = i02 % ne12;
  7345. const int64_t i11 = i01 % ne11;
  7346. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7347. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7348. for (int i0 = 0; i0 < ne0; i0++) {
  7349. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7350. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7351. }
  7352. }
  7353. }
  7354. }
  7355. static void ggml_compute_forward_add_f16_f32(
  7356. const struct ggml_compute_params * params,
  7357. const struct ggml_tensor * src0,
  7358. const struct ggml_tensor * src1,
  7359. struct ggml_tensor * dst) {
  7360. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7361. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7362. return;
  7363. }
  7364. const int ith = params->ith;
  7365. const int nth = params->nth;
  7366. const int nr = ggml_nrows(src0);
  7367. GGML_TENSOR_BINARY_OP_LOCALS
  7368. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7369. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7370. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7371. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7372. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7373. // rows per thread
  7374. const int dr = (nr + nth - 1)/nth;
  7375. // row range for this thread
  7376. const int ir0 = dr*ith;
  7377. const int ir1 = MIN(ir0 + dr, nr);
  7378. if (nb10 == sizeof(float)) {
  7379. for (int ir = ir0; ir < ir1; ++ir) {
  7380. // src0, src1 and dst are same shape => same indices
  7381. const int i3 = ir/(ne2*ne1);
  7382. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7383. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7384. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7385. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7386. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7387. for (int i = 0; i < ne0; i++) {
  7388. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7389. }
  7390. }
  7391. }
  7392. else {
  7393. // src1 is not contiguous
  7394. GGML_ASSERT(false);
  7395. }
  7396. }
  7397. static void ggml_compute_forward_add_f16_f16(
  7398. const struct ggml_compute_params * params,
  7399. const struct ggml_tensor * src0,
  7400. const struct ggml_tensor * src1,
  7401. struct ggml_tensor * dst) {
  7402. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7403. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7404. return;
  7405. }
  7406. const int ith = params->ith;
  7407. const int nth = params->nth;
  7408. const int nr = ggml_nrows(src0);
  7409. GGML_TENSOR_BINARY_OP_LOCALS
  7410. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7411. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7412. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7413. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7414. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7415. // rows per thread
  7416. const int dr = (nr + nth - 1)/nth;
  7417. // row range for this thread
  7418. const int ir0 = dr*ith;
  7419. const int ir1 = MIN(ir0 + dr, nr);
  7420. if (nb10 == sizeof(ggml_fp16_t)) {
  7421. for (int ir = ir0; ir < ir1; ++ir) {
  7422. // src0, src1 and dst are same shape => same indices
  7423. const int i3 = ir/(ne2*ne1);
  7424. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7425. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7426. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7427. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7428. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7429. for (int i = 0; i < ne0; i++) {
  7430. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7431. }
  7432. }
  7433. }
  7434. else {
  7435. // src1 is not contiguous
  7436. GGML_ASSERT(false);
  7437. }
  7438. }
  7439. static void ggml_compute_forward_add_q_f32(
  7440. const struct ggml_compute_params * params,
  7441. const struct ggml_tensor * src0,
  7442. const struct ggml_tensor * src1,
  7443. struct ggml_tensor * dst) {
  7444. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7445. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7446. return;
  7447. }
  7448. const int nr = ggml_nrows(src0);
  7449. GGML_TENSOR_BINARY_OP_LOCALS
  7450. const int ith = params->ith;
  7451. const int nth = params->nth;
  7452. const enum ggml_type type = src0->type;
  7453. const enum ggml_type dtype = dst->type;
  7454. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7455. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  7456. // we don't support permuted src0 or src1
  7457. GGML_ASSERT(nb00 == ggml_type_size(type));
  7458. GGML_ASSERT(nb10 == sizeof(float));
  7459. // dst cannot be transposed or permuted
  7460. GGML_ASSERT(nb0 <= nb1);
  7461. GGML_ASSERT(nb1 <= nb2);
  7462. GGML_ASSERT(nb2 <= nb3);
  7463. GGML_ASSERT(ggml_is_quantized(src0->type));
  7464. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7465. // rows per thread
  7466. const int dr = (nr + nth - 1)/nth;
  7467. // row range for this thread
  7468. const int ir0 = dr*ith;
  7469. const int ir1 = MIN(ir0 + dr, nr);
  7470. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7471. for (int ir = ir0; ir < ir1; ++ir) {
  7472. // src0 indices
  7473. const int i03 = ir/(ne02*ne01);
  7474. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7475. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7476. // src1 and dst are same shape as src0 => same indices
  7477. const int i13 = i03;
  7478. const int i12 = i02;
  7479. const int i11 = i01;
  7480. const int i3 = i03;
  7481. const int i2 = i02;
  7482. const int i1 = i01;
  7483. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7484. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7485. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7486. assert(ne00 % 32 == 0);
  7487. // unquantize row from src0 to temp buffer
  7488. dequantize_row_q(src0_row, wdata, ne00);
  7489. // add src1
  7490. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7491. // quantize row to dst
  7492. if (quantize_row_q != NULL) {
  7493. quantize_row_q(wdata, dst_row, ne00);
  7494. } else {
  7495. memcpy(dst_row, wdata, ne0*nb0);
  7496. }
  7497. }
  7498. }
  7499. static void ggml_compute_forward_add(
  7500. const struct ggml_compute_params * params,
  7501. const struct ggml_tensor * src0,
  7502. const struct ggml_tensor * src1,
  7503. struct ggml_tensor * dst) {
  7504. switch (src0->type) {
  7505. case GGML_TYPE_F32:
  7506. {
  7507. ggml_compute_forward_add_f32(params, src0, src1, dst);
  7508. } break;
  7509. case GGML_TYPE_F16:
  7510. {
  7511. if (src1->type == GGML_TYPE_F16) {
  7512. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  7513. }
  7514. else if (src1->type == GGML_TYPE_F32) {
  7515. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  7516. }
  7517. else {
  7518. GGML_ASSERT(false);
  7519. }
  7520. } break;
  7521. case GGML_TYPE_Q4_0:
  7522. case GGML_TYPE_Q4_1:
  7523. case GGML_TYPE_Q5_0:
  7524. case GGML_TYPE_Q5_1:
  7525. case GGML_TYPE_Q8_0:
  7526. case GGML_TYPE_Q2_K:
  7527. case GGML_TYPE_Q3_K:
  7528. case GGML_TYPE_Q4_K:
  7529. case GGML_TYPE_Q5_K:
  7530. case GGML_TYPE_Q6_K:
  7531. {
  7532. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  7533. } break;
  7534. default:
  7535. {
  7536. GGML_ASSERT(false);
  7537. } break;
  7538. }
  7539. }
  7540. // ggml_compute_forward_add1
  7541. static void ggml_compute_forward_add1_f32(
  7542. const struct ggml_compute_params * params,
  7543. const struct ggml_tensor * src0,
  7544. const struct ggml_tensor * src1,
  7545. struct ggml_tensor * dst) {
  7546. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7547. GGML_ASSERT(ggml_is_scalar(src1));
  7548. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7549. return;
  7550. }
  7551. const int ith = params->ith;
  7552. const int nth = params->nth;
  7553. const int nr = ggml_nrows(src0);
  7554. GGML_TENSOR_UNARY_OP_LOCALS
  7555. GGML_ASSERT( nb0 == sizeof(float));
  7556. GGML_ASSERT(nb00 == sizeof(float));
  7557. // rows per thread
  7558. const int dr = (nr + nth - 1)/nth;
  7559. // row range for this thread
  7560. const int ir0 = dr*ith;
  7561. const int ir1 = MIN(ir0 + dr, nr);
  7562. for (int ir = ir0; ir < ir1; ++ir) {
  7563. // src0 and dst are same shape => same indices
  7564. const int i3 = ir/(ne2*ne1);
  7565. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7566. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7567. #ifdef GGML_USE_ACCELERATE
  7568. UNUSED(ggml_vec_add1_f32);
  7569. vDSP_vadd(
  7570. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7571. (float *) ((char *) src1->data), 0,
  7572. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7573. ne0);
  7574. #else
  7575. ggml_vec_add1_f32(ne0,
  7576. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7577. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7578. *(float *) src1->data);
  7579. #endif
  7580. }
  7581. }
  7582. static void ggml_compute_forward_add1_f16_f32(
  7583. const struct ggml_compute_params * params,
  7584. const struct ggml_tensor * src0,
  7585. const struct ggml_tensor * src1,
  7586. struct ggml_tensor * dst) {
  7587. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7588. GGML_ASSERT(ggml_is_scalar(src1));
  7589. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7590. return;
  7591. }
  7592. // scalar to add
  7593. const float v = *(float *) src1->data;
  7594. const int ith = params->ith;
  7595. const int nth = params->nth;
  7596. const int nr = ggml_nrows(src0);
  7597. GGML_TENSOR_UNARY_OP_LOCALS
  7598. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7599. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7600. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7601. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7602. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7603. // rows per thread
  7604. const int dr = (nr + nth - 1)/nth;
  7605. // row range for this thread
  7606. const int ir0 = dr*ith;
  7607. const int ir1 = MIN(ir0 + dr, nr);
  7608. for (int ir = ir0; ir < ir1; ++ir) {
  7609. // src0 and dst are same shape => same indices
  7610. const int i3 = ir/(ne2*ne1);
  7611. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7612. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7613. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7614. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7615. for (int i = 0; i < ne0; i++) {
  7616. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7617. }
  7618. }
  7619. }
  7620. static void ggml_compute_forward_add1_f16_f16(
  7621. const struct ggml_compute_params * params,
  7622. const struct ggml_tensor * src0,
  7623. const struct ggml_tensor * src1,
  7624. struct ggml_tensor * dst) {
  7625. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7626. GGML_ASSERT(ggml_is_scalar(src1));
  7627. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7628. return;
  7629. }
  7630. // scalar to add
  7631. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7632. const int ith = params->ith;
  7633. const int nth = params->nth;
  7634. const int nr = ggml_nrows(src0);
  7635. GGML_TENSOR_UNARY_OP_LOCALS
  7636. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7637. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7638. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7639. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7640. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7641. // rows per thread
  7642. const int dr = (nr + nth - 1)/nth;
  7643. // row range for this thread
  7644. const int ir0 = dr*ith;
  7645. const int ir1 = MIN(ir0 + dr, nr);
  7646. for (int ir = ir0; ir < ir1; ++ir) {
  7647. // src0 and dst are same shape => same indices
  7648. const int i3 = ir/(ne2*ne1);
  7649. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7650. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7651. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7652. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7653. for (int i = 0; i < ne0; i++) {
  7654. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7655. }
  7656. }
  7657. }
  7658. static void ggml_compute_forward_add1_q_f32(
  7659. const struct ggml_compute_params * params,
  7660. const struct ggml_tensor * src0,
  7661. const struct ggml_tensor * src1,
  7662. struct ggml_tensor * dst) {
  7663. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7664. GGML_ASSERT(ggml_is_scalar(src1));
  7665. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7666. return;
  7667. }
  7668. // scalar to add
  7669. const float v = *(float *) src1->data;
  7670. const int ith = params->ith;
  7671. const int nth = params->nth;
  7672. const int nr = ggml_nrows(src0);
  7673. GGML_TENSOR_UNARY_OP_LOCALS
  7674. const enum ggml_type type = src0->type;
  7675. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7676. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7677. // we don't support permuted src0
  7678. GGML_ASSERT(nb00 == ggml_type_size(type));
  7679. // dst cannot be transposed or permuted
  7680. GGML_ASSERT(nb0 <= nb1);
  7681. GGML_ASSERT(nb1 <= nb2);
  7682. GGML_ASSERT(nb2 <= nb3);
  7683. GGML_ASSERT(ggml_is_quantized(src0->type));
  7684. GGML_ASSERT(dst->type == src0->type);
  7685. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7686. // rows per thread
  7687. const int dr = (nr + nth - 1)/nth;
  7688. // row range for this thread
  7689. const int ir0 = dr*ith;
  7690. const int ir1 = MIN(ir0 + dr, nr);
  7691. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7692. for (int ir = ir0; ir < ir1; ++ir) {
  7693. // src0 and dst are same shape => same indices
  7694. const int i3 = ir/(ne2*ne1);
  7695. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7696. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7697. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7698. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7699. assert(ne0 % 32 == 0);
  7700. // unquantize row from src0 to temp buffer
  7701. dequantize_row_q(src0_row, wdata, ne0);
  7702. // add src1
  7703. ggml_vec_acc1_f32(ne0, wdata, v);
  7704. // quantize row to dst
  7705. quantize_row_q(wdata, dst_row, ne0);
  7706. }
  7707. }
  7708. static void ggml_compute_forward_add1(
  7709. const struct ggml_compute_params * params,
  7710. const struct ggml_tensor * src0,
  7711. const struct ggml_tensor * src1,
  7712. struct ggml_tensor * dst) {
  7713. switch (src0->type) {
  7714. case GGML_TYPE_F32:
  7715. {
  7716. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  7717. } break;
  7718. case GGML_TYPE_F16:
  7719. {
  7720. if (src1->type == GGML_TYPE_F16) {
  7721. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  7722. }
  7723. else if (src1->type == GGML_TYPE_F32) {
  7724. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  7725. }
  7726. else {
  7727. GGML_ASSERT(false);
  7728. }
  7729. } break;
  7730. case GGML_TYPE_Q4_0:
  7731. case GGML_TYPE_Q4_1:
  7732. case GGML_TYPE_Q5_0:
  7733. case GGML_TYPE_Q5_1:
  7734. case GGML_TYPE_Q8_0:
  7735. case GGML_TYPE_Q8_1:
  7736. case GGML_TYPE_Q2_K:
  7737. case GGML_TYPE_Q3_K:
  7738. case GGML_TYPE_Q4_K:
  7739. case GGML_TYPE_Q5_K:
  7740. case GGML_TYPE_Q6_K:
  7741. {
  7742. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  7743. } break;
  7744. default:
  7745. {
  7746. GGML_ASSERT(false);
  7747. } break;
  7748. }
  7749. }
  7750. // ggml_compute_forward_acc
  7751. static void ggml_compute_forward_acc_f32(
  7752. const struct ggml_compute_params * params,
  7753. const struct ggml_tensor * src0,
  7754. const struct ggml_tensor * src1,
  7755. struct ggml_tensor * dst) {
  7756. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7757. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7758. // view src0 and dst with these strides and data offset inbytes during acc
  7759. // nb0 is implicitely element_size because src0 and dst are contiguous
  7760. size_t nb1 = ((int32_t *) dst->op_params)[0];
  7761. size_t nb2 = ((int32_t *) dst->op_params)[1];
  7762. size_t nb3 = ((int32_t *) dst->op_params)[2];
  7763. size_t offset = ((int32_t *) dst->op_params)[3];
  7764. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  7765. if (!inplace && (params->type == GGML_TASK_INIT)) {
  7766. // memcpy needs to be synchronized across threads to avoid race conditions.
  7767. // => do it in INIT phase
  7768. memcpy(
  7769. ((char *) dst->data),
  7770. ((char *) src0->data),
  7771. ggml_nbytes(dst));
  7772. }
  7773. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7774. return;
  7775. }
  7776. const int ith = params->ith;
  7777. const int nth = params->nth;
  7778. const int nr = ggml_nrows(src1);
  7779. const int nc = src1->ne[0];
  7780. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  7781. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  7782. // src0 and dst as viewed during acc
  7783. const size_t nb0 = ggml_element_size(src0);
  7784. const size_t nb00 = nb0;
  7785. const size_t nb01 = nb1;
  7786. const size_t nb02 = nb2;
  7787. const size_t nb03 = nb3;
  7788. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7789. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7790. GGML_ASSERT(nb10 == sizeof(float));
  7791. // rows per thread
  7792. const int dr = (nr + nth - 1)/nth;
  7793. // row range for this thread
  7794. const int ir0 = dr*ith;
  7795. const int ir1 = MIN(ir0 + dr, nr);
  7796. for (int ir = ir0; ir < ir1; ++ir) {
  7797. // src0 and dst are viewed with shape of src1 and offset
  7798. // => same indices
  7799. const int i3 = ir/(ne12*ne11);
  7800. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7801. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7802. #ifdef GGML_USE_ACCELERATE
  7803. vDSP_vadd(
  7804. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7805. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7806. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7807. #else
  7808. ggml_vec_add_f32(nc,
  7809. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7810. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7811. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7812. #endif
  7813. }
  7814. }
  7815. static void ggml_compute_forward_acc(
  7816. const struct ggml_compute_params * params,
  7817. const struct ggml_tensor * src0,
  7818. const struct ggml_tensor * src1,
  7819. struct ggml_tensor * dst) {
  7820. switch (src0->type) {
  7821. case GGML_TYPE_F32:
  7822. {
  7823. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  7824. } break;
  7825. case GGML_TYPE_F16:
  7826. case GGML_TYPE_Q4_0:
  7827. case GGML_TYPE_Q4_1:
  7828. case GGML_TYPE_Q5_0:
  7829. case GGML_TYPE_Q5_1:
  7830. case GGML_TYPE_Q8_0:
  7831. case GGML_TYPE_Q8_1:
  7832. case GGML_TYPE_Q2_K:
  7833. case GGML_TYPE_Q3_K:
  7834. case GGML_TYPE_Q4_K:
  7835. case GGML_TYPE_Q5_K:
  7836. case GGML_TYPE_Q6_K:
  7837. default:
  7838. {
  7839. GGML_ASSERT(false);
  7840. } break;
  7841. }
  7842. }
  7843. // ggml_compute_forward_sub
  7844. static void ggml_compute_forward_sub_f32(
  7845. const struct ggml_compute_params * params,
  7846. const struct ggml_tensor * src0,
  7847. const struct ggml_tensor * src1,
  7848. struct ggml_tensor * dst) {
  7849. assert(params->ith == 0);
  7850. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7851. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7852. return;
  7853. }
  7854. const int nr = ggml_nrows(src0);
  7855. GGML_TENSOR_BINARY_OP_LOCALS
  7856. GGML_ASSERT( nb0 == sizeof(float));
  7857. GGML_ASSERT(nb00 == sizeof(float));
  7858. if (nb10 == sizeof(float)) {
  7859. for (int ir = 0; ir < nr; ++ir) {
  7860. // src0, src1 and dst are same shape => same indices
  7861. const int i3 = ir/(ne2*ne1);
  7862. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7863. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7864. #ifdef GGML_USE_ACCELERATE
  7865. vDSP_vsub(
  7866. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7867. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7868. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7869. ne0);
  7870. #else
  7871. ggml_vec_sub_f32(ne0,
  7872. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7873. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7874. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7875. #endif
  7876. // }
  7877. // }
  7878. }
  7879. } else {
  7880. // src1 is not contiguous
  7881. for (int ir = 0; ir < nr; ++ir) {
  7882. // src0, src1 and dst are same shape => same indices
  7883. const int i3 = ir/(ne2*ne1);
  7884. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7885. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7886. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7887. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7888. for (int i0 = 0; i0 < ne0; i0++) {
  7889. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7890. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7891. }
  7892. }
  7893. }
  7894. }
  7895. static void ggml_compute_forward_sub(
  7896. const struct ggml_compute_params * params,
  7897. const struct ggml_tensor * src0,
  7898. const struct ggml_tensor * src1,
  7899. struct ggml_tensor * dst) {
  7900. switch (src0->type) {
  7901. case GGML_TYPE_F32:
  7902. {
  7903. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  7904. } break;
  7905. default:
  7906. {
  7907. GGML_ASSERT(false);
  7908. } break;
  7909. }
  7910. }
  7911. // ggml_compute_forward_mul
  7912. static void ggml_compute_forward_mul_f32(
  7913. const struct ggml_compute_params * params,
  7914. const struct ggml_tensor * src0,
  7915. const struct ggml_tensor * src1,
  7916. struct ggml_tensor * dst) {
  7917. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7918. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7919. return;
  7920. }
  7921. const int ith = params->ith;
  7922. const int nth = params->nth;
  7923. #ifdef GGML_USE_CLBLAST
  7924. if (src1->backend == GGML_BACKEND_GPU) {
  7925. if (ith == 0) {
  7926. ggml_cl_mul(src0, src1, dst);
  7927. }
  7928. return;
  7929. }
  7930. #endif
  7931. const int64_t nr = ggml_nrows(src0);
  7932. GGML_TENSOR_BINARY_OP_LOCALS
  7933. GGML_ASSERT( nb0 == sizeof(float));
  7934. GGML_ASSERT(nb00 == sizeof(float));
  7935. GGML_ASSERT(ne00 == ne10);
  7936. if (nb10 == sizeof(float)) {
  7937. for (int64_t ir = ith; ir < nr; ir += nth) {
  7938. // src0 and dst are same shape => same indices
  7939. const int64_t i03 = ir/(ne02*ne01);
  7940. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7941. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7942. const int64_t i13 = i03 % ne13;
  7943. const int64_t i12 = i02 % ne12;
  7944. const int64_t i11 = i01 % ne11;
  7945. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7946. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7947. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7948. #ifdef GGML_USE_ACCELERATE
  7949. UNUSED(ggml_vec_mul_f32);
  7950. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7951. #else
  7952. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7953. #endif
  7954. // }
  7955. // }
  7956. }
  7957. } else {
  7958. // src1 is not contiguous
  7959. for (int64_t ir = ith; ir < nr; ir += nth) {
  7960. // src0 and dst are same shape => same indices
  7961. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7962. const int64_t i03 = ir/(ne02*ne01);
  7963. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7964. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7965. const int64_t i13 = i03 % ne13;
  7966. const int64_t i12 = i02 % ne12;
  7967. const int64_t i11 = i01 % ne11;
  7968. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7969. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7970. for (int64_t i0 = 0; i0 < ne00; i0++) {
  7971. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7972. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7973. }
  7974. }
  7975. }
  7976. }
  7977. static void ggml_compute_forward_mul(
  7978. const struct ggml_compute_params * params,
  7979. const struct ggml_tensor * src0,
  7980. const struct ggml_tensor * src1,
  7981. struct ggml_tensor * dst) {
  7982. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  7983. switch (src0->type) {
  7984. case GGML_TYPE_F32:
  7985. {
  7986. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  7987. } break;
  7988. default:
  7989. {
  7990. GGML_ASSERT(false);
  7991. } break;
  7992. }
  7993. }
  7994. // ggml_compute_forward_div
  7995. static void ggml_compute_forward_div_f32(
  7996. const struct ggml_compute_params * params,
  7997. const struct ggml_tensor * src0,
  7998. const struct ggml_tensor * src1,
  7999. struct ggml_tensor * dst) {
  8000. assert(params->ith == 0);
  8001. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8002. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8003. return;
  8004. }
  8005. const int nr = ggml_nrows(src0);
  8006. GGML_TENSOR_BINARY_OP_LOCALS
  8007. GGML_ASSERT( nb0 == sizeof(float));
  8008. GGML_ASSERT(nb00 == sizeof(float));
  8009. if (nb10 == sizeof(float)) {
  8010. for (int ir = 0; ir < nr; ++ir) {
  8011. // src0, src1 and dst are same shape => same indices
  8012. const int i3 = ir/(ne2*ne1);
  8013. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8014. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8015. #ifdef GGML_USE_ACCELERATE
  8016. UNUSED(ggml_vec_div_f32);
  8017. vDSP_vdiv(
  8018. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8019. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  8020. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  8021. ne0);
  8022. #else
  8023. ggml_vec_div_f32(ne0,
  8024. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  8025. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  8026. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8027. #endif
  8028. // }
  8029. // }
  8030. }
  8031. } else {
  8032. // src1 is not contiguous
  8033. for (int ir = 0; ir < nr; ++ir) {
  8034. // src0, src1 and dst are same shape => same indices
  8035. const int i3 = ir/(ne2*ne1);
  8036. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8037. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8038. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8039. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8040. for (int i0 = 0; i0 < ne0; i0++) {
  8041. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  8042. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  8043. }
  8044. }
  8045. }
  8046. }
  8047. static void ggml_compute_forward_div(
  8048. const struct ggml_compute_params * params,
  8049. const struct ggml_tensor * src0,
  8050. const struct ggml_tensor * src1,
  8051. struct ggml_tensor * dst) {
  8052. switch (src0->type) {
  8053. case GGML_TYPE_F32:
  8054. {
  8055. ggml_compute_forward_div_f32(params, src0, src1, dst);
  8056. } break;
  8057. default:
  8058. {
  8059. GGML_ASSERT(false);
  8060. } break;
  8061. }
  8062. }
  8063. // ggml_compute_forward_sqr
  8064. static void ggml_compute_forward_sqr_f32(
  8065. const struct ggml_compute_params * params,
  8066. const struct ggml_tensor * src0,
  8067. struct ggml_tensor * dst) {
  8068. assert(params->ith == 0);
  8069. assert(ggml_are_same_shape(src0, dst));
  8070. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8071. return;
  8072. }
  8073. const int n = ggml_nrows(src0);
  8074. const int nc = src0->ne[0];
  8075. assert( dst->nb[0] == sizeof(float));
  8076. assert(src0->nb[0] == sizeof(float));
  8077. for (int i = 0; i < n; i++) {
  8078. ggml_vec_sqr_f32(nc,
  8079. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8080. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8081. }
  8082. }
  8083. static void ggml_compute_forward_sqr(
  8084. const struct ggml_compute_params * params,
  8085. const struct ggml_tensor * src0,
  8086. struct ggml_tensor * dst) {
  8087. switch (src0->type) {
  8088. case GGML_TYPE_F32:
  8089. {
  8090. ggml_compute_forward_sqr_f32(params, src0, dst);
  8091. } break;
  8092. default:
  8093. {
  8094. GGML_ASSERT(false);
  8095. } break;
  8096. }
  8097. }
  8098. // ggml_compute_forward_sqrt
  8099. static void ggml_compute_forward_sqrt_f32(
  8100. const struct ggml_compute_params * params,
  8101. const struct ggml_tensor * src0,
  8102. struct ggml_tensor * dst) {
  8103. assert(params->ith == 0);
  8104. assert(ggml_are_same_shape(src0, dst));
  8105. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8106. return;
  8107. }
  8108. const int n = ggml_nrows(src0);
  8109. const int nc = src0->ne[0];
  8110. assert( dst->nb[0] == sizeof(float));
  8111. assert(src0->nb[0] == sizeof(float));
  8112. for (int i = 0; i < n; i++) {
  8113. ggml_vec_sqrt_f32(nc,
  8114. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8115. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8116. }
  8117. }
  8118. static void ggml_compute_forward_sqrt(
  8119. const struct ggml_compute_params * params,
  8120. const struct ggml_tensor * src0,
  8121. struct ggml_tensor * dst) {
  8122. switch (src0->type) {
  8123. case GGML_TYPE_F32:
  8124. {
  8125. ggml_compute_forward_sqrt_f32(params, src0, dst);
  8126. } break;
  8127. default:
  8128. {
  8129. GGML_ASSERT(false);
  8130. } break;
  8131. }
  8132. }
  8133. // ggml_compute_forward_log
  8134. static void ggml_compute_forward_log_f32(
  8135. const struct ggml_compute_params * params,
  8136. const struct ggml_tensor * src0,
  8137. struct ggml_tensor * dst) {
  8138. GGML_ASSERT(params->ith == 0);
  8139. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8140. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8141. return;
  8142. }
  8143. const int n = ggml_nrows(src0);
  8144. const int nc = src0->ne[0];
  8145. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8146. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8147. for (int i = 0; i < n; i++) {
  8148. ggml_vec_log_f32(nc,
  8149. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8150. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8151. }
  8152. }
  8153. static void ggml_compute_forward_log(
  8154. const struct ggml_compute_params * params,
  8155. const struct ggml_tensor * src0,
  8156. struct ggml_tensor * dst) {
  8157. switch (src0->type) {
  8158. case GGML_TYPE_F32:
  8159. {
  8160. ggml_compute_forward_log_f32(params, src0, dst);
  8161. } break;
  8162. default:
  8163. {
  8164. GGML_ASSERT(false);
  8165. } break;
  8166. }
  8167. }
  8168. // ggml_compute_forward_sum
  8169. static void ggml_compute_forward_sum_f32(
  8170. const struct ggml_compute_params * params,
  8171. const struct ggml_tensor * src0,
  8172. struct ggml_tensor * dst) {
  8173. assert(params->ith == 0);
  8174. assert(ggml_is_scalar(dst));
  8175. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8176. return;
  8177. }
  8178. assert(ggml_is_scalar(dst));
  8179. assert(src0->nb[0] == sizeof(float));
  8180. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8181. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8182. ggml_float sum = 0;
  8183. ggml_float row_sum = 0;
  8184. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8185. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8186. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8187. ggml_vec_sum_f32_ggf(ne00,
  8188. &row_sum,
  8189. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8190. sum += row_sum;
  8191. }
  8192. }
  8193. }
  8194. ((float *) dst->data)[0] = sum;
  8195. }
  8196. static void ggml_compute_forward_sum_f16(
  8197. const struct ggml_compute_params * params,
  8198. const struct ggml_tensor * src0,
  8199. struct ggml_tensor * dst) {
  8200. assert(params->ith == 0);
  8201. assert(ggml_is_scalar(dst));
  8202. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8203. return;
  8204. }
  8205. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8206. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8207. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8208. float sum = 0;
  8209. float row_sum = 0;
  8210. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8211. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8212. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8213. ggml_vec_sum_f16_ggf(ne00,
  8214. &row_sum,
  8215. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8216. sum += row_sum;
  8217. }
  8218. }
  8219. }
  8220. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  8221. }
  8222. static void ggml_compute_forward_sum(
  8223. const struct ggml_compute_params * params,
  8224. const struct ggml_tensor * src0,
  8225. struct ggml_tensor * dst) {
  8226. switch (src0->type) {
  8227. case GGML_TYPE_F32:
  8228. {
  8229. ggml_compute_forward_sum_f32(params, src0, dst);
  8230. } break;
  8231. case GGML_TYPE_F16:
  8232. {
  8233. ggml_compute_forward_sum_f16(params, src0, dst);
  8234. } break;
  8235. default:
  8236. {
  8237. GGML_ASSERT(false);
  8238. } break;
  8239. }
  8240. }
  8241. // ggml_compute_forward_sum_rows
  8242. static void ggml_compute_forward_sum_rows_f32(
  8243. const struct ggml_compute_params * params,
  8244. const struct ggml_tensor * src0,
  8245. struct ggml_tensor * dst) {
  8246. GGML_ASSERT(params->ith == 0);
  8247. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8248. return;
  8249. }
  8250. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8251. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8252. GGML_TENSOR_UNARY_OP_LOCALS
  8253. GGML_ASSERT(ne0 == 1);
  8254. GGML_ASSERT(ne1 == ne01);
  8255. GGML_ASSERT(ne2 == ne02);
  8256. GGML_ASSERT(ne3 == ne03);
  8257. for (int64_t i3 = 0; i3 < ne03; i3++) {
  8258. for (int64_t i2 = 0; i2 < ne02; i2++) {
  8259. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8260. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  8261. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  8262. float row_sum = 0;
  8263. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  8264. dst_row[0] = row_sum;
  8265. }
  8266. }
  8267. }
  8268. }
  8269. static void ggml_compute_forward_sum_rows(
  8270. const struct ggml_compute_params * params,
  8271. const struct ggml_tensor * src0,
  8272. struct ggml_tensor * dst) {
  8273. switch (src0->type) {
  8274. case GGML_TYPE_F32:
  8275. {
  8276. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  8277. } break;
  8278. default:
  8279. {
  8280. GGML_ASSERT(false);
  8281. } break;
  8282. }
  8283. }
  8284. // ggml_compute_forward_mean
  8285. static void ggml_compute_forward_mean_f32(
  8286. const struct ggml_compute_params * params,
  8287. const struct ggml_tensor * src0,
  8288. struct ggml_tensor * dst) {
  8289. assert(params->ith == 0);
  8290. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8291. return;
  8292. }
  8293. assert(src0->nb[0] == sizeof(float));
  8294. GGML_TENSOR_UNARY_OP_LOCALS
  8295. assert(ne0 == 1);
  8296. assert(ne1 == ne01);
  8297. assert(ne2 == ne02);
  8298. assert(ne3 == ne03);
  8299. UNUSED(ne0);
  8300. UNUSED(ne1);
  8301. UNUSED(ne2);
  8302. UNUSED(ne3);
  8303. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8304. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8305. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8306. ggml_vec_sum_f32(ne00,
  8307. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8308. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8309. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8310. }
  8311. }
  8312. }
  8313. }
  8314. static void ggml_compute_forward_mean(
  8315. const struct ggml_compute_params * params,
  8316. const struct ggml_tensor * src0,
  8317. struct ggml_tensor * dst) {
  8318. switch (src0->type) {
  8319. case GGML_TYPE_F32:
  8320. {
  8321. ggml_compute_forward_mean_f32(params, src0, dst);
  8322. } break;
  8323. default:
  8324. {
  8325. GGML_ASSERT(false);
  8326. } break;
  8327. }
  8328. }
  8329. // ggml_compute_forward_argmax
  8330. static void ggml_compute_forward_argmax_f32(
  8331. const struct ggml_compute_params * params,
  8332. const struct ggml_tensor * src0,
  8333. struct ggml_tensor * dst) {
  8334. assert(params->ith == 0);
  8335. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8336. return;
  8337. }
  8338. assert(src0->nb[0] == sizeof(float));
  8339. assert(dst->nb[0] == sizeof(float));
  8340. const int64_t ne00 = src0->ne[0];
  8341. const int64_t ne01 = src0->ne[1];
  8342. const size_t nb01 = src0->nb[1];
  8343. const size_t nb0 = dst->nb[0];
  8344. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8345. float * src = (float *) ((char *) src0->data + i1*nb01);
  8346. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  8347. int v = 0;
  8348. ggml_vec_argmax_f32(ne00, &v, src);
  8349. dst_[0] = v;
  8350. }
  8351. }
  8352. static void ggml_compute_forward_argmax(
  8353. const struct ggml_compute_params * params,
  8354. const struct ggml_tensor * src0,
  8355. struct ggml_tensor * dst) {
  8356. switch (src0->type) {
  8357. case GGML_TYPE_F32:
  8358. {
  8359. ggml_compute_forward_argmax_f32(params, src0, dst);
  8360. } break;
  8361. default:
  8362. {
  8363. GGML_ASSERT(false);
  8364. } break;
  8365. }
  8366. }
  8367. // ggml_compute_forward_repeat
  8368. static void ggml_compute_forward_repeat_f32(
  8369. const struct ggml_compute_params * params,
  8370. const struct ggml_tensor * src0,
  8371. struct ggml_tensor * dst) {
  8372. GGML_ASSERT(params->ith == 0);
  8373. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8374. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8375. return;
  8376. }
  8377. GGML_TENSOR_UNARY_OP_LOCALS
  8378. // guaranteed to be an integer due to the check in ggml_can_repeat
  8379. const int nr0 = (int)(ne0/ne00);
  8380. const int nr1 = (int)(ne1/ne01);
  8381. const int nr2 = (int)(ne2/ne02);
  8382. const int nr3 = (int)(ne3/ne03);
  8383. // TODO: support for transposed / permuted tensors
  8384. GGML_ASSERT(nb0 == sizeof(float));
  8385. GGML_ASSERT(nb00 == sizeof(float));
  8386. // TODO: maybe this is not optimal?
  8387. for (int i3 = 0; i3 < nr3; i3++) {
  8388. for (int k3 = 0; k3 < ne03; k3++) {
  8389. for (int i2 = 0; i2 < nr2; i2++) {
  8390. for (int k2 = 0; k2 < ne02; k2++) {
  8391. for (int i1 = 0; i1 < nr1; i1++) {
  8392. for (int k1 = 0; k1 < ne01; k1++) {
  8393. for (int i0 = 0; i0 < nr0; i0++) {
  8394. ggml_vec_cpy_f32(ne00,
  8395. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8396. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8397. }
  8398. }
  8399. }
  8400. }
  8401. }
  8402. }
  8403. }
  8404. }
  8405. static void ggml_compute_forward_repeat_f16(
  8406. const struct ggml_compute_params * params,
  8407. const struct ggml_tensor * src0,
  8408. struct ggml_tensor * dst) {
  8409. GGML_ASSERT(params->ith == 0);
  8410. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8411. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8412. return;
  8413. }
  8414. GGML_TENSOR_UNARY_OP_LOCALS;
  8415. // guaranteed to be an integer due to the check in ggml_can_repeat
  8416. const int nr0 = (int)(ne0/ne00);
  8417. const int nr1 = (int)(ne1/ne01);
  8418. const int nr2 = (int)(ne2/ne02);
  8419. const int nr3 = (int)(ne3/ne03);
  8420. // TODO: support for transposed / permuted tensors
  8421. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8422. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8423. // TODO: maybe this is not optimal?
  8424. for (int i3 = 0; i3 < nr3; i3++) {
  8425. for (int k3 = 0; k3 < ne03; k3++) {
  8426. for (int i2 = 0; i2 < nr2; i2++) {
  8427. for (int k2 = 0; k2 < ne02; k2++) {
  8428. for (int i1 = 0; i1 < nr1; i1++) {
  8429. for (int k1 = 0; k1 < ne01; k1++) {
  8430. for (int i0 = 0; i0 < nr0; i0++) {
  8431. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  8432. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  8433. // ggml_vec_cpy_f16(ne00, y, x)
  8434. for (int i = 0; i < ne00; ++i) {
  8435. y[i] = x[i];
  8436. }
  8437. }
  8438. }
  8439. }
  8440. }
  8441. }
  8442. }
  8443. }
  8444. }
  8445. static void ggml_compute_forward_repeat(
  8446. const struct ggml_compute_params * params,
  8447. const struct ggml_tensor * src0,
  8448. struct ggml_tensor * dst) {
  8449. switch (src0->type) {
  8450. case GGML_TYPE_F16:
  8451. {
  8452. ggml_compute_forward_repeat_f16(params, src0, dst);
  8453. } break;
  8454. case GGML_TYPE_F32:
  8455. {
  8456. ggml_compute_forward_repeat_f32(params, src0, dst);
  8457. } break;
  8458. default:
  8459. {
  8460. GGML_ASSERT(false);
  8461. } break;
  8462. }
  8463. }
  8464. // ggml_compute_forward_repeat_back
  8465. static void ggml_compute_forward_repeat_back_f32(
  8466. const struct ggml_compute_params * params,
  8467. const struct ggml_tensor * src0,
  8468. struct ggml_tensor * dst) {
  8469. GGML_ASSERT(params->ith == 0);
  8470. GGML_ASSERT(ggml_can_repeat(dst, src0));
  8471. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8472. return;
  8473. }
  8474. GGML_TENSOR_UNARY_OP_LOCALS
  8475. // guaranteed to be an integer due to the check in ggml_can_repeat
  8476. const int nr0 = (int)(ne00/ne0);
  8477. const int nr1 = (int)(ne01/ne1);
  8478. const int nr2 = (int)(ne02/ne2);
  8479. const int nr3 = (int)(ne03/ne3);
  8480. // TODO: support for transposed / permuted tensors
  8481. GGML_ASSERT(nb0 == sizeof(float));
  8482. GGML_ASSERT(nb00 == sizeof(float));
  8483. if (ggml_is_contiguous(dst)) {
  8484. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8485. } else {
  8486. for (int k3 = 0; k3 < ne3; k3++) {
  8487. for (int k2 = 0; k2 < ne2; k2++) {
  8488. for (int k1 = 0; k1 < ne1; k1++) {
  8489. ggml_vec_set_f32(ne0,
  8490. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  8491. 0);
  8492. }
  8493. }
  8494. }
  8495. }
  8496. // TODO: maybe this is not optimal?
  8497. for (int i3 = 0; i3 < nr3; i3++) {
  8498. for (int k3 = 0; k3 < ne3; k3++) {
  8499. for (int i2 = 0; i2 < nr2; i2++) {
  8500. for (int k2 = 0; k2 < ne2; k2++) {
  8501. for (int i1 = 0; i1 < nr1; i1++) {
  8502. for (int k1 = 0; k1 < ne1; k1++) {
  8503. for (int i0 = 0; i0 < nr0; i0++) {
  8504. ggml_vec_acc_f32(ne0,
  8505. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  8506. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  8507. }
  8508. }
  8509. }
  8510. }
  8511. }
  8512. }
  8513. }
  8514. }
  8515. static void ggml_compute_forward_repeat_back(
  8516. const struct ggml_compute_params * params,
  8517. const struct ggml_tensor * src0,
  8518. struct ggml_tensor * dst) {
  8519. switch (src0->type) {
  8520. case GGML_TYPE_F32:
  8521. {
  8522. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  8523. } break;
  8524. default:
  8525. {
  8526. GGML_ASSERT(false);
  8527. } break;
  8528. }
  8529. }
  8530. // ggml_compute_forward_concat
  8531. static void ggml_compute_forward_concat_f32(
  8532. const struct ggml_compute_params * params,
  8533. const struct ggml_tensor * src0,
  8534. const struct ggml_tensor * src1,
  8535. struct ggml_tensor * dst) {
  8536. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8537. return;
  8538. }
  8539. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8540. const int ith = params->ith;
  8541. GGML_TENSOR_BINARY_OP_LOCALS
  8542. // TODO: support for transposed / permuted tensors
  8543. GGML_ASSERT(nb0 == sizeof(float));
  8544. GGML_ASSERT(nb00 == sizeof(float));
  8545. GGML_ASSERT(nb10 == sizeof(float));
  8546. for (int i3 = 0; i3 < ne3; i3++) {
  8547. for (int i2 = ith; i2 < ne2; i2++) {
  8548. if (i2 < ne02) { // src0
  8549. for (int i1 = 0; i1 < ne1; i1++) {
  8550. for (int i0 = 0; i0 < ne0; i0++) {
  8551. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  8552. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8553. *y = *x;
  8554. }
  8555. }
  8556. } // src1
  8557. else {
  8558. for (int i1 = 0; i1 < ne1; i1++) {
  8559. for (int i0 = 0; i0 < ne0; i0++) {
  8560. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  8561. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8562. *y = *x;
  8563. }
  8564. }
  8565. }
  8566. }
  8567. }
  8568. }
  8569. static void ggml_compute_forward_concat(
  8570. const struct ggml_compute_params* params,
  8571. const struct ggml_tensor* src0,
  8572. const struct ggml_tensor* src1,
  8573. struct ggml_tensor* dst) {
  8574. switch (src0->type) {
  8575. case GGML_TYPE_F32:
  8576. {
  8577. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  8578. } break;
  8579. default:
  8580. {
  8581. GGML_ASSERT(false);
  8582. } break;
  8583. }
  8584. }
  8585. // ggml_compute_forward_abs
  8586. static void ggml_compute_forward_abs_f32(
  8587. const struct ggml_compute_params * params,
  8588. const struct ggml_tensor * src0,
  8589. struct ggml_tensor * dst) {
  8590. assert(params->ith == 0);
  8591. assert(ggml_are_same_shape(src0, dst));
  8592. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8593. return;
  8594. }
  8595. const int n = ggml_nrows(src0);
  8596. const int nc = src0->ne[0];
  8597. assert(dst->nb[0] == sizeof(float));
  8598. assert(src0->nb[0] == sizeof(float));
  8599. for (int i = 0; i < n; i++) {
  8600. ggml_vec_abs_f32(nc,
  8601. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8602. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8603. }
  8604. }
  8605. static void ggml_compute_forward_abs(
  8606. const struct ggml_compute_params * params,
  8607. const struct ggml_tensor * src0,
  8608. struct ggml_tensor * dst) {
  8609. switch (src0->type) {
  8610. case GGML_TYPE_F32:
  8611. {
  8612. ggml_compute_forward_abs_f32(params, src0, dst);
  8613. } break;
  8614. default:
  8615. {
  8616. GGML_ASSERT(false);
  8617. } break;
  8618. }
  8619. }
  8620. // ggml_compute_forward_sgn
  8621. static void ggml_compute_forward_sgn_f32(
  8622. const struct ggml_compute_params * params,
  8623. const struct ggml_tensor * src0,
  8624. struct ggml_tensor * dst) {
  8625. assert(params->ith == 0);
  8626. assert(ggml_are_same_shape(src0, dst));
  8627. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8628. return;
  8629. }
  8630. const int n = ggml_nrows(src0);
  8631. const int nc = src0->ne[0];
  8632. assert(dst->nb[0] == sizeof(float));
  8633. assert(src0->nb[0] == sizeof(float));
  8634. for (int i = 0; i < n; i++) {
  8635. ggml_vec_sgn_f32(nc,
  8636. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8637. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8638. }
  8639. }
  8640. static void ggml_compute_forward_sgn(
  8641. const struct ggml_compute_params * params,
  8642. const struct ggml_tensor * src0,
  8643. struct ggml_tensor * dst) {
  8644. switch (src0->type) {
  8645. case GGML_TYPE_F32:
  8646. {
  8647. ggml_compute_forward_sgn_f32(params, src0, dst);
  8648. } break;
  8649. default:
  8650. {
  8651. GGML_ASSERT(false);
  8652. } break;
  8653. }
  8654. }
  8655. // ggml_compute_forward_neg
  8656. static void ggml_compute_forward_neg_f32(
  8657. const struct ggml_compute_params * params,
  8658. const struct ggml_tensor * src0,
  8659. struct ggml_tensor * dst) {
  8660. assert(params->ith == 0);
  8661. assert(ggml_are_same_shape(src0, dst));
  8662. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8663. return;
  8664. }
  8665. const int n = ggml_nrows(src0);
  8666. const int nc = src0->ne[0];
  8667. assert(dst->nb[0] == sizeof(float));
  8668. assert(src0->nb[0] == sizeof(float));
  8669. for (int i = 0; i < n; i++) {
  8670. ggml_vec_neg_f32(nc,
  8671. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8672. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8673. }
  8674. }
  8675. static void ggml_compute_forward_neg(
  8676. const struct ggml_compute_params * params,
  8677. const struct ggml_tensor * src0,
  8678. struct ggml_tensor * dst) {
  8679. switch (src0->type) {
  8680. case GGML_TYPE_F32:
  8681. {
  8682. ggml_compute_forward_neg_f32(params, src0, dst);
  8683. } break;
  8684. default:
  8685. {
  8686. GGML_ASSERT(false);
  8687. } break;
  8688. }
  8689. }
  8690. // ggml_compute_forward_step
  8691. static void ggml_compute_forward_step_f32(
  8692. const struct ggml_compute_params * params,
  8693. const struct ggml_tensor * src0,
  8694. struct ggml_tensor * dst) {
  8695. assert(params->ith == 0);
  8696. assert(ggml_are_same_shape(src0, dst));
  8697. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8698. return;
  8699. }
  8700. const int n = ggml_nrows(src0);
  8701. const int nc = src0->ne[0];
  8702. assert(dst->nb[0] == sizeof(float));
  8703. assert(src0->nb[0] == sizeof(float));
  8704. for (int i = 0; i < n; i++) {
  8705. ggml_vec_step_f32(nc,
  8706. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8707. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8708. }
  8709. }
  8710. static void ggml_compute_forward_step(
  8711. const struct ggml_compute_params * params,
  8712. const struct ggml_tensor * src0,
  8713. struct ggml_tensor * dst) {
  8714. switch (src0->type) {
  8715. case GGML_TYPE_F32:
  8716. {
  8717. ggml_compute_forward_step_f32(params, src0, dst);
  8718. } break;
  8719. default:
  8720. {
  8721. GGML_ASSERT(false);
  8722. } break;
  8723. }
  8724. }
  8725. // ggml_compute_forward_tanh
  8726. static void ggml_compute_forward_tanh_f32(
  8727. const struct ggml_compute_params * params,
  8728. const struct ggml_tensor * src0,
  8729. struct ggml_tensor * dst) {
  8730. assert(params->ith == 0);
  8731. assert(ggml_are_same_shape(src0, dst));
  8732. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8733. return;
  8734. }
  8735. const int n = ggml_nrows(src0);
  8736. const int nc = src0->ne[0];
  8737. assert(dst->nb[0] == sizeof(float));
  8738. assert(src0->nb[0] == sizeof(float));
  8739. for (int i = 0; i < n; i++) {
  8740. ggml_vec_tanh_f32(nc,
  8741. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8742. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8743. }
  8744. }
  8745. static void ggml_compute_forward_tanh(
  8746. const struct ggml_compute_params * params,
  8747. const struct ggml_tensor * src0,
  8748. struct ggml_tensor * dst) {
  8749. switch (src0->type) {
  8750. case GGML_TYPE_F32:
  8751. {
  8752. ggml_compute_forward_tanh_f32(params, src0, dst);
  8753. } break;
  8754. default:
  8755. {
  8756. GGML_ASSERT(false);
  8757. } break;
  8758. }
  8759. }
  8760. // ggml_compute_forward_elu
  8761. static void ggml_compute_forward_elu_f32(
  8762. const struct ggml_compute_params * params,
  8763. const struct ggml_tensor * src0,
  8764. struct ggml_tensor * dst) {
  8765. assert(params->ith == 0);
  8766. assert(ggml_are_same_shape(src0, dst));
  8767. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8768. return;
  8769. }
  8770. const int n = ggml_nrows(src0);
  8771. const int nc = src0->ne[0];
  8772. assert(dst->nb[0] == sizeof(float));
  8773. assert(src0->nb[0] == sizeof(float));
  8774. for (int i = 0; i < n; i++) {
  8775. ggml_vec_elu_f32(nc,
  8776. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8777. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8778. }
  8779. }
  8780. static void ggml_compute_forward_elu(
  8781. const struct ggml_compute_params * params,
  8782. const struct ggml_tensor * src0,
  8783. struct ggml_tensor * dst) {
  8784. switch (src0->type) {
  8785. case GGML_TYPE_F32:
  8786. {
  8787. ggml_compute_forward_elu_f32(params, src0, dst);
  8788. } break;
  8789. default:
  8790. {
  8791. GGML_ASSERT(false);
  8792. } break;
  8793. }
  8794. }
  8795. // ggml_compute_forward_relu
  8796. static void ggml_compute_forward_relu_f32(
  8797. const struct ggml_compute_params * params,
  8798. const struct ggml_tensor * src0,
  8799. struct ggml_tensor * dst) {
  8800. assert(params->ith == 0);
  8801. assert(ggml_are_same_shape(src0, dst));
  8802. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8803. return;
  8804. }
  8805. const int n = ggml_nrows(src0);
  8806. const int nc = src0->ne[0];
  8807. assert(dst->nb[0] == sizeof(float));
  8808. assert(src0->nb[0] == sizeof(float));
  8809. for (int i = 0; i < n; i++) {
  8810. ggml_vec_relu_f32(nc,
  8811. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8812. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8813. }
  8814. }
  8815. static void ggml_compute_forward_relu(
  8816. const struct ggml_compute_params * params,
  8817. const struct ggml_tensor * src0,
  8818. struct ggml_tensor * dst) {
  8819. switch (src0->type) {
  8820. case GGML_TYPE_F32:
  8821. {
  8822. ggml_compute_forward_relu_f32(params, src0, dst);
  8823. } break;
  8824. default:
  8825. {
  8826. GGML_ASSERT(false);
  8827. } break;
  8828. }
  8829. }
  8830. // ggml_compute_forward_gelu
  8831. static void ggml_compute_forward_gelu_f32(
  8832. const struct ggml_compute_params * params,
  8833. const struct ggml_tensor * src0,
  8834. struct ggml_tensor * dst) {
  8835. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8836. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8837. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8838. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8839. return;
  8840. }
  8841. const int ith = params->ith;
  8842. const int nth = params->nth;
  8843. const int nc = src0->ne[0];
  8844. const int nr = ggml_nrows(src0);
  8845. // rows per thread
  8846. const int dr = (nr + nth - 1)/nth;
  8847. // row range for this thread
  8848. const int ir0 = dr*ith;
  8849. const int ir1 = MIN(ir0 + dr, nr);
  8850. for (int i1 = ir0; i1 < ir1; i1++) {
  8851. ggml_vec_gelu_f32(nc,
  8852. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8853. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8854. #ifndef NDEBUG
  8855. for (int k = 0; k < nc; k++) {
  8856. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8857. UNUSED(x);
  8858. assert(!isnan(x));
  8859. assert(!isinf(x));
  8860. }
  8861. #endif
  8862. }
  8863. }
  8864. static void ggml_compute_forward_gelu(
  8865. const struct ggml_compute_params * params,
  8866. const struct ggml_tensor * src0,
  8867. struct ggml_tensor * dst) {
  8868. switch (src0->type) {
  8869. case GGML_TYPE_F32:
  8870. {
  8871. ggml_compute_forward_gelu_f32(params, src0, dst);
  8872. } break;
  8873. default:
  8874. {
  8875. GGML_ASSERT(false);
  8876. } break;
  8877. }
  8878. }
  8879. // ggml_compute_forward_gelu_quick
  8880. static void ggml_compute_forward_gelu_quick_f32(
  8881. const struct ggml_compute_params * params,
  8882. const struct ggml_tensor * src0,
  8883. struct ggml_tensor * dst) {
  8884. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8885. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8886. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8887. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8888. return;
  8889. }
  8890. const int ith = params->ith;
  8891. const int nth = params->nth;
  8892. const int nc = src0->ne[0];
  8893. const int nr = ggml_nrows(src0);
  8894. // rows per thread
  8895. const int dr = (nr + nth - 1)/nth;
  8896. // row range for this thread
  8897. const int ir0 = dr*ith;
  8898. const int ir1 = MIN(ir0 + dr, nr);
  8899. for (int i1 = ir0; i1 < ir1; i1++) {
  8900. ggml_vec_gelu_quick_f32(nc,
  8901. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8902. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8903. #ifndef NDEBUG
  8904. for (int k = 0; k < nc; k++) {
  8905. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8906. UNUSED(x);
  8907. assert(!isnan(x));
  8908. assert(!isinf(x));
  8909. }
  8910. #endif
  8911. }
  8912. }
  8913. static void ggml_compute_forward_gelu_quick(
  8914. const struct ggml_compute_params * params,
  8915. const struct ggml_tensor * src0,
  8916. struct ggml_tensor * dst) {
  8917. switch (src0->type) {
  8918. case GGML_TYPE_F32:
  8919. {
  8920. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  8921. } break;
  8922. default:
  8923. {
  8924. GGML_ASSERT(false);
  8925. } break;
  8926. }
  8927. }
  8928. // ggml_compute_forward_silu
  8929. static void ggml_compute_forward_silu_f32(
  8930. const struct ggml_compute_params * params,
  8931. const struct ggml_tensor * src0,
  8932. struct ggml_tensor * dst) {
  8933. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8934. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8935. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8936. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8937. return;
  8938. }
  8939. const int ith = params->ith;
  8940. const int nth = params->nth;
  8941. const int nc = src0->ne[0];
  8942. const int nr = ggml_nrows(src0);
  8943. // rows per thread
  8944. const int dr = (nr + nth - 1)/nth;
  8945. // row range for this thread
  8946. const int ir0 = dr*ith;
  8947. const int ir1 = MIN(ir0 + dr, nr);
  8948. for (int i1 = ir0; i1 < ir1; i1++) {
  8949. ggml_vec_silu_f32(nc,
  8950. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8951. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8952. #ifndef NDEBUG
  8953. for (int k = 0; k < nc; k++) {
  8954. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8955. UNUSED(x);
  8956. assert(!isnan(x));
  8957. assert(!isinf(x));
  8958. }
  8959. #endif
  8960. }
  8961. }
  8962. static void ggml_compute_forward_silu(
  8963. const struct ggml_compute_params * params,
  8964. const struct ggml_tensor * src0,
  8965. struct ggml_tensor * dst) {
  8966. switch (src0->type) {
  8967. case GGML_TYPE_F32:
  8968. {
  8969. ggml_compute_forward_silu_f32(params, src0, dst);
  8970. } break;
  8971. default:
  8972. {
  8973. GGML_ASSERT(false);
  8974. } break;
  8975. }
  8976. }
  8977. // ggml_compute_forward_silu_back
  8978. static void ggml_compute_forward_silu_back_f32(
  8979. const struct ggml_compute_params * params,
  8980. const struct ggml_tensor * src0,
  8981. const struct ggml_tensor * grad,
  8982. struct ggml_tensor * dst) {
  8983. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  8984. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8985. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8986. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8987. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8988. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8989. return;
  8990. }
  8991. const int ith = params->ith;
  8992. const int nth = params->nth;
  8993. const int nc = src0->ne[0];
  8994. const int nr = ggml_nrows(src0);
  8995. // rows per thread
  8996. const int dr = (nr + nth - 1)/nth;
  8997. // row range for this thread
  8998. const int ir0 = dr*ith;
  8999. const int ir1 = MIN(ir0 + dr, nr);
  9000. for (int i1 = ir0; i1 < ir1; i1++) {
  9001. ggml_vec_silu_backward_f32(nc,
  9002. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9003. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  9004. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  9005. #ifndef NDEBUG
  9006. for (int k = 0; k < nc; k++) {
  9007. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9008. UNUSED(x);
  9009. assert(!isnan(x));
  9010. assert(!isinf(x));
  9011. }
  9012. #endif
  9013. }
  9014. }
  9015. static void ggml_compute_forward_silu_back(
  9016. const struct ggml_compute_params * params,
  9017. const struct ggml_tensor * src0,
  9018. const struct ggml_tensor * grad,
  9019. struct ggml_tensor * dst) {
  9020. switch (src0->type) {
  9021. case GGML_TYPE_F32:
  9022. {
  9023. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  9024. } break;
  9025. default:
  9026. {
  9027. GGML_ASSERT(false);
  9028. } break;
  9029. }
  9030. }
  9031. // ggml_compute_forward_norm
  9032. static void ggml_compute_forward_norm_f32(
  9033. const struct ggml_compute_params * params,
  9034. const struct ggml_tensor * src0,
  9035. struct ggml_tensor * dst) {
  9036. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9037. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9038. return;
  9039. }
  9040. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9041. const int ith = params->ith;
  9042. const int nth = params->nth;
  9043. GGML_TENSOR_UNARY_OP_LOCALS
  9044. float eps;
  9045. memcpy(&eps, dst->op_params, sizeof(float));
  9046. // TODO: optimize
  9047. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9048. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9049. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9050. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9051. ggml_float sum = 0.0;
  9052. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9053. sum += (ggml_float)x[i00];
  9054. }
  9055. float mean = sum/ne00;
  9056. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9057. ggml_float sum2 = 0.0;
  9058. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9059. float v = x[i00] - mean;
  9060. y[i00] = v;
  9061. sum2 += (ggml_float)(v*v);
  9062. }
  9063. float variance = sum2/ne00;
  9064. const float scale = 1.0f/sqrtf(variance + eps);
  9065. ggml_vec_scale_f32(ne00, y, scale);
  9066. }
  9067. }
  9068. }
  9069. }
  9070. static void ggml_compute_forward_norm(
  9071. const struct ggml_compute_params * params,
  9072. const struct ggml_tensor * src0,
  9073. struct ggml_tensor * dst) {
  9074. switch (src0->type) {
  9075. case GGML_TYPE_F32:
  9076. {
  9077. ggml_compute_forward_norm_f32(params, src0, dst);
  9078. } break;
  9079. default:
  9080. {
  9081. GGML_ASSERT(false);
  9082. } break;
  9083. }
  9084. }
  9085. // ggml_compute_forward_group_rms_norm
  9086. static void ggml_compute_forward_rms_norm_f32(
  9087. const struct ggml_compute_params * params,
  9088. const struct ggml_tensor * src0,
  9089. struct ggml_tensor * dst) {
  9090. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9091. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9092. return;
  9093. }
  9094. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9095. const int ith = params->ith;
  9096. const int nth = params->nth;
  9097. GGML_TENSOR_UNARY_OP_LOCALS
  9098. float eps;
  9099. memcpy(&eps, dst->op_params, sizeof(float));
  9100. // TODO: optimize
  9101. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9102. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9103. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9104. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9105. ggml_float sum = 0.0;
  9106. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9107. sum += (ggml_float)(x[i00] * x[i00]);
  9108. }
  9109. const float mean = sum/ne00;
  9110. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9111. memcpy(y, x, ne00 * sizeof(float));
  9112. // for (int i00 = 0; i00 < ne00; i00++) {
  9113. // y[i00] = x[i00];
  9114. // }
  9115. const float scale = 1.0f/sqrtf(mean + eps);
  9116. ggml_vec_scale_f32(ne00, y, scale);
  9117. }
  9118. }
  9119. }
  9120. }
  9121. static void ggml_compute_forward_rms_norm(
  9122. const struct ggml_compute_params * params,
  9123. const struct ggml_tensor * src0,
  9124. struct ggml_tensor * dst) {
  9125. switch (src0->type) {
  9126. case GGML_TYPE_F32:
  9127. {
  9128. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  9129. } break;
  9130. default:
  9131. {
  9132. GGML_ASSERT(false);
  9133. } break;
  9134. }
  9135. }
  9136. static void ggml_compute_forward_rms_norm_back_f32(
  9137. const struct ggml_compute_params * params,
  9138. const struct ggml_tensor * src0,
  9139. const struct ggml_tensor * src1,
  9140. struct ggml_tensor * dst) {
  9141. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  9142. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9143. return;
  9144. }
  9145. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9146. const int ith = params->ith;
  9147. const int nth = params->nth;
  9148. GGML_TENSOR_BINARY_OP_LOCALS
  9149. float eps;
  9150. memcpy(&eps, dst->op_params, sizeof(float));
  9151. // TODO: optimize
  9152. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9153. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9154. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9155. // src1 is same shape as src0 => same indices
  9156. const int64_t i11 = i01;
  9157. const int64_t i12 = i02;
  9158. const int64_t i13 = i03;
  9159. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9160. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  9161. ggml_float sum_xx = 0.0;
  9162. ggml_float sum_xdz = 0.0;
  9163. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9164. sum_xx += (ggml_float)(x[i00] * x[i00]);
  9165. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  9166. }
  9167. //const float mean = (float)(sum_xx)/ne00;
  9168. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  9169. const float sum_eps = (float)(sum_xx) + eps*ne00;
  9170. //const float mean_xdz = (float)(sum_xdz)/ne00;
  9171. // we could cache rms from forward pass to improve performance.
  9172. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  9173. //const float rms = sqrtf(mean_eps);
  9174. const float rrms = 1.0f / sqrtf(mean_eps);
  9175. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  9176. {
  9177. // z = rms_norm(x)
  9178. //
  9179. // rms_norm(src0) =
  9180. // scale(
  9181. // src0,
  9182. // div(
  9183. // 1,
  9184. // sqrt(
  9185. // add(
  9186. // scale(
  9187. // sum(
  9188. // sqr(
  9189. // src0)),
  9190. // (1.0/N)),
  9191. // eps))));
  9192. // postorder:
  9193. // ## op args grad
  9194. // 00 param src0 grad[#00]
  9195. // 01 const 1
  9196. // 02 sqr (#00) grad[#02]
  9197. // 03 sum (#02) grad[#03]
  9198. // 04 const 1/N
  9199. // 05 scale (#03, #04) grad[#05]
  9200. // 06 const eps
  9201. // 07 add (#05, #06) grad[#07]
  9202. // 08 sqrt (#07) grad[#08]
  9203. // 09 div (#01,#08) grad[#09]
  9204. // 10 scale (#00,#09) grad[#10]
  9205. //
  9206. // backward pass, given grad[#10]
  9207. // #10: scale
  9208. // grad[#00] += scale(grad[#10],#09)
  9209. // grad[#09] += sum(mul(grad[#10],#00))
  9210. // #09: div
  9211. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  9212. // #08: sqrt
  9213. // grad[#07] += mul(grad[#08], div(0.5, #08))
  9214. // #07: add
  9215. // grad[#05] += grad[#07]
  9216. // #05: scale
  9217. // grad[#03] += scale(grad[#05],#04)
  9218. // #03: sum
  9219. // grad[#02] += repeat(grad[#03], #02)
  9220. // #02:
  9221. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  9222. //
  9223. // substitute and simplify:
  9224. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9225. // grad[#02] = repeat(grad[#03], #02)
  9226. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  9227. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  9228. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  9229. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  9230. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  9231. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  9232. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  9233. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  9234. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  9235. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9236. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  9237. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  9238. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  9239. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9240. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9241. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  9242. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  9243. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  9244. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  9245. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  9246. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  9247. // a = b*c + d*e
  9248. // a = b*c*f/f + d*e*f/f
  9249. // a = (b*c*f + d*e*f)*(1/f)
  9250. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  9251. // a = (b + d*e/c)*c
  9252. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  9253. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  9254. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  9255. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  9256. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  9257. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  9258. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  9259. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  9260. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9261. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9262. }
  9263. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9264. // post-order:
  9265. // dx := x
  9266. // dx := scale(dx,-mean_xdz/mean_eps)
  9267. // dx := add(dx, dz)
  9268. // dx := scale(dx, rrms)
  9269. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9270. ggml_vec_cpy_f32 (ne00, dx, x);
  9271. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  9272. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  9273. ggml_vec_acc_f32 (ne00, dx, dz);
  9274. ggml_vec_scale_f32(ne00, dx, rrms);
  9275. }
  9276. }
  9277. }
  9278. }
  9279. static void ggml_compute_forward_rms_norm_back(
  9280. const struct ggml_compute_params * params,
  9281. const struct ggml_tensor * src0,
  9282. const struct ggml_tensor * src1,
  9283. struct ggml_tensor * dst) {
  9284. switch (src0->type) {
  9285. case GGML_TYPE_F32:
  9286. {
  9287. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  9288. } break;
  9289. default:
  9290. {
  9291. GGML_ASSERT(false);
  9292. } break;
  9293. }
  9294. }
  9295. // ggml_compute_forward_group_norm
  9296. static void ggml_compute_forward_group_norm_f32(
  9297. const struct ggml_compute_params * params,
  9298. const struct ggml_tensor * src0,
  9299. struct ggml_tensor * dst) {
  9300. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9301. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9302. return;
  9303. }
  9304. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9305. const int ith = params->ith;
  9306. const int nth = params->nth;
  9307. GGML_TENSOR_UNARY_OP_LOCALS
  9308. const float eps = 1e-6f; // TODO: make this a parameter
  9309. // TODO: optimize
  9310. int n_channels = src0->ne[2];
  9311. int n_groups = dst->op_params[0];
  9312. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  9313. for (int i = ith; i < n_groups; i+=nth) {
  9314. int start = i * n_channels_per_group;
  9315. int end = start + n_channels_per_group;
  9316. if (end > n_channels) {
  9317. end = n_channels;
  9318. }
  9319. int step = end - start;
  9320. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9321. ggml_float sum = 0.0;
  9322. for (int64_t i02 = start; i02 < end; i02++) {
  9323. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9324. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9325. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9326. sum += (ggml_float)x[i00];
  9327. }
  9328. }
  9329. }
  9330. float mean = sum / (ne00 * ne01 * step);
  9331. ggml_float sum2 = 0.0;
  9332. for (int64_t i02 = start; i02 < end; i02++) {
  9333. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9334. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9335. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9336. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9337. float v = x[i00] - mean;
  9338. y[i00] = v;
  9339. sum2 += (ggml_float)(v * v);
  9340. }
  9341. }
  9342. }
  9343. float variance = sum2 / (ne00 * ne01 * step);
  9344. const float scale = 1.0f / sqrtf(variance + eps);
  9345. for (int64_t i02 = start; i02 < end; i02++) {
  9346. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9347. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9348. ggml_vec_scale_f32(ne00, y, scale);
  9349. }
  9350. }
  9351. }
  9352. }
  9353. }
  9354. static void ggml_compute_forward_group_norm(
  9355. const struct ggml_compute_params * params,
  9356. const struct ggml_tensor * src0,
  9357. struct ggml_tensor * dst) {
  9358. switch (src0->type) {
  9359. case GGML_TYPE_F32:
  9360. {
  9361. ggml_compute_forward_group_norm_f32(params, src0, dst);
  9362. } break;
  9363. default:
  9364. {
  9365. GGML_ASSERT(false);
  9366. } break;
  9367. }
  9368. }
  9369. // ggml_compute_forward_mul_mat
  9370. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9371. // helper function to determine if it is better to use BLAS or not
  9372. // for large matrices, BLAS is faster
  9373. static bool ggml_compute_forward_mul_mat_use_blas(
  9374. const struct ggml_tensor * src0,
  9375. const struct ggml_tensor * src1,
  9376. struct ggml_tensor * dst) {
  9377. //const int64_t ne00 = src0->ne[0];
  9378. //const int64_t ne01 = src0->ne[1];
  9379. const int64_t ne10 = src1->ne[0];
  9380. const int64_t ne0 = dst->ne[0];
  9381. const int64_t ne1 = dst->ne[1];
  9382. // TODO: find the optimal values for these
  9383. if (ggml_is_contiguous(src0) &&
  9384. ggml_is_contiguous(src1) &&
  9385. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  9386. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  9387. return true;
  9388. }
  9389. return false;
  9390. }
  9391. #endif
  9392. static void ggml_compute_forward_mul_mat(
  9393. const struct ggml_compute_params * params,
  9394. const struct ggml_tensor * src0,
  9395. const struct ggml_tensor * src1,
  9396. struct ggml_tensor * dst) {
  9397. int64_t t0 = ggml_perf_time_us();
  9398. UNUSED(t0);
  9399. GGML_TENSOR_BINARY_OP_LOCALS
  9400. const int ith = params->ith;
  9401. const int nth = params->nth;
  9402. const enum ggml_type type = src0->type;
  9403. const bool src1_cont = ggml_is_contiguous(src1);
  9404. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  9405. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  9406. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  9407. GGML_ASSERT(ne0 == ne01);
  9408. GGML_ASSERT(ne1 == ne11);
  9409. GGML_ASSERT(ne2 == ne12);
  9410. GGML_ASSERT(ne3 == ne13);
  9411. // we don't support permuted src0 or src1
  9412. GGML_ASSERT(nb00 == ggml_type_size(type));
  9413. GGML_ASSERT(nb10 == sizeof(float));
  9414. // dst cannot be transposed or permuted
  9415. GGML_ASSERT(nb0 == sizeof(float));
  9416. GGML_ASSERT(nb0 <= nb1);
  9417. GGML_ASSERT(nb1 <= nb2);
  9418. GGML_ASSERT(nb2 <= nb3);
  9419. // broadcast factors
  9420. const int64_t r2 = ne12/ne02;
  9421. const int64_t r3 = ne13/ne03;
  9422. // nb01 >= nb00 - src0 is not transposed
  9423. // compute by src0 rows
  9424. #if defined(GGML_USE_CLBLAST)
  9425. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  9426. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  9427. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  9428. }
  9429. return;
  9430. }
  9431. #endif
  9432. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9433. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  9434. if (params->ith != 0) {
  9435. return;
  9436. }
  9437. if (params->type == GGML_TASK_INIT) {
  9438. return;
  9439. }
  9440. if (params->type == GGML_TASK_FINALIZE) {
  9441. return;
  9442. }
  9443. for (int64_t i13 = 0; i13 < ne13; i13++) {
  9444. for (int64_t i12 = 0; i12 < ne12; i12++) {
  9445. // broadcast src0 into src1 across 2nd,3rd dimension
  9446. const int64_t i03 = i13/r3;
  9447. const int64_t i02 = i12/r2;
  9448. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  9449. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  9450. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  9451. if (type != GGML_TYPE_F32) {
  9452. float * const wdata = params->wdata;
  9453. ggml_to_float_t const to_float = type_traits[type].to_float;
  9454. size_t id = 0;
  9455. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9456. to_float((const char *) x + i01*nb01, wdata + id, ne00);
  9457. id += ne00;
  9458. }
  9459. assert(id*sizeof(float) <= params->wsize);
  9460. x = wdata;
  9461. }
  9462. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  9463. ne11, ne01, ne10,
  9464. 1.0f, y, ne10,
  9465. x, ne00,
  9466. 0.0f, d, ne01);
  9467. }
  9468. }
  9469. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  9470. return;
  9471. }
  9472. #endif
  9473. if (params->type == GGML_TASK_INIT) {
  9474. if (src1->type != vec_dot_type) {
  9475. char * wdata = params->wdata;
  9476. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  9477. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  9478. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9479. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9480. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  9481. wdata += row_size;
  9482. }
  9483. }
  9484. }
  9485. }
  9486. return;
  9487. }
  9488. if (params->type == GGML_TASK_FINALIZE) {
  9489. return;
  9490. }
  9491. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  9492. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  9493. const int64_t nr0 = ne01; // src0 rows
  9494. const int64_t nr1 = ne11*ne12*ne13; // src1 rows
  9495. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  9496. // distribute the thread work across the inner or outer loop based on which one is larger
  9497. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  9498. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  9499. const int64_t ith0 = ith % nth0;
  9500. const int64_t ith1 = ith / nth0;
  9501. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  9502. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  9503. const int64_t ir010 = dr0*ith0;
  9504. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  9505. const int64_t ir110 = dr1*ith1;
  9506. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  9507. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  9508. // threads with no work simply yield (not sure if it helps)
  9509. if (ir010 >= ir011 || ir110 >= ir111) {
  9510. sched_yield();
  9511. return;
  9512. }
  9513. assert(ne12 % ne02 == 0);
  9514. assert(ne13 % ne03 == 0);
  9515. // block-tiling attempt
  9516. const int64_t blck_0 = 16;
  9517. const int64_t blck_1 = 16;
  9518. // attempt to reduce false-sharing (does not seem to make a difference)
  9519. float tmp[16];
  9520. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  9521. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  9522. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  9523. const int64_t i13 = (ir1/(ne12*ne11));
  9524. const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
  9525. const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
  9526. // broadcast src0 into src1
  9527. const int64_t i03 = i13/r3;
  9528. const int64_t i02 = i12/r2;
  9529. const int64_t i1 = i11;
  9530. const int64_t i2 = i12;
  9531. const int64_t i3 = i13;
  9532. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  9533. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9534. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9535. // the original src1 data pointer, so we should index using the indices directly
  9536. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9537. const char * src1_col = (const char *) wdata +
  9538. (src1_cont || src1->type != vec_dot_type
  9539. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  9540. : (i11*nb11 + i12*nb12 + i13*nb13));
  9541. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  9542. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9543. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9544. //}
  9545. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9546. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  9547. }
  9548. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  9549. }
  9550. }
  9551. }
  9552. }
  9553. // ggml_compute_forward_out_prod
  9554. static void ggml_compute_forward_out_prod_f32(
  9555. const struct ggml_compute_params * params,
  9556. const struct ggml_tensor * src0,
  9557. const struct ggml_tensor * src1,
  9558. struct ggml_tensor * dst) {
  9559. // int64_t t0 = ggml_perf_time_us();
  9560. // UNUSED(t0);
  9561. GGML_TENSOR_BINARY_OP_LOCALS
  9562. const int ith = params->ith;
  9563. const int nth = params->nth;
  9564. GGML_ASSERT(ne02 == ne12);
  9565. GGML_ASSERT(ne03 == ne13);
  9566. GGML_ASSERT(ne2 == ne12);
  9567. GGML_ASSERT(ne3 == ne13);
  9568. // we don't support permuted src0 or src1
  9569. GGML_ASSERT(nb00 == sizeof(float));
  9570. // dst cannot be transposed or permuted
  9571. GGML_ASSERT(nb0 == sizeof(float));
  9572. // GGML_ASSERT(nb0 <= nb1);
  9573. // GGML_ASSERT(nb1 <= nb2);
  9574. // GGML_ASSERT(nb2 <= nb3);
  9575. GGML_ASSERT(ne0 == ne00);
  9576. GGML_ASSERT(ne1 == ne10);
  9577. GGML_ASSERT(ne2 == ne02);
  9578. GGML_ASSERT(ne3 == ne03);
  9579. // nb01 >= nb00 - src0 is not transposed
  9580. // compute by src0 rows
  9581. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  9582. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9583. if (params->type == GGML_TASK_INIT) {
  9584. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9585. return;
  9586. }
  9587. if (params->type == GGML_TASK_FINALIZE) {
  9588. return;
  9589. }
  9590. // dst[:,:,:,:] = 0
  9591. // for i2,i3:
  9592. // for i1:
  9593. // for i01:
  9594. // for i0:
  9595. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9596. // parallelize by last three dimensions
  9597. // total rows in dst
  9598. const int64_t nr = ne1*ne2*ne3;
  9599. // rows per thread
  9600. const int64_t dr = (nr + nth - 1)/nth;
  9601. // row range for this thread
  9602. const int64_t ir0 = dr*ith;
  9603. const int64_t ir1 = MIN(ir0 + dr, nr);
  9604. // block-tiling attempt
  9605. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  9606. const int64_t blck_1 = 16;
  9607. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  9608. const int64_t bir1 = MIN(bir + blck_1, ir1);
  9609. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  9610. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  9611. for (int64_t ir = bir; ir < bir1; ++ir) {
  9612. // dst indices
  9613. const int64_t i3 = ir/(ne2*ne1);
  9614. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9615. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9616. const int64_t i02 = i2;
  9617. const int64_t i03 = i3;
  9618. //const int64_t i10 = i1;
  9619. const int64_t i12 = i2;
  9620. const int64_t i13 = i3;
  9621. #if GGML_VEC_MAD_UNROLL > 2
  9622. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  9623. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  9624. const int64_t i11 = i01;
  9625. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9626. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9627. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9628. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  9629. }
  9630. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  9631. const int64_t i11 = i01;
  9632. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9633. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9634. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9635. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9636. }
  9637. #else
  9638. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  9639. const int64_t i11 = i01;
  9640. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9641. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9642. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9643. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9644. }
  9645. #endif
  9646. }
  9647. }
  9648. }
  9649. //int64_t t1 = ggml_perf_time_us();
  9650. //static int64_t acc = 0;
  9651. //acc += t1 - t0;
  9652. //if (t1 - t0 > 10) {
  9653. // printf("\n");
  9654. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9655. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9656. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9657. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9658. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9659. //}
  9660. }
  9661. static void ggml_compute_forward_out_prod_q_f32(
  9662. const struct ggml_compute_params * params,
  9663. const struct ggml_tensor * src0,
  9664. const struct ggml_tensor * src1,
  9665. struct ggml_tensor * dst) {
  9666. // int64_t t0 = ggml_perf_time_us();
  9667. // UNUSED(t0);
  9668. GGML_TENSOR_BINARY_OP_LOCALS;
  9669. const int ith = params->ith;
  9670. const int nth = params->nth;
  9671. const enum ggml_type type = src0->type;
  9672. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9673. GGML_ASSERT(ne02 == ne12);
  9674. GGML_ASSERT(ne03 == ne13);
  9675. GGML_ASSERT(ne2 == ne12);
  9676. GGML_ASSERT(ne3 == ne13);
  9677. // we don't support permuted src0 dim0
  9678. GGML_ASSERT(nb00 == ggml_type_size(type));
  9679. // dst dim0 cannot be transposed or permuted
  9680. GGML_ASSERT(nb0 == sizeof(float));
  9681. // GGML_ASSERT(nb0 <= nb1);
  9682. // GGML_ASSERT(nb1 <= nb2);
  9683. // GGML_ASSERT(nb2 <= nb3);
  9684. GGML_ASSERT(ne0 == ne00);
  9685. GGML_ASSERT(ne1 == ne10);
  9686. GGML_ASSERT(ne2 == ne02);
  9687. GGML_ASSERT(ne3 == ne03);
  9688. // nb01 >= nb00 - src0 is not transposed
  9689. // compute by src0 rows
  9690. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  9691. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9692. if (params->type == GGML_TASK_INIT) {
  9693. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9694. return;
  9695. }
  9696. if (params->type == GGML_TASK_FINALIZE) {
  9697. return;
  9698. }
  9699. // parallelize by last three dimensions
  9700. // total rows in dst
  9701. const int64_t nr = ne1*ne2*ne3;
  9702. // rows per thread
  9703. const int64_t dr = (nr + nth - 1)/nth;
  9704. // row range for this thread
  9705. const int64_t ir0 = dr*ith;
  9706. const int64_t ir1 = MIN(ir0 + dr, nr);
  9707. // dst[:,:,:,:] = 0
  9708. // for i2,i3:
  9709. // for i1:
  9710. // for i01:
  9711. // for i0:
  9712. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9713. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  9714. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9715. // dst indices
  9716. const int64_t i3 = ir/(ne2*ne1);
  9717. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9718. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9719. const int64_t i02 = i2;
  9720. const int64_t i03 = i3;
  9721. //const int64_t i10 = i1;
  9722. const int64_t i12 = i2;
  9723. const int64_t i13 = i3;
  9724. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9725. const int64_t i11 = i01;
  9726. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9727. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9728. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9729. dequantize_row_q(s0, wdata, ne0);
  9730. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  9731. }
  9732. }
  9733. //int64_t t1 = ggml_perf_time_us();
  9734. //static int64_t acc = 0;
  9735. //acc += t1 - t0;
  9736. //if (t1 - t0 > 10) {
  9737. // printf("\n");
  9738. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9739. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9740. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9741. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9742. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9743. //}
  9744. }
  9745. static void ggml_compute_forward_out_prod(
  9746. const struct ggml_compute_params * params,
  9747. const struct ggml_tensor * src0,
  9748. const struct ggml_tensor * src1,
  9749. struct ggml_tensor * dst) {
  9750. switch (src0->type) {
  9751. case GGML_TYPE_Q4_0:
  9752. case GGML_TYPE_Q4_1:
  9753. case GGML_TYPE_Q5_0:
  9754. case GGML_TYPE_Q5_1:
  9755. case GGML_TYPE_Q8_0:
  9756. case GGML_TYPE_Q2_K:
  9757. case GGML_TYPE_Q3_K:
  9758. case GGML_TYPE_Q4_K:
  9759. case GGML_TYPE_Q5_K:
  9760. case GGML_TYPE_Q6_K:
  9761. {
  9762. ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  9763. } break;
  9764. case GGML_TYPE_F16:
  9765. {
  9766. GGML_ASSERT(false); // todo
  9767. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  9768. } break;
  9769. case GGML_TYPE_F32:
  9770. {
  9771. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  9772. } break;
  9773. default:
  9774. {
  9775. GGML_ASSERT(false);
  9776. } break;
  9777. }
  9778. }
  9779. // ggml_compute_forward_scale
  9780. static void ggml_compute_forward_scale_f32(
  9781. const struct ggml_compute_params * params,
  9782. const struct ggml_tensor * src0,
  9783. const struct ggml_tensor * src1,
  9784. struct ggml_tensor * dst) {
  9785. GGML_ASSERT(ggml_is_contiguous(src0));
  9786. GGML_ASSERT(ggml_is_contiguous(dst));
  9787. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9788. GGML_ASSERT(ggml_is_scalar(src1));
  9789. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9790. return;
  9791. }
  9792. // scale factor
  9793. const float v = *(float *) src1->data;
  9794. const int ith = params->ith;
  9795. const int nth = params->nth;
  9796. const int nc = src0->ne[0];
  9797. const int nr = ggml_nrows(src0);
  9798. // rows per thread
  9799. const int dr = (nr + nth - 1)/nth;
  9800. // row range for this thread
  9801. const int ir0 = dr*ith;
  9802. const int ir1 = MIN(ir0 + dr, nr);
  9803. const size_t nb01 = src0->nb[1];
  9804. const size_t nb1 = dst->nb[1];
  9805. for (int i1 = ir0; i1 < ir1; i1++) {
  9806. if (dst->data != src0->data) {
  9807. // src0 is same shape as dst => same indices
  9808. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9809. }
  9810. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9811. }
  9812. }
  9813. static void ggml_compute_forward_scale(
  9814. const struct ggml_compute_params * params,
  9815. const struct ggml_tensor * src0,
  9816. const struct ggml_tensor * src1,
  9817. struct ggml_tensor * dst) {
  9818. switch (src0->type) {
  9819. case GGML_TYPE_F32:
  9820. {
  9821. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  9822. } break;
  9823. default:
  9824. {
  9825. GGML_ASSERT(false);
  9826. } break;
  9827. }
  9828. }
  9829. // ggml_compute_forward_set
  9830. static void ggml_compute_forward_set_f32(
  9831. const struct ggml_compute_params * params,
  9832. const struct ggml_tensor * src0,
  9833. const struct ggml_tensor * src1,
  9834. struct ggml_tensor * dst) {
  9835. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9836. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9837. // view src0 and dst with these strides and data offset inbytes during set
  9838. // nb0 is implicitely element_size because src0 and dst are contiguous
  9839. size_t nb1 = ((int32_t *) dst->op_params)[0];
  9840. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9841. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9842. size_t offset = ((int32_t *) dst->op_params)[3];
  9843. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9844. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9845. // memcpy needs to be synchronized across threads to avoid race conditions.
  9846. // => do it in INIT phase
  9847. memcpy(
  9848. ((char *) dst->data),
  9849. ((char *) src0->data),
  9850. ggml_nbytes(dst));
  9851. }
  9852. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9853. return;
  9854. }
  9855. const int ith = params->ith;
  9856. const int nth = params->nth;
  9857. const int nr = ggml_nrows(src1);
  9858. const int nc = src1->ne[0];
  9859. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  9860. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  9861. // src0 and dst as viewed during set
  9862. const size_t nb0 = ggml_element_size(src0);
  9863. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9864. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9865. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9866. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9867. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9868. GGML_ASSERT(nb10 == sizeof(float));
  9869. // rows per thread
  9870. const int dr = (nr + nth - 1)/nth;
  9871. // row range for this thread
  9872. const int ir0 = dr*ith;
  9873. const int ir1 = MIN(ir0 + dr, nr);
  9874. for (int ir = ir0; ir < ir1; ++ir) {
  9875. // src0 and dst are viewed with shape of src1 and offset
  9876. // => same indices
  9877. const int i3 = ir/(ne12*ne11);
  9878. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9879. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9880. ggml_vec_cpy_f32(nc,
  9881. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9882. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9883. }
  9884. }
  9885. static void ggml_compute_forward_set(
  9886. const struct ggml_compute_params * params,
  9887. const struct ggml_tensor * src0,
  9888. const struct ggml_tensor * src1,
  9889. struct ggml_tensor * dst) {
  9890. switch (src0->type) {
  9891. case GGML_TYPE_F32:
  9892. {
  9893. ggml_compute_forward_set_f32(params, src0, src1, dst);
  9894. } break;
  9895. case GGML_TYPE_F16:
  9896. case GGML_TYPE_Q4_0:
  9897. case GGML_TYPE_Q4_1:
  9898. case GGML_TYPE_Q5_0:
  9899. case GGML_TYPE_Q5_1:
  9900. case GGML_TYPE_Q8_0:
  9901. case GGML_TYPE_Q8_1:
  9902. case GGML_TYPE_Q2_K:
  9903. case GGML_TYPE_Q3_K:
  9904. case GGML_TYPE_Q4_K:
  9905. case GGML_TYPE_Q5_K:
  9906. case GGML_TYPE_Q6_K:
  9907. default:
  9908. {
  9909. GGML_ASSERT(false);
  9910. } break;
  9911. }
  9912. }
  9913. // ggml_compute_forward_cpy
  9914. static void ggml_compute_forward_cpy(
  9915. const struct ggml_compute_params * params,
  9916. const struct ggml_tensor * src0,
  9917. struct ggml_tensor * dst) {
  9918. ggml_compute_forward_dup(params, src0, dst);
  9919. }
  9920. // ggml_compute_forward_cont
  9921. static void ggml_compute_forward_cont(
  9922. const struct ggml_compute_params * params,
  9923. const struct ggml_tensor * src0,
  9924. struct ggml_tensor * dst) {
  9925. ggml_compute_forward_dup(params, src0, dst);
  9926. }
  9927. // ggml_compute_forward_reshape
  9928. static void ggml_compute_forward_reshape(
  9929. const struct ggml_compute_params * params,
  9930. const struct ggml_tensor * src0,
  9931. struct ggml_tensor * dst) {
  9932. // NOP
  9933. UNUSED(params);
  9934. UNUSED(src0);
  9935. UNUSED(dst);
  9936. }
  9937. // ggml_compute_forward_view
  9938. static void ggml_compute_forward_view(
  9939. const struct ggml_compute_params * params,
  9940. const struct ggml_tensor * src0) {
  9941. // NOP
  9942. UNUSED(params);
  9943. UNUSED(src0);
  9944. }
  9945. // ggml_compute_forward_permute
  9946. static void ggml_compute_forward_permute(
  9947. const struct ggml_compute_params * params,
  9948. const struct ggml_tensor * src0) {
  9949. // NOP
  9950. UNUSED(params);
  9951. UNUSED(src0);
  9952. }
  9953. // ggml_compute_forward_transpose
  9954. static void ggml_compute_forward_transpose(
  9955. const struct ggml_compute_params * params,
  9956. const struct ggml_tensor * src0) {
  9957. // NOP
  9958. UNUSED(params);
  9959. UNUSED(src0);
  9960. }
  9961. // ggml_compute_forward_get_rows
  9962. static void ggml_compute_forward_get_rows_q(
  9963. const struct ggml_compute_params * params,
  9964. const struct ggml_tensor * src0,
  9965. const struct ggml_tensor * src1,
  9966. struct ggml_tensor * dst) {
  9967. assert(params->ith == 0);
  9968. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9969. return;
  9970. }
  9971. const int nc = src0->ne[0];
  9972. const int nr = ggml_nelements(src1);
  9973. const enum ggml_type type = src0->type;
  9974. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9975. assert( dst->ne[0] == nc);
  9976. assert( dst->ne[1] == nr);
  9977. assert(src0->nb[0] == ggml_type_size(type));
  9978. for (int i = 0; i < nr; ++i) {
  9979. const int r = ((int32_t *) src1->data)[i];
  9980. dequantize_row_q(
  9981. (const void *) ((char *) src0->data + r*src0->nb[1]),
  9982. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  9983. }
  9984. }
  9985. static void ggml_compute_forward_get_rows_f16(
  9986. const struct ggml_compute_params * params,
  9987. const struct ggml_tensor * src0,
  9988. const struct ggml_tensor * src1,
  9989. struct ggml_tensor * dst) {
  9990. assert(params->ith == 0);
  9991. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9992. return;
  9993. }
  9994. const int nc = src0->ne[0];
  9995. const int nr = ggml_nelements(src1);
  9996. assert( dst->ne[0] == nc);
  9997. assert( dst->ne[1] == nr);
  9998. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  9999. for (int i = 0; i < nr; ++i) {
  10000. const int r = ((int32_t *) src1->data)[i];
  10001. for (int j = 0; j < nc; ++j) {
  10002. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  10003. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  10004. }
  10005. }
  10006. }
  10007. static void ggml_compute_forward_get_rows_f32(
  10008. const struct ggml_compute_params * params,
  10009. const struct ggml_tensor * src0,
  10010. const struct ggml_tensor * src1,
  10011. struct ggml_tensor * dst) {
  10012. assert(params->ith == 0);
  10013. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10014. return;
  10015. }
  10016. const int nc = src0->ne[0];
  10017. const int nr = ggml_nelements(src1);
  10018. assert( dst->ne[0] == nc);
  10019. assert( dst->ne[1] == nr);
  10020. assert(src0->nb[0] == sizeof(float));
  10021. for (int i = 0; i < nr; ++i) {
  10022. const int r = ((int32_t *) src1->data)[i];
  10023. ggml_vec_cpy_f32(nc,
  10024. (float *) ((char *) dst->data + i*dst->nb[1]),
  10025. (float *) ((char *) src0->data + r*src0->nb[1]));
  10026. }
  10027. }
  10028. static void ggml_compute_forward_get_rows(
  10029. const struct ggml_compute_params * params,
  10030. const struct ggml_tensor * src0,
  10031. const struct ggml_tensor * src1,
  10032. struct ggml_tensor * dst) {
  10033. switch (src0->type) {
  10034. case GGML_TYPE_Q4_0:
  10035. case GGML_TYPE_Q4_1:
  10036. case GGML_TYPE_Q5_0:
  10037. case GGML_TYPE_Q5_1:
  10038. case GGML_TYPE_Q8_0:
  10039. case GGML_TYPE_Q8_1:
  10040. case GGML_TYPE_Q2_K:
  10041. case GGML_TYPE_Q3_K:
  10042. case GGML_TYPE_Q4_K:
  10043. case GGML_TYPE_Q5_K:
  10044. case GGML_TYPE_Q6_K:
  10045. {
  10046. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  10047. } break;
  10048. case GGML_TYPE_F16:
  10049. {
  10050. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  10051. } break;
  10052. case GGML_TYPE_F32:
  10053. {
  10054. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  10055. } break;
  10056. default:
  10057. {
  10058. GGML_ASSERT(false);
  10059. } break;
  10060. }
  10061. //static bool first = true;
  10062. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  10063. //if (first) {
  10064. // first = false;
  10065. //} else {
  10066. // for (int k = 0; k < dst->ne[1]; ++k) {
  10067. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  10068. // for (int i = 0; i < 16; ++i) {
  10069. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  10070. // }
  10071. // printf("\n");
  10072. // }
  10073. // printf("\n");
  10074. // }
  10075. // printf("\n");
  10076. // exit(0);
  10077. //}
  10078. }
  10079. // ggml_compute_forward_get_rows_back
  10080. static void ggml_compute_forward_get_rows_back_f32_f16(
  10081. const struct ggml_compute_params * params,
  10082. const struct ggml_tensor * src0,
  10083. const struct ggml_tensor * src1,
  10084. struct ggml_tensor * dst) {
  10085. GGML_ASSERT(params->ith == 0);
  10086. GGML_ASSERT(ggml_is_contiguous(dst));
  10087. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  10088. if (params->type == GGML_TASK_INIT) {
  10089. memset(dst->data, 0, ggml_nbytes(dst));
  10090. }
  10091. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10092. return;
  10093. }
  10094. const int nc = src0->ne[0];
  10095. const int nr = ggml_nelements(src1);
  10096. GGML_ASSERT( dst->ne[0] == nc);
  10097. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  10098. for (int i = 0; i < nr; ++i) {
  10099. const int r = ((int32_t *) src1->data)[i];
  10100. for (int j = 0; j < nc; ++j) {
  10101. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  10102. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  10103. }
  10104. }
  10105. }
  10106. static void ggml_compute_forward_get_rows_back_f32(
  10107. const struct ggml_compute_params * params,
  10108. const struct ggml_tensor * src0,
  10109. const struct ggml_tensor * src1,
  10110. struct ggml_tensor * dst) {
  10111. GGML_ASSERT(params->ith == 0);
  10112. GGML_ASSERT(ggml_is_contiguous(dst));
  10113. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  10114. if (params->type == GGML_TASK_INIT) {
  10115. memset(dst->data, 0, ggml_nbytes(dst));
  10116. }
  10117. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10118. return;
  10119. }
  10120. const int nc = src0->ne[0];
  10121. const int nr = ggml_nelements(src1);
  10122. GGML_ASSERT( dst->ne[0] == nc);
  10123. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10124. for (int i = 0; i < nr; ++i) {
  10125. const int r = ((int32_t *) src1->data)[i];
  10126. ggml_vec_add_f32(nc,
  10127. (float *) ((char *) dst->data + r*dst->nb[1]),
  10128. (float *) ((char *) dst->data + r*dst->nb[1]),
  10129. (float *) ((char *) src0->data + i*src0->nb[1]));
  10130. }
  10131. }
  10132. static void ggml_compute_forward_get_rows_back(
  10133. const struct ggml_compute_params * params,
  10134. const struct ggml_tensor * src0,
  10135. const struct ggml_tensor * src1,
  10136. struct ggml_tensor * dst) {
  10137. switch (src0->type) {
  10138. case GGML_TYPE_F16:
  10139. {
  10140. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst);
  10141. } break;
  10142. case GGML_TYPE_F32:
  10143. {
  10144. ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst);
  10145. } break;
  10146. default:
  10147. {
  10148. GGML_ASSERT(false);
  10149. } break;
  10150. }
  10151. //static bool first = true;
  10152. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  10153. //if (first) {
  10154. // first = false;
  10155. //} else {
  10156. // for (int k = 0; k < dst->ne[1]; ++k) {
  10157. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  10158. // for (int i = 0; i < 16; ++i) {
  10159. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  10160. // }
  10161. // printf("\n");
  10162. // }
  10163. // printf("\n");
  10164. // }
  10165. // printf("\n");
  10166. // exit(0);
  10167. //}
  10168. }
  10169. // ggml_compute_forward_diag
  10170. static void ggml_compute_forward_diag_f32(
  10171. const struct ggml_compute_params * params,
  10172. const struct ggml_tensor * src0,
  10173. struct ggml_tensor * dst) {
  10174. GGML_ASSERT(params->ith == 0);
  10175. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10176. return;
  10177. }
  10178. // TODO: handle transposed/permuted matrices
  10179. GGML_TENSOR_UNARY_OP_LOCALS
  10180. GGML_ASSERT(ne00 == ne0);
  10181. GGML_ASSERT(ne00 == ne1);
  10182. GGML_ASSERT(ne01 == 1);
  10183. GGML_ASSERT(ne02 == ne2);
  10184. GGML_ASSERT(ne03 == ne3);
  10185. GGML_ASSERT(nb00 == sizeof(float));
  10186. GGML_ASSERT(nb0 == sizeof(float));
  10187. for (int i3 = 0; i3 < ne3; i3++) {
  10188. for (int i2 = 0; i2 < ne2; i2++) {
  10189. for (int i1 = 0; i1 < ne1; i1++) {
  10190. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  10191. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  10192. for (int i0 = 0; i0 < i1; i0++) {
  10193. d[i0] = 0;
  10194. }
  10195. d[i1] = s[i1];
  10196. for (int i0 = i1+1; i0 < ne0; i0++) {
  10197. d[i0] = 0;
  10198. }
  10199. }
  10200. }
  10201. }
  10202. }
  10203. static void ggml_compute_forward_diag(
  10204. const struct ggml_compute_params * params,
  10205. const struct ggml_tensor * src0,
  10206. struct ggml_tensor * dst) {
  10207. switch (src0->type) {
  10208. case GGML_TYPE_F32:
  10209. {
  10210. ggml_compute_forward_diag_f32(params, src0, dst);
  10211. } break;
  10212. default:
  10213. {
  10214. GGML_ASSERT(false);
  10215. } break;
  10216. }
  10217. }
  10218. // ggml_compute_forward_diag_mask_inf
  10219. static void ggml_compute_forward_diag_mask_f32(
  10220. const struct ggml_compute_params * params,
  10221. const struct ggml_tensor * src0,
  10222. struct ggml_tensor * dst,
  10223. const float value) {
  10224. const int ith = params->ith;
  10225. const int nth = params->nth;
  10226. const int n_past = ((int32_t *) dst->op_params)[0];
  10227. const bool inplace = src0->data == dst->data;
  10228. GGML_ASSERT(n_past >= 0);
  10229. if (!inplace && (params->type == GGML_TASK_INIT)) {
  10230. // memcpy needs to be synchronized across threads to avoid race conditions.
  10231. // => do it in INIT phase
  10232. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  10233. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10234. memcpy(
  10235. ((char *) dst->data),
  10236. ((char *) src0->data),
  10237. ggml_nbytes(dst));
  10238. }
  10239. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10240. return;
  10241. }
  10242. // TODO: handle transposed/permuted matrices
  10243. const int n = ggml_nrows(src0);
  10244. const int nc = src0->ne[0];
  10245. const int nr = src0->ne[1];
  10246. const int nz = n/nr;
  10247. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10248. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10249. for (int k = 0; k < nz; k++) {
  10250. for (int j = ith; j < nr; j += nth) {
  10251. for (int i = n_past; i < nc; i++) {
  10252. if (i > n_past + j) {
  10253. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  10254. }
  10255. }
  10256. }
  10257. }
  10258. }
  10259. static void ggml_compute_forward_diag_mask_inf(
  10260. const struct ggml_compute_params * params,
  10261. const struct ggml_tensor * src0,
  10262. struct ggml_tensor * dst) {
  10263. switch (src0->type) {
  10264. case GGML_TYPE_F32:
  10265. {
  10266. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  10267. } break;
  10268. default:
  10269. {
  10270. GGML_ASSERT(false);
  10271. } break;
  10272. }
  10273. }
  10274. static void ggml_compute_forward_diag_mask_zero(
  10275. const struct ggml_compute_params * params,
  10276. const struct ggml_tensor * src0,
  10277. struct ggml_tensor * dst) {
  10278. switch (src0->type) {
  10279. case GGML_TYPE_F32:
  10280. {
  10281. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  10282. } break;
  10283. default:
  10284. {
  10285. GGML_ASSERT(false);
  10286. } break;
  10287. }
  10288. }
  10289. // ggml_compute_forward_soft_max
  10290. static void ggml_compute_forward_soft_max_f32(
  10291. const struct ggml_compute_params * params,
  10292. const struct ggml_tensor * src0,
  10293. struct ggml_tensor * dst) {
  10294. GGML_ASSERT(ggml_is_contiguous(src0));
  10295. GGML_ASSERT(ggml_is_contiguous(dst));
  10296. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10297. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10298. return;
  10299. }
  10300. // TODO: handle transposed/permuted matrices
  10301. const int ith = params->ith;
  10302. const int nth = params->nth;
  10303. const int nc = src0->ne[0];
  10304. const int nr = ggml_nrows(src0);
  10305. // rows per thread
  10306. const int dr = (nr + nth - 1)/nth;
  10307. // row range for this thread
  10308. const int ir0 = dr*ith;
  10309. const int ir1 = MIN(ir0 + dr, nr);
  10310. for (int i1 = ir0; i1 < ir1; i1++) {
  10311. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  10312. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  10313. #ifndef NDEBUG
  10314. for (int i = 0; i < nc; ++i) {
  10315. //printf("p[%d] = %f\n", i, p[i]);
  10316. assert(!isnan(sp[i]));
  10317. }
  10318. #endif
  10319. float max = -INFINITY;
  10320. ggml_vec_max_f32(nc, &max, sp);
  10321. ggml_float sum = 0.0;
  10322. uint16_t scvt;
  10323. for (int i = 0; i < nc; i++) {
  10324. if (sp[i] == -INFINITY) {
  10325. dp[i] = 0.0f;
  10326. } else {
  10327. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  10328. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  10329. memcpy(&scvt, &s, sizeof(scvt));
  10330. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  10331. sum += (ggml_float)val;
  10332. dp[i] = val;
  10333. }
  10334. }
  10335. assert(sum > 0.0);
  10336. sum = 1.0/sum;
  10337. ggml_vec_scale_f32(nc, dp, sum);
  10338. #ifndef NDEBUG
  10339. for (int i = 0; i < nc; ++i) {
  10340. assert(!isnan(dp[i]));
  10341. assert(!isinf(dp[i]));
  10342. }
  10343. #endif
  10344. }
  10345. }
  10346. static void ggml_compute_forward_soft_max(
  10347. const struct ggml_compute_params * params,
  10348. const struct ggml_tensor * src0,
  10349. struct ggml_tensor * dst) {
  10350. switch (src0->type) {
  10351. case GGML_TYPE_F32:
  10352. {
  10353. ggml_compute_forward_soft_max_f32(params, src0, dst);
  10354. } break;
  10355. default:
  10356. {
  10357. GGML_ASSERT(false);
  10358. } break;
  10359. }
  10360. }
  10361. // ggml_compute_forward_soft_max_back
  10362. static void ggml_compute_forward_soft_max_back_f32(
  10363. const struct ggml_compute_params * params,
  10364. const struct ggml_tensor * src0,
  10365. const struct ggml_tensor * src1,
  10366. struct ggml_tensor * dst) {
  10367. GGML_ASSERT(ggml_is_contiguous(src0));
  10368. GGML_ASSERT(ggml_is_contiguous(src1));
  10369. GGML_ASSERT(ggml_is_contiguous(dst));
  10370. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10371. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  10372. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10373. return;
  10374. }
  10375. // TODO: handle transposed/permuted matrices
  10376. const int ith = params->ith;
  10377. const int nth = params->nth;
  10378. const int nc = src0->ne[0];
  10379. const int nr = ggml_nrows(src0);
  10380. // rows per thread
  10381. const int dr = (nr + nth - 1)/nth;
  10382. // row range for this thread
  10383. const int ir0 = dr*ith;
  10384. const int ir1 = MIN(ir0 + dr, nr);
  10385. for (int i1 = ir0; i1 < ir1; i1++) {
  10386. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  10387. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  10388. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  10389. #ifndef NDEBUG
  10390. for (int i = 0; i < nc; ++i) {
  10391. //printf("p[%d] = %f\n", i, p[i]);
  10392. assert(!isnan(dy[i]));
  10393. assert(!isnan(y[i]));
  10394. }
  10395. #endif
  10396. // Jii = yi - yi*yi
  10397. // Jij = -yi*yj
  10398. // J = diag(y)-y.T*y
  10399. // dx = J * dy
  10400. // dxk = sum_i(Jki * dyi)
  10401. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  10402. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  10403. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  10404. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  10405. // dxk = -yk * dot(y, dy) + yk*dyk
  10406. // dxk = yk * (- dot(y, dy) + dyk)
  10407. // dxk = yk * (dyk - dot(y, dy))
  10408. //
  10409. // post-order:
  10410. // dot_y_dy := dot(y, dy)
  10411. // dx := dy
  10412. // dx := dx - dot_y_dy
  10413. // dx := dx * y
  10414. // linear runtime, no additional memory
  10415. float dot_y_dy = 0;
  10416. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  10417. ggml_vec_cpy_f32 (nc, dx, dy);
  10418. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  10419. ggml_vec_mul_f32 (nc, dx, dx, y);
  10420. #ifndef NDEBUG
  10421. for (int i = 0; i < nc; ++i) {
  10422. assert(!isnan(dx[i]));
  10423. assert(!isinf(dx[i]));
  10424. }
  10425. #endif
  10426. }
  10427. }
  10428. static void ggml_compute_forward_soft_max_back(
  10429. const struct ggml_compute_params * params,
  10430. const struct ggml_tensor * src0,
  10431. const struct ggml_tensor * src1,
  10432. struct ggml_tensor * dst) {
  10433. switch (src0->type) {
  10434. case GGML_TYPE_F32:
  10435. {
  10436. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  10437. } break;
  10438. default:
  10439. {
  10440. GGML_ASSERT(false);
  10441. } break;
  10442. }
  10443. }
  10444. // ggml_compute_forward_alibi
  10445. static void ggml_compute_forward_alibi_f32(
  10446. const struct ggml_compute_params * params,
  10447. const struct ggml_tensor * src0,
  10448. struct ggml_tensor * dst) {
  10449. assert(params->ith == 0);
  10450. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10451. return;
  10452. }
  10453. const int n_past = ((int32_t *) dst->op_params)[0];
  10454. const int n_head = ((int32_t *) dst->op_params)[1];
  10455. float max_bias;
  10456. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10457. assert(n_past >= 0);
  10458. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10459. const int ne1 = src0->ne[1]; // seq_len_without_past
  10460. const int ne2 = src0->ne[2]; // n_head -> this is k
  10461. //const int ne3 = src0->ne[3]; // 1 -> bsz
  10462. const int n = ggml_nrows(src0);
  10463. const int ne2_ne3 = n/ne1; // ne2*ne3
  10464. const int nb0 = src0->nb[0];
  10465. const int nb1 = src0->nb[1];
  10466. const int nb2 = src0->nb[2];
  10467. //const int nb3 = src0->nb[3];
  10468. GGML_ASSERT(nb0 == sizeof(float));
  10469. GGML_ASSERT(ne1 + n_past == ne0);
  10470. GGML_ASSERT(n_head == ne2);
  10471. // add alibi to src0 (KQ_scaled)
  10472. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10473. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10474. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10475. for (int i = 0; i < ne0; i++) {
  10476. for (int j = 0; j < ne1; j++) {
  10477. for (int k = 0; k < ne2_ne3; k++) {
  10478. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10479. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10480. // TODO: k*nb2 or k*nb3
  10481. float m_k;
  10482. if (k < n_heads_log2_floor) {
  10483. m_k = powf(m0, k + 1);
  10484. } else {
  10485. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10486. }
  10487. pdst[0] = i * m_k + src[0];
  10488. }
  10489. }
  10490. }
  10491. }
  10492. static void ggml_compute_forward_alibi_f16(
  10493. const struct ggml_compute_params * params,
  10494. const struct ggml_tensor * src0,
  10495. struct ggml_tensor * dst) {
  10496. assert(params->ith == 0);
  10497. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10498. return;
  10499. }
  10500. //const int n_past = ((int32_t *) dst->op_params)[0];
  10501. const int n_head = ((int32_t *) dst->op_params)[1];
  10502. float max_bias;
  10503. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10504. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10505. const int ne1 = src0->ne[1]; // seq_len_without_past
  10506. const int ne2 = src0->ne[2]; // n_head -> this is k
  10507. //const int ne3 = src0->ne[3]; // 1 -> bsz
  10508. const int n = ggml_nrows(src0);
  10509. const int ne2_ne3 = n/ne1; // ne2*ne3
  10510. const int nb0 = src0->nb[0];
  10511. const int nb1 = src0->nb[1];
  10512. const int nb2 = src0->nb[2];
  10513. //const int nb3 = src0->nb[3];
  10514. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10515. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  10516. GGML_ASSERT(n_head == ne2);
  10517. // add alibi to src0 (KQ_scaled)
  10518. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10519. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10520. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10521. for (int i = 0; i < ne0; i++) {
  10522. for (int j = 0; j < ne1; j++) {
  10523. for (int k = 0; k < ne2_ne3; k++) {
  10524. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10525. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10526. // TODO: k*nb2 or k*nb3
  10527. float m_k;
  10528. if (k < n_heads_log2_floor) {
  10529. m_k = powf(m0, k + 1);
  10530. } else {
  10531. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10532. }
  10533. // we return F32
  10534. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  10535. }
  10536. }
  10537. }
  10538. }
  10539. static void ggml_compute_forward_alibi(
  10540. const struct ggml_compute_params * params,
  10541. const struct ggml_tensor * src0,
  10542. struct ggml_tensor * dst) {
  10543. switch (src0->type) {
  10544. case GGML_TYPE_F16:
  10545. {
  10546. ggml_compute_forward_alibi_f16(params, src0, dst);
  10547. } break;
  10548. case GGML_TYPE_F32:
  10549. {
  10550. ggml_compute_forward_alibi_f32(params, src0, dst);
  10551. } break;
  10552. case GGML_TYPE_Q4_0:
  10553. case GGML_TYPE_Q4_1:
  10554. case GGML_TYPE_Q5_0:
  10555. case GGML_TYPE_Q5_1:
  10556. case GGML_TYPE_Q8_0:
  10557. case GGML_TYPE_Q8_1:
  10558. case GGML_TYPE_Q2_K:
  10559. case GGML_TYPE_Q3_K:
  10560. case GGML_TYPE_Q4_K:
  10561. case GGML_TYPE_Q5_K:
  10562. case GGML_TYPE_Q6_K:
  10563. case GGML_TYPE_Q8_K:
  10564. case GGML_TYPE_I8:
  10565. case GGML_TYPE_I16:
  10566. case GGML_TYPE_I32:
  10567. case GGML_TYPE_COUNT:
  10568. {
  10569. GGML_ASSERT(false);
  10570. } break;
  10571. }
  10572. }
  10573. // ggml_compute_forward_clamp
  10574. static void ggml_compute_forward_clamp_f32(
  10575. const struct ggml_compute_params * params,
  10576. const struct ggml_tensor * src0,
  10577. struct ggml_tensor * dst) {
  10578. assert(params->ith == 0);
  10579. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10580. return;
  10581. }
  10582. float min;
  10583. float max;
  10584. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  10585. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  10586. const int ith = params->ith;
  10587. const int nth = params->nth;
  10588. const int n = ggml_nrows(src0);
  10589. const int nc = src0->ne[0];
  10590. const size_t nb00 = src0->nb[0];
  10591. const size_t nb01 = src0->nb[1];
  10592. const size_t nb0 = dst->nb[0];
  10593. const size_t nb1 = dst->nb[1];
  10594. GGML_ASSERT( nb0 == sizeof(float));
  10595. GGML_ASSERT(nb00 == sizeof(float));
  10596. for (int j = ith; j < n; j += nth) {
  10597. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  10598. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  10599. for (int i = 0; i < nc; i++) {
  10600. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  10601. }
  10602. }
  10603. }
  10604. static void ggml_compute_forward_clamp(
  10605. const struct ggml_compute_params * params,
  10606. const struct ggml_tensor * src0,
  10607. struct ggml_tensor * dst) {
  10608. switch (src0->type) {
  10609. case GGML_TYPE_F32:
  10610. {
  10611. ggml_compute_forward_clamp_f32(params, src0, dst);
  10612. } break;
  10613. case GGML_TYPE_F16:
  10614. case GGML_TYPE_Q4_0:
  10615. case GGML_TYPE_Q4_1:
  10616. case GGML_TYPE_Q5_0:
  10617. case GGML_TYPE_Q5_1:
  10618. case GGML_TYPE_Q8_0:
  10619. case GGML_TYPE_Q8_1:
  10620. case GGML_TYPE_Q2_K:
  10621. case GGML_TYPE_Q3_K:
  10622. case GGML_TYPE_Q4_K:
  10623. case GGML_TYPE_Q5_K:
  10624. case GGML_TYPE_Q6_K:
  10625. case GGML_TYPE_Q8_K:
  10626. case GGML_TYPE_I8:
  10627. case GGML_TYPE_I16:
  10628. case GGML_TYPE_I32:
  10629. case GGML_TYPE_COUNT:
  10630. {
  10631. GGML_ASSERT(false);
  10632. } break;
  10633. }
  10634. }
  10635. // ggml_compute_forward_rope
  10636. static void ggml_compute_forward_rope_f32(
  10637. const struct ggml_compute_params * params,
  10638. const struct ggml_tensor * src0,
  10639. const struct ggml_tensor * src1,
  10640. struct ggml_tensor * dst) {
  10641. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10642. return;
  10643. }
  10644. float freq_base;
  10645. float freq_scale;
  10646. // these two only relevant for xPos RoPE:
  10647. float xpos_base;
  10648. bool xpos_down;
  10649. //const int n_past = ((int32_t *) dst->op_params)[0];
  10650. const int n_dims = ((int32_t *) dst->op_params)[1];
  10651. const int mode = ((int32_t *) dst->op_params)[2];
  10652. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10653. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10654. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10655. memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float));
  10656. memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool));
  10657. GGML_TENSOR_UNARY_OP_LOCALS
  10658. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10659. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10660. GGML_ASSERT(nb00 == sizeof(float));
  10661. const int ith = params->ith;
  10662. const int nth = params->nth;
  10663. const int nr = ggml_nrows(dst);
  10664. GGML_ASSERT(n_dims <= ne0);
  10665. GGML_ASSERT(n_dims % 2 == 0);
  10666. // rows per thread
  10667. const int dr = (nr + nth - 1)/nth;
  10668. // row range for this thread
  10669. const int ir0 = dr*ith;
  10670. const int ir1 = MIN(ir0 + dr, nr);
  10671. // row index used to determine which thread to use
  10672. int ir = 0;
  10673. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10674. const bool is_neox = mode & 2;
  10675. const bool is_glm = mode & 4;
  10676. const int32_t * pos = (const int32_t *) src1->data;
  10677. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10678. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10679. const int64_t p = pos[i2];
  10680. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10681. if (ir++ < ir0) continue;
  10682. if (ir > ir1) break;
  10683. float theta = freq_scale * (float)p;
  10684. if (is_glm) {
  10685. theta = MIN(p, n_ctx - 2);
  10686. float block_theta = MAX(p - (n_ctx - 2), 0);
  10687. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10688. const float cos_theta = cosf(theta);
  10689. const float sin_theta = sinf(theta);
  10690. const float cos_block_theta = cosf(block_theta);
  10691. const float sin_block_theta = sinf(block_theta);
  10692. theta *= theta_scale;
  10693. block_theta *= theta_scale;
  10694. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10695. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10696. const float x0 = src[0];
  10697. const float x1 = src[n_dims/2];
  10698. const float x2 = src[n_dims];
  10699. const float x3 = src[n_dims/2*3];
  10700. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10701. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10702. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10703. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10704. }
  10705. } else if (!is_neox) {
  10706. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10707. const float cos_theta = cosf(theta);
  10708. const float sin_theta = sinf(theta);
  10709. // zeta scaling for xPos only:
  10710. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  10711. if (xpos_down) zeta = 1.0f / zeta;
  10712. theta *= theta_scale;
  10713. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10714. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10715. const float x0 = src[0];
  10716. const float x1 = src[1];
  10717. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10718. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10719. }
  10720. } else {
  10721. // TODO: this might be wrong for ne0 != n_dims - need double check
  10722. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  10723. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10724. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10725. const float cos_theta = cosf(theta);
  10726. const float sin_theta = sinf(theta);
  10727. theta *= theta_scale;
  10728. const int64_t i0 = ib*n_dims + ic/2;
  10729. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10730. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10731. const float x0 = src[0];
  10732. const float x1 = src[n_dims/2];
  10733. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10734. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10735. }
  10736. }
  10737. }
  10738. }
  10739. }
  10740. }
  10741. }
  10742. static void ggml_compute_forward_rope_f16(
  10743. const struct ggml_compute_params * params,
  10744. const struct ggml_tensor * src0,
  10745. const struct ggml_tensor * src1,
  10746. struct ggml_tensor * dst) {
  10747. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10748. return;
  10749. }
  10750. float freq_base;
  10751. float freq_scale;
  10752. //const int n_past = ((int32_t *) dst->op_params)[0];
  10753. const int n_dims = ((int32_t *) dst->op_params)[1];
  10754. const int mode = ((int32_t *) dst->op_params)[2];
  10755. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10756. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10757. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10758. GGML_TENSOR_UNARY_OP_LOCALS
  10759. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10760. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10761. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10762. const int ith = params->ith;
  10763. const int nth = params->nth;
  10764. const int nr = ggml_nrows(dst);
  10765. GGML_ASSERT(n_dims <= ne0);
  10766. GGML_ASSERT(n_dims % 2 == 0);
  10767. // rows per thread
  10768. const int dr = (nr + nth - 1)/nth;
  10769. // row range for this thread
  10770. const int ir0 = dr*ith;
  10771. const int ir1 = MIN(ir0 + dr, nr);
  10772. // row index used to determine which thread to use
  10773. int ir = 0;
  10774. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10775. const bool is_neox = mode & 2;
  10776. const bool is_glm = mode & 4;
  10777. const int32_t * pos = (const int32_t *) src1->data;
  10778. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10779. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10780. const int64_t p = pos[i2];
  10781. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10782. if (ir++ < ir0) continue;
  10783. if (ir > ir1) break;
  10784. float theta = freq_scale * (float)p;
  10785. if (is_glm) {
  10786. theta = MIN(p, n_ctx - 2);
  10787. float block_theta = MAX(p - (n_ctx - 2), 0);
  10788. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10789. const float cos_theta = cosf(theta);
  10790. const float sin_theta = sinf(theta);
  10791. const float cos_block_theta = cosf(block_theta);
  10792. const float sin_block_theta = sinf(block_theta);
  10793. theta *= theta_scale;
  10794. block_theta *= theta_scale;
  10795. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10796. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10797. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10798. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10799. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10800. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10801. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10802. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10803. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10804. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10805. }
  10806. } if (!is_neox) {
  10807. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10808. const float cos_theta = cosf(theta);
  10809. const float sin_theta = sinf(theta);
  10810. theta *= theta_scale;
  10811. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10812. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10813. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10814. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10815. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10816. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10817. }
  10818. } else {
  10819. // TODO: this might be wrong for ne0 != n_dims - need double check
  10820. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  10821. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10822. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10823. const float cos_theta = cosf(theta);
  10824. const float sin_theta = sinf(theta);
  10825. theta *= theta_scale;
  10826. const int64_t i0 = ib*n_dims + ic/2;
  10827. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10828. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10829. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10830. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10831. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10832. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10833. }
  10834. }
  10835. }
  10836. }
  10837. }
  10838. }
  10839. }
  10840. static void ggml_compute_forward_rope(
  10841. const struct ggml_compute_params * params,
  10842. const struct ggml_tensor * src0,
  10843. const struct ggml_tensor * src1,
  10844. struct ggml_tensor * dst) {
  10845. switch (src0->type) {
  10846. case GGML_TYPE_F16:
  10847. {
  10848. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  10849. } break;
  10850. case GGML_TYPE_F32:
  10851. {
  10852. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  10853. } break;
  10854. default:
  10855. {
  10856. GGML_ASSERT(false);
  10857. } break;
  10858. }
  10859. }
  10860. // ggml_compute_forward_rope_back
  10861. static void ggml_compute_forward_rope_back_f32(
  10862. const struct ggml_compute_params * params,
  10863. const struct ggml_tensor * src0,
  10864. const struct ggml_tensor * src1,
  10865. struct ggml_tensor * dst) {
  10866. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10867. return;
  10868. }
  10869. // y = rope(x, src1)
  10870. // dx = rope_back(dy, src1)
  10871. // src0 is dy, src1 contains options
  10872. float freq_base;
  10873. float freq_scale;
  10874. // these two only relevant for xPos RoPE:
  10875. float xpos_base;
  10876. bool xpos_down;
  10877. //const int n_past = ((int32_t *) dst->op_params)[0];
  10878. const int n_dims = ((int32_t *) dst->op_params)[1];
  10879. const int mode = ((int32_t *) dst->op_params)[2];
  10880. const int n_ctx = ((int32_t *) dst->op_params)[3]; UNUSED(n_ctx);
  10881. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10882. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10883. memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float));
  10884. memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool));
  10885. GGML_TENSOR_UNARY_OP_LOCALS
  10886. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10887. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10888. assert(nb0 == sizeof(float));
  10889. const int ith = params->ith;
  10890. const int nth = params->nth;
  10891. const int nr = ggml_nrows(dst);
  10892. // rows per thread
  10893. const int dr = (nr + nth - 1)/nth;
  10894. // row range for this thread
  10895. const int ir0 = dr*ith;
  10896. const int ir1 = MIN(ir0 + dr, nr);
  10897. // row index used to determine which thread to use
  10898. int ir = 0;
  10899. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10900. const bool is_neox = mode & 2;
  10901. const int32_t * pos = (const int32_t *) src1->data;
  10902. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10903. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10904. const int64_t p = pos[i2];
  10905. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10906. if (ir++ < ir0) continue;
  10907. if (ir > ir1) break;
  10908. float theta = freq_scale * (float)p;
  10909. if (!is_neox) {
  10910. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10911. const float cos_theta = cosf(theta);
  10912. const float sin_theta = sinf(theta);
  10913. // zeta scaling for xPos only:
  10914. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  10915. if (xpos_down) zeta = 1.0f / zeta;
  10916. theta *= theta_scale;
  10917. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10918. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10919. const float dy0 = dy[0];
  10920. const float dy1 = dy[1];
  10921. dx[0] = dy0*cos_theta*zeta + dy1*sin_theta*zeta;
  10922. dx[1] = - dy0*sin_theta*zeta + dy1*cos_theta*zeta;
  10923. }
  10924. } else {
  10925. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10926. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10927. const float cos_theta = cosf(theta);
  10928. const float sin_theta = sinf(theta);
  10929. theta *= theta_scale;
  10930. const int64_t i0 = ib*n_dims + ic/2;
  10931. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10932. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10933. const float dy0 = dy[0];
  10934. const float dy1 = dy[n_dims/2];
  10935. dx[0] = dy0*cos_theta + dy1*sin_theta;
  10936. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  10937. }
  10938. }
  10939. }
  10940. }
  10941. }
  10942. }
  10943. }
  10944. static void ggml_compute_forward_rope_back_f16(
  10945. const struct ggml_compute_params * params,
  10946. const struct ggml_tensor * src0,
  10947. const struct ggml_tensor * src1,
  10948. struct ggml_tensor * dst) {
  10949. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10950. return;
  10951. }
  10952. // y = rope(x, src1)
  10953. // dx = rope_back(dy, src1)
  10954. // src0 is dy, src1 contains options
  10955. //const int n_past = ((int32_t *) dst->op_params)[0];
  10956. const int n_dims = ((int32_t *) dst->op_params)[1];
  10957. const int mode = ((int32_t *) dst->op_params)[2];
  10958. GGML_TENSOR_UNARY_OP_LOCALS
  10959. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10960. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10961. assert(nb0 == sizeof(ggml_fp16_t));
  10962. const int ith = params->ith;
  10963. const int nth = params->nth;
  10964. const int nr = ggml_nrows(dst);
  10965. // rows per thread
  10966. const int dr = (nr + nth - 1)/nth;
  10967. // row range for this thread
  10968. const int ir0 = dr*ith;
  10969. const int ir1 = MIN(ir0 + dr, nr);
  10970. // row index used to determine which thread to use
  10971. int ir = 0;
  10972. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10973. const bool is_neox = mode & 2;
  10974. const int32_t * pos = (const int32_t *) src1->data;
  10975. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10976. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10977. const int64_t p = pos[i2];
  10978. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10979. if (ir++ < ir0) continue;
  10980. if (ir > ir1) break;
  10981. float theta = (float)p;
  10982. if (!is_neox) {
  10983. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10984. const float cos_theta = cosf(theta);
  10985. const float sin_theta = sinf(theta);
  10986. theta *= theta_scale;
  10987. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10988. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10989. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10990. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  10991. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10992. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10993. }
  10994. } else {
  10995. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10996. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10997. const float cos_theta = cosf(theta);
  10998. const float sin_theta = sinf(theta);
  10999. theta *= theta_scale;
  11000. const int64_t i0 = ib*n_dims + ic/2;
  11001. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11002. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11003. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  11004. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  11005. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  11006. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  11007. }
  11008. }
  11009. }
  11010. }
  11011. }
  11012. }
  11013. }
  11014. static void ggml_compute_forward_rope_back(
  11015. const struct ggml_compute_params * params,
  11016. const struct ggml_tensor * src0,
  11017. const struct ggml_tensor * src1,
  11018. struct ggml_tensor * dst) {
  11019. switch (src0->type) {
  11020. case GGML_TYPE_F16:
  11021. {
  11022. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  11023. } break;
  11024. case GGML_TYPE_F32:
  11025. {
  11026. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  11027. } break;
  11028. default:
  11029. {
  11030. GGML_ASSERT(false);
  11031. } break;
  11032. }
  11033. }
  11034. // ggml_compute_forward_conv_1d
  11035. static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
  11036. const struct ggml_compute_params * params,
  11037. const struct ggml_tensor * src0,
  11038. const struct ggml_tensor * src1,
  11039. struct ggml_tensor * dst) {
  11040. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11041. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11042. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11043. int64_t t0 = ggml_perf_time_us();
  11044. UNUSED(t0);
  11045. GGML_TENSOR_BINARY_OP_LOCALS
  11046. const int ith = params->ith;
  11047. const int nth = params->nth;
  11048. const int nk = ne00;
  11049. const int nh = nk/2;
  11050. const int ew0 = ggml_up32(ne01);
  11051. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  11052. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11053. GGML_ASSERT(nb10 == sizeof(float));
  11054. if (params->type == GGML_TASK_INIT) {
  11055. // TODO: fix this memset (wsize is overestimated)
  11056. memset(params->wdata, 0, params->wsize);
  11057. // prepare kernel data (src0)
  11058. {
  11059. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11060. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11061. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11062. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  11063. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  11064. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11065. dst_data[i00*ew0 + i01] = src[i00];
  11066. }
  11067. }
  11068. }
  11069. }
  11070. // prepare source data (src1)
  11071. {
  11072. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  11073. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11074. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11075. ggml_fp16_t * dst_data = wdata;
  11076. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11077. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  11078. }
  11079. }
  11080. }
  11081. return;
  11082. }
  11083. if (params->type == GGML_TASK_FINALIZE) {
  11084. return;
  11085. }
  11086. // total rows in dst
  11087. const int nr = ne02;
  11088. // rows per thread
  11089. const int dr = (nr + nth - 1)/nth;
  11090. // row range for this thread
  11091. const int ir0 = dr*ith;
  11092. const int ir1 = MIN(ir0 + dr, nr);
  11093. for (int i1 = ir0; i1 < ir1; i1++) {
  11094. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11095. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  11096. dst_data[i0] = 0;
  11097. for (int k = -nh; k <= nh; k++) {
  11098. float v = 0.0f;
  11099. ggml_vec_dot_f16(ew0, &v,
  11100. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  11101. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  11102. dst_data[i0] += v;
  11103. }
  11104. }
  11105. }
  11106. }
  11107. static void ggml_compute_forward_conv_1d_s1_ph_f32(
  11108. const struct ggml_compute_params * params,
  11109. const struct ggml_tensor * src0,
  11110. const struct ggml_tensor * src1,
  11111. struct ggml_tensor * dst) {
  11112. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  11113. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11114. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11115. int64_t t0 = ggml_perf_time_us();
  11116. UNUSED(t0);
  11117. GGML_TENSOR_BINARY_OP_LOCALS
  11118. const int ith = params->ith;
  11119. const int nth = params->nth;
  11120. const int nk = ne00;
  11121. const int nh = nk/2;
  11122. const int ew0 = ggml_up32(ne01);
  11123. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  11124. GGML_ASSERT(nb00 == sizeof(float));
  11125. GGML_ASSERT(nb10 == sizeof(float));
  11126. if (params->type == GGML_TASK_INIT) {
  11127. // TODO: fix this memset (wsize is overestimated)
  11128. memset(params->wdata, 0, params->wsize);
  11129. // prepare kernel data (src0)
  11130. {
  11131. float * const wdata = (float *) params->wdata + 0;
  11132. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11133. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11134. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  11135. float * dst_data = wdata + i02*ew0*ne00;
  11136. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11137. dst_data[i00*ew0 + i01] = src[i00];
  11138. }
  11139. }
  11140. }
  11141. }
  11142. // prepare source data (src1)
  11143. {
  11144. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  11145. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11146. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11147. float * dst_data = wdata;
  11148. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11149. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  11150. }
  11151. }
  11152. }
  11153. return;
  11154. }
  11155. if (params->type == GGML_TASK_FINALIZE) {
  11156. return;
  11157. }
  11158. // total rows in dst
  11159. const int nr = ne02;
  11160. // rows per thread
  11161. const int dr = (nr + nth - 1)/nth;
  11162. // row range for this thread
  11163. const int ir0 = dr*ith;
  11164. const int ir1 = MIN(ir0 + dr, nr);
  11165. for (int i1 = ir0; i1 < ir1; i1++) {
  11166. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11167. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  11168. dst_data[i0] = 0;
  11169. for (int k = -nh; k <= nh; k++) {
  11170. float v = 0.0f;
  11171. ggml_vec_dot_f32(ew0, &v,
  11172. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  11173. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  11174. dst_data[i0] += v;
  11175. }
  11176. }
  11177. }
  11178. }
  11179. static void ggml_compute_forward_conv_1d_s1_ph(
  11180. const struct ggml_compute_params * params,
  11181. const struct ggml_tensor * src0,
  11182. const struct ggml_tensor * src1,
  11183. struct ggml_tensor * dst) {
  11184. switch (src0->type) {
  11185. case GGML_TYPE_F16:
  11186. {
  11187. ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
  11188. } break;
  11189. case GGML_TYPE_F32:
  11190. {
  11191. ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
  11192. } break;
  11193. default:
  11194. {
  11195. GGML_ASSERT(false);
  11196. } break;
  11197. }
  11198. }
  11199. static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
  11200. const struct ggml_compute_params * params,
  11201. const struct ggml_tensor * src0,
  11202. const struct ggml_tensor * src1,
  11203. struct ggml_tensor * dst) {
  11204. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11205. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11206. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11207. int64_t t0 = ggml_perf_time_us();
  11208. UNUSED(t0);
  11209. GGML_TENSOR_BINARY_OP_LOCALS
  11210. const int ith = params->ith;
  11211. const int nth = params->nth;
  11212. const int nk = ne00;
  11213. const int nh = nk/2;
  11214. const int ew0 = ggml_up32(ne01);
  11215. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  11216. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11217. GGML_ASSERT(nb10 == sizeof(float));
  11218. if (params->type == GGML_TASK_INIT) {
  11219. // TODO: fix this memset (wsize is overestimated)
  11220. memset(params->wdata, 0, params->wsize);
  11221. // prepare kernel data (src0)
  11222. {
  11223. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11224. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11225. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11226. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  11227. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  11228. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11229. dst_data[i00*ew0 + i01] = src[i00];
  11230. }
  11231. }
  11232. }
  11233. }
  11234. // prepare source data (src1)
  11235. {
  11236. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  11237. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11238. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11239. ggml_fp16_t * dst_data = wdata;
  11240. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11241. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  11242. }
  11243. }
  11244. }
  11245. return;
  11246. }
  11247. if (params->type == GGML_TASK_FINALIZE) {
  11248. return;
  11249. }
  11250. // total rows in dst
  11251. const int nr = ne02;
  11252. // rows per thread
  11253. const int dr = (nr + nth - 1)/nth;
  11254. // row range for this thread
  11255. const int ir0 = dr*ith;
  11256. const int ir1 = MIN(ir0 + dr, nr);
  11257. for (int i1 = ir0; i1 < ir1; i1++) {
  11258. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11259. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  11260. dst_data[i0/2] = 0;
  11261. for (int k = -nh; k <= nh; k++) {
  11262. float v = 0.0f;
  11263. ggml_vec_dot_f16(ew0, &v,
  11264. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  11265. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  11266. dst_data[i0/2] += v;
  11267. }
  11268. }
  11269. }
  11270. }
  11271. static void ggml_compute_forward_conv_1d_s2_ph_f32(
  11272. const struct ggml_compute_params * params,
  11273. const struct ggml_tensor * src0,
  11274. const struct ggml_tensor * src1,
  11275. struct ggml_tensor * dst) {
  11276. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  11277. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11278. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11279. int64_t t0 = ggml_perf_time_us();
  11280. UNUSED(t0);
  11281. GGML_TENSOR_BINARY_OP_LOCALS
  11282. const int ith = params->ith;
  11283. const int nth = params->nth;
  11284. const int nk = ne00;
  11285. const int nh = nk/2;
  11286. const int ew0 = ggml_up32(ne01);
  11287. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  11288. GGML_ASSERT(nb00 == sizeof(float));
  11289. GGML_ASSERT(nb10 == sizeof(float));
  11290. if (params->type == GGML_TASK_INIT) {
  11291. // TODO: fix this memset (wsize is overestimated)
  11292. memset(params->wdata, 0, params->wsize);
  11293. // prepare kernel data (src0)
  11294. {
  11295. float * const wdata = (float *) params->wdata + 0;
  11296. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11297. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11298. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  11299. float * dst_data = wdata + i02*ew0*ne00;
  11300. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11301. dst_data[i00*ew0 + i01] = src[i00];
  11302. }
  11303. }
  11304. }
  11305. }
  11306. // prepare source data (src1)
  11307. {
  11308. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  11309. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11310. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11311. float * dst_data = wdata;
  11312. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11313. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  11314. }
  11315. }
  11316. }
  11317. return;
  11318. }
  11319. if (params->type == GGML_TASK_FINALIZE) {
  11320. return;
  11321. }
  11322. // total rows in dst
  11323. const int nr = ne02;
  11324. // rows per thread
  11325. const int dr = (nr + nth - 1)/nth;
  11326. // row range for this thread
  11327. const int ir0 = dr*ith;
  11328. const int ir1 = MIN(ir0 + dr, nr);
  11329. for (int i1 = ir0; i1 < ir1; i1++) {
  11330. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11331. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  11332. dst_data[i0/2] = 0;
  11333. for (int k = -nh; k <= nh; k++) {
  11334. float v = 0.0f;
  11335. ggml_vec_dot_f32(ew0, &v,
  11336. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  11337. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  11338. dst_data[i0/2] += v;
  11339. }
  11340. }
  11341. }
  11342. }
  11343. static void ggml_compute_forward_conv_1d_s2_ph(
  11344. const struct ggml_compute_params * params,
  11345. const struct ggml_tensor * src0,
  11346. const struct ggml_tensor * src1,
  11347. struct ggml_tensor * dst) {
  11348. switch (src0->type) {
  11349. case GGML_TYPE_F16:
  11350. {
  11351. ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
  11352. } break;
  11353. case GGML_TYPE_F32:
  11354. {
  11355. ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
  11356. } break;
  11357. default:
  11358. {
  11359. GGML_ASSERT(false);
  11360. } break;
  11361. }
  11362. }
  11363. // ggml_compute_forward_conv_1d
  11364. static void ggml_compute_forward_conv_1d(
  11365. const struct ggml_compute_params * params,
  11366. const struct ggml_tensor * src0,
  11367. const struct ggml_tensor * src1,
  11368. struct ggml_tensor * dst) {
  11369. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11370. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  11371. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  11372. GGML_ASSERT(d0 == 1); // dilation not supported
  11373. GGML_ASSERT(p0 == src0->ne[0]/2); // only half padding supported
  11374. if (s0 == 1) {
  11375. ggml_compute_forward_conv_1d_s1_ph(params, src0, src1, dst);
  11376. } else if (s0 == 2) {
  11377. ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst);
  11378. } else {
  11379. GGML_ASSERT(false); // only stride 1 and 2 supported
  11380. }
  11381. }
  11382. // ggml_compute_forward_conv_2d
  11383. static void ggml_compute_forward_conv_2d_f16_f32(
  11384. const struct ggml_compute_params * params,
  11385. const struct ggml_tensor * src0,
  11386. const struct ggml_tensor * src1,
  11387. struct ggml_tensor * dst) {
  11388. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11389. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11390. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11391. int64_t t0 = ggml_perf_time_us();
  11392. UNUSED(t0);
  11393. GGML_TENSOR_BINARY_OP_LOCALS
  11394. const int ith = params->ith;
  11395. const int nth = params->nth;
  11396. const int nk0 = ne00;
  11397. const int nk1 = ne01;
  11398. // size of the convolution row - the kernel size unrolled across all channels
  11399. const int ew0 = nk0*nk1*ne02;
  11400. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11401. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  11402. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  11403. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  11404. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  11405. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  11406. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11407. GGML_ASSERT(nb10 == sizeof(float));
  11408. if (params->type == GGML_TASK_INIT) {
  11409. memset(params->wdata, 0, params->wsize);
  11410. // prepare source data (src1)
  11411. {
  11412. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11413. for (int i12 = 0; i12 < ne12; i12++) {
  11414. const float * const src = (float *)((char *) src1->data + i12*nb12);
  11415. ggml_fp16_t * dst_data = wdata;
  11416. for (int i1 = 0; i1 < ne1; i1++) {
  11417. for (int i0 = 0; i0 < ne0; i0++) {
  11418. for (int ik1 = 0; ik1 < nk1; ik1++) {
  11419. for (int ik0 = 0; ik0 < nk0; ik0++) {
  11420. const int idx0 = i0*s0 + ik0*d0 - p0;
  11421. const int idx1 = i1*s1 + ik1*d1 - p1;
  11422. if (!(idx1 < 0 || idx1 >= ne11 || idx0 < 0 || idx0 >= ne10)) {
  11423. dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
  11424. GGML_FP32_TO_FP16(src[idx1*ne10 + idx0]);
  11425. }
  11426. }
  11427. }
  11428. }
  11429. }
  11430. }
  11431. }
  11432. return;
  11433. }
  11434. if (params->type == GGML_TASK_FINALIZE) {
  11435. return;
  11436. }
  11437. // total patches in dst
  11438. const int np = ne2;
  11439. // patches per thread
  11440. const int dp = (np + nth - 1)/nth;
  11441. // patch range for this thread
  11442. const int ip0 = dp*ith;
  11443. const int ip1 = MIN(ip0 + dp, np);
  11444. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11445. for (int i3 = 0; i3 < ne3; i3++) {
  11446. for (int i2 = ip0; i2 < ip1; i2++) {
  11447. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2);
  11448. for (int i1 = 0; i1 < ne1; ++i1) {
  11449. for (int i0 = 0; i0 < ne0; ++i0) {
  11450. ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
  11451. (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
  11452. (ggml_fp16_t *) wdata + i3*nb3 + (i1*ne0 + i0)*ew0);
  11453. }
  11454. }
  11455. }
  11456. }
  11457. }
  11458. static void ggml_compute_forward_conv_2d(
  11459. const struct ggml_compute_params * params,
  11460. const struct ggml_tensor * src0,
  11461. const struct ggml_tensor * src1,
  11462. struct ggml_tensor * dst) {
  11463. switch (src0->type) {
  11464. case GGML_TYPE_F16:
  11465. {
  11466. ggml_compute_forward_conv_2d_f16_f32(params, src0, src1, dst);
  11467. } break;
  11468. case GGML_TYPE_F32:
  11469. {
  11470. //ggml_compute_forward_conv_2d_f32(params, src0, src1, dst);
  11471. GGML_ASSERT(false);
  11472. } break;
  11473. default:
  11474. {
  11475. GGML_ASSERT(false);
  11476. } break;
  11477. }
  11478. }
  11479. // ggml_compute_forward_conv_transpose_2d
  11480. static void ggml_compute_forward_conv_transpose_2d(
  11481. const struct ggml_compute_params * params,
  11482. const struct ggml_tensor * src0,
  11483. const struct ggml_tensor * src1,
  11484. struct ggml_tensor * dst) {
  11485. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11486. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11487. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11488. int64_t t0 = ggml_perf_time_us();
  11489. UNUSED(t0);
  11490. GGML_TENSOR_BINARY_OP_LOCALS
  11491. const int ith = params->ith;
  11492. const int nth = params->nth;
  11493. const int nk = ne00*ne01*ne02*ne03;
  11494. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11495. GGML_ASSERT(nb10 == sizeof(float));
  11496. if (params->type == GGML_TASK_INIT) {
  11497. memset(params->wdata, 0, params->wsize);
  11498. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  11499. {
  11500. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11501. for (int64_t i03 = 0; i03 < ne03; i03++) {
  11502. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11503. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  11504. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  11505. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11506. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11507. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  11508. }
  11509. }
  11510. }
  11511. }
  11512. }
  11513. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  11514. {
  11515. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11516. for (int i12 = 0; i12 < ne12; i12++) {
  11517. for (int i11 = 0; i11 < ne11; i11++) {
  11518. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  11519. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  11520. for (int i10 = 0; i10 < ne10; i10++) {
  11521. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  11522. }
  11523. }
  11524. }
  11525. }
  11526. return;
  11527. }
  11528. if (params->type == GGML_TASK_FINALIZE) {
  11529. return;
  11530. }
  11531. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  11532. // total patches in dst
  11533. const int np = ne2;
  11534. // patches per thread
  11535. const int dp = (np + nth - 1)/nth;
  11536. // patch range for this thread
  11537. const int ip0 = dp*ith;
  11538. const int ip1 = MIN(ip0 + dp, np);
  11539. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11540. ggml_fp16_t * const wdata_src = wdata + nk;
  11541. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  11542. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  11543. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  11544. for (int i11 = 0; i11 < ne11; i11++) {
  11545. for (int i10 = 0; i10 < ne10; i10++) {
  11546. const int i1n = i11*ne10*ne12 + i10*ne12;
  11547. for (int i01 = 0; i01 < ne01; i01++) {
  11548. for (int i00 = 0; i00 < ne00; i00++) {
  11549. float v = 0;
  11550. ggml_vec_dot_f16(ne03, &v,
  11551. wdata_src + i1n,
  11552. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  11553. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  11554. }
  11555. }
  11556. }
  11557. }
  11558. }
  11559. }
  11560. // ggml_compute_forward_pool_1d_sk_p0
  11561. static void ggml_compute_forward_pool_1d_sk_p0(
  11562. const struct ggml_compute_params * params,
  11563. const enum ggml_op_pool op,
  11564. const struct ggml_tensor * src,
  11565. const int k,
  11566. struct ggml_tensor * dst) {
  11567. assert(src->type == GGML_TYPE_F32);
  11568. assert(params->ith == 0);
  11569. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11570. return;
  11571. }
  11572. const char * cdata = (const char *)src->data;
  11573. const char * const data_end = cdata + ggml_nbytes(src);
  11574. float * drow = (float *)dst->data;
  11575. const int64_t rs = dst->ne[0];
  11576. while (cdata < data_end) {
  11577. const float * const srow = (const float *)cdata;
  11578. int j = 0;
  11579. for (int64_t i = 0; i < rs; ++i) {
  11580. switch (op) {
  11581. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  11582. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  11583. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11584. }
  11585. for (int ki = 0; ki < k; ++ki) {
  11586. switch (op) {
  11587. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  11588. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  11589. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11590. }
  11591. ++j;
  11592. }
  11593. switch (op) {
  11594. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  11595. case GGML_OP_POOL_MAX: break;
  11596. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11597. }
  11598. }
  11599. cdata += src->nb[1];
  11600. drow += rs;
  11601. }
  11602. }
  11603. // ggml_compute_forward_pool_1d
  11604. static void ggml_compute_forward_pool_1d(
  11605. const struct ggml_compute_params * params,
  11606. const struct ggml_tensor * src0,
  11607. struct ggml_tensor * dst) {
  11608. const int32_t * opts = (const int32_t *)dst->op_params;
  11609. enum ggml_op_pool op = opts[0];
  11610. const int k0 = opts[1];
  11611. const int s0 = opts[2];
  11612. const int p0 = opts[3];
  11613. GGML_ASSERT(p0 == 0); // padding not supported
  11614. GGML_ASSERT(k0 == s0); // only s = k supported
  11615. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  11616. }
  11617. // ggml_compute_forward_pool_2d_sk_p0
  11618. static void ggml_compute_forward_pool_2d_sk_p0(
  11619. const struct ggml_compute_params * params,
  11620. const enum ggml_op_pool op,
  11621. const struct ggml_tensor * src,
  11622. const int k0,
  11623. const int k1,
  11624. struct ggml_tensor * dst) {
  11625. assert(src->type == GGML_TYPE_F32);
  11626. assert(params->ith == 0);
  11627. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11628. return;
  11629. }
  11630. const char * cdata = (const char*)src->data;
  11631. const char * const data_end = cdata + ggml_nbytes(src);
  11632. const int64_t px = dst->ne[0];
  11633. const int64_t py = dst->ne[1];
  11634. const int64_t pa = px * py;
  11635. float * dplane = (float *)dst->data;
  11636. const int ka = k0 * k1;
  11637. while (cdata < data_end) {
  11638. for (int oy = 0; oy < py; ++oy) {
  11639. float * const drow = dplane + oy * px;
  11640. for (int ox = 0; ox < px; ++ox) {
  11641. float * const out = drow + ox;
  11642. switch (op) {
  11643. case GGML_OP_POOL_AVG: *out = 0; break;
  11644. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  11645. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11646. }
  11647. const int ix = ox * k0;
  11648. const int iy = oy * k1;
  11649. for (int ky = 0; ky < k1; ++ky) {
  11650. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  11651. for (int kx = 0; kx < k0; ++kx) {
  11652. int j = ix + kx;
  11653. switch (op) {
  11654. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  11655. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  11656. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11657. }
  11658. }
  11659. }
  11660. switch (op) {
  11661. case GGML_OP_POOL_AVG: *out /= ka; break;
  11662. case GGML_OP_POOL_MAX: break;
  11663. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11664. }
  11665. }
  11666. }
  11667. cdata += src->nb[2];
  11668. dplane += pa;
  11669. }
  11670. }
  11671. // ggml_compute_forward_pool_2d
  11672. static void ggml_compute_forward_pool_2d(
  11673. const struct ggml_compute_params * params,
  11674. const struct ggml_tensor * src0,
  11675. struct ggml_tensor * dst) {
  11676. const int32_t * opts = (const int32_t *)dst->op_params;
  11677. enum ggml_op_pool op = opts[0];
  11678. const int k0 = opts[1];
  11679. const int k1 = opts[2];
  11680. const int s0 = opts[3];
  11681. const int s1 = opts[4];
  11682. const int p0 = opts[5];
  11683. const int p1 = opts[6];
  11684. GGML_ASSERT(p0 == 0);
  11685. GGML_ASSERT(p1 == 0); // padding not supported
  11686. GGML_ASSERT(k0 == s0);
  11687. GGML_ASSERT(k1 == s1); // only s = k supported
  11688. ggml_compute_forward_pool_2d_sk_p0(params, op, src0, k0, k1, dst);
  11689. }
  11690. // ggml_compute_forward_upscale
  11691. static void ggml_compute_forward_upscale_f32(
  11692. const struct ggml_compute_params * params,
  11693. const struct ggml_tensor * src0,
  11694. struct ggml_tensor * dst) {
  11695. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11696. return;
  11697. }
  11698. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11699. const int ith = params->ith;
  11700. GGML_TENSOR_UNARY_OP_LOCALS
  11701. const int scale_factor = dst->op_params[0];
  11702. // TODO: optimize
  11703. for (int i03 = 0; i03 < ne03; i03++) {
  11704. for (int i02 = ith; i02 < ne02; i02++) {
  11705. for (int m = 0; m < dst->ne[1]; m++) {
  11706. int i01 = m / scale_factor;
  11707. for (int n = 0; n < dst->ne[0]; n++) {
  11708. int i00 = n / scale_factor;
  11709. const float * x = (float *)((char *) src0->data + i00 * nb00 +i01 * nb01 + i02 * nb02 + i03 * nb03);
  11710. float * y = (float *)((char *) dst->data + n * dst->nb[0] + m * dst->nb[1] + i02 * dst->nb[2] + i03 * dst->nb[3]);
  11711. *y = *x;
  11712. }
  11713. }
  11714. }
  11715. }
  11716. }
  11717. static void ggml_compute_forward_upscale(
  11718. const struct ggml_compute_params * params,
  11719. const struct ggml_tensor * src0,
  11720. struct ggml_tensor * dst) {
  11721. switch (src0->type) {
  11722. case GGML_TYPE_F32:
  11723. {
  11724. ggml_compute_forward_upscale_f32(params, src0, dst);
  11725. } break;
  11726. default:
  11727. {
  11728. GGML_ASSERT(false);
  11729. } break;
  11730. }
  11731. }
  11732. // ggml_compute_forward_flash_attn
  11733. static void ggml_compute_forward_flash_attn_f32(
  11734. const struct ggml_compute_params * params,
  11735. const struct ggml_tensor * q,
  11736. const struct ggml_tensor * k,
  11737. const struct ggml_tensor * v,
  11738. const bool masked,
  11739. struct ggml_tensor * dst) {
  11740. int64_t t0 = ggml_perf_time_us();
  11741. UNUSED(t0);
  11742. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11743. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11744. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11745. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11746. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11747. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11748. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11749. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11750. const int ith = params->ith;
  11751. const int nth = params->nth;
  11752. const int64_t D = neq0;
  11753. const int64_t N = neq1;
  11754. const int64_t P = nek1 - N;
  11755. const int64_t M = P + N;
  11756. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11757. GGML_ASSERT(ne0 == D);
  11758. GGML_ASSERT(ne1 == N);
  11759. GGML_ASSERT(P >= 0);
  11760. GGML_ASSERT(nbq0 == sizeof(float));
  11761. GGML_ASSERT(nbk0 == sizeof(float));
  11762. GGML_ASSERT(nbv0 == sizeof(float));
  11763. GGML_ASSERT(neq0 == D);
  11764. GGML_ASSERT(nek0 == D);
  11765. GGML_ASSERT(nev1 == D);
  11766. GGML_ASSERT(neq1 == N);
  11767. GGML_ASSERT(nek1 == N + P);
  11768. GGML_ASSERT(nev1 == D);
  11769. // dst cannot be transposed or permuted
  11770. GGML_ASSERT(nb0 == sizeof(float));
  11771. GGML_ASSERT(nb0 <= nb1);
  11772. GGML_ASSERT(nb1 <= nb2);
  11773. GGML_ASSERT(nb2 <= nb3);
  11774. if (params->type == GGML_TASK_INIT) {
  11775. return;
  11776. }
  11777. if (params->type == GGML_TASK_FINALIZE) {
  11778. return;
  11779. }
  11780. // parallelize by q rows using ggml_vec_dot_f32
  11781. // total rows in q
  11782. const int nr = neq1*neq2*neq3;
  11783. // rows per thread
  11784. const int dr = (nr + nth - 1)/nth;
  11785. // row range for this thread
  11786. const int ir0 = dr*ith;
  11787. const int ir1 = MIN(ir0 + dr, nr);
  11788. const float scale = 1.0f/sqrtf(D);
  11789. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11790. for (int ir = ir0; ir < ir1; ++ir) {
  11791. // q indices
  11792. const int iq3 = ir/(neq2*neq1);
  11793. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11794. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11795. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  11796. for (int i = M; i < Mup; ++i) {
  11797. S[i] = -INFINITY;
  11798. }
  11799. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11800. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11801. // k indices
  11802. const int ik3 = iq3;
  11803. const int ik2 = iq2 % nek2;
  11804. const int ik1 = ic;
  11805. // S indices
  11806. const int i1 = ik1;
  11807. ggml_vec_dot_f32(neq0,
  11808. S + i1,
  11809. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11810. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11811. }
  11812. // scale
  11813. ggml_vec_scale_f32(masked_begin, S, scale);
  11814. for (int64_t i = masked_begin; i < M; i++) {
  11815. S[i] = -INFINITY;
  11816. }
  11817. // softmax
  11818. // exclude known -INF S[..] values from max and loop
  11819. // dont forget to set their SW values to zero
  11820. {
  11821. float max = -INFINITY;
  11822. ggml_vec_max_f32(masked_begin, &max, S);
  11823. ggml_float sum = 0.0;
  11824. {
  11825. #ifdef GGML_SOFT_MAX_ACCELERATE
  11826. max = -max;
  11827. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11828. vvexpf(S, S, &Mup);
  11829. ggml_vec_sum_f32(Mup, &sum, S);
  11830. #else
  11831. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11832. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11833. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11834. if (i >= masked_begin) {
  11835. break;
  11836. }
  11837. float * SS = S + i;
  11838. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11839. if (i + j >= masked_begin) {
  11840. break;
  11841. } else if (SS[j] == -INFINITY) {
  11842. SS[j] = 0.0f;
  11843. } else {
  11844. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11845. const float val = expf(SS[j] - max);
  11846. #else
  11847. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11848. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11849. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11850. #endif
  11851. sump[j] += (ggml_float)val;
  11852. SS[j] = val;
  11853. }
  11854. }
  11855. }
  11856. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11857. sum += sump[i];
  11858. }
  11859. #endif
  11860. }
  11861. assert(sum > 0.0);
  11862. sum = 1.0/sum;
  11863. ggml_vec_scale_f32(masked_begin, S, sum);
  11864. #ifndef NDEBUG
  11865. for (int i = 0; i < masked_begin; ++i) {
  11866. assert(!isnan(S[i]));
  11867. assert(!isinf(S[i]));
  11868. }
  11869. #endif
  11870. }
  11871. for (int64_t ic = 0; ic < nev1; ++ic) {
  11872. // dst indices
  11873. const int i1 = iq1;
  11874. const int i2 = iq2;
  11875. const int i3 = iq3;
  11876. // v indices
  11877. const int iv2 = iq2 % nev2;
  11878. const int iv3 = iq3;
  11879. ggml_vec_dot_f32(masked_begin,
  11880. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11881. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11882. S);
  11883. }
  11884. }
  11885. }
  11886. static void ggml_compute_forward_flash_attn_f16(
  11887. const struct ggml_compute_params * params,
  11888. const struct ggml_tensor * q,
  11889. const struct ggml_tensor * k,
  11890. const struct ggml_tensor * v,
  11891. const bool masked,
  11892. struct ggml_tensor * dst) {
  11893. int64_t t0 = ggml_perf_time_us();
  11894. UNUSED(t0);
  11895. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11896. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11897. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11898. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11899. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11900. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11901. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11902. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11903. const int ith = params->ith;
  11904. const int nth = params->nth;
  11905. const int64_t D = neq0;
  11906. const int64_t N = neq1;
  11907. const int64_t P = nek1 - N;
  11908. const int64_t M = P + N;
  11909. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11910. GGML_ASSERT(ne0 == D);
  11911. GGML_ASSERT(ne1 == N);
  11912. GGML_ASSERT(P >= 0);
  11913. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11914. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11915. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11916. GGML_ASSERT(neq0 == D);
  11917. GGML_ASSERT(nek0 == D);
  11918. GGML_ASSERT(nev1 == D);
  11919. GGML_ASSERT(neq1 == N);
  11920. GGML_ASSERT(nek1 == N + P);
  11921. GGML_ASSERT(nev1 == D);
  11922. // dst cannot be transposed or permuted
  11923. GGML_ASSERT(nb0 == sizeof(float));
  11924. GGML_ASSERT(nb0 <= nb1);
  11925. GGML_ASSERT(nb1 <= nb2);
  11926. GGML_ASSERT(nb2 <= nb3);
  11927. if (params->type == GGML_TASK_INIT) {
  11928. return;
  11929. }
  11930. if (params->type == GGML_TASK_FINALIZE) {
  11931. return;
  11932. }
  11933. // parallelize by q rows using ggml_vec_dot_f32
  11934. // total rows in q
  11935. const int nr = neq1*neq2*neq3;
  11936. // rows per thread
  11937. const int dr = (nr + nth - 1)/nth;
  11938. // row range for this thread
  11939. const int ir0 = dr*ith;
  11940. const int ir1 = MIN(ir0 + dr, nr);
  11941. const float scale = 1.0f/sqrtf(D);
  11942. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11943. for (int ir = ir0; ir < ir1; ++ir) {
  11944. // q indices
  11945. const int iq3 = ir/(neq2*neq1);
  11946. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11947. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11948. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11949. for (int i = M; i < Mup; ++i) {
  11950. S[i] = -INFINITY;
  11951. }
  11952. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11953. for (int64_t ic = 0; ic < nek1; ++ic) {
  11954. // k indices
  11955. const int ik3 = iq3;
  11956. const int ik2 = iq2 % nek2;
  11957. const int ik1 = ic;
  11958. // S indices
  11959. const int i1 = ik1;
  11960. ggml_vec_dot_f16(neq0,
  11961. S + i1,
  11962. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11963. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11964. }
  11965. } else {
  11966. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11967. // k indices
  11968. const int ik3 = iq3;
  11969. const int ik2 = iq2 % nek2;
  11970. const int ik1 = ic;
  11971. // S indices
  11972. const int i1 = ik1;
  11973. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11974. S + i1,
  11975. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11976. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11977. }
  11978. }
  11979. // scale
  11980. ggml_vec_scale_f32(nek1, S, scale);
  11981. if (masked) {
  11982. for (int64_t i = P; i < M; i++) {
  11983. if (i > P + iq1) {
  11984. S[i] = -INFINITY;
  11985. }
  11986. }
  11987. }
  11988. // softmax
  11989. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  11990. // dont forget to set their S values to zero
  11991. {
  11992. float max = -INFINITY;
  11993. ggml_vec_max_f32(M, &max, S);
  11994. ggml_float sum = 0.0;
  11995. {
  11996. #ifdef GGML_SOFT_MAX_ACCELERATE
  11997. max = -max;
  11998. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11999. vvexpf(S, S, &Mup);
  12000. ggml_vec_sum_f32(Mup, &sum, S);
  12001. #else
  12002. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  12003. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  12004. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  12005. float * SS = S + i;
  12006. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  12007. if (SS[j] == -INFINITY) {
  12008. SS[j] = 0.0f;
  12009. } else {
  12010. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  12011. memcpy(&scvt[j], &s, sizeof(uint16_t));
  12012. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  12013. sump[j] += (ggml_float)val;
  12014. SS[j] = val;
  12015. }
  12016. }
  12017. }
  12018. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  12019. sum += sump[i];
  12020. }
  12021. #endif
  12022. }
  12023. assert(sum > 0.0);
  12024. sum = 1.0/sum;
  12025. ggml_vec_scale_f32(M, S, sum);
  12026. #ifndef NDEBUG
  12027. for (int i = 0; i < M; ++i) {
  12028. assert(!isnan(S[i]));
  12029. assert(!isinf(S[i]));
  12030. }
  12031. #endif
  12032. }
  12033. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  12034. for (int64_t i = 0; i < M; i++) {
  12035. S16[i] = GGML_FP32_TO_FP16(S[i]);
  12036. }
  12037. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  12038. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  12039. for (int64_t ic = 0; ic < nev1; ++ic) {
  12040. // dst indices
  12041. const int i1 = iq1;
  12042. const int i2 = iq2;
  12043. const int i3 = iq3;
  12044. // v indices
  12045. const int iv2 = iq2 % nev2;
  12046. const int iv3 = iq3;
  12047. ggml_vec_dot_f16(nev0,
  12048. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  12049. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12050. S16);
  12051. }
  12052. } else {
  12053. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  12054. // dst indices
  12055. const int i1 = iq1;
  12056. const int i2 = iq2;
  12057. const int i3 = iq3;
  12058. // v indices
  12059. const int iv2 = iq2 % nev2;
  12060. const int iv3 = iq3;
  12061. ggml_vec_dot_f16_unroll(nev0, nbv1,
  12062. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  12063. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12064. S16);
  12065. }
  12066. }
  12067. }
  12068. }
  12069. static void ggml_compute_forward_flash_attn(
  12070. const struct ggml_compute_params * params,
  12071. const struct ggml_tensor * q,
  12072. const struct ggml_tensor * k,
  12073. const struct ggml_tensor * v,
  12074. const bool masked,
  12075. struct ggml_tensor * dst) {
  12076. switch (q->type) {
  12077. case GGML_TYPE_F16:
  12078. {
  12079. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  12080. } break;
  12081. case GGML_TYPE_F32:
  12082. {
  12083. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  12084. } break;
  12085. default:
  12086. {
  12087. GGML_ASSERT(false);
  12088. } break;
  12089. }
  12090. }
  12091. // ggml_compute_forward_flash_ff
  12092. static void ggml_compute_forward_flash_ff_f16(
  12093. const struct ggml_compute_params * params,
  12094. const struct ggml_tensor * a, // F16
  12095. const struct ggml_tensor * b0, // F16 fc_w
  12096. const struct ggml_tensor * b1, // F32 fc_b
  12097. const struct ggml_tensor * c0, // F16 proj_w
  12098. const struct ggml_tensor * c1, // F32 proj_b
  12099. struct ggml_tensor * dst) {
  12100. int64_t t0 = ggml_perf_time_us();
  12101. UNUSED(t0);
  12102. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  12103. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  12104. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  12105. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  12106. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  12107. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  12108. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  12109. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  12110. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  12111. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  12112. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12113. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12114. const int ith = params->ith;
  12115. const int nth = params->nth;
  12116. const int64_t D = nea0;
  12117. //const int64_t N = nea1;
  12118. const int64_t M = neb01;
  12119. GGML_ASSERT(ne0 == nea0);
  12120. GGML_ASSERT(ne1 == nea1);
  12121. GGML_ASSERT(ne2 == nea2);
  12122. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  12123. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  12124. GGML_ASSERT(nbb10 == sizeof(float));
  12125. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  12126. GGML_ASSERT(nbc10 == sizeof(float));
  12127. GGML_ASSERT(neb00 == D);
  12128. GGML_ASSERT(neb01 == M);
  12129. GGML_ASSERT(neb10 == M);
  12130. GGML_ASSERT(neb11 == 1);
  12131. GGML_ASSERT(nec00 == M);
  12132. GGML_ASSERT(nec01 == D);
  12133. GGML_ASSERT(nec10 == D);
  12134. GGML_ASSERT(nec11 == 1);
  12135. // dst cannot be transposed or permuted
  12136. GGML_ASSERT(nb0 == sizeof(float));
  12137. GGML_ASSERT(nb0 <= nb1);
  12138. GGML_ASSERT(nb1 <= nb2);
  12139. GGML_ASSERT(nb2 <= nb3);
  12140. if (params->type == GGML_TASK_INIT) {
  12141. return;
  12142. }
  12143. if (params->type == GGML_TASK_FINALIZE) {
  12144. return;
  12145. }
  12146. // parallelize by a rows using ggml_vec_dot_f32
  12147. // total rows in a
  12148. const int nr = nea1*nea2*nea3;
  12149. // rows per thread
  12150. const int dr = (nr + nth - 1)/nth;
  12151. // row range for this thread
  12152. const int ir0 = dr*ith;
  12153. const int ir1 = MIN(ir0 + dr, nr);
  12154. for (int ir = ir0; ir < ir1; ++ir) {
  12155. // a indices
  12156. const int ia3 = ir/(nea2*nea1);
  12157. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  12158. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  12159. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  12160. for (int64_t ic = 0; ic < neb01; ++ic) {
  12161. // b0 indices
  12162. const int ib03 = ia3;
  12163. const int ib02 = ia2;
  12164. const int ib01 = ic;
  12165. // S indices
  12166. const int i1 = ib01;
  12167. ggml_vec_dot_f16(nea0,
  12168. S + i1,
  12169. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  12170. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  12171. }
  12172. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  12173. //ggml_vec_gelu_f32(neb01, S, S);
  12174. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  12175. for (int64_t i = 0; i < M; i++) {
  12176. S16[i] = GGML_FP32_TO_FP16(S[i]);
  12177. }
  12178. ggml_vec_gelu_f16(neb01, S16, S16);
  12179. {
  12180. // dst indices
  12181. const int i1 = ia1;
  12182. const int i2 = ia2;
  12183. const int i3 = ia3;
  12184. for (int64_t ic = 0; ic < nec01; ++ic) {
  12185. ggml_vec_dot_f16(neb01,
  12186. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  12187. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  12188. S16);
  12189. }
  12190. ggml_vec_add_f32(nec01,
  12191. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  12192. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  12193. (float *) c1->data);
  12194. }
  12195. }
  12196. }
  12197. static void ggml_compute_forward_flash_ff(
  12198. const struct ggml_compute_params * params,
  12199. const struct ggml_tensor * a,
  12200. const struct ggml_tensor * b0,
  12201. const struct ggml_tensor * b1,
  12202. const struct ggml_tensor * c0,
  12203. const struct ggml_tensor * c1,
  12204. struct ggml_tensor * dst) {
  12205. switch (b0->type) {
  12206. case GGML_TYPE_F16:
  12207. {
  12208. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  12209. } break;
  12210. case GGML_TYPE_F32:
  12211. {
  12212. GGML_ASSERT(false); // TODO
  12213. } break;
  12214. default:
  12215. {
  12216. GGML_ASSERT(false);
  12217. } break;
  12218. }
  12219. }
  12220. // ggml_compute_forward_flash_attn_back
  12221. static void ggml_compute_forward_flash_attn_back_f32(
  12222. const struct ggml_compute_params * params,
  12223. const struct ggml_tensor * q,
  12224. const struct ggml_tensor * k,
  12225. const struct ggml_tensor * v,
  12226. const struct ggml_tensor * d,
  12227. const bool masked,
  12228. struct ggml_tensor * dst) {
  12229. int64_t t0 = ggml_perf_time_us();
  12230. UNUSED(t0);
  12231. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12232. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12233. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12234. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12235. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12236. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12237. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  12238. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  12239. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12240. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12241. const int ith = params->ith;
  12242. const int nth = params->nth;
  12243. const int64_t D = neq0;
  12244. const int64_t N = neq1;
  12245. const int64_t P = nek1 - N;
  12246. const int64_t M = P + N;
  12247. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12248. const int mxDM = MAX(D, Mup);
  12249. // GGML_ASSERT(ne0 == D);
  12250. // GGML_ASSERT(ne1 == N);
  12251. GGML_ASSERT(P >= 0);
  12252. GGML_ASSERT(nbq0 == sizeof(float));
  12253. GGML_ASSERT(nbk0 == sizeof(float));
  12254. GGML_ASSERT(nbv0 == sizeof(float));
  12255. GGML_ASSERT(neq0 == D);
  12256. GGML_ASSERT(nek0 == D);
  12257. GGML_ASSERT(nev1 == D);
  12258. GGML_ASSERT(ned0 == D);
  12259. GGML_ASSERT(neq1 == N);
  12260. GGML_ASSERT(nek1 == N + P);
  12261. GGML_ASSERT(nev1 == D);
  12262. GGML_ASSERT(ned1 == N);
  12263. // dst cannot be transposed or permuted
  12264. GGML_ASSERT(nb0 == sizeof(float));
  12265. GGML_ASSERT(nb0 <= nb1);
  12266. GGML_ASSERT(nb1 <= nb2);
  12267. GGML_ASSERT(nb2 <= nb3);
  12268. if (params->type == GGML_TASK_INIT) {
  12269. if (ith == 0) {
  12270. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  12271. }
  12272. return;
  12273. }
  12274. if (params->type == GGML_TASK_FINALIZE) {
  12275. return;
  12276. }
  12277. const int64_t elem_q = ggml_nelements(q);
  12278. const int64_t elem_k = ggml_nelements(k);
  12279. enum ggml_type result_type = dst->type;
  12280. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  12281. const size_t tsize = ggml_type_size(result_type);
  12282. const size_t offs_q = 0;
  12283. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  12284. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  12285. void * grad_q = (char *) dst->data;
  12286. void * grad_k = (char *) dst->data + offs_k;
  12287. void * grad_v = (char *) dst->data + offs_v;
  12288. const size_t nbgq1 = nb0*neq0;
  12289. const size_t nbgq2 = nb0*neq0*neq1;
  12290. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  12291. const size_t nbgk1 = nb0*nek0;
  12292. const size_t nbgk2 = nb0*nek0*nek1;
  12293. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  12294. const size_t nbgv1 = nb0*nev0;
  12295. const size_t nbgv2 = nb0*nev0*nev1;
  12296. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  12297. // parallelize by k rows using ggml_vec_dot_f32
  12298. // total rows in k
  12299. const int nr = nek2*nek3;
  12300. // rows per thread
  12301. const int dr = (nr + nth - 1)/nth;
  12302. // row range for this thread
  12303. const int ir0 = dr*ith;
  12304. const int ir1 = MIN(ir0 + dr, nr);
  12305. const float scale = 1.0f/sqrtf(D);
  12306. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12307. // how often k2 (and v2) is repeated in q2
  12308. int nrep = neq2/nek2;
  12309. for (int ir = ir0; ir < ir1; ++ir) {
  12310. // q indices
  12311. const int ik3 = ir/(nek2);
  12312. const int ik2 = ir - ik3*nek2;
  12313. const int iq3 = ik3;
  12314. const int id3 = ik3;
  12315. const int iv3 = ik3;
  12316. const int iv2 = ik2;
  12317. for (int irep = 0; irep < nrep; ++irep) {
  12318. const int iq2 = ik2 + irep*nek2;
  12319. const int id2 = iq2;
  12320. // (ik2 + irep*nek2) % nek2 == ik2
  12321. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  12322. const int id1 = iq1;
  12323. // not sure about CACHE_LINE_SIZE_F32..
  12324. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  12325. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  12326. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  12327. for (int i = M; i < Mup; ++i) {
  12328. S[i] = -INFINITY;
  12329. }
  12330. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  12331. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12332. // k indices
  12333. const int ik1 = ic;
  12334. // S indices
  12335. const int i1 = ik1;
  12336. ggml_vec_dot_f32(neq0,
  12337. S + i1,
  12338. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12339. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  12340. }
  12341. // scale
  12342. ggml_vec_scale_f32(masked_begin, S, scale);
  12343. for (int64_t i = masked_begin; i < M; i++) {
  12344. S[i] = -INFINITY;
  12345. }
  12346. // softmax
  12347. // exclude known -INF S[..] values from max and loop
  12348. // dont forget to set their SM values to zero
  12349. {
  12350. float max = -INFINITY;
  12351. ggml_vec_max_f32(masked_begin, &max, S);
  12352. ggml_float sum = 0.0;
  12353. {
  12354. #ifdef GGML_SOFT_MAX_ACCELERATE
  12355. max = -max;
  12356. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  12357. vvexpf(SM, SM, &Mup);
  12358. ggml_vec_sum_f32(Mup, &sum, SM);
  12359. #else
  12360. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  12361. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  12362. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  12363. if (i >= masked_begin) {
  12364. break;
  12365. }
  12366. float * SR = S + i;
  12367. float * SW = SM + i;
  12368. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  12369. if (i + j >= masked_begin) {
  12370. break;
  12371. } else if (SR[j] == -INFINITY) {
  12372. SW[j] = 0.0f;
  12373. } else {
  12374. #ifndef GGML_FLASH_ATTN_EXP_FP16
  12375. const float val = expf(SR[j] - max);
  12376. #else
  12377. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  12378. memcpy(&scvt[j], &s, sizeof(uint16_t));
  12379. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  12380. #endif
  12381. sump[j] += (ggml_float)val;
  12382. SW[j] = val;
  12383. }
  12384. }
  12385. }
  12386. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  12387. sum += sump[i];
  12388. }
  12389. #endif
  12390. }
  12391. assert(sum > 0.0);
  12392. sum = 1.0/sum;
  12393. ggml_vec_scale_f32(masked_begin, SM, sum);
  12394. }
  12395. // step-by-step explanation
  12396. {
  12397. // forward-process shape grads from backward process
  12398. // parallel_for ik2,ik3:
  12399. // for irep:
  12400. // iq2 = ik2 + irep*nek2
  12401. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  12402. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  12403. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  12404. // for iq1:
  12405. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  12406. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  12407. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  12408. // S0 = -Inf [D,1,1,1]
  12409. // ~S1[i] = dot(kcur[:D,i], qcur)
  12410. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  12411. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  12412. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12413. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  12414. // ~S5[i] = dot(vcur[:,i], S4)
  12415. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  12416. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  12417. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  12418. // dst backward-/ grad[dst] = d
  12419. //
  12420. // output gradients with their dependencies:
  12421. //
  12422. // grad[kcur] = grad[S1].T @ qcur
  12423. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12424. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12425. // grad[S4] = grad[S5] @ vcur
  12426. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12427. // grad[qcur] = grad[S1] @ kcur
  12428. // grad[vcur] = grad[S5].T @ S4
  12429. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12430. //
  12431. // in post-order:
  12432. //
  12433. // S1 = qcur @ kcur.T
  12434. // S2 = S1 * scale
  12435. // S3 = diag_mask_inf(S2, P)
  12436. // S4 = softmax(S3)
  12437. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12438. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12439. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12440. // grad[qcur] = grad[S1] @ kcur
  12441. // grad[kcur] = grad[S1].T @ qcur
  12442. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12443. //
  12444. // using less variables (SM=S4):
  12445. //
  12446. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  12447. // SM = softmax(S)
  12448. // S = d[:D,iq1,iq2,iq3] @ vcur
  12449. // dot_SM_gradSM = dot(SM, S)
  12450. // S = SM * (S - dot(SM, S))
  12451. // S = diag_mask_zero(S, P) * scale
  12452. //
  12453. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12454. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  12455. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12456. }
  12457. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12458. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12459. // for ic:
  12460. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  12461. // exclude known future zero S[..] values from operation
  12462. ggml_vec_set_f32(masked_begin, S, 0);
  12463. for (int64_t ic = 0; ic < D; ++ic) {
  12464. ggml_vec_mad_f32(masked_begin,
  12465. S,
  12466. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12467. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12468. }
  12469. // S = SM * (S - dot(SM, S))
  12470. float dot_SM_gradSM = 0;
  12471. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, SM, S);
  12472. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  12473. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  12474. // S = diag_mask_zero(S, P) * scale
  12475. // already done by above ggml_vec_set_f32
  12476. // exclude known zero S[..] values from operation
  12477. ggml_vec_scale_f32(masked_begin, S, scale);
  12478. // S shape [M,1]
  12479. // SM shape [M,1]
  12480. // kcur shape [D,M]
  12481. // qcur shape [D,1]
  12482. // vcur shape [M,D]
  12483. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12484. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  12485. // for ic:
  12486. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  12487. // exclude known zero S[..] values from loop
  12488. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12489. ggml_vec_mad_f32(D,
  12490. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  12491. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12492. S[ic]);
  12493. }
  12494. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  12495. // for ic:
  12496. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  12497. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  12498. // exclude known zero S[..] values from loop
  12499. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12500. ggml_vec_mad_f32(D,
  12501. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  12502. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  12503. S[ic]);
  12504. }
  12505. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12506. // for ic:
  12507. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  12508. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  12509. // exclude known zero SM[..] values from mad
  12510. for (int64_t ic = 0; ic < D; ++ic) {
  12511. ggml_vec_mad_f32(masked_begin,
  12512. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  12513. SM,
  12514. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12515. }
  12516. }
  12517. }
  12518. }
  12519. }
  12520. static void ggml_compute_forward_flash_attn_back(
  12521. const struct ggml_compute_params * params,
  12522. const struct ggml_tensor * q,
  12523. const struct ggml_tensor * k,
  12524. const struct ggml_tensor * v,
  12525. const struct ggml_tensor * d,
  12526. const bool masked,
  12527. struct ggml_tensor * dst) {
  12528. switch (q->type) {
  12529. case GGML_TYPE_F32:
  12530. {
  12531. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  12532. } break;
  12533. default:
  12534. {
  12535. GGML_ASSERT(false);
  12536. } break;
  12537. }
  12538. }
  12539. // ggml_compute_forward_win_part
  12540. static void ggml_compute_forward_win_part_f32(
  12541. const struct ggml_compute_params * params,
  12542. const struct ggml_tensor * src0,
  12543. struct ggml_tensor * dst) {
  12544. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12545. return;
  12546. }
  12547. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12548. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12549. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  12550. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  12551. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  12552. assert(ne00 == ne0);
  12553. assert(ne3 == nep0*nep1);
  12554. // TODO: optimize / multi-thread
  12555. for (int py = 0; py < nep1; ++py) {
  12556. for (int px = 0; px < nep0; ++px) {
  12557. const int64_t i3 = py*nep0 + px;
  12558. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12559. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12560. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12561. const int64_t i02 = py*w + i2;
  12562. const int64_t i01 = px*w + i1;
  12563. const int64_t i00 = i0;
  12564. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  12565. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  12566. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  12567. ((float *) dst->data)[i] = 0.0f;
  12568. } else {
  12569. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  12570. }
  12571. }
  12572. }
  12573. }
  12574. }
  12575. }
  12576. }
  12577. static void ggml_compute_forward_win_part(
  12578. const struct ggml_compute_params * params,
  12579. const struct ggml_tensor * src0,
  12580. struct ggml_tensor * dst) {
  12581. switch (src0->type) {
  12582. case GGML_TYPE_F32:
  12583. {
  12584. ggml_compute_forward_win_part_f32(params, src0, dst);
  12585. } break;
  12586. default:
  12587. {
  12588. GGML_ASSERT(false);
  12589. } break;
  12590. }
  12591. }
  12592. // ggml_compute_forward_win_unpart
  12593. static void ggml_compute_forward_win_unpart_f32(
  12594. const struct ggml_compute_params * params,
  12595. const struct ggml_tensor * src0,
  12596. struct ggml_tensor * dst) {
  12597. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12598. return;
  12599. }
  12600. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12601. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12602. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  12603. // padding
  12604. const int px = (w - ne1%w)%w;
  12605. //const int py = (w - ne2%w)%w;
  12606. const int npx = (px + ne1)/w;
  12607. //const int npy = (py + ne2)/w;
  12608. assert(ne0 == ne00);
  12609. // TODO: optimize / multi-thread
  12610. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12611. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12612. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12613. const int ip2 = i2/w;
  12614. const int ip1 = i1/w;
  12615. const int64_t i02 = i2%w;
  12616. const int64_t i01 = i1%w;
  12617. const int64_t i00 = i0;
  12618. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  12619. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  12620. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  12621. }
  12622. }
  12623. }
  12624. }
  12625. static void ggml_compute_forward_win_unpart(
  12626. const struct ggml_compute_params * params,
  12627. const struct ggml_tensor * src0,
  12628. struct ggml_tensor * dst) {
  12629. switch (src0->type) {
  12630. case GGML_TYPE_F32:
  12631. {
  12632. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  12633. } break;
  12634. default:
  12635. {
  12636. GGML_ASSERT(false);
  12637. } break;
  12638. }
  12639. }
  12640. //gmml_compute_forward_unary
  12641. static void ggml_compute_forward_unary(
  12642. const struct ggml_compute_params * params,
  12643. const struct ggml_tensor * src0,
  12644. struct ggml_tensor * dst) {
  12645. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  12646. switch (op) {
  12647. case GGML_UNARY_OP_ABS:
  12648. {
  12649. ggml_compute_forward_abs(params, src0, dst);
  12650. } break;
  12651. case GGML_UNARY_OP_SGN:
  12652. {
  12653. ggml_compute_forward_sgn(params, src0, dst);
  12654. } break;
  12655. case GGML_UNARY_OP_NEG:
  12656. {
  12657. ggml_compute_forward_neg(params, src0, dst);
  12658. } break;
  12659. case GGML_UNARY_OP_STEP:
  12660. {
  12661. ggml_compute_forward_step(params, src0, dst);
  12662. } break;
  12663. case GGML_UNARY_OP_TANH:
  12664. {
  12665. ggml_compute_forward_tanh(params, src0, dst);
  12666. } break;
  12667. case GGML_UNARY_OP_ELU:
  12668. {
  12669. ggml_compute_forward_elu(params, src0, dst);
  12670. } break;
  12671. case GGML_UNARY_OP_RELU:
  12672. {
  12673. ggml_compute_forward_relu(params, src0, dst);
  12674. } break;
  12675. case GGML_UNARY_OP_GELU:
  12676. {
  12677. ggml_compute_forward_gelu(params, src0, dst);
  12678. } break;
  12679. case GGML_UNARY_OP_GELU_QUICK:
  12680. {
  12681. ggml_compute_forward_gelu_quick(params, src0, dst);
  12682. } break;
  12683. case GGML_UNARY_OP_SILU:
  12684. {
  12685. ggml_compute_forward_silu(params, src0, dst);
  12686. } break;
  12687. default:
  12688. {
  12689. GGML_ASSERT(false);
  12690. } break;
  12691. }
  12692. }
  12693. // ggml_compute_forward_get_rel_pos
  12694. static void ggml_compute_forward_get_rel_pos_f16(
  12695. const struct ggml_compute_params * params,
  12696. const struct ggml_tensor * src0,
  12697. struct ggml_tensor * dst) {
  12698. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12699. return;
  12700. }
  12701. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  12702. GGML_TENSOR_UNARY_OP_LOCALS
  12703. const int64_t w = ne1;
  12704. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  12705. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  12706. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12707. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12708. const int64_t pos = (w - i1 - 1) + i2;
  12709. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12710. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  12711. }
  12712. }
  12713. }
  12714. }
  12715. static void ggml_compute_forward_get_rel_pos(
  12716. const struct ggml_compute_params * params,
  12717. const struct ggml_tensor * src0,
  12718. struct ggml_tensor * dst) {
  12719. switch (src0->type) {
  12720. case GGML_TYPE_F16:
  12721. {
  12722. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  12723. } break;
  12724. default:
  12725. {
  12726. GGML_ASSERT(false);
  12727. } break;
  12728. }
  12729. }
  12730. // ggml_compute_forward_add_rel_pos
  12731. static void ggml_compute_forward_add_rel_pos_f32(
  12732. const struct ggml_compute_params * params,
  12733. const struct ggml_tensor * src0,
  12734. const struct ggml_tensor * src1,
  12735. const struct ggml_tensor * src2,
  12736. struct ggml_tensor * dst) {
  12737. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  12738. if (!inplace && params->type == GGML_TASK_INIT) {
  12739. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  12740. return;
  12741. }
  12742. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12743. return;
  12744. }
  12745. int64_t t0 = ggml_perf_time_us();
  12746. UNUSED(t0);
  12747. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  12748. float * src1_data = (float *) src1->data;
  12749. float * src2_data = (float *) src2->data;
  12750. float * dst_data = (float *) dst->data;
  12751. const int64_t ne10 = src1->ne[0];
  12752. const int64_t ne11 = src1->ne[1];
  12753. const int64_t ne12 = src1->ne[2];
  12754. const int64_t ne13 = src1->ne[3];
  12755. const int ith = params->ith;
  12756. const int nth = params->nth;
  12757. // total patches in dst
  12758. const int np = ne13;
  12759. // patches per thread
  12760. const int dp = (np + nth - 1)/nth;
  12761. // patch range for this thread
  12762. const int ip0 = dp*ith;
  12763. const int ip1 = MIN(ip0 + dp, np);
  12764. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  12765. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  12766. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  12767. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  12768. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  12769. const int64_t jp0 = jp1 + i10;
  12770. const float src1_e = src1_data[jp0];
  12771. const float src2_e = src2_data[jp0];
  12772. const int64_t jdh = jp0 * ne10;
  12773. const int64_t jdw = jdh - (ne10 - 1) * i10;
  12774. for (int64_t j = 0; j < ne10; ++j) {
  12775. dst_data[jdh + j ] += src2_e;
  12776. dst_data[jdw + j*ne10] += src1_e;
  12777. }
  12778. }
  12779. }
  12780. }
  12781. }
  12782. }
  12783. static void ggml_compute_forward_add_rel_pos(
  12784. const struct ggml_compute_params * params,
  12785. const struct ggml_tensor * src0,
  12786. const struct ggml_tensor * src1,
  12787. const struct ggml_tensor * src2,
  12788. struct ggml_tensor * dst) {
  12789. switch (src0->type) {
  12790. case GGML_TYPE_F32:
  12791. {
  12792. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  12793. } break;
  12794. default:
  12795. {
  12796. GGML_ASSERT(false);
  12797. } break;
  12798. }
  12799. }
  12800. // ggml_compute_forward_map_unary
  12801. static void ggml_compute_forward_map_unary_f32(
  12802. const struct ggml_compute_params * params,
  12803. const struct ggml_tensor * src0,
  12804. struct ggml_tensor * dst,
  12805. const ggml_unary_op_f32_t fun) {
  12806. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12807. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12808. return;
  12809. }
  12810. const int n = ggml_nrows(src0);
  12811. const int nc = src0->ne[0];
  12812. assert( dst->nb[0] == sizeof(float));
  12813. assert(src0->nb[0] == sizeof(float));
  12814. for (int i = 0; i < n; i++) {
  12815. fun(nc,
  12816. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12817. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12818. }
  12819. }
  12820. static void ggml_compute_forward_map_unary(
  12821. const struct ggml_compute_params * params,
  12822. const struct ggml_tensor * src0,
  12823. struct ggml_tensor * dst,
  12824. const ggml_unary_op_f32_t fun) {
  12825. switch (src0->type) {
  12826. case GGML_TYPE_F32:
  12827. {
  12828. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  12829. } break;
  12830. default:
  12831. {
  12832. GGML_ASSERT(false);
  12833. } break;
  12834. }
  12835. }
  12836. // ggml_compute_forward_map_binary
  12837. static void ggml_compute_forward_map_binary_f32(
  12838. const struct ggml_compute_params * params,
  12839. const struct ggml_tensor * src0,
  12840. const struct ggml_tensor * src1,
  12841. struct ggml_tensor * dst,
  12842. const ggml_binary_op_f32_t fun) {
  12843. assert(params->ith == 0);
  12844. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12845. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12846. return;
  12847. }
  12848. const int n = ggml_nrows(src0);
  12849. const int nc = src0->ne[0];
  12850. assert( dst->nb[0] == sizeof(float));
  12851. assert(src0->nb[0] == sizeof(float));
  12852. assert(src1->nb[0] == sizeof(float));
  12853. for (int i = 0; i < n; i++) {
  12854. fun(nc,
  12855. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12856. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12857. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12858. }
  12859. }
  12860. static void ggml_compute_forward_map_binary(
  12861. const struct ggml_compute_params * params,
  12862. const struct ggml_tensor * src0,
  12863. const struct ggml_tensor * src1,
  12864. struct ggml_tensor * dst,
  12865. const ggml_binary_op_f32_t fun) {
  12866. switch (src0->type) {
  12867. case GGML_TYPE_F32:
  12868. {
  12869. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  12870. } break;
  12871. default:
  12872. {
  12873. GGML_ASSERT(false);
  12874. } break;
  12875. }
  12876. }
  12877. // ggml_compute_forward_map_custom1
  12878. static void ggml_compute_forward_map_custom1_f32(
  12879. const struct ggml_compute_params * params,
  12880. const struct ggml_tensor * a,
  12881. struct ggml_tensor * dst,
  12882. const ggml_custom1_op_f32_t fun) {
  12883. assert(params->ith == 0);
  12884. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12885. return;
  12886. }
  12887. fun(dst, a);
  12888. }
  12889. // ggml_compute_forward_map_custom2
  12890. static void ggml_compute_forward_map_custom2_f32(
  12891. const struct ggml_compute_params * params,
  12892. const struct ggml_tensor * a,
  12893. const struct ggml_tensor * b,
  12894. struct ggml_tensor * dst,
  12895. const ggml_custom2_op_f32_t fun) {
  12896. assert(params->ith == 0);
  12897. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12898. return;
  12899. }
  12900. fun(dst, a, b);
  12901. }
  12902. // ggml_compute_forward_map_custom3
  12903. static void ggml_compute_forward_map_custom3_f32(
  12904. const struct ggml_compute_params * params,
  12905. const struct ggml_tensor * a,
  12906. const struct ggml_tensor * b,
  12907. const struct ggml_tensor * c,
  12908. struct ggml_tensor * dst,
  12909. const ggml_custom3_op_f32_t fun) {
  12910. assert(params->ith == 0);
  12911. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12912. return;
  12913. }
  12914. fun(dst, a, b, c);
  12915. }
  12916. // ggml_compute_forward_map_custom1
  12917. static void ggml_compute_forward_map_custom1(
  12918. const struct ggml_compute_params * params,
  12919. const struct ggml_tensor * a,
  12920. struct ggml_tensor * dst) {
  12921. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12922. return;
  12923. }
  12924. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  12925. p->fun(dst, a, params->ith, params->nth, p->userdata);
  12926. }
  12927. // ggml_compute_forward_map_custom2
  12928. static void ggml_compute_forward_map_custom2(
  12929. const struct ggml_compute_params * params,
  12930. const struct ggml_tensor * a,
  12931. const struct ggml_tensor * b,
  12932. struct ggml_tensor * dst) {
  12933. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12934. return;
  12935. }
  12936. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  12937. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  12938. }
  12939. // ggml_compute_forward_map_custom3
  12940. static void ggml_compute_forward_map_custom3(
  12941. const struct ggml_compute_params * params,
  12942. const struct ggml_tensor * a,
  12943. const struct ggml_tensor * b,
  12944. const struct ggml_tensor * c,
  12945. struct ggml_tensor * dst) {
  12946. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12947. return;
  12948. }
  12949. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  12950. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  12951. }
  12952. // ggml_compute_forward_cross_entropy_loss
  12953. static void ggml_compute_forward_cross_entropy_loss_f32(
  12954. const struct ggml_compute_params * params,
  12955. const struct ggml_tensor * src0,
  12956. const struct ggml_tensor * src1,
  12957. struct ggml_tensor * dst) {
  12958. GGML_ASSERT(ggml_is_contiguous(src0));
  12959. GGML_ASSERT(ggml_is_contiguous(src1));
  12960. GGML_ASSERT(ggml_is_scalar(dst));
  12961. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12962. const int ith = params->ith;
  12963. const int nth = params->nth;
  12964. float * sums = (float *) params->wdata;
  12965. // TODO: handle transposed/permuted matrices
  12966. const int nc = src0->ne[0];
  12967. const int nr = ggml_nrows(src0);
  12968. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12969. if (params->type == GGML_TASK_INIT) {
  12970. if (ith == 0) {
  12971. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12972. }
  12973. return;
  12974. }
  12975. if (params->type == GGML_TASK_FINALIZE) {
  12976. if (ith == 0) {
  12977. float * dp = (float *) dst->data;
  12978. ggml_vec_sum_f32(nth, dp, sums);
  12979. dp[0] *= -1.0f / (float) nr;
  12980. }
  12981. return;
  12982. }
  12983. const double eps = 1e-9;
  12984. // rows per thread
  12985. const int dr = (nr + nth - 1)/nth;
  12986. // row range for this thread
  12987. const int ir0 = dr*ith;
  12988. const int ir1 = MIN(ir0 + dr, nr);
  12989. for (int i1 = ir0; i1 < ir1; i1++) {
  12990. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12991. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12992. float * st = ((float *) params->wdata) + nth + ith*nc;
  12993. #ifndef NDEBUG
  12994. for (int i = 0; i < nc; ++i) {
  12995. //printf("p[%d] = %f\n", i, p[i]);
  12996. assert(!isnan(s0[i]));
  12997. assert(!isnan(s1[i]));
  12998. }
  12999. #endif
  13000. // soft_max
  13001. ggml_float sum = 0.0;
  13002. {
  13003. float max = -INFINITY;
  13004. ggml_vec_max_f32(nc, &max, s0);
  13005. uint16_t scvt; UNUSED(scvt);
  13006. for (int i = 0; i < nc; i++) {
  13007. if (s0[i] == -INFINITY) {
  13008. st[i] = 0.0f;
  13009. } else {
  13010. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  13011. const float s = s0[i] - max;
  13012. const float val = expf(s);
  13013. #else
  13014. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  13015. memcpy(&scvt, &s, sizeof(scvt));
  13016. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  13017. #endif
  13018. sum += (ggml_float)val;
  13019. st[i] = val;
  13020. }
  13021. }
  13022. assert(sum > 0.0);
  13023. // sum = 1.0/sum;
  13024. }
  13025. // avoid log(0) by rescaling from [0..1] to [eps..1]
  13026. sum = (1.0 - eps) / sum;
  13027. ggml_vec_scale_f32(nc, st, sum);
  13028. ggml_vec_add1_f32(nc, st, st, eps);
  13029. ggml_vec_log_f32(nc, st, st);
  13030. ggml_vec_mul_f32(nc, st, st, s1);
  13031. float st_sum = 0;
  13032. ggml_vec_sum_f32(nc, &st_sum, st);
  13033. sums[ith] += st_sum;
  13034. #ifndef NDEBUG
  13035. for (int i = 0; i < nc; ++i) {
  13036. assert(!isnan(st[i]));
  13037. assert(!isinf(st[i]));
  13038. }
  13039. #endif
  13040. }
  13041. }
  13042. static void ggml_compute_forward_cross_entropy_loss(
  13043. const struct ggml_compute_params * params,
  13044. const struct ggml_tensor * src0,
  13045. const struct ggml_tensor * src1,
  13046. struct ggml_tensor * dst) {
  13047. switch (src0->type) {
  13048. case GGML_TYPE_F32:
  13049. {
  13050. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  13051. } break;
  13052. default:
  13053. {
  13054. GGML_ASSERT(false);
  13055. } break;
  13056. }
  13057. }
  13058. // ggml_compute_forward_cross_entropy_loss_back
  13059. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  13060. const struct ggml_compute_params * params,
  13061. const struct ggml_tensor * src0,
  13062. const struct ggml_tensor * src1,
  13063. const struct ggml_tensor * opt0,
  13064. struct ggml_tensor * dst) {
  13065. GGML_ASSERT(ggml_is_contiguous(dst));
  13066. GGML_ASSERT(ggml_is_contiguous(src0));
  13067. GGML_ASSERT(ggml_is_contiguous(src1));
  13068. GGML_ASSERT(ggml_is_contiguous(opt0));
  13069. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13070. const int64_t ith = params->ith;
  13071. const int64_t nth = params->nth;
  13072. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  13073. return;
  13074. }
  13075. const double eps = 1e-9;
  13076. // TODO: handle transposed/permuted matrices
  13077. const int64_t nc = src0->ne[0];
  13078. const int64_t nr = ggml_nrows(src0);
  13079. // rows per thread
  13080. const int64_t dr = (nr + nth - 1)/nth;
  13081. // row range for this thread
  13082. const int64_t ir0 = dr*ith;
  13083. const int64_t ir1 = MIN(ir0 + dr, nr);
  13084. float * d = (float *) opt0->data;
  13085. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  13086. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  13087. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13088. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13089. #ifndef NDEBUG
  13090. for (int i = 0; i < nc; ++i) {
  13091. //printf("p[%d] = %f\n", i, p[i]);
  13092. assert(!isnan(s0[i]));
  13093. assert(!isnan(s1[i]));
  13094. }
  13095. #endif
  13096. // soft_max
  13097. ggml_float sum = 0.0;
  13098. {
  13099. float max = -INFINITY;
  13100. ggml_vec_max_f32(nc, &max, s0);
  13101. uint16_t scvt; UNUSED(scvt);
  13102. for (int i = 0; i < nc; i++) {
  13103. if (s0[i] == -INFINITY) {
  13104. ds0[i] = 0.0f;
  13105. } else {
  13106. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  13107. const float s = s0[i] - max;
  13108. const float val = expf(s);
  13109. #else
  13110. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  13111. memcpy(&scvt, &s, sizeof(scvt));
  13112. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  13113. #endif
  13114. sum += (ggml_float)val;
  13115. ds0[i] = val;
  13116. }
  13117. }
  13118. assert(sum > 0.0);
  13119. sum = (1.0 - eps)/sum;
  13120. }
  13121. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  13122. ggml_vec_scale_f32(nc, ds0, sum);
  13123. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  13124. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  13125. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  13126. #ifndef NDEBUG
  13127. for (int i = 0; i < nc; ++i) {
  13128. assert(!isnan(ds0[i]));
  13129. assert(!isinf(ds0[i]));
  13130. }
  13131. #endif
  13132. }
  13133. }
  13134. static void ggml_compute_forward_cross_entropy_loss_back(
  13135. const struct ggml_compute_params * params,
  13136. const struct ggml_tensor * src0,
  13137. const struct ggml_tensor * src1,
  13138. const struct ggml_tensor * opt0,
  13139. struct ggml_tensor * dst) {
  13140. switch (src0->type) {
  13141. case GGML_TYPE_F32:
  13142. {
  13143. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  13144. } break;
  13145. default:
  13146. {
  13147. GGML_ASSERT(false);
  13148. } break;
  13149. }
  13150. }
  13151. /////////////////////////////////
  13152. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  13153. GGML_ASSERT(params);
  13154. #ifdef GGML_USE_CUBLAS
  13155. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  13156. if (skip_cpu) {
  13157. return;
  13158. }
  13159. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  13160. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  13161. #endif // GGML_USE_CUBLAS
  13162. switch (tensor->op) {
  13163. case GGML_OP_DUP:
  13164. {
  13165. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  13166. } break;
  13167. case GGML_OP_ADD:
  13168. {
  13169. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  13170. } break;
  13171. case GGML_OP_ADD1:
  13172. {
  13173. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  13174. } break;
  13175. case GGML_OP_ACC:
  13176. {
  13177. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  13178. } break;
  13179. case GGML_OP_SUB:
  13180. {
  13181. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  13182. } break;
  13183. case GGML_OP_MUL:
  13184. {
  13185. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  13186. } break;
  13187. case GGML_OP_DIV:
  13188. {
  13189. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  13190. } break;
  13191. case GGML_OP_SQR:
  13192. {
  13193. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  13194. } break;
  13195. case GGML_OP_SQRT:
  13196. {
  13197. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  13198. } break;
  13199. case GGML_OP_LOG:
  13200. {
  13201. ggml_compute_forward_log(params, tensor->src[0], tensor);
  13202. } break;
  13203. case GGML_OP_SUM:
  13204. {
  13205. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  13206. } break;
  13207. case GGML_OP_SUM_ROWS:
  13208. {
  13209. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  13210. } break;
  13211. case GGML_OP_MEAN:
  13212. {
  13213. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  13214. } break;
  13215. case GGML_OP_ARGMAX:
  13216. {
  13217. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  13218. } break;
  13219. case GGML_OP_REPEAT:
  13220. {
  13221. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  13222. } break;
  13223. case GGML_OP_REPEAT_BACK:
  13224. {
  13225. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  13226. } break;
  13227. case GGML_OP_CONCAT:
  13228. {
  13229. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  13230. } break;
  13231. case GGML_OP_SILU_BACK:
  13232. {
  13233. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  13234. } break;
  13235. case GGML_OP_NORM:
  13236. {
  13237. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  13238. } break;
  13239. case GGML_OP_RMS_NORM:
  13240. {
  13241. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  13242. } break;
  13243. case GGML_OP_RMS_NORM_BACK:
  13244. {
  13245. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  13246. } break;
  13247. case GGML_OP_GROUP_NORM:
  13248. {
  13249. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  13250. } break;
  13251. case GGML_OP_MUL_MAT:
  13252. {
  13253. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  13254. } break;
  13255. case GGML_OP_OUT_PROD:
  13256. {
  13257. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  13258. } break;
  13259. case GGML_OP_SCALE:
  13260. {
  13261. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  13262. } break;
  13263. case GGML_OP_SET:
  13264. {
  13265. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  13266. } break;
  13267. case GGML_OP_CPY:
  13268. {
  13269. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  13270. } break;
  13271. case GGML_OP_CONT:
  13272. {
  13273. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  13274. } break;
  13275. case GGML_OP_RESHAPE:
  13276. {
  13277. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  13278. } break;
  13279. case GGML_OP_VIEW:
  13280. {
  13281. ggml_compute_forward_view(params, tensor->src[0]);
  13282. } break;
  13283. case GGML_OP_PERMUTE:
  13284. {
  13285. ggml_compute_forward_permute(params, tensor->src[0]);
  13286. } break;
  13287. case GGML_OP_TRANSPOSE:
  13288. {
  13289. ggml_compute_forward_transpose(params, tensor->src[0]);
  13290. } break;
  13291. case GGML_OP_GET_ROWS:
  13292. {
  13293. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  13294. } break;
  13295. case GGML_OP_GET_ROWS_BACK:
  13296. {
  13297. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor);
  13298. } break;
  13299. case GGML_OP_DIAG:
  13300. {
  13301. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  13302. } break;
  13303. case GGML_OP_DIAG_MASK_INF:
  13304. {
  13305. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  13306. } break;
  13307. case GGML_OP_DIAG_MASK_ZERO:
  13308. {
  13309. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  13310. } break;
  13311. case GGML_OP_SOFT_MAX:
  13312. {
  13313. ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
  13314. } break;
  13315. case GGML_OP_SOFT_MAX_BACK:
  13316. {
  13317. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  13318. } break;
  13319. case GGML_OP_ROPE:
  13320. {
  13321. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  13322. } break;
  13323. case GGML_OP_ROPE_BACK:
  13324. {
  13325. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  13326. } break;
  13327. case GGML_OP_ALIBI:
  13328. {
  13329. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  13330. } break;
  13331. case GGML_OP_CLAMP:
  13332. {
  13333. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  13334. } break;
  13335. case GGML_OP_CONV_1D:
  13336. {
  13337. ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor);
  13338. } break;
  13339. case GGML_OP_CONV_2D:
  13340. {
  13341. ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor);
  13342. } break;
  13343. case GGML_OP_CONV_TRANSPOSE_2D:
  13344. {
  13345. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  13346. } break;
  13347. case GGML_OP_POOL_1D:
  13348. {
  13349. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  13350. } break;
  13351. case GGML_OP_POOL_2D:
  13352. {
  13353. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  13354. } break;
  13355. case GGML_OP_UPSCALE:
  13356. {
  13357. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  13358. } break;
  13359. case GGML_OP_FLASH_ATTN:
  13360. {
  13361. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  13362. GGML_ASSERT(t == 0 || t == 1);
  13363. const bool masked = t != 0;
  13364. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  13365. } break;
  13366. case GGML_OP_FLASH_FF:
  13367. {
  13368. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  13369. } break;
  13370. case GGML_OP_FLASH_ATTN_BACK:
  13371. {
  13372. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13373. GGML_ASSERT(t == 0 || t == 1);
  13374. bool masked = t != 0;
  13375. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  13376. } break;
  13377. case GGML_OP_WIN_PART:
  13378. {
  13379. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  13380. } break;
  13381. case GGML_OP_WIN_UNPART:
  13382. {
  13383. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  13384. } break;
  13385. case GGML_OP_UNARY:
  13386. {
  13387. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  13388. } break;
  13389. case GGML_OP_GET_REL_POS:
  13390. {
  13391. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  13392. } break;
  13393. case GGML_OP_ADD_REL_POS:
  13394. {
  13395. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  13396. } break;
  13397. case GGML_OP_MAP_UNARY:
  13398. {
  13399. ggml_unary_op_f32_t fun;
  13400. memcpy(&fun, tensor->op_params, sizeof(fun));
  13401. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  13402. }
  13403. break;
  13404. case GGML_OP_MAP_BINARY:
  13405. {
  13406. ggml_binary_op_f32_t fun;
  13407. memcpy(&fun, tensor->op_params, sizeof(fun));
  13408. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  13409. }
  13410. break;
  13411. case GGML_OP_MAP_CUSTOM1_F32:
  13412. {
  13413. ggml_custom1_op_f32_t fun;
  13414. memcpy(&fun, tensor->op_params, sizeof(fun));
  13415. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  13416. }
  13417. break;
  13418. case GGML_OP_MAP_CUSTOM2_F32:
  13419. {
  13420. ggml_custom2_op_f32_t fun;
  13421. memcpy(&fun, tensor->op_params, sizeof(fun));
  13422. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  13423. }
  13424. break;
  13425. case GGML_OP_MAP_CUSTOM3_F32:
  13426. {
  13427. ggml_custom3_op_f32_t fun;
  13428. memcpy(&fun, tensor->op_params, sizeof(fun));
  13429. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  13430. }
  13431. break;
  13432. case GGML_OP_MAP_CUSTOM1:
  13433. {
  13434. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  13435. }
  13436. break;
  13437. case GGML_OP_MAP_CUSTOM2:
  13438. {
  13439. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  13440. }
  13441. break;
  13442. case GGML_OP_MAP_CUSTOM3:
  13443. {
  13444. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  13445. }
  13446. break;
  13447. case GGML_OP_CROSS_ENTROPY_LOSS:
  13448. {
  13449. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  13450. }
  13451. break;
  13452. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13453. {
  13454. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  13455. }
  13456. break;
  13457. case GGML_OP_NONE:
  13458. {
  13459. // nop
  13460. } break;
  13461. case GGML_OP_COUNT:
  13462. {
  13463. GGML_ASSERT(false);
  13464. } break;
  13465. }
  13466. }
  13467. ////////////////////////////////////////////////////////////////////////////////
  13468. static_assert(GGML_GRAPH_HASHTABLE_SIZE > GGML_MAX_NODES * 2, "GGML_GRAPH_HT_SIZE is too small");
  13469. static size_t hash(void * p) {
  13470. return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
  13471. }
  13472. static size_t hash_find(void * hash_table[], void * p) {
  13473. size_t h = hash(p);
  13474. // linear probing
  13475. size_t i = h;
  13476. while (hash_table[i] != NULL && hash_table[i] != p) {
  13477. i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
  13478. if (i == h) {
  13479. // visited all hash table entries -> not found
  13480. return GGML_GRAPH_HASHTABLE_SIZE;
  13481. }
  13482. }
  13483. return i;
  13484. }
  13485. static bool hash_insert(void * hash_table[], void * p) {
  13486. size_t i = hash_find(hash_table, p);
  13487. GGML_ASSERT(i < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full
  13488. if (hash_table[i] == p) {
  13489. return true;
  13490. }
  13491. // insert
  13492. GGML_ASSERT(hash_table[i] == NULL);
  13493. hash_table[i] = p;
  13494. return false;
  13495. }
  13496. static bool hash_contains(void * hash_table[], void * p) {
  13497. size_t i = hash_find(hash_table, p);
  13498. return (i < GGML_GRAPH_HASHTABLE_SIZE) && (hash_table[i] == p);
  13499. }
  13500. struct hash_map {
  13501. void * keys[GGML_GRAPH_HASHTABLE_SIZE];
  13502. void * vals[GGML_GRAPH_HASHTABLE_SIZE];
  13503. };
  13504. static struct hash_map * new_hash_map(void) {
  13505. struct hash_map * result = malloc(sizeof(struct hash_map));
  13506. for (int i=0; i<GGML_GRAPH_HASHTABLE_SIZE; ++i) {
  13507. result->keys[i] = NULL;
  13508. result->vals[i] = NULL;
  13509. }
  13510. return result;
  13511. }
  13512. static void free_hash_map(struct hash_map * map) {
  13513. free(map);
  13514. }
  13515. // gradient checkpointing
  13516. static struct ggml_tensor * ggml_recompute_graph_node(
  13517. struct ggml_context * ctx,
  13518. struct ggml_cgraph * graph,
  13519. struct hash_map * replacements,
  13520. struct ggml_tensor * node) {
  13521. if (node == NULL) {
  13522. return NULL;
  13523. }
  13524. if (node->is_param) {
  13525. return node;
  13526. }
  13527. if (!hash_contains(graph->visited_hash_table, node)) {
  13528. return node;
  13529. }
  13530. int count_children = 0;
  13531. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13532. if (node->src[k]) {
  13533. ++count_children;
  13534. }
  13535. }
  13536. if (count_children == 0) {
  13537. return node;
  13538. }
  13539. size_t i = hash_find(replacements->keys, node);
  13540. GGML_ASSERT(i < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full
  13541. if (replacements->keys[i] == node) {
  13542. return (struct ggml_tensor *) replacements->vals[i];
  13543. }
  13544. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, node->n_dims, node->ne);
  13545. // insert clone into replacements
  13546. GGML_ASSERT(replacements->keys[i] == NULL); // assert that we don't overwrite
  13547. replacements->keys[i] = node;
  13548. replacements->vals[i] = clone;
  13549. clone->op = node->op;
  13550. clone->grad = node->grad;
  13551. clone->is_param = node->is_param;
  13552. clone->extra = node->extra;
  13553. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  13554. clone->nb[k] = node->nb[k];
  13555. }
  13556. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13557. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  13558. }
  13559. if (node->view_src != NULL) {
  13560. clone->data = (node->view_src->data == NULL)
  13561. ? NULL // view_src not yet allocated
  13562. : (char *) node->view_src->data // view_src already allocated
  13563. + node->view_offs;
  13564. clone->view_src = node->view_src;
  13565. clone->view_offs = node->view_offs;
  13566. }
  13567. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  13568. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  13569. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  13570. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  13571. return clone;
  13572. }
  13573. void ggml_build_backward_gradient_checkpointing(
  13574. struct ggml_context * ctx,
  13575. struct ggml_cgraph * gf,
  13576. struct ggml_cgraph * gb,
  13577. struct ggml_cgraph * gb_tmp,
  13578. struct ggml_tensor * * checkpoints,
  13579. int n_checkpoints) {
  13580. *gb_tmp = *gf;
  13581. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  13582. if (n_checkpoints <= 0) {
  13583. *gb = *gb_tmp;
  13584. return;
  13585. }
  13586. struct hash_map * replacements = new_hash_map();
  13587. // insert checkpoints in replacements
  13588. for (int i = 0; i < n_checkpoints; ++i) {
  13589. size_t k = hash_find(replacements->keys, checkpoints[i]);
  13590. GGML_ASSERT(k < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full
  13591. GGML_ASSERT(replacements->keys[k] == NULL); // assert that we don't overwrite
  13592. replacements->keys[k] = checkpoints[i];
  13593. replacements->vals[k] = checkpoints[i];
  13594. }
  13595. *gb = *gf;
  13596. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  13597. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  13598. // by recomputing them from checkpoints
  13599. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  13600. struct ggml_tensor * node = gb_tmp->nodes[i];
  13601. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13602. // insert new tensors recomputing src, reusing already made replacements,
  13603. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  13604. // recurse for input tensors,
  13605. // unless (i.e. terminating when) input tensors are replacments (like checkpoints)
  13606. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  13607. }
  13608. // insert rewritten backward node with replacements made into resulting backward graph gb
  13609. ggml_build_forward_expand(gb, node);
  13610. }
  13611. free_hash_map(replacements);
  13612. }
  13613. // functions to change gradients considering the case that input a might be initial gradient with zero value
  13614. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, void * zero_table[]) {
  13615. if (hash_contains(zero_table, a)) {
  13616. return b;
  13617. } else {
  13618. return ggml_add_impl(ctx, a, b, false);
  13619. }
  13620. }
  13621. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, void * zero_table[]) {
  13622. if (hash_contains(zero_table, a)) {
  13623. struct ggml_tensor * a_zero = ggml_scale(ctx, a, ggml_new_f32(ctx, 0));
  13624. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  13625. } else {
  13626. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  13627. }
  13628. }
  13629. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, void * zero_table[]) {
  13630. if (hash_contains(zero_table, a)) {
  13631. return ggml_repeat(ctx, b, a);
  13632. } else {
  13633. return ggml_add1_impl(ctx, a, b, false);
  13634. }
  13635. }
  13636. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, void * zero_table[]) {
  13637. if (hash_contains(zero_table, a)) {
  13638. return ggml_neg(ctx, b);
  13639. } else {
  13640. return ggml_sub_impl(ctx, a, b, false);
  13641. }
  13642. }
  13643. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, void * zero_table[]) {
  13644. struct ggml_tensor * src0 = tensor->src[0];
  13645. struct ggml_tensor * src1 = tensor->src[1];
  13646. switch (tensor->op) {
  13647. case GGML_OP_DUP:
  13648. {
  13649. if (src0->grad) {
  13650. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13651. }
  13652. } break;
  13653. case GGML_OP_ADD:
  13654. {
  13655. if (src0->grad) {
  13656. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13657. }
  13658. if (src1->grad) {
  13659. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13660. }
  13661. } break;
  13662. case GGML_OP_ADD1:
  13663. {
  13664. if (src0->grad) {
  13665. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13666. }
  13667. if (src1->grad) {
  13668. src1->grad = ggml_add_or_set(ctx,
  13669. src1->grad,
  13670. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  13671. zero_table);
  13672. }
  13673. } break;
  13674. case GGML_OP_ACC:
  13675. {
  13676. if (src0->grad) {
  13677. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13678. }
  13679. if (src1->grad) {
  13680. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13681. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13682. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13683. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13684. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  13685. tensor->grad,
  13686. src1->grad->ne[0],
  13687. src1->grad->ne[1],
  13688. src1->grad->ne[2],
  13689. src1->grad->ne[3],
  13690. nb1, nb2, nb3, offset);
  13691. src1->grad =
  13692. ggml_add_or_set(ctx,
  13693. src1->grad,
  13694. ggml_reshape(ctx,
  13695. ggml_cont(ctx, tensor_grad_view),
  13696. src1->grad),
  13697. zero_table);
  13698. }
  13699. } break;
  13700. case GGML_OP_SUB:
  13701. {
  13702. if (src0->grad) {
  13703. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13704. }
  13705. if (src1->grad) {
  13706. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13707. }
  13708. } break;
  13709. case GGML_OP_MUL:
  13710. {
  13711. if (src0->grad) {
  13712. src0->grad =
  13713. ggml_add_or_set(ctx,
  13714. src0->grad,
  13715. ggml_mul(ctx, src1, tensor->grad),
  13716. zero_table);
  13717. }
  13718. if (src1->grad) {
  13719. src1->grad =
  13720. ggml_add_or_set(ctx,
  13721. src1->grad,
  13722. ggml_mul(ctx, src0, tensor->grad),
  13723. zero_table);
  13724. }
  13725. } break;
  13726. case GGML_OP_DIV:
  13727. {
  13728. if (src0->grad) {
  13729. src0->grad =
  13730. ggml_add_or_set(ctx,
  13731. src0->grad,
  13732. ggml_div(ctx, tensor->grad, src1),
  13733. zero_table);
  13734. }
  13735. if (src1->grad) {
  13736. src1->grad =
  13737. ggml_sub_or_set(ctx,
  13738. src1->grad,
  13739. ggml_mul(ctx,
  13740. tensor->grad,
  13741. ggml_div(ctx, tensor, src1)),
  13742. zero_table);
  13743. }
  13744. } break;
  13745. case GGML_OP_SQR:
  13746. {
  13747. if (src0->grad) {
  13748. src0->grad =
  13749. ggml_add_or_set(ctx,
  13750. src0->grad,
  13751. ggml_scale(ctx,
  13752. ggml_mul(ctx, src0, tensor->grad),
  13753. ggml_new_f32(ctx, 2.0f)),
  13754. zero_table);
  13755. }
  13756. } break;
  13757. case GGML_OP_SQRT:
  13758. {
  13759. if (src0->grad) {
  13760. src0->grad =
  13761. ggml_add_or_set(ctx,
  13762. src0->grad,
  13763. ggml_scale(ctx,
  13764. ggml_div(ctx,
  13765. tensor->grad,
  13766. tensor),
  13767. ggml_new_f32(ctx, 0.5f)),
  13768. zero_table);
  13769. }
  13770. } break;
  13771. case GGML_OP_LOG:
  13772. {
  13773. if (src0->grad) {
  13774. src0->grad =
  13775. ggml_add_or_set(ctx,
  13776. src0->grad,
  13777. ggml_div(ctx,
  13778. tensor->grad,
  13779. src0),
  13780. zero_table);
  13781. }
  13782. } break;
  13783. case GGML_OP_SUM:
  13784. {
  13785. if (src0->grad) {
  13786. src0->grad =
  13787. ggml_add1_or_set(ctx,
  13788. src0->grad,
  13789. tensor->grad,
  13790. zero_table);
  13791. }
  13792. } break;
  13793. case GGML_OP_SUM_ROWS:
  13794. {
  13795. if (src0->grad) {
  13796. src0->grad =
  13797. ggml_add_or_set(ctx,
  13798. src0->grad,
  13799. ggml_repeat(ctx,
  13800. tensor->grad,
  13801. src0->grad),
  13802. zero_table);
  13803. }
  13804. } break;
  13805. case GGML_OP_MEAN:
  13806. case GGML_OP_ARGMAX:
  13807. {
  13808. GGML_ASSERT(false); // TODO: implement
  13809. } break;
  13810. case GGML_OP_REPEAT:
  13811. {
  13812. // necessary for llama
  13813. if (src0->grad) {
  13814. src0->grad = ggml_add_or_set(ctx,
  13815. src0->grad,
  13816. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13817. zero_table);
  13818. }
  13819. } break;
  13820. case GGML_OP_REPEAT_BACK:
  13821. {
  13822. if (src0->grad) {
  13823. // TODO: test this
  13824. src0->grad = ggml_add_or_set(ctx,
  13825. src0->grad,
  13826. ggml_repeat(ctx, tensor->grad, src0->grad),
  13827. zero_table);
  13828. }
  13829. } break;
  13830. case GGML_OP_CONCAT:
  13831. {
  13832. GGML_ASSERT(false); // TODO: implement
  13833. } break;
  13834. case GGML_OP_SILU_BACK:
  13835. {
  13836. GGML_ASSERT(false); // TODO: not implemented
  13837. } break;
  13838. case GGML_OP_NORM:
  13839. {
  13840. GGML_ASSERT(false); // TODO: not implemented
  13841. } break;
  13842. case GGML_OP_RMS_NORM:
  13843. {
  13844. // necessary for llama
  13845. if (src0->grad) {
  13846. float eps;
  13847. memcpy(&eps, tensor->op_params, sizeof(float));
  13848. src0->grad = ggml_add_or_set(ctx,
  13849. src0->grad,
  13850. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  13851. zero_table);
  13852. }
  13853. } break;
  13854. case GGML_OP_RMS_NORM_BACK:
  13855. {
  13856. GGML_ASSERT(false); // TODO: not implemented
  13857. } break;
  13858. case GGML_OP_GROUP_NORM:
  13859. {
  13860. GGML_ASSERT(false); // TODO: not implemented
  13861. } break;
  13862. case GGML_OP_MUL_MAT:
  13863. {
  13864. // https://cs231n.github.io/optimization-2/#staged
  13865. // # forward pass
  13866. // s0 = np.random.randn(5, 10)
  13867. // s1 = np.random.randn(10, 3)
  13868. // t = s0.dot(s1)
  13869. // # now suppose we had the gradient on t from above in the circuit
  13870. // dt = np.random.randn(*t.shape) # same shape as t
  13871. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13872. // ds1 = t.T.dot(dt)
  13873. // tensor.shape [m,p,qq,rr]
  13874. // src0.shape [n,m,q1,r1]
  13875. // src1.shape [n,p,qq,rr]
  13876. // necessary for llama
  13877. if (src0->grad) {
  13878. struct ggml_tensor * s1_tg =
  13879. ggml_out_prod(ctx, // [n,m,qq,rr]
  13880. src1, // [n,p,qq,rr]
  13881. tensor->grad); // [m,p,qq,rr]
  13882. const int64_t qq = s1_tg->ne[2];
  13883. const int64_t rr = s1_tg->ne[3];
  13884. const int64_t q1 = src0->ne[2];
  13885. const int64_t r1 = src0->ne[3];
  13886. const bool ne2_broadcasted = qq > q1;
  13887. const bool ne3_broadcasted = rr > r1;
  13888. if (ne2_broadcasted || ne3_broadcasted) {
  13889. // sum broadcast repetitions of s1_tg into shape of src0
  13890. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  13891. }
  13892. src0->grad =
  13893. ggml_add_or_set(ctx,
  13894. src0->grad, // [n,m,q1,r1]
  13895. s1_tg, // [n,m,q1,r1]
  13896. zero_table);
  13897. }
  13898. if (src1->grad) {
  13899. src1->grad =
  13900. ggml_add_or_set(ctx,
  13901. src1->grad, // [n,p,qq,rr]
  13902. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  13903. // ggml_cont(ctx, // [m,n,q1,r1]
  13904. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  13905. // tensor->grad), // [m,p,qq,rr]
  13906. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13907. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13908. // // and then use ggml_out_prod
  13909. ggml_out_prod(ctx, // [n,p,qq,rr]
  13910. src0, // [n,m,q1,r1]
  13911. ggml_transpose(ctx, // [p,m,qq,rr]
  13912. tensor->grad)), // [m,p,qq,rr]
  13913. zero_table);
  13914. }
  13915. } break;
  13916. case GGML_OP_OUT_PROD:
  13917. {
  13918. GGML_ASSERT(false); // TODO: not implemented
  13919. } break;
  13920. case GGML_OP_SCALE:
  13921. {
  13922. // necessary for llama
  13923. if (src0->grad) {
  13924. src0->grad =
  13925. ggml_add_or_set(ctx,
  13926. src0->grad,
  13927. ggml_scale_impl(ctx, tensor->grad, src1, false),
  13928. zero_table);
  13929. }
  13930. if (src1->grad) {
  13931. src1->grad =
  13932. ggml_add_or_set(ctx,
  13933. src1->grad,
  13934. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  13935. zero_table);
  13936. }
  13937. } break;
  13938. case GGML_OP_SET:
  13939. {
  13940. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13941. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13942. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13943. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13944. struct ggml_tensor * tensor_grad_view = NULL;
  13945. if (src0->grad || src1->grad) {
  13946. GGML_ASSERT(src0->type == tensor->type);
  13947. GGML_ASSERT(tensor->grad->type == tensor->type);
  13948. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13949. tensor_grad_view = ggml_view_4d(ctx,
  13950. tensor->grad,
  13951. src1->grad->ne[0],
  13952. src1->grad->ne[1],
  13953. src1->grad->ne[2],
  13954. src1->grad->ne[3],
  13955. nb1, nb2, nb3, offset);
  13956. }
  13957. if (src0->grad) {
  13958. src0->grad = ggml_add_or_set(ctx,
  13959. src0->grad,
  13960. ggml_acc_impl(ctx,
  13961. tensor->grad,
  13962. ggml_neg(ctx, tensor_grad_view),
  13963. nb1, nb2, nb3, offset, false),
  13964. zero_table);
  13965. }
  13966. if (src1->grad) {
  13967. src1->grad =
  13968. ggml_add_or_set(ctx,
  13969. src1->grad,
  13970. ggml_reshape(ctx,
  13971. ggml_cont(ctx, tensor_grad_view),
  13972. src1->grad),
  13973. zero_table);
  13974. }
  13975. } break;
  13976. case GGML_OP_CPY:
  13977. {
  13978. // necessary for llama
  13979. // cpy overwrites value of src1 by src0 and returns view(src1)
  13980. // the overwriting is mathematically equivalent to:
  13981. // tensor = src0 * 1 + src1 * 0
  13982. if (src0->grad) {
  13983. // dsrc0 = dtensor * 1
  13984. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13985. }
  13986. if (src1->grad) {
  13987. // dsrc1 = dtensor * 0 -> noop
  13988. }
  13989. } break;
  13990. case GGML_OP_CONT:
  13991. {
  13992. // same as cpy
  13993. if (src0->grad) {
  13994. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13995. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13996. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13997. }
  13998. } break;
  13999. case GGML_OP_RESHAPE:
  14000. {
  14001. // necessary for llama
  14002. if (src0->grad) {
  14003. src0->grad =
  14004. ggml_add_or_set(ctx, src0->grad,
  14005. ggml_reshape(ctx,
  14006. ggml_is_contiguous(tensor->grad)
  14007. ? tensor->grad
  14008. : ggml_cont(ctx, tensor->grad),
  14009. src0->grad),
  14010. zero_table);
  14011. }
  14012. } break;
  14013. case GGML_OP_VIEW:
  14014. {
  14015. // necessary for llama
  14016. if (src0->grad) {
  14017. size_t offset;
  14018. memcpy(&offset, tensor->op_params, sizeof(offset));
  14019. size_t nb1 = tensor->nb[1];
  14020. size_t nb2 = tensor->nb[2];
  14021. size_t nb3 = tensor->nb[3];
  14022. if (src0->type != src0->grad->type) {
  14023. // gradient is typically F32, but src0 could be other type
  14024. size_t ng = ggml_element_size(src0->grad);
  14025. size_t n0 = ggml_element_size(src0);
  14026. GGML_ASSERT(offset % n0 == 0);
  14027. GGML_ASSERT(nb1 % n0 == 0);
  14028. GGML_ASSERT(nb2 % n0 == 0);
  14029. GGML_ASSERT(nb3 % n0 == 0);
  14030. offset = (offset / n0) * ng;
  14031. nb1 = (nb1 / n0) * ng;
  14032. nb2 = (nb2 / n0) * ng;
  14033. nb3 = (nb3 / n0) * ng;
  14034. }
  14035. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  14036. }
  14037. } break;
  14038. case GGML_OP_PERMUTE:
  14039. {
  14040. // necessary for llama
  14041. if (src0->grad) {
  14042. int32_t * axes = (int32_t *) tensor->op_params;
  14043. int axis0 = axes[0] & 0x3;
  14044. int axis1 = axes[1] & 0x3;
  14045. int axis2 = axes[2] & 0x3;
  14046. int axis3 = axes[3] & 0x3;
  14047. int axes_backward[4] = {0,0,0,0};
  14048. axes_backward[axis0] = 0;
  14049. axes_backward[axis1] = 1;
  14050. axes_backward[axis2] = 2;
  14051. axes_backward[axis3] = 3;
  14052. src0->grad =
  14053. ggml_add_or_set(ctx, src0->grad,
  14054. ggml_permute(ctx,
  14055. tensor->grad,
  14056. axes_backward[0],
  14057. axes_backward[1],
  14058. axes_backward[2],
  14059. axes_backward[3]),
  14060. zero_table);
  14061. }
  14062. } break;
  14063. case GGML_OP_TRANSPOSE:
  14064. {
  14065. // necessary for llama
  14066. if (src0->grad) {
  14067. src0->grad =
  14068. ggml_add_or_set(ctx, src0->grad,
  14069. ggml_transpose(ctx, tensor->grad),
  14070. zero_table);
  14071. }
  14072. } break;
  14073. case GGML_OP_GET_ROWS:
  14074. {
  14075. // necessary for llama (only for tokenizer)
  14076. if (src0->grad) {
  14077. src0->grad =
  14078. ggml_add_or_set(ctx, src0->grad,
  14079. // last ggml_get_rows_back argument src0->grad is only
  14080. // necessary to setup correct output shape
  14081. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  14082. zero_table);
  14083. }
  14084. if (src1->grad) {
  14085. // noop
  14086. }
  14087. } break;
  14088. case GGML_OP_GET_ROWS_BACK:
  14089. {
  14090. GGML_ASSERT(false); // TODO: not implemented
  14091. } break;
  14092. case GGML_OP_DIAG:
  14093. {
  14094. GGML_ASSERT(false); // TODO: not implemented
  14095. } break;
  14096. case GGML_OP_DIAG_MASK_INF:
  14097. {
  14098. // necessary for llama
  14099. if (src0->grad) {
  14100. const int n_past = ((int32_t *) tensor->op_params)[0];
  14101. src0->grad =
  14102. ggml_add_or_set(ctx, src0->grad,
  14103. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14104. zero_table);
  14105. }
  14106. } break;
  14107. case GGML_OP_DIAG_MASK_ZERO:
  14108. {
  14109. // necessary for llama
  14110. if (src0->grad) {
  14111. const int n_past = ((int32_t *) tensor->op_params)[0];
  14112. src0->grad =
  14113. ggml_add_or_set(ctx, src0->grad,
  14114. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14115. zero_table);
  14116. }
  14117. } break;
  14118. case GGML_OP_SOFT_MAX:
  14119. {
  14120. // necessary for llama
  14121. if (src0->grad) {
  14122. src0->grad =
  14123. ggml_add_or_set(ctx, src0->grad,
  14124. ggml_soft_max_back(ctx, tensor->grad, tensor),
  14125. zero_table);
  14126. }
  14127. } break;
  14128. case GGML_OP_SOFT_MAX_BACK:
  14129. {
  14130. GGML_ASSERT(false); // TODO: not implemented
  14131. } break;
  14132. case GGML_OP_ROPE:
  14133. {
  14134. // necessary for llama
  14135. if (src0->grad) {
  14136. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14137. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14138. const int mode = ((int32_t *) tensor->op_params)[2];
  14139. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14140. float freq_base;
  14141. float freq_scale;
  14142. float xpos_base;
  14143. bool xpos_down;
  14144. memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
  14145. memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
  14146. memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
  14147. memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
  14148. src0->grad = ggml_add_or_set(ctx,
  14149. src0->grad,
  14150. ggml_rope_back(ctx,
  14151. tensor->grad,
  14152. src1,
  14153. n_dims,
  14154. mode,
  14155. n_ctx,
  14156. freq_base,
  14157. freq_scale,
  14158. xpos_base,
  14159. xpos_down),
  14160. zero_table);
  14161. }
  14162. } break;
  14163. case GGML_OP_ROPE_BACK:
  14164. {
  14165. if (src0->grad) {
  14166. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14167. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14168. const int mode = ((int32_t *) tensor->op_params)[2];
  14169. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14170. float freq_base;
  14171. float freq_scale;
  14172. float xpos_base;
  14173. bool xpos_down;
  14174. memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
  14175. memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
  14176. memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
  14177. memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
  14178. src0->grad = ggml_add_or_set(ctx,
  14179. src0->grad,
  14180. ggml_rope_impl(ctx,
  14181. tensor->grad,
  14182. src1,
  14183. n_dims,
  14184. mode,
  14185. n_ctx,
  14186. freq_base,
  14187. freq_scale,
  14188. xpos_base,
  14189. xpos_down,
  14190. false),
  14191. zero_table);
  14192. }
  14193. } break;
  14194. case GGML_OP_ALIBI:
  14195. {
  14196. GGML_ASSERT(false); // TODO: not implemented
  14197. } break;
  14198. case GGML_OP_CLAMP:
  14199. {
  14200. GGML_ASSERT(false); // TODO: not implemented
  14201. } break;
  14202. case GGML_OP_CONV_1D:
  14203. {
  14204. GGML_ASSERT(false); // TODO: not implemented
  14205. } break;
  14206. case GGML_OP_CONV_2D:
  14207. {
  14208. GGML_ASSERT(false); // TODO: not implemented
  14209. } break;
  14210. case GGML_OP_CONV_TRANSPOSE_2D:
  14211. {
  14212. GGML_ASSERT(false); // TODO: not implemented
  14213. } break;
  14214. case GGML_OP_POOL_1D:
  14215. {
  14216. GGML_ASSERT(false); // TODO: not implemented
  14217. } break;
  14218. case GGML_OP_POOL_2D:
  14219. {
  14220. GGML_ASSERT(false); // TODO: not implemented
  14221. } break;
  14222. case GGML_OP_UPSCALE:
  14223. {
  14224. GGML_ASSERT(false); // TODO: not implemented
  14225. } break;
  14226. case GGML_OP_FLASH_ATTN:
  14227. {
  14228. struct ggml_tensor * flash_grad = NULL;
  14229. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  14230. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14231. GGML_ASSERT(t == 0 || t == 1);
  14232. bool masked = t != 0;
  14233. flash_grad =
  14234. ggml_flash_attn_back(ctx,
  14235. src0,
  14236. src1,
  14237. tensor->src[2],
  14238. tensor->grad,
  14239. masked);
  14240. }
  14241. struct ggml_tensor * src2 = tensor->src[2];
  14242. const int64_t elem_q = ggml_nelements(src0);
  14243. const int64_t elem_k = ggml_nelements(src1);
  14244. const int64_t elem_v = ggml_nelements(src2);
  14245. enum ggml_type result_type = flash_grad->type;
  14246. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  14247. const size_t tsize = ggml_type_size(result_type);
  14248. const size_t offs_q = 0;
  14249. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  14250. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  14251. if (src0->grad) {
  14252. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  14253. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  14254. src0->grad = ggml_add_or_set(ctx,
  14255. src0->grad,
  14256. grad_q,
  14257. zero_table);
  14258. }
  14259. if (src1->grad) {
  14260. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  14261. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  14262. src1->grad = ggml_add_or_set(ctx,
  14263. src1->grad,
  14264. grad_k,
  14265. zero_table);
  14266. }
  14267. if (src2->grad) {
  14268. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  14269. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  14270. src2->grad = ggml_add_or_set(ctx,
  14271. src2->grad,
  14272. grad_v,
  14273. zero_table);
  14274. }
  14275. } break;
  14276. case GGML_OP_FLASH_FF:
  14277. {
  14278. GGML_ASSERT(false); // not supported
  14279. } break;
  14280. case GGML_OP_FLASH_ATTN_BACK:
  14281. {
  14282. GGML_ASSERT(false); // not supported
  14283. } break;
  14284. case GGML_OP_WIN_PART:
  14285. case GGML_OP_WIN_UNPART:
  14286. case GGML_OP_UNARY:
  14287. {
  14288. switch (ggml_get_unary_op(tensor)) {
  14289. case GGML_UNARY_OP_ABS:
  14290. {
  14291. if (src0->grad) {
  14292. src0->grad =
  14293. ggml_add_or_set(ctx,
  14294. src0->grad,
  14295. ggml_mul(ctx,
  14296. ggml_sgn(ctx, src0),
  14297. tensor->grad),
  14298. zero_table);
  14299. }
  14300. } break;
  14301. case GGML_UNARY_OP_SGN:
  14302. {
  14303. if (src0->grad) {
  14304. // noop
  14305. }
  14306. } break;
  14307. case GGML_UNARY_OP_NEG:
  14308. {
  14309. if (src0->grad) {
  14310. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14311. }
  14312. } break;
  14313. case GGML_UNARY_OP_STEP:
  14314. {
  14315. if (src0->grad) {
  14316. // noop
  14317. }
  14318. } break;
  14319. case GGML_UNARY_OP_TANH:
  14320. {
  14321. GGML_ASSERT(false); // TODO: not implemented
  14322. } break;
  14323. case GGML_UNARY_OP_ELU:
  14324. {
  14325. GGML_ASSERT(false); // TODO: not implemented
  14326. } break;
  14327. case GGML_UNARY_OP_RELU:
  14328. {
  14329. if (src0->grad) {
  14330. src0->grad = ggml_add_or_set(ctx,
  14331. src0->grad,
  14332. ggml_mul(ctx,
  14333. ggml_step(ctx, src0),
  14334. tensor->grad),
  14335. zero_table);
  14336. }
  14337. } break;
  14338. case GGML_UNARY_OP_GELU:
  14339. {
  14340. GGML_ASSERT(false); // TODO: not implemented
  14341. } break;
  14342. case GGML_UNARY_OP_GELU_QUICK:
  14343. {
  14344. GGML_ASSERT(false); // TODO: not implemented
  14345. } break;
  14346. case GGML_UNARY_OP_SILU:
  14347. {
  14348. // necessary for llama
  14349. if (src0->grad) {
  14350. src0->grad = ggml_add_or_set(ctx,
  14351. src0->grad,
  14352. ggml_silu_back(ctx, src0, tensor->grad),
  14353. zero_table);
  14354. }
  14355. } break;
  14356. default:
  14357. GGML_ASSERT(false);
  14358. }
  14359. } break;
  14360. case GGML_OP_GET_REL_POS:
  14361. case GGML_OP_ADD_REL_POS:
  14362. case GGML_OP_MAP_UNARY:
  14363. case GGML_OP_MAP_BINARY:
  14364. case GGML_OP_MAP_CUSTOM1_F32:
  14365. case GGML_OP_MAP_CUSTOM2_F32:
  14366. case GGML_OP_MAP_CUSTOM3_F32:
  14367. case GGML_OP_MAP_CUSTOM1:
  14368. case GGML_OP_MAP_CUSTOM2:
  14369. case GGML_OP_MAP_CUSTOM3:
  14370. {
  14371. GGML_ASSERT(false); // not supported
  14372. } break;
  14373. case GGML_OP_CROSS_ENTROPY_LOSS:
  14374. {
  14375. if (src0->grad) {
  14376. src0->grad = ggml_add_or_set(ctx,
  14377. src0->grad,
  14378. ggml_cross_entropy_loss_back(ctx,
  14379. src0,
  14380. src1,
  14381. tensor->grad),
  14382. zero_table);
  14383. }
  14384. } break;
  14385. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14386. {
  14387. GGML_ASSERT(false); // not supported
  14388. } break;
  14389. case GGML_OP_NONE:
  14390. {
  14391. // nop
  14392. } break;
  14393. case GGML_OP_COUNT:
  14394. {
  14395. GGML_ASSERT(false);
  14396. } break;
  14397. }
  14398. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14399. if (tensor->src[i] && tensor->src[i]->grad) {
  14400. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  14401. }
  14402. }
  14403. }
  14404. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  14405. if (node->grad == NULL) {
  14406. // this usually happens when we generate intermediate nodes from constants in the backward pass
  14407. // it can also happen during forward pass, if the user performs computations with constants
  14408. if (node->op != GGML_OP_NONE) {
  14409. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  14410. }
  14411. }
  14412. // check if already visited
  14413. if (hash_insert(cgraph->visited_hash_table, node)) {
  14414. return;
  14415. }
  14416. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14417. const int k =
  14418. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  14419. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  14420. /* unknown order, just fall back to using i*/ i;
  14421. if (node->src[k]) {
  14422. ggml_visit_parents(cgraph, node->src[k]);
  14423. }
  14424. }
  14425. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  14426. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  14427. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  14428. if (strlen(node->name) == 0) {
  14429. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  14430. }
  14431. cgraph->leafs[cgraph->n_leafs] = node;
  14432. cgraph->n_leafs++;
  14433. } else {
  14434. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  14435. if (strlen(node->name) == 0) {
  14436. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  14437. }
  14438. cgraph->nodes[cgraph->n_nodes] = node;
  14439. cgraph->grads[cgraph->n_nodes] = node->grad;
  14440. cgraph->n_nodes++;
  14441. }
  14442. }
  14443. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  14444. if (!expand) {
  14445. cgraph->n_nodes = 0;
  14446. cgraph->n_leafs = 0;
  14447. }
  14448. const int n0 = cgraph->n_nodes;
  14449. UNUSED(n0);
  14450. ggml_visit_parents(cgraph, tensor);
  14451. const int n_new = cgraph->n_nodes - n0;
  14452. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  14453. if (n_new > 0) {
  14454. // the last added node should always be starting point
  14455. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  14456. }
  14457. }
  14458. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  14459. ggml_build_forward_impl(cgraph, tensor, true);
  14460. }
  14461. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  14462. struct ggml_cgraph result = {
  14463. /*.n_nodes =*/ 0,
  14464. /*.n_leafs =*/ 0,
  14465. /*.nodes =*/ { NULL },
  14466. /*.grads =*/ { NULL },
  14467. /*.leafs =*/ { NULL },
  14468. /*.hash_table =*/ { NULL },
  14469. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  14470. /*.perf_runs =*/ 0,
  14471. /*.perf_cycles =*/ 0,
  14472. /*.perf_time_us =*/ 0,
  14473. };
  14474. ggml_build_forward_impl(&result, tensor, false);
  14475. return result;
  14476. }
  14477. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  14478. GGML_ASSERT(gf->n_nodes > 0);
  14479. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  14480. if (keep) {
  14481. for (int i = 0; i < gf->n_nodes; i++) {
  14482. struct ggml_tensor * node = gf->nodes[i];
  14483. if (node->grad) {
  14484. node->grad = ggml_dup_tensor(ctx, node);
  14485. gf->grads[i] = node->grad;
  14486. }
  14487. }
  14488. }
  14489. // remember original gradients which start with zero values
  14490. void ** zero_table = malloc(sizeof(void *) * GGML_GRAPH_HASHTABLE_SIZE);
  14491. memset(zero_table, 0, sizeof(void*) * GGML_GRAPH_HASHTABLE_SIZE);
  14492. for (int i = 0; i < gf->n_nodes; i++) {
  14493. if (gf->grads[i]) {
  14494. hash_insert(zero_table, gf->grads[i]);
  14495. }
  14496. }
  14497. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  14498. struct ggml_tensor * node = gf->nodes[i];
  14499. // inplace operations to add gradients are not created by ggml_compute_backward
  14500. // use allocator to automatically make inplace operations
  14501. if (node->grad) {
  14502. ggml_compute_backward(ctx, node, zero_table);
  14503. }
  14504. }
  14505. for (int i = 0; i < gf->n_nodes; i++) {
  14506. struct ggml_tensor * node = gf->nodes[i];
  14507. if (node->is_param) {
  14508. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  14509. ggml_build_forward_expand(gb, node->grad);
  14510. }
  14511. }
  14512. free(zero_table);
  14513. }
  14514. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  14515. struct ggml_cgraph result = *gf;
  14516. ggml_build_backward_expand(ctx, gf, &result, keep);
  14517. return result;
  14518. }
  14519. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  14520. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, GGML_GRAPH_SIZE);
  14521. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  14522. *cgraph = (struct ggml_cgraph) {
  14523. /*.n_nodes =*/ 0,
  14524. /*.n_leafs =*/ 0,
  14525. /*.nodes =*/ { NULL },
  14526. /*.grads =*/ { NULL },
  14527. /*.leafs =*/ { NULL },
  14528. /*.hash_table =*/ { NULL },
  14529. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  14530. /*.perf_runs =*/ 0,
  14531. /*.perf_cycles =*/ 0,
  14532. /*.perf_time_us =*/ 0,
  14533. };
  14534. return cgraph;
  14535. }
  14536. struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  14537. struct ggml_cgraph * cgraph = ggml_new_graph(ctx);
  14538. ggml_build_forward_impl(cgraph, tensor, false);
  14539. return cgraph;
  14540. }
  14541. size_t ggml_graph_overhead(void) {
  14542. return GGML_OBJECT_SIZE + GGML_PAD(GGML_GRAPH_SIZE, GGML_MEM_ALIGN);
  14543. }
  14544. //
  14545. // thread data
  14546. //
  14547. // synchronization is done via busy loops
  14548. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  14549. //
  14550. #ifdef __APPLE__
  14551. //#include <os/lock.h>
  14552. //
  14553. //typedef os_unfair_lock ggml_lock_t;
  14554. //
  14555. //#define ggml_lock_init(x) UNUSED(x)
  14556. //#define ggml_lock_destroy(x) UNUSED(x)
  14557. //#define ggml_lock_lock os_unfair_lock_lock
  14558. //#define ggml_lock_unlock os_unfair_lock_unlock
  14559. //
  14560. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  14561. typedef int ggml_lock_t;
  14562. #define ggml_lock_init(x) UNUSED(x)
  14563. #define ggml_lock_destroy(x) UNUSED(x)
  14564. #define ggml_lock_lock(x) UNUSED(x)
  14565. #define ggml_lock_unlock(x) UNUSED(x)
  14566. #define GGML_LOCK_INITIALIZER 0
  14567. typedef pthread_t ggml_thread_t;
  14568. #define ggml_thread_create pthread_create
  14569. #define ggml_thread_join pthread_join
  14570. #else
  14571. //typedef pthread_spinlock_t ggml_lock_t;
  14572. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  14573. //#define ggml_lock_destroy pthread_spin_destroy
  14574. //#define ggml_lock_lock pthread_spin_lock
  14575. //#define ggml_lock_unlock pthread_spin_unlock
  14576. typedef int ggml_lock_t;
  14577. #define ggml_lock_init(x) UNUSED(x)
  14578. #define ggml_lock_destroy(x) UNUSED(x)
  14579. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  14580. #define ggml_lock_lock(x) _mm_pause()
  14581. #else
  14582. #define ggml_lock_lock(x) UNUSED(x)
  14583. #endif
  14584. #define ggml_lock_unlock(x) UNUSED(x)
  14585. #define GGML_LOCK_INITIALIZER 0
  14586. typedef pthread_t ggml_thread_t;
  14587. #define ggml_thread_create pthread_create
  14588. #define ggml_thread_join pthread_join
  14589. #endif
  14590. // Android's libc implementation "bionic" does not support setting affinity
  14591. #if defined(__linux__) && !defined(__BIONIC__)
  14592. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  14593. if (!ggml_is_numa()) {
  14594. return;
  14595. }
  14596. // run thread on node_num thread_n / (threads per node)
  14597. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  14598. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  14599. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14600. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14601. CPU_ZERO_S(setsize, cpus);
  14602. for (size_t i = 0; i < node->n_cpus; ++i) {
  14603. CPU_SET_S(node->cpus[i], setsize, cpus);
  14604. }
  14605. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14606. if (rv) {
  14607. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  14608. strerror(rv));
  14609. }
  14610. CPU_FREE(cpus);
  14611. }
  14612. static void clear_numa_thread_affinity(void) {
  14613. if (!ggml_is_numa()) {
  14614. return;
  14615. }
  14616. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14617. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14618. CPU_ZERO_S(setsize, cpus);
  14619. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  14620. CPU_SET_S(i, setsize, cpus);
  14621. }
  14622. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14623. if (rv) {
  14624. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  14625. strerror(rv));
  14626. }
  14627. CPU_FREE(cpus);
  14628. }
  14629. #else
  14630. // TODO: Windows etc.
  14631. // (the linux implementation may also work on BSD, someone should test)
  14632. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  14633. static void clear_numa_thread_affinity(void) {}
  14634. #endif
  14635. struct ggml_compute_state_shared {
  14636. const struct ggml_cgraph * cgraph;
  14637. const struct ggml_cplan * cplan;
  14638. int64_t perf_node_start_cycles;
  14639. int64_t perf_node_start_time_us;
  14640. const int n_threads;
  14641. // synchronization primitives
  14642. atomic_int n_active; // num active threads
  14643. atomic_int node_n; // active graph node
  14644. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  14645. void * abort_callback_data;
  14646. };
  14647. struct ggml_compute_state {
  14648. ggml_thread_t thrd;
  14649. int ith;
  14650. struct ggml_compute_state_shared * shared;
  14651. };
  14652. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  14653. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  14654. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  14655. node->perf_runs++;
  14656. node->perf_cycles += cycles_cur;
  14657. node->perf_time_us += time_us_cur;
  14658. }
  14659. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14660. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14661. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14662. const struct ggml_cplan * cplan = state->shared->cplan;
  14663. const int * n_tasks_arr = cplan->n_tasks;
  14664. const int n_threads = state->shared->n_threads;
  14665. set_numa_thread_affinity(state->ith, n_threads);
  14666. int node_n = -1;
  14667. while (true) {
  14668. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14669. state->shared->node_n += 1;
  14670. return (thread_ret_t) GGML_EXIT_ABORTED;
  14671. }
  14672. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14673. // all other threads are finished and spinning
  14674. // do finalize and init here so we don't have synchronize again
  14675. struct ggml_compute_params params = {
  14676. /*.type =*/ GGML_TASK_FINALIZE,
  14677. /*.ith =*/ 0,
  14678. /*.nth =*/ 0,
  14679. /*.wsize =*/ cplan->work_size,
  14680. /*.wdata =*/ cplan->work_data,
  14681. };
  14682. if (node_n != -1) {
  14683. /* FINALIZE */
  14684. struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
  14685. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14686. params.nth = n_tasks_arr[node_n];
  14687. ggml_compute_forward(&params, node);
  14688. }
  14689. ggml_graph_compute_perf_stats_node(node, state->shared);
  14690. }
  14691. // distribute new work or execute it direct if 1T
  14692. while (++node_n < cgraph->n_nodes) {
  14693. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  14694. struct ggml_tensor * node = cgraph->nodes[node_n];
  14695. const int n_tasks = n_tasks_arr[node_n];
  14696. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  14697. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  14698. params.nth = n_tasks;
  14699. /* INIT */
  14700. if (GGML_OP_HAS_INIT[node->op]) {
  14701. params.type = GGML_TASK_INIT;
  14702. ggml_compute_forward(&params, node);
  14703. }
  14704. if (n_tasks == 1) {
  14705. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  14706. // they do something more efficient than spinning (?)
  14707. params.type = GGML_TASK_COMPUTE;
  14708. ggml_compute_forward(&params, node);
  14709. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14710. params.type = GGML_TASK_FINALIZE;
  14711. ggml_compute_forward(&params, node);
  14712. }
  14713. ggml_graph_compute_perf_stats_node(node, state->shared);
  14714. } else {
  14715. break;
  14716. }
  14717. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14718. break;
  14719. }
  14720. }
  14721. atomic_store(&state->shared->n_active, n_threads);
  14722. atomic_store(&state->shared->node_n, node_n);
  14723. } else {
  14724. // wait for other threads to finish
  14725. const int last = node_n;
  14726. while (true) {
  14727. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  14728. // depending on the workload and the operating system.
  14729. // since it is not clear what is the best approach, it should potentially become user-configurable
  14730. // ref: https://github.com/ggerganov/ggml/issues/291
  14731. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14732. sched_yield();
  14733. #endif
  14734. node_n = atomic_load(&state->shared->node_n);
  14735. if (node_n != last) break;
  14736. };
  14737. }
  14738. // check if we should stop
  14739. if (node_n >= cgraph->n_nodes) break;
  14740. /* COMPUTE */
  14741. struct ggml_tensor * node = cgraph->nodes[node_n];
  14742. const int n_tasks = n_tasks_arr[node_n];
  14743. struct ggml_compute_params params = {
  14744. /*.type =*/ GGML_TASK_COMPUTE,
  14745. /*.ith =*/ state->ith,
  14746. /*.nth =*/ n_tasks,
  14747. /*.wsize =*/ cplan->work_size,
  14748. /*.wdata =*/ cplan->work_data,
  14749. };
  14750. if (state->ith < n_tasks) {
  14751. ggml_compute_forward(&params, node);
  14752. }
  14753. }
  14754. return GGML_EXIT_SUCCESS;
  14755. }
  14756. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  14757. if (n_threads <= 0) {
  14758. n_threads = GGML_DEFAULT_N_THREADS;
  14759. }
  14760. size_t work_size = 0;
  14761. struct ggml_cplan cplan;
  14762. memset(&cplan, 0, sizeof(struct ggml_cplan));
  14763. // thread scheduling for the different operations + work buffer size estimation
  14764. for (int i = 0; i < cgraph->n_nodes; i++) {
  14765. int n_tasks = 1;
  14766. struct ggml_tensor * node = cgraph->nodes[i];
  14767. switch (node->op) {
  14768. case GGML_OP_CPY:
  14769. case GGML_OP_DUP:
  14770. {
  14771. n_tasks = n_threads;
  14772. size_t cur = 0;
  14773. if (ggml_is_quantized(node->type)) {
  14774. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14775. }
  14776. work_size = MAX(work_size, cur);
  14777. } break;
  14778. case GGML_OP_ADD:
  14779. case GGML_OP_ADD1:
  14780. {
  14781. n_tasks = n_threads;
  14782. size_t cur = 0;
  14783. if (ggml_is_quantized(node->src[0]->type)) {
  14784. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14785. }
  14786. work_size = MAX(work_size, cur);
  14787. } break;
  14788. case GGML_OP_ACC:
  14789. {
  14790. n_tasks = n_threads;
  14791. size_t cur = 0;
  14792. if (ggml_is_quantized(node->src[0]->type)) {
  14793. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  14794. }
  14795. work_size = MAX(work_size, cur);
  14796. } break;
  14797. case GGML_OP_SUB:
  14798. case GGML_OP_DIV:
  14799. case GGML_OP_SQR:
  14800. case GGML_OP_SQRT:
  14801. case GGML_OP_LOG:
  14802. case GGML_OP_SUM:
  14803. case GGML_OP_SUM_ROWS:
  14804. case GGML_OP_MEAN:
  14805. case GGML_OP_ARGMAX:
  14806. case GGML_OP_REPEAT:
  14807. case GGML_OP_REPEAT_BACK:
  14808. {
  14809. n_tasks = 1;
  14810. } break;
  14811. case GGML_OP_UNARY:
  14812. {
  14813. switch (ggml_get_unary_op(node)) {
  14814. case GGML_UNARY_OP_ABS:
  14815. case GGML_UNARY_OP_SGN:
  14816. case GGML_UNARY_OP_NEG:
  14817. case GGML_UNARY_OP_STEP:
  14818. case GGML_UNARY_OP_TANH:
  14819. case GGML_UNARY_OP_ELU:
  14820. case GGML_UNARY_OP_RELU:
  14821. {
  14822. n_tasks = 1;
  14823. } break;
  14824. case GGML_UNARY_OP_GELU:
  14825. case GGML_UNARY_OP_GELU_QUICK:
  14826. case GGML_UNARY_OP_SILU:
  14827. {
  14828. n_tasks = n_threads;
  14829. } break;
  14830. }
  14831. } break;
  14832. case GGML_OP_SILU_BACK:
  14833. case GGML_OP_MUL:
  14834. case GGML_OP_NORM:
  14835. case GGML_OP_RMS_NORM:
  14836. case GGML_OP_RMS_NORM_BACK:
  14837. case GGML_OP_GROUP_NORM:
  14838. {
  14839. n_tasks = n_threads;
  14840. } break;
  14841. case GGML_OP_CONCAT:
  14842. case GGML_OP_MUL_MAT:
  14843. {
  14844. n_tasks = n_threads;
  14845. // TODO: use different scheduling for different matrix sizes
  14846. //const int nr0 = ggml_nrows(node->src[0]);
  14847. //const int nr1 = ggml_nrows(node->src[1]);
  14848. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14849. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14850. size_t cur = 0;
  14851. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  14852. #if defined(GGML_USE_CUBLAS)
  14853. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  14854. n_tasks = 1; // TODO: this actually is doing nothing
  14855. // the threads are still spinning
  14856. } else
  14857. #elif defined(GGML_USE_CLBLAST)
  14858. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  14859. n_tasks = 1; // TODO: this actually is doing nothing
  14860. // the threads are still spinning
  14861. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  14862. } else
  14863. #endif
  14864. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14865. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  14866. n_tasks = 1; // TODO: this actually is doing nothing
  14867. // the threads are still spinning
  14868. if (node->src[0]->type != GGML_TYPE_F32) {
  14869. // here we need memory just for single 2D matrix from src0
  14870. cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  14871. }
  14872. } else
  14873. #endif
  14874. if (node->src[1]->type != vec_dot_type) {
  14875. cur = ggml_type_size(vec_dot_type)*ggml_nelements(node->src[1])/ggml_blck_size(vec_dot_type);
  14876. } else {
  14877. cur = 0;
  14878. }
  14879. work_size = MAX(work_size, cur);
  14880. } break;
  14881. case GGML_OP_OUT_PROD:
  14882. {
  14883. n_tasks = n_threads;
  14884. size_t cur = 0;
  14885. if (ggml_is_quantized(node->src[0]->type)) {
  14886. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14887. }
  14888. work_size = MAX(work_size, cur);
  14889. } break;
  14890. case GGML_OP_SCALE:
  14891. {
  14892. n_tasks = 1;
  14893. } break;
  14894. case GGML_OP_SET:
  14895. case GGML_OP_CONT:
  14896. case GGML_OP_RESHAPE:
  14897. case GGML_OP_VIEW:
  14898. case GGML_OP_PERMUTE:
  14899. case GGML_OP_TRANSPOSE:
  14900. case GGML_OP_GET_ROWS:
  14901. case GGML_OP_GET_ROWS_BACK:
  14902. case GGML_OP_DIAG:
  14903. {
  14904. n_tasks = 1;
  14905. } break;
  14906. case GGML_OP_DIAG_MASK_ZERO:
  14907. case GGML_OP_DIAG_MASK_INF:
  14908. case GGML_OP_SOFT_MAX:
  14909. case GGML_OP_SOFT_MAX_BACK:
  14910. case GGML_OP_ROPE:
  14911. case GGML_OP_ROPE_BACK:
  14912. case GGML_OP_ADD_REL_POS:
  14913. {
  14914. n_tasks = n_threads;
  14915. } break;
  14916. case GGML_OP_ALIBI:
  14917. {
  14918. n_tasks = 1; //TODO
  14919. } break;
  14920. case GGML_OP_CLAMP:
  14921. {
  14922. n_tasks = 1; //TODO
  14923. } break;
  14924. case GGML_OP_CONV_1D:
  14925. {
  14926. n_tasks = n_threads;
  14927. GGML_ASSERT(node->src[0]->ne[3] == 1);
  14928. GGML_ASSERT(node->src[1]->ne[2] == 1);
  14929. GGML_ASSERT(node->src[1]->ne[3] == 1);
  14930. size_t cur = 0;
  14931. const int nk = node->src[0]->ne[0];
  14932. if (node->src[0]->type == GGML_TYPE_F16 &&
  14933. node->src[1]->type == GGML_TYPE_F32) {
  14934. cur = sizeof(ggml_fp16_t)*(
  14935. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  14936. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  14937. );
  14938. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14939. node->src[1]->type == GGML_TYPE_F32) {
  14940. cur = sizeof(float)*(
  14941. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  14942. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  14943. );
  14944. } else {
  14945. GGML_ASSERT(false);
  14946. }
  14947. work_size = MAX(work_size, cur);
  14948. } break;
  14949. case GGML_OP_CONV_2D:
  14950. {
  14951. n_tasks = n_threads;
  14952. const int64_t ne00 = node->src[0]->ne[0]; // W
  14953. const int64_t ne01 = node->src[0]->ne[1]; // H
  14954. const int64_t ne02 = node->src[0]->ne[2]; // C
  14955. const int64_t ne03 = node->src[0]->ne[3]; // N
  14956. const int64_t ne10 = node->src[1]->ne[0]; // W
  14957. const int64_t ne11 = node->src[1]->ne[1]; // H
  14958. const int64_t ne12 = node->src[1]->ne[2]; // C
  14959. const int64_t ne0 = node->ne[0];
  14960. const int64_t ne1 = node->ne[1];
  14961. const int64_t ne2 = node->ne[2];
  14962. const int64_t nk = ne00*ne01;
  14963. const int64_t ew0 = nk * ne02;
  14964. UNUSED(ne03);
  14965. UNUSED(ne2);
  14966. size_t cur = 0;
  14967. if (node->src[0]->type == GGML_TYPE_F16 &&
  14968. node->src[1]->type == GGML_TYPE_F32) {
  14969. cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0);
  14970. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14971. node->src[1]->type == GGML_TYPE_F32) {
  14972. cur = sizeof(float)* (ne10*ne11*ne12);
  14973. } else {
  14974. GGML_ASSERT(false);
  14975. }
  14976. work_size = MAX(work_size, cur);
  14977. } break;
  14978. case GGML_OP_CONV_TRANSPOSE_2D:
  14979. {
  14980. n_tasks = n_threads;
  14981. const int64_t ne00 = node->src[0]->ne[0]; // W
  14982. const int64_t ne01 = node->src[0]->ne[1]; // H
  14983. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  14984. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  14985. const int64_t ne10 = node->src[1]->ne[0]; // W
  14986. const int64_t ne11 = node->src[1]->ne[1]; // H
  14987. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  14988. size_t cur = 0;
  14989. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  14990. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  14991. work_size = MAX(work_size, cur);
  14992. } break;
  14993. case GGML_OP_POOL_1D:
  14994. case GGML_OP_POOL_2D:
  14995. {
  14996. n_tasks = 1;
  14997. } break;
  14998. case GGML_OP_UPSCALE:
  14999. {
  15000. n_tasks = n_threads;
  15001. } break;
  15002. case GGML_OP_FLASH_ATTN:
  15003. {
  15004. n_tasks = n_threads;
  15005. size_t cur = 0;
  15006. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15007. if (node->src[1]->type == GGML_TYPE_F32) {
  15008. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15009. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15010. }
  15011. if (node->src[1]->type == GGML_TYPE_F16) {
  15012. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15013. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15014. }
  15015. work_size = MAX(work_size, cur);
  15016. } break;
  15017. case GGML_OP_FLASH_FF:
  15018. {
  15019. n_tasks = n_threads;
  15020. size_t cur = 0;
  15021. if (node->src[1]->type == GGML_TYPE_F32) {
  15022. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15023. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15024. }
  15025. if (node->src[1]->type == GGML_TYPE_F16) {
  15026. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15027. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15028. }
  15029. work_size = MAX(work_size, cur);
  15030. } break;
  15031. case GGML_OP_FLASH_ATTN_BACK:
  15032. {
  15033. n_tasks = n_threads;
  15034. size_t cur = 0;
  15035. const int64_t D = node->src[0]->ne[0];
  15036. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15037. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  15038. if (node->src[1]->type == GGML_TYPE_F32) {
  15039. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15040. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15041. }
  15042. if (node->src[1]->type == GGML_TYPE_F16) {
  15043. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15044. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15045. }
  15046. work_size = MAX(work_size, cur);
  15047. } break;
  15048. case GGML_OP_WIN_PART:
  15049. case GGML_OP_WIN_UNPART:
  15050. case GGML_OP_GET_REL_POS:
  15051. case GGML_OP_MAP_UNARY:
  15052. case GGML_OP_MAP_BINARY:
  15053. case GGML_OP_MAP_CUSTOM1_F32:
  15054. case GGML_OP_MAP_CUSTOM2_F32:
  15055. case GGML_OP_MAP_CUSTOM3_F32:
  15056. {
  15057. n_tasks = 1;
  15058. } break;
  15059. case GGML_OP_MAP_CUSTOM1:
  15060. {
  15061. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  15062. if (p->n_tasks == GGML_N_TASKS_MAX) {
  15063. n_tasks = n_threads;
  15064. } else {
  15065. n_tasks = MIN(p->n_tasks, n_threads);
  15066. }
  15067. } break;
  15068. case GGML_OP_MAP_CUSTOM2:
  15069. {
  15070. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  15071. if (p->n_tasks == GGML_N_TASKS_MAX) {
  15072. n_tasks = n_threads;
  15073. } else {
  15074. n_tasks = MIN(p->n_tasks, n_threads);
  15075. }
  15076. } break;
  15077. case GGML_OP_MAP_CUSTOM3:
  15078. {
  15079. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  15080. if (p->n_tasks == GGML_N_TASKS_MAX) {
  15081. n_tasks = n_threads;
  15082. } else {
  15083. n_tasks = MIN(p->n_tasks, n_threads);
  15084. }
  15085. } break;
  15086. case GGML_OP_CROSS_ENTROPY_LOSS:
  15087. {
  15088. n_tasks = n_threads;
  15089. size_t cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  15090. work_size = MAX(work_size, cur);
  15091. } break;
  15092. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15093. {
  15094. n_tasks = n_threads;
  15095. } break;
  15096. case GGML_OP_NONE:
  15097. {
  15098. n_tasks = 1;
  15099. } break;
  15100. case GGML_OP_COUNT:
  15101. {
  15102. GGML_ASSERT(false);
  15103. } break;
  15104. }
  15105. cplan.n_tasks[i] = n_tasks;
  15106. }
  15107. if (work_size > 0) {
  15108. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  15109. }
  15110. cplan.n_threads = n_threads;
  15111. cplan.work_size = work_size;
  15112. cplan.work_data = NULL;
  15113. return cplan;
  15114. }
  15115. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  15116. {
  15117. GGML_ASSERT(cplan);
  15118. GGML_ASSERT(cplan->n_threads > 0);
  15119. if (cplan->work_size > 0) {
  15120. GGML_ASSERT(cplan->work_data);
  15121. }
  15122. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15123. if (cgraph->nodes[i]->op != GGML_OP_NONE) {
  15124. GGML_ASSERT(cplan->n_tasks[i] > 0);
  15125. }
  15126. }
  15127. }
  15128. const int n_threads = cplan->n_threads;
  15129. struct ggml_compute_state_shared state_shared = {
  15130. /*.cgraph =*/ cgraph,
  15131. /*.cgraph_plan =*/ cplan,
  15132. /*.perf_node_start_cycles =*/ 0,
  15133. /*.perf_node_start_time_us =*/ 0,
  15134. /*.n_threads =*/ n_threads,
  15135. /*.n_active =*/ n_threads,
  15136. /*.node_n =*/ -1,
  15137. /*.abort_callback =*/ NULL,
  15138. /*.abort_callback_data =*/ NULL,
  15139. };
  15140. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  15141. // create thread pool
  15142. if (n_threads > 1) {
  15143. for (int j = 1; j < n_threads; ++j) {
  15144. workers[j] = (struct ggml_compute_state) {
  15145. .thrd = 0,
  15146. .ith = j,
  15147. .shared = &state_shared,
  15148. };
  15149. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  15150. GGML_ASSERT(rc == 0);
  15151. UNUSED(rc);
  15152. }
  15153. }
  15154. workers[0].ith = 0;
  15155. workers[0].shared = &state_shared;
  15156. const int64_t perf_start_cycles = ggml_perf_cycles();
  15157. const int64_t perf_start_time_us = ggml_perf_time_us();
  15158. // this is a work thread too
  15159. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  15160. // don't leave affinity set on the main thread
  15161. clear_numa_thread_affinity();
  15162. // join or kill thread pool
  15163. if (n_threads > 1) {
  15164. for (int j = 1; j < n_threads; j++) {
  15165. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  15166. GGML_ASSERT(rc == 0);
  15167. }
  15168. }
  15169. // performance stats (graph)
  15170. {
  15171. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  15172. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  15173. cgraph->perf_runs++;
  15174. cgraph->perf_cycles += perf_cycles_cur;
  15175. cgraph->perf_time_us += perf_time_us_cur;
  15176. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  15177. __func__, cgraph->perf_runs,
  15178. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  15179. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  15180. (double) perf_time_us_cur / 1000.0,
  15181. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  15182. }
  15183. return compute_status;
  15184. }
  15185. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  15186. for (int i = 0; i < cgraph->n_nodes; i++) {
  15187. struct ggml_tensor * grad = cgraph->grads[i];
  15188. if (grad) {
  15189. ggml_set_zero(grad);
  15190. }
  15191. }
  15192. }
  15193. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  15194. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  15195. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15196. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15197. ggml_graph_compute(cgraph, &cplan);
  15198. }
  15199. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  15200. for (int i = 0; i < cgraph->n_leafs; i++) {
  15201. struct ggml_tensor * leaf = cgraph->leafs[i];
  15202. if (strcmp(leaf->name, name) == 0) {
  15203. return leaf;
  15204. }
  15205. }
  15206. for (int i = 0; i < cgraph->n_nodes; i++) {
  15207. struct ggml_tensor * node = cgraph->nodes[i];
  15208. if (strcmp(node->name, name) == 0) {
  15209. return node;
  15210. }
  15211. }
  15212. return NULL;
  15213. }
  15214. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  15215. const int64_t * ne = tensor->ne;
  15216. const size_t * nb = tensor->nb;
  15217. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15218. ggml_type_name(tensor->type),
  15219. ggml_op_name (tensor->op),
  15220. tensor->n_dims,
  15221. ne[0], ne[1], ne[2], ne[3],
  15222. nb[0], nb[1], nb[2], nb[3],
  15223. tensor->data,
  15224. tensor->name);
  15225. }
  15226. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  15227. const int64_t * ne = tensor->ne;
  15228. const size_t * nb = tensor->nb;
  15229. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15230. arg,
  15231. ggml_type_name(tensor->type),
  15232. ggml_op_name (tensor->op),
  15233. tensor->n_dims,
  15234. ne[0], ne[1], ne[2], ne[3],
  15235. nb[0], nb[1], nb[2], nb[3],
  15236. tensor->data,
  15237. tensor->name);
  15238. }
  15239. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  15240. uint64_t size_eval = 0;
  15241. // compute size of intermediate results
  15242. // TODO: does not take into account scratch buffers !!!!
  15243. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15244. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  15245. }
  15246. // print
  15247. {
  15248. FILE * fout = stdout;
  15249. fprintf(fout, "\n");
  15250. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  15251. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  15252. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  15253. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  15254. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  15255. // header
  15256. fprintf(fout, "\n");
  15257. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  15258. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  15259. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15260. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  15261. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  15262. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  15263. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  15264. }
  15265. // header
  15266. fprintf(fout, "\n");
  15267. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  15268. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  15269. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15270. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  15271. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15272. if (cgraph->nodes[i]->src[j]) {
  15273. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  15274. }
  15275. }
  15276. fprintf(fout, "\n");
  15277. }
  15278. fprintf(fout, "\n");
  15279. }
  15280. // write binary data
  15281. {
  15282. FILE * fout = fopen(fname, "wb");
  15283. if (!fout) {
  15284. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15285. return;
  15286. }
  15287. // header
  15288. {
  15289. const uint32_t magic = GGML_FILE_MAGIC;
  15290. const uint32_t version = GGML_FILE_VERSION;
  15291. const uint32_t n_leafs = cgraph->n_leafs;
  15292. const uint32_t nodes = cgraph->n_nodes;
  15293. fwrite(&magic, sizeof(uint32_t), 1, fout);
  15294. fwrite(&version, sizeof(uint32_t), 1, fout);
  15295. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  15296. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  15297. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  15298. }
  15299. // leafs
  15300. {
  15301. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15302. const struct ggml_tensor * tensor = cgraph->leafs[i];
  15303. const uint32_t type = tensor->type;
  15304. const uint32_t op = tensor->op;
  15305. const uint32_t n_dims = tensor->n_dims;
  15306. fwrite(&type, sizeof(uint32_t), 1, fout);
  15307. fwrite(&op, sizeof(uint32_t), 1, fout);
  15308. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  15309. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15310. const uint64_t ne = tensor->ne[j];
  15311. const uint64_t nb = tensor->nb[j];
  15312. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15313. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15314. }
  15315. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15316. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15317. // dump the data
  15318. // TODO: pad this to 32 byte boundary
  15319. {
  15320. const size_t size = ggml_nbytes(tensor);
  15321. fwrite(tensor->data, sizeof(char), size, fout);
  15322. }
  15323. }
  15324. }
  15325. // nodes
  15326. {
  15327. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15328. const struct ggml_tensor * tensor = cgraph->nodes[i];
  15329. const uint32_t type = tensor->type;
  15330. const uint32_t op = tensor->op;
  15331. const uint32_t n_dims = tensor->n_dims;
  15332. fwrite(&type, sizeof(uint32_t), 1, fout);
  15333. fwrite(&op, sizeof(uint32_t), 1, fout);
  15334. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  15335. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15336. const uint64_t ne = tensor->ne[j];
  15337. const uint64_t nb = tensor->nb[j];
  15338. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15339. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15340. }
  15341. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15342. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15343. // output the op arguments
  15344. {
  15345. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15346. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15347. args[j] = tensor->src[j];
  15348. }
  15349. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15350. if (args[j]) {
  15351. int32_t idx = -1;
  15352. // check if leaf
  15353. {
  15354. for (int k = 0; k < cgraph->n_leafs; ++k) {
  15355. if (args[j] == cgraph->leafs[k]) {
  15356. idx = k;
  15357. break;
  15358. }
  15359. }
  15360. }
  15361. // check if node
  15362. if (idx == -1) {
  15363. for (int k = 0; k < cgraph->n_nodes; ++k) {
  15364. if (args[j] == cgraph->nodes[k]) {
  15365. idx = GGML_MAX_NODES + k;
  15366. break;
  15367. }
  15368. }
  15369. }
  15370. if (idx == -1) {
  15371. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  15372. return;
  15373. }
  15374. fwrite(&idx, sizeof(int32_t), 1, fout);
  15375. } else {
  15376. const int32_t nul = -1;
  15377. fwrite(&nul, sizeof(int32_t), 1, fout);
  15378. }
  15379. }
  15380. }
  15381. }
  15382. }
  15383. fclose(fout);
  15384. }
  15385. }
  15386. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  15387. assert(*ctx_data == NULL);
  15388. assert(*ctx_eval == NULL);
  15389. struct ggml_cgraph result = { 0 };
  15390. struct ggml_tensor * data = NULL;
  15391. // read file into data
  15392. {
  15393. FILE * fin = fopen(fname, "rb");
  15394. if (!fin) {
  15395. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15396. return result;
  15397. }
  15398. size_t fsize = 0;
  15399. fseek(fin, 0, SEEK_END);
  15400. fsize = ftell(fin);
  15401. fseek(fin, 0, SEEK_SET);
  15402. // create the data context
  15403. {
  15404. const size_t overhead = 1*ggml_tensor_overhead();
  15405. struct ggml_init_params params = {
  15406. .mem_size = fsize + overhead,
  15407. .mem_buffer = NULL,
  15408. .no_alloc = false,
  15409. };
  15410. *ctx_data = ggml_init(params);
  15411. if (!*ctx_data) {
  15412. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15413. fclose(fin);
  15414. return result;
  15415. }
  15416. }
  15417. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  15418. {
  15419. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  15420. if (ret != fsize) {
  15421. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  15422. fclose(fin);
  15423. return result;
  15424. }
  15425. }
  15426. fclose(fin);
  15427. }
  15428. // populate result
  15429. {
  15430. char * ptr = (char *) data->data;
  15431. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  15432. if (magic != GGML_FILE_MAGIC) {
  15433. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  15434. return result;
  15435. }
  15436. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  15437. if (version != GGML_FILE_VERSION) {
  15438. fprintf(stderr, "%s: invalid version number\n", __func__);
  15439. return result;
  15440. }
  15441. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  15442. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  15443. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  15444. result.n_leafs = n_leafs;
  15445. result.n_nodes = n_nodes;
  15446. // create the data context
  15447. {
  15448. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  15449. struct ggml_init_params params = {
  15450. .mem_size = size_eval + overhead,
  15451. .mem_buffer = NULL,
  15452. .no_alloc = true,
  15453. };
  15454. *ctx_eval = ggml_init(params);
  15455. if (!*ctx_eval) {
  15456. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15457. return result;
  15458. }
  15459. }
  15460. // leafs
  15461. {
  15462. uint32_t type;
  15463. uint32_t op;
  15464. uint32_t n_dims;
  15465. for (uint32_t i = 0; i < n_leafs; ++i) {
  15466. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15467. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15468. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  15469. int64_t ne[GGML_MAX_DIMS];
  15470. size_t nb[GGML_MAX_DIMS];
  15471. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15472. uint64_t ne_cur;
  15473. uint64_t nb_cur;
  15474. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15475. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15476. ne[j] = ne_cur;
  15477. nb[j] = nb_cur;
  15478. }
  15479. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  15480. tensor->op = (enum ggml_op) op;
  15481. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  15482. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  15483. tensor->data = (void *) ptr;
  15484. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15485. tensor->nb[j] = nb[j];
  15486. }
  15487. result.leafs[i] = tensor;
  15488. ptr += ggml_nbytes(tensor);
  15489. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  15490. }
  15491. }
  15492. ggml_set_no_alloc(*ctx_eval, false);
  15493. // nodes
  15494. {
  15495. uint32_t type;
  15496. uint32_t op;
  15497. uint32_t n_dims;
  15498. for (uint32_t i = 0; i < n_nodes; ++i) {
  15499. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15500. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15501. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  15502. enum ggml_op eop = (enum ggml_op) op;
  15503. int64_t ne[GGML_MAX_DIMS];
  15504. size_t nb[GGML_MAX_DIMS];
  15505. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15506. uint64_t ne_cur;
  15507. uint64_t nb_cur;
  15508. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15509. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15510. ne[j] = ne_cur;
  15511. nb[j] = nb_cur;
  15512. }
  15513. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  15514. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  15515. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  15516. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15517. // parse args
  15518. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15519. const int32_t arg_idx = ptr_arg_idx[j];
  15520. if (arg_idx == -1) {
  15521. continue;
  15522. }
  15523. if (arg_idx < GGML_MAX_NODES) {
  15524. args[j] = result.leafs[arg_idx];
  15525. } else {
  15526. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  15527. }
  15528. }
  15529. // create the tensor
  15530. // "view" operations are handled differently
  15531. // TODO: handle inplace ops - currently a copy is always made
  15532. struct ggml_tensor * tensor = NULL;
  15533. switch (eop) {
  15534. // TODO: implement other view ops
  15535. case GGML_OP_RESHAPE:
  15536. {
  15537. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  15538. } break;
  15539. case GGML_OP_VIEW:
  15540. {
  15541. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15542. size_t offs;
  15543. memcpy(&offs, ptr_op_params, sizeof(offs));
  15544. tensor->data = ((char *) tensor->data) + offs;
  15545. } break;
  15546. case GGML_OP_TRANSPOSE:
  15547. {
  15548. tensor = ggml_transpose(*ctx_eval, args[0]);
  15549. } break;
  15550. case GGML_OP_PERMUTE:
  15551. {
  15552. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15553. } break;
  15554. default:
  15555. {
  15556. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  15557. tensor->op = eop;
  15558. } break;
  15559. }
  15560. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  15561. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  15562. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15563. tensor->nb[j] = nb[j];
  15564. }
  15565. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15566. tensor->src[j] = args[j];
  15567. }
  15568. result.nodes[i] = tensor;
  15569. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  15570. }
  15571. }
  15572. }
  15573. return result;
  15574. }
  15575. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  15576. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  15577. GGML_PRINT("=== GRAPH ===\n");
  15578. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  15579. for (int i = 0; i < cgraph->n_nodes; i++) {
  15580. struct ggml_tensor * node = cgraph->nodes[i];
  15581. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  15582. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  15583. i,
  15584. node->ne[0], node->ne[1], node->ne[2],
  15585. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  15586. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  15587. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  15588. (double) node->perf_time_us / 1000.0,
  15589. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  15590. }
  15591. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  15592. for (int i = 0; i < cgraph->n_leafs; i++) {
  15593. struct ggml_tensor * node = cgraph->leafs[i];
  15594. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  15595. i,
  15596. node->ne[0], node->ne[1],
  15597. ggml_op_name(node->op),
  15598. ggml_get_name(node));
  15599. }
  15600. for (int i = 0; i < GGML_OP_COUNT; i++) {
  15601. if (perf_total_per_op_us[i] == 0) {
  15602. continue;
  15603. }
  15604. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  15605. }
  15606. GGML_PRINT("========================================\n");
  15607. }
  15608. // check if node is part of the graph
  15609. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15610. if (cgraph == NULL) {
  15611. return true;
  15612. }
  15613. for (int i = 0; i < cgraph->n_nodes; i++) {
  15614. if (cgraph->nodes[i] == node) {
  15615. return true;
  15616. }
  15617. }
  15618. return false;
  15619. }
  15620. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15621. for (int i = 0; i < cgraph->n_nodes; i++) {
  15622. struct ggml_tensor * parent = cgraph->nodes[i];
  15623. if (parent->grad == node) {
  15624. return parent;
  15625. }
  15626. }
  15627. return NULL;
  15628. }
  15629. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15630. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  15631. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  15632. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  15633. gparent0 ? (void *) gparent0 : (void *) parent,
  15634. gparent0 ? "g" : "x",
  15635. gparent ? (void *) gparent : (void *) node,
  15636. gparent ? "g" : "x",
  15637. gparent ? "empty" : "vee",
  15638. gparent ? "dashed" : "solid",
  15639. label);
  15640. }
  15641. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15642. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15643. (void *) parent, "x",
  15644. (void *) node, "x",
  15645. label);
  15646. }
  15647. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15648. char color[16];
  15649. FILE * fp = fopen(filename, "w");
  15650. GGML_ASSERT(fp);
  15651. fprintf(fp, "digraph G {\n");
  15652. fprintf(fp, " newrank = true;\n");
  15653. fprintf(fp, " rankdir = LR;\n");
  15654. for (int i = 0; i < gb->n_nodes; i++) {
  15655. struct ggml_tensor * node = gb->nodes[i];
  15656. if (ggml_graph_get_parent(gb, node) != NULL) {
  15657. continue;
  15658. }
  15659. if (node->is_param) {
  15660. snprintf(color, sizeof(color), "yellow");
  15661. } else if (node->grad) {
  15662. if (ggml_graph_find(gf, node)) {
  15663. snprintf(color, sizeof(color), "green");
  15664. } else {
  15665. snprintf(color, sizeof(color), "lightblue");
  15666. }
  15667. } else {
  15668. snprintf(color, sizeof(color), "white");
  15669. }
  15670. fprintf(fp, " \"%p\" [ "
  15671. "style = filled; fillcolor = %s; shape = record; "
  15672. "label=\"",
  15673. (void *) node, color);
  15674. if (strlen(node->name) > 0) {
  15675. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15676. } else {
  15677. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15678. }
  15679. if (node->n_dims == 2) {
  15680. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15681. } else {
  15682. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15683. }
  15684. if (node->grad) {
  15685. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15686. } else {
  15687. fprintf(fp, "\"; ]\n");
  15688. }
  15689. }
  15690. for (int i = 0; i < gb->n_leafs; i++) {
  15691. struct ggml_tensor * node = gb->leafs[i];
  15692. snprintf(color, sizeof(color), "pink");
  15693. fprintf(fp, " \"%p\" [ "
  15694. "style = filled; fillcolor = %s; shape = record; "
  15695. "label=\"<x>",
  15696. (void *) node, color);
  15697. if (strlen(node->name) > 0) {
  15698. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15699. } else {
  15700. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15701. }
  15702. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15703. if (ggml_nelements(node) < 5) {
  15704. fprintf(fp, " | (");
  15705. for (int j = 0; j < ggml_nelements(node); j++) {
  15706. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15707. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15708. }
  15709. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15710. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15711. }
  15712. else {
  15713. fprintf(fp, "#");
  15714. }
  15715. if (j < ggml_nelements(node) - 1) {
  15716. fprintf(fp, ", ");
  15717. }
  15718. }
  15719. fprintf(fp, ")");
  15720. }
  15721. fprintf(fp, "\"; ]\n");
  15722. }
  15723. for (int i = 0; i < gb->n_nodes; i++) {
  15724. struct ggml_tensor * node = gb->nodes[i];
  15725. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15726. if (node->src[j]) {
  15727. char label[16];
  15728. snprintf(label, sizeof(label), "src %d", j);
  15729. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15730. }
  15731. }
  15732. }
  15733. for (int i = 0; i < gb->n_leafs; i++) {
  15734. struct ggml_tensor * node = gb->leafs[i];
  15735. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15736. if (node->src[j]) {
  15737. char label[16];
  15738. snprintf(label, sizeof(label), "src %d", j);
  15739. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15740. }
  15741. }
  15742. }
  15743. fprintf(fp, "}\n");
  15744. fclose(fp);
  15745. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15746. }
  15747. ////////////////////////////////////////////////////////////////////////////////
  15748. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15749. int i = 0;
  15750. for (int p = 0; p < np; ++p) {
  15751. const int64_t ne = ggml_nelements(ps[p]) ;
  15752. // TODO: add function to set tensor from array
  15753. for (int64_t j = 0; j < ne; ++j) {
  15754. ggml_set_f32_1d(ps[p], j, x[i++]);
  15755. }
  15756. }
  15757. }
  15758. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15759. int i = 0;
  15760. for (int p = 0; p < np; ++p) {
  15761. const int64_t ne = ggml_nelements(ps[p]) ;
  15762. // TODO: add function to get all elements at once
  15763. for (int64_t j = 0; j < ne; ++j) {
  15764. x[i++] = ggml_get_f32_1d(ps[p], j);
  15765. }
  15766. }
  15767. }
  15768. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15769. int64_t i = 0;
  15770. for (int p = 0; p < np; ++p) {
  15771. const int64_t ne = ggml_nelements(ps[p]) ;
  15772. // TODO: add function to get all elements at once
  15773. for (int64_t j = 0; j < ne; ++j) {
  15774. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15775. }
  15776. }
  15777. }
  15778. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  15779. int64_t i = 0;
  15780. for (int p = 0; p < np; ++p) {
  15781. const int64_t ne = ggml_nelements(ps[p]) ;
  15782. // TODO: add function to get all elements at once
  15783. for (int64_t j = 0; j < ne; ++j) {
  15784. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  15785. }
  15786. }
  15787. }
  15788. //
  15789. // ADAM
  15790. //
  15791. // ref: https://arxiv.org/pdf/1412.6980.pdf
  15792. //
  15793. static enum ggml_opt_result ggml_opt_adam(
  15794. struct ggml_context * ctx,
  15795. struct ggml_opt_context * opt,
  15796. struct ggml_opt_params params,
  15797. struct ggml_tensor * f,
  15798. struct ggml_cgraph * gf,
  15799. struct ggml_cgraph * gb,
  15800. ggml_opt_callback callback,
  15801. void * callback_data) {
  15802. GGML_ASSERT(ggml_is_scalar(f));
  15803. // these will store the parameters we want to optimize
  15804. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15805. int np = 0;
  15806. int64_t nx = 0;
  15807. for (int i = 0; i < gf->n_nodes; ++i) {
  15808. if (gf->nodes[i]->is_param) {
  15809. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15810. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15811. ps[np++] = gf->nodes[i];
  15812. nx += ggml_nelements(gf->nodes[i]);
  15813. }
  15814. }
  15815. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15816. int iter = opt->iter;
  15817. ggml_opt_init(opt->ctx, opt, params, nx);
  15818. opt->iter = iter;
  15819. }
  15820. // constants
  15821. float sched = params.adam.sched;
  15822. const float alpha = params.adam.alpha;
  15823. const float decay = params.adam.decay * alpha;
  15824. const float beta1 = params.adam.beta1;
  15825. const float beta2 = params.adam.beta2;
  15826. const float eps = params.adam.eps;
  15827. const float gclip = params.adam.gclip;
  15828. const int decay_min_ndim = params.adam.decay_min_ndim;
  15829. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15830. const float accum_norm = 1.0f / (float) n_accum;
  15831. float * g = opt->adam.g->data; // gradients
  15832. float * m = opt->adam.m->data; // first moment
  15833. float * v = opt->adam.v->data; // second moment
  15834. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  15835. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15836. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15837. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15838. bool cancel = false;
  15839. // compute the function value
  15840. float fx = 0;
  15841. ggml_set_zero(opt->adam.g);
  15842. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15843. if (callback) {
  15844. callback(callback_data, accum_step, &sched, &cancel);
  15845. if (cancel) {
  15846. break;
  15847. }
  15848. }
  15849. // ggml_graph_reset (gf);
  15850. ggml_set_f32 (f->grad, 1.0f);
  15851. ggml_graph_compute(gb, &cplan);
  15852. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15853. fx += ggml_get_f32_1d(f, 0);
  15854. }
  15855. if (cancel) {
  15856. return GGML_OPT_DID_NOT_CONVERGE;
  15857. }
  15858. fx *= accum_norm;
  15859. opt->adam.fx_prev = fx;
  15860. opt->adam.fx_best = opt->adam.fx_prev;
  15861. if (pf) {
  15862. pf[opt->iter % params.past] = opt->adam.fx_prev;
  15863. }
  15864. opt->loss_before = opt->adam.fx_prev;
  15865. opt->loss_after = opt->adam.fx_prev;
  15866. // initialize
  15867. if (opt->just_initialized) {
  15868. opt->adam.n_no_improvement = 0;
  15869. opt->just_initialized = false;
  15870. }
  15871. float * fx_best = &opt->adam.fx_best;
  15872. float * fx_prev = &opt->adam.fx_prev;
  15873. int * n_no_improvement = &opt->adam.n_no_improvement;
  15874. int iter0 = opt->iter;
  15875. // run the optimizer
  15876. for (int t = 0; t < params.adam.n_iter; ++t) {
  15877. if (cancel) {
  15878. break;
  15879. }
  15880. opt->iter = iter0 + t + 1;
  15881. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  15882. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15883. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  15884. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  15885. for (int i = 0; i < np; ++i) {
  15886. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  15887. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  15888. }
  15889. const int64_t t_start_wall = ggml_time_us();
  15890. const int64_t t_start_cpu = ggml_cycles();
  15891. UNUSED(t_start_wall);
  15892. UNUSED(t_start_cpu);
  15893. {
  15894. float gnorm = 1.0f;
  15895. if (gclip > 0.0f) {
  15896. // gradient clipping
  15897. ggml_float sum = 0.0;
  15898. for (int64_t i = 0; i < nx; ++i) {
  15899. sum += (ggml_float)(g[i]*g[i]);
  15900. }
  15901. ggml_float norm = sqrt(sum);
  15902. if (norm > (ggml_float) gclip) {
  15903. gnorm = (float) ((ggml_float) gclip / norm);
  15904. }
  15905. }
  15906. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  15907. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  15908. int64_t i = 0;
  15909. for (int p = 0; p < np; ++p) {
  15910. const int64_t ne = ggml_nelements(ps[p]);
  15911. const float p_decay = ((ps[p]->n_dims >= decay_min_ndim) ? decay : 0.0f) * sched;
  15912. for (int64_t j = 0; j < ne; ++j) {
  15913. float x = ggml_get_f32_1d(ps[p], j);
  15914. float g_ = g[i]*gnorm;
  15915. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  15916. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  15917. float mh = m[i]*beta1h;
  15918. float vh = v[i]*beta2h;
  15919. vh = sqrtf(vh) + eps;
  15920. x = x*(1.0f - p_decay) - mh/vh;
  15921. ggml_set_f32_1d(ps[p], j, x);
  15922. ++i;
  15923. }
  15924. }
  15925. }
  15926. fx = 0;
  15927. ggml_set_zero(opt->adam.g);
  15928. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15929. if (callback) {
  15930. callback(callback_data, accum_step, &sched, &cancel);
  15931. if (cancel) {
  15932. break;
  15933. }
  15934. }
  15935. // ggml_graph_reset (gf);
  15936. ggml_set_f32 (f->grad, 1.0f);
  15937. ggml_graph_compute(gb, &cplan);
  15938. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15939. fx += ggml_get_f32_1d(f, 0);
  15940. }
  15941. if (cancel) {
  15942. break;
  15943. }
  15944. fx *= accum_norm;
  15945. opt->loss_after = fx;
  15946. // check convergence
  15947. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  15948. GGML_PRINT_DEBUG("converged\n");
  15949. return GGML_OPT_OK;
  15950. }
  15951. // delta-based convergence test
  15952. if (pf != NULL) {
  15953. // need at least params.past iterations to start checking for convergence
  15954. if (params.past <= iter0 + t) {
  15955. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  15956. if (fabsf(rate) < params.delta) {
  15957. return GGML_OPT_OK;
  15958. }
  15959. }
  15960. pf[(iter0 + t)%params.past] = fx;
  15961. }
  15962. // check for improvement
  15963. if (params.max_no_improvement > 0) {
  15964. if (fx_best[0] > fx) {
  15965. fx_best[0] = fx;
  15966. n_no_improvement[0] = 0;
  15967. } else {
  15968. ++n_no_improvement[0];
  15969. if (n_no_improvement[0] >= params.max_no_improvement) {
  15970. return GGML_OPT_OK;
  15971. }
  15972. }
  15973. }
  15974. fx_prev[0] = fx;
  15975. {
  15976. const int64_t t_end_cpu = ggml_cycles();
  15977. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  15978. UNUSED(t_end_cpu);
  15979. const int64_t t_end_wall = ggml_time_us();
  15980. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  15981. UNUSED(t_end_wall);
  15982. }
  15983. }
  15984. return GGML_OPT_DID_NOT_CONVERGE;
  15985. }
  15986. //
  15987. // L-BFGS
  15988. //
  15989. // the L-BFGS implementation below is based on the following implementation:
  15990. //
  15991. // https://github.com/chokkan/liblbfgs
  15992. //
  15993. struct ggml_lbfgs_iteration_data {
  15994. float alpha;
  15995. float ys;
  15996. float * s;
  15997. float * y;
  15998. };
  15999. static enum ggml_opt_result linesearch_backtracking(
  16000. const struct ggml_opt_params * params,
  16001. int nx,
  16002. float * x,
  16003. float * fx,
  16004. float * g,
  16005. float * d,
  16006. float * step,
  16007. const float * xp,
  16008. struct ggml_tensor * f,
  16009. struct ggml_cgraph * gb,
  16010. struct ggml_cplan * cplan,
  16011. const int np,
  16012. struct ggml_tensor * ps[],
  16013. bool * cancel,
  16014. ggml_opt_callback callback,
  16015. void * callback_data) {
  16016. int count = 0;
  16017. float width = 0.0f;
  16018. float dg = 0.0f;
  16019. float finit = 0.0f;
  16020. float dginit = 0.0f;
  16021. float dgtest = 0.0f;
  16022. const float dec = 0.5f;
  16023. const float inc = 2.1f;
  16024. const int n_accum = MAX(1, params->n_gradient_accumulation);
  16025. const float accum_norm = 1.0f / (float) n_accum;
  16026. if (*step <= 0.f) {
  16027. return GGML_LINESEARCH_INVALID_PARAMETERS;
  16028. }
  16029. // compute the initial gradient in the search direction
  16030. ggml_vec_dot_f32(nx, &dginit, g, d);
  16031. // make sure that d points to a descent direction
  16032. if (0 < dginit) {
  16033. return GGML_LINESEARCH_FAIL;
  16034. }
  16035. // initialize local variables
  16036. finit = *fx;
  16037. dgtest = params->lbfgs.ftol*dginit;
  16038. while (!*cancel) {
  16039. ggml_vec_cpy_f32(nx, x, xp);
  16040. ggml_vec_mad_f32(nx, x, d, *step);
  16041. // evaluate the function and gradient values
  16042. {
  16043. ggml_opt_set_params(np, ps, x);
  16044. *fx = 0;
  16045. memset(g, 0, sizeof(float)*nx);
  16046. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16047. if (callback) {
  16048. // LBFG-S does not support learning rate -> ignore learning schedule
  16049. float sched = 0;
  16050. callback(callback_data, accum_step, &sched, cancel);
  16051. if (*cancel) {
  16052. break;
  16053. }
  16054. }
  16055. // ggml_graph_reset (gf);
  16056. ggml_set_f32 (f->grad, 1.0f);
  16057. ggml_graph_compute(gb, cplan);
  16058. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16059. *fx += ggml_get_f32_1d(f, 0);
  16060. }
  16061. if (*cancel) {
  16062. break;
  16063. }
  16064. *fx *= accum_norm;
  16065. }
  16066. ++count;
  16067. if (*fx > finit + (*step)*dgtest) {
  16068. width = dec;
  16069. } else {
  16070. // Armijo condition is satisfied
  16071. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  16072. return count;
  16073. }
  16074. ggml_vec_dot_f32(nx, &dg, g, d);
  16075. // check the Wolfe condition
  16076. if (dg < params->lbfgs.wolfe * dginit) {
  16077. width = inc;
  16078. } else {
  16079. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  16080. // regular Wolfe conditions
  16081. return count;
  16082. }
  16083. if(dg > -params->lbfgs.wolfe*dginit) {
  16084. width = dec;
  16085. } else {
  16086. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  16087. return count;
  16088. }
  16089. }
  16090. }
  16091. if (*step < params->lbfgs.min_step) {
  16092. return GGML_LINESEARCH_MINIMUM_STEP;
  16093. }
  16094. if (*step > params->lbfgs.max_step) {
  16095. return GGML_LINESEARCH_MAXIMUM_STEP;
  16096. }
  16097. if (params->lbfgs.max_linesearch <= count) {
  16098. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  16099. }
  16100. (*step) *= width;
  16101. }
  16102. GGML_UNREACHABLE();
  16103. }
  16104. static enum ggml_opt_result ggml_opt_lbfgs(
  16105. struct ggml_context * ctx,
  16106. struct ggml_opt_context * opt,
  16107. struct ggml_opt_params params,
  16108. struct ggml_tensor * f,
  16109. struct ggml_cgraph * gf,
  16110. struct ggml_cgraph * gb,
  16111. ggml_opt_callback callback,
  16112. void * callback_data) {
  16113. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  16114. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  16115. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  16116. return GGML_OPT_INVALID_WOLFE;
  16117. }
  16118. }
  16119. const int m = params.lbfgs.m;
  16120. // these will store the parameters we want to optimize
  16121. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16122. int np = 0;
  16123. int nx = 0;
  16124. for (int i = 0; i < gf->n_nodes; ++i) {
  16125. if (gf->nodes[i]->is_param) {
  16126. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16127. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16128. ps[np++] = gf->nodes[i];
  16129. nx += ggml_nelements(gf->nodes[i]);
  16130. }
  16131. }
  16132. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  16133. int iter = opt->iter;
  16134. ggml_opt_init(ctx, opt, params, nx);
  16135. opt->iter = iter;
  16136. }
  16137. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16138. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  16139. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16140. float * x = opt->lbfgs.x->data; // current parameters
  16141. float * xp = opt->lbfgs.xp->data; // previous parameters
  16142. float * g = opt->lbfgs.g->data; // current gradient
  16143. float * gp = opt->lbfgs.gp->data; // previous gradient
  16144. float * d = opt->lbfgs.d->data; // search direction
  16145. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  16146. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16147. const float accum_norm = 1.0f / (float) n_accum;
  16148. float fx = 0.0f; // cost function value
  16149. float xnorm = 0.0f; // ||x||
  16150. float gnorm = 0.0f; // ||g||
  16151. // initialize x from the graph nodes
  16152. ggml_opt_get_params(np, ps, x);
  16153. // the L-BFGS memory
  16154. float * lm_alpha = opt->lbfgs.lmal->data;
  16155. float * lm_ys = opt->lbfgs.lmys->data;
  16156. float * lm_s = opt->lbfgs.lms->data;
  16157. float * lm_y = opt->lbfgs.lmy->data;
  16158. bool cancel = false;
  16159. // evaluate the function value and its gradient
  16160. {
  16161. ggml_opt_set_params(np, ps, x);
  16162. fx = 0;
  16163. memset(g, 0, sizeof(float)*nx);
  16164. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16165. if (callback) {
  16166. // LBFG-S does not support learning rate -> ignore learning schedule
  16167. float sched = 0;
  16168. callback(callback_data, accum_step, &sched, &cancel);
  16169. if (cancel) {
  16170. break;
  16171. }
  16172. }
  16173. // ggml_graph_reset (gf);
  16174. ggml_set_f32 (f->grad, 1.0f);
  16175. ggml_graph_compute(gb, &cplan);
  16176. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16177. fx += ggml_get_f32_1d(f, 0);
  16178. }
  16179. if (cancel) {
  16180. return GGML_OPT_DID_NOT_CONVERGE;
  16181. }
  16182. fx *= accum_norm;
  16183. opt->loss_before = fx;
  16184. opt->loss_after = fx;
  16185. }
  16186. // search direction = -gradient
  16187. ggml_vec_neg_f32(nx, d, g);
  16188. // ||x||, ||g||
  16189. ggml_vec_norm_f32(nx, &xnorm, x);
  16190. ggml_vec_norm_f32(nx, &gnorm, g);
  16191. if (xnorm < 1.0f) {
  16192. xnorm = 1.0f;
  16193. }
  16194. // already optimized
  16195. if (gnorm/xnorm <= params.lbfgs.eps) {
  16196. return GGML_OPT_OK;
  16197. }
  16198. if (opt->just_initialized) {
  16199. if (pf) {
  16200. pf[0] = fx;
  16201. }
  16202. opt->lbfgs.fx_best = fx;
  16203. // initial step
  16204. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  16205. opt->lbfgs.j = 0;
  16206. opt->lbfgs.k = 1;
  16207. opt->lbfgs.end = 0;
  16208. opt->lbfgs.n_no_improvement = 0;
  16209. opt->just_initialized = false;
  16210. }
  16211. float * fx_best = &opt->lbfgs.fx_best;
  16212. float * step = &opt->lbfgs.step;
  16213. int * j = &opt->lbfgs.j;
  16214. int * k = &opt->lbfgs.k;
  16215. int * end = &opt->lbfgs.end;
  16216. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  16217. int ls = 0;
  16218. int bound = 0;
  16219. float ys = 0.0f;
  16220. float yy = 0.0f;
  16221. float beta = 0.0f;
  16222. int it = 0;
  16223. while (true) {
  16224. // store the current position and gradient vectors
  16225. ggml_vec_cpy_f32(nx, xp, x);
  16226. ggml_vec_cpy_f32(nx, gp, g);
  16227. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  16228. if (!cancel) {
  16229. break;
  16230. }
  16231. if (ls < 0) {
  16232. // linesearch failed - go back to the previous point and return
  16233. ggml_vec_cpy_f32(nx, x, xp);
  16234. ggml_vec_cpy_f32(nx, g, gp);
  16235. return ls;
  16236. }
  16237. opt->loss_after = fx;
  16238. ggml_vec_norm_f32(nx, &xnorm, x);
  16239. ggml_vec_norm_f32(nx, &gnorm, g);
  16240. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16241. if (xnorm < 1.0f) {
  16242. xnorm = 1.0f;
  16243. }
  16244. if (gnorm/xnorm <= params.lbfgs.eps) {
  16245. // converged
  16246. return GGML_OPT_OK;
  16247. }
  16248. // delta-based convergence test
  16249. if (pf != NULL) {
  16250. // need at least params.past iterations to start checking for convergence
  16251. if (params.past <= k[0]) {
  16252. const float rate = (pf[k[0]%params.past] - fx)/fx;
  16253. if (fabsf(rate) < params.delta) {
  16254. return GGML_OPT_OK;
  16255. }
  16256. }
  16257. pf[k[0]%params.past] = fx;
  16258. }
  16259. // check for improvement
  16260. if (params.max_no_improvement > 0) {
  16261. if (fx < fx_best[0]) {
  16262. fx_best[0] = fx;
  16263. n_no_improvement[0] = 0;
  16264. } else {
  16265. n_no_improvement[0]++;
  16266. if (n_no_improvement[0] >= params.max_no_improvement) {
  16267. return GGML_OPT_OK;
  16268. }
  16269. }
  16270. }
  16271. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  16272. // reached the maximum number of iterations
  16273. return GGML_OPT_DID_NOT_CONVERGE;
  16274. }
  16275. // update vectors s and y:
  16276. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  16277. // y_{k+1} = g_{k+1} - g_{k}.
  16278. //
  16279. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  16280. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  16281. // compute scalars ys and yy:
  16282. // ys = y^t \cdot s -> 1 / \rho.
  16283. // yy = y^t \cdot y.
  16284. //
  16285. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  16286. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  16287. lm_ys[end[0]] = ys;
  16288. // find new search direction
  16289. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  16290. bound = (m <= k[0]) ? m : k[0];
  16291. k[0]++;
  16292. it++;
  16293. end[0] = (end[0] + 1)%m;
  16294. // initialize search direction with -g
  16295. ggml_vec_neg_f32(nx, d, g);
  16296. j[0] = end[0];
  16297. for (int i = 0; i < bound; ++i) {
  16298. j[0] = (j[0] + m - 1) % m;
  16299. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  16300. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  16301. lm_alpha[j[0]] /= lm_ys[j[0]];
  16302. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  16303. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  16304. }
  16305. ggml_vec_scale_f32(nx, d, ys/yy);
  16306. for (int i = 0; i < bound; ++i) {
  16307. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  16308. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  16309. beta /= lm_ys[j[0]];
  16310. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  16311. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  16312. j[0] = (j[0] + 1)%m;
  16313. }
  16314. step[0] = 1.0;
  16315. }
  16316. GGML_UNREACHABLE();
  16317. }
  16318. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  16319. struct ggml_opt_params result;
  16320. switch (type) {
  16321. case GGML_OPT_ADAM:
  16322. {
  16323. result = (struct ggml_opt_params) {
  16324. .type = GGML_OPT_ADAM,
  16325. .n_threads = 1,
  16326. .past = 0,
  16327. .delta = 1e-5f,
  16328. .max_no_improvement = 100,
  16329. .print_forward_graph = true,
  16330. .print_backward_graph = true,
  16331. .n_gradient_accumulation = 1,
  16332. .adam = {
  16333. .n_iter = 10000,
  16334. .sched = 1.000f,
  16335. .decay = 0.0f,
  16336. .decay_min_ndim = 2,
  16337. .alpha = 0.001f,
  16338. .beta1 = 0.9f,
  16339. .beta2 = 0.999f,
  16340. .eps = 1e-8f,
  16341. .eps_f = 1e-5f,
  16342. .eps_g = 1e-3f,
  16343. .gclip = 0.0f,
  16344. },
  16345. };
  16346. } break;
  16347. case GGML_OPT_LBFGS:
  16348. {
  16349. result = (struct ggml_opt_params) {
  16350. .type = GGML_OPT_LBFGS,
  16351. .n_threads = 1,
  16352. .past = 0,
  16353. .delta = 1e-5f,
  16354. .max_no_improvement = 0,
  16355. .print_forward_graph = true,
  16356. .print_backward_graph = true,
  16357. .n_gradient_accumulation = 1,
  16358. .lbfgs = {
  16359. .m = 6,
  16360. .n_iter = 100,
  16361. .max_linesearch = 20,
  16362. .eps = 1e-5f,
  16363. .ftol = 1e-4f,
  16364. .wolfe = 0.9f,
  16365. .min_step = 1e-20f,
  16366. .max_step = 1e+20f,
  16367. .linesearch = GGML_LINESEARCH_DEFAULT,
  16368. },
  16369. };
  16370. } break;
  16371. }
  16372. return result;
  16373. }
  16374. GGML_API void ggml_opt_init(
  16375. struct ggml_context * ctx,
  16376. struct ggml_opt_context * opt,
  16377. struct ggml_opt_params params,
  16378. int64_t nx) {
  16379. opt->ctx = ctx;
  16380. opt->params = params;
  16381. opt->iter = 0;
  16382. opt->nx = nx;
  16383. opt->just_initialized = true;
  16384. if (opt->ctx == NULL) {
  16385. struct ggml_init_params ctx_opt_params;
  16386. if (opt->params.type == GGML_OPT_ADAM) {
  16387. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  16388. if (opt->params.past > 0) {
  16389. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16390. }
  16391. } else if (opt->params.type == GGML_OPT_LBFGS) {
  16392. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  16393. if (opt->params.past > 0) {
  16394. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16395. }
  16396. }
  16397. ctx_opt_params.mem_buffer = NULL;
  16398. ctx_opt_params.no_alloc = false;
  16399. opt->ctx = ggml_init(ctx_opt_params);
  16400. }
  16401. switch (opt->params.type) {
  16402. case GGML_OPT_ADAM:
  16403. {
  16404. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16405. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16406. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16407. opt->adam.pf = params.past > 0
  16408. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16409. : NULL;
  16410. ggml_set_zero(opt->adam.m);
  16411. ggml_set_zero(opt->adam.v);
  16412. if (opt->adam.pf) {
  16413. ggml_set_zero(opt->adam.pf);
  16414. }
  16415. } break;
  16416. case GGML_OPT_LBFGS:
  16417. {
  16418. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16419. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16420. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16421. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16422. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16423. opt->lbfgs.pf = params.past > 0
  16424. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16425. : NULL;
  16426. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16427. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16428. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16429. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16430. ggml_set_zero(opt->lbfgs.x);
  16431. ggml_set_zero(opt->lbfgs.xp);
  16432. ggml_set_zero(opt->lbfgs.g);
  16433. ggml_set_zero(opt->lbfgs.gp);
  16434. ggml_set_zero(opt->lbfgs.d);
  16435. if (opt->lbfgs.pf) {
  16436. ggml_set_zero(opt->lbfgs.pf);
  16437. }
  16438. ggml_set_zero(opt->lbfgs.lmal);
  16439. ggml_set_zero(opt->lbfgs.lmys);
  16440. ggml_set_zero(opt->lbfgs.lms);
  16441. ggml_set_zero(opt->lbfgs.lmy);
  16442. } break;
  16443. }
  16444. }
  16445. enum ggml_opt_result ggml_opt(
  16446. struct ggml_context * ctx,
  16447. struct ggml_opt_params params,
  16448. struct ggml_tensor * f) {
  16449. bool free_ctx = false;
  16450. if (ctx == NULL) {
  16451. struct ggml_init_params params_ctx = {
  16452. .mem_size = 16*1024*1024,
  16453. .mem_buffer = NULL,
  16454. .no_alloc = false,
  16455. };
  16456. ctx = ggml_init(params_ctx);
  16457. if (ctx == NULL) {
  16458. return GGML_OPT_NO_CONTEXT;
  16459. }
  16460. free_ctx = true;
  16461. }
  16462. enum ggml_opt_result result = GGML_OPT_OK;
  16463. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  16464. ggml_opt_init(ctx, opt, params, 0);
  16465. result = ggml_opt_resume(ctx, opt, f);
  16466. if (free_ctx) {
  16467. ggml_free(ctx);
  16468. }
  16469. return result;
  16470. }
  16471. enum ggml_opt_result ggml_opt_resume(
  16472. struct ggml_context * ctx,
  16473. struct ggml_opt_context * opt,
  16474. struct ggml_tensor * f) {
  16475. // build forward + backward compute graphs
  16476. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  16477. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  16478. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  16479. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  16480. *gf = ggml_build_forward (f);
  16481. *gb = ggml_build_backward(ctx, gf, true);
  16482. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  16483. }
  16484. enum ggml_opt_result ggml_opt_resume_g(
  16485. struct ggml_context * ctx,
  16486. struct ggml_opt_context * opt,
  16487. struct ggml_tensor * f,
  16488. struct ggml_cgraph * gf,
  16489. struct ggml_cgraph * gb,
  16490. ggml_opt_callback callback,
  16491. void * callback_data) {
  16492. // build forward + backward compute graphs
  16493. enum ggml_opt_result result = GGML_OPT_OK;
  16494. switch (opt->params.type) {
  16495. case GGML_OPT_ADAM:
  16496. {
  16497. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16498. } break;
  16499. case GGML_OPT_LBFGS:
  16500. {
  16501. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16502. } break;
  16503. }
  16504. if (opt->params.print_forward_graph) {
  16505. ggml_graph_print (gf);
  16506. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  16507. }
  16508. if (opt->params.print_backward_graph) {
  16509. ggml_graph_print (gb);
  16510. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  16511. }
  16512. return result;
  16513. }
  16514. ////////////////////////////////////////////////////////////////////////////////
  16515. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16516. assert(k % QK4_0 == 0);
  16517. const int nb = k / QK4_0;
  16518. for (int b = 0; b < n; b += k) {
  16519. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  16520. quantize_row_q4_0_reference(src + b, y, k);
  16521. for (int i = 0; i < nb; i++) {
  16522. for (int j = 0; j < QK4_0; j += 2) {
  16523. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  16524. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  16525. hist[vi0]++;
  16526. hist[vi1]++;
  16527. }
  16528. }
  16529. }
  16530. return (n/QK4_0*sizeof(block_q4_0));
  16531. }
  16532. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  16533. assert(k % QK4_1 == 0);
  16534. const int nb = k / QK4_1;
  16535. for (int b = 0; b < n; b += k) {
  16536. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  16537. quantize_row_q4_1_reference(src + b, y, k);
  16538. for (int i = 0; i < nb; i++) {
  16539. for (int j = 0; j < QK4_1; j += 2) {
  16540. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  16541. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  16542. hist[vi0]++;
  16543. hist[vi1]++;
  16544. }
  16545. }
  16546. }
  16547. return (n/QK4_1*sizeof(block_q4_1));
  16548. }
  16549. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16550. assert(k % QK5_0 == 0);
  16551. const int nb = k / QK5_0;
  16552. for (int b = 0; b < n; b += k) {
  16553. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  16554. quantize_row_q5_0_reference(src + b, y, k);
  16555. for (int i = 0; i < nb; i++) {
  16556. uint32_t qh;
  16557. memcpy(&qh, &y[i].qh, sizeof(qh));
  16558. for (int j = 0; j < QK5_0; j += 2) {
  16559. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  16560. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  16561. // cast to 16 bins
  16562. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  16563. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  16564. hist[vi0]++;
  16565. hist[vi1]++;
  16566. }
  16567. }
  16568. }
  16569. return (n/QK5_0*sizeof(block_q5_0));
  16570. }
  16571. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  16572. assert(k % QK5_1 == 0);
  16573. const int nb = k / QK5_1;
  16574. for (int b = 0; b < n; b += k) {
  16575. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  16576. quantize_row_q5_1_reference(src + b, y, k);
  16577. for (int i = 0; i < nb; i++) {
  16578. uint32_t qh;
  16579. memcpy(&qh, &y[i].qh, sizeof(qh));
  16580. for (int j = 0; j < QK5_1; j += 2) {
  16581. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  16582. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  16583. // cast to 16 bins
  16584. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  16585. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  16586. hist[vi0]++;
  16587. hist[vi1]++;
  16588. }
  16589. }
  16590. }
  16591. return (n/QK5_1*sizeof(block_q5_1));
  16592. }
  16593. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16594. assert(k % QK8_0 == 0);
  16595. const int nb = k / QK8_0;
  16596. for (int b = 0; b < n; b += k) {
  16597. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  16598. quantize_row_q8_0_reference(src + b, y, k);
  16599. for (int i = 0; i < nb; i++) {
  16600. for (int j = 0; j < QK8_0; ++j) {
  16601. const int8_t vi = y[i].qs[j];
  16602. hist[vi/16 + 8]++;
  16603. }
  16604. }
  16605. }
  16606. return (n/QK8_0*sizeof(block_q8_0));
  16607. }
  16608. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  16609. size_t result = 0;
  16610. switch (type) {
  16611. case GGML_TYPE_Q4_0:
  16612. {
  16613. GGML_ASSERT(start % QK4_0 == 0);
  16614. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  16615. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  16616. } break;
  16617. case GGML_TYPE_Q4_1:
  16618. {
  16619. GGML_ASSERT(start % QK4_1 == 0);
  16620. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  16621. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  16622. } break;
  16623. case GGML_TYPE_Q5_0:
  16624. {
  16625. GGML_ASSERT(start % QK5_0 == 0);
  16626. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  16627. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  16628. } break;
  16629. case GGML_TYPE_Q5_1:
  16630. {
  16631. GGML_ASSERT(start % QK5_1 == 0);
  16632. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  16633. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  16634. } break;
  16635. case GGML_TYPE_Q8_0:
  16636. {
  16637. GGML_ASSERT(start % QK8_0 == 0);
  16638. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  16639. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  16640. } break;
  16641. #ifdef GGML_USE_K_QUANTS
  16642. case GGML_TYPE_Q2_K:
  16643. {
  16644. GGML_ASSERT(start % QK_K == 0);
  16645. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  16646. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  16647. } break;
  16648. case GGML_TYPE_Q3_K:
  16649. {
  16650. GGML_ASSERT(start % QK_K == 0);
  16651. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  16652. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  16653. } break;
  16654. case GGML_TYPE_Q4_K:
  16655. {
  16656. GGML_ASSERT(start % QK_K == 0);
  16657. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  16658. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  16659. } break;
  16660. case GGML_TYPE_Q5_K:
  16661. {
  16662. GGML_ASSERT(start % QK_K == 0);
  16663. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  16664. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  16665. } break;
  16666. case GGML_TYPE_Q6_K:
  16667. {
  16668. GGML_ASSERT(start % QK_K == 0);
  16669. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  16670. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  16671. } break;
  16672. #endif
  16673. case GGML_TYPE_F16:
  16674. {
  16675. int elemsize = sizeof(ggml_fp16_t);
  16676. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16677. result = n * elemsize;
  16678. } break;
  16679. case GGML_TYPE_F32:
  16680. {
  16681. int elemsize = sizeof(float);
  16682. result = n * elemsize;
  16683. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16684. } break;
  16685. default:
  16686. assert(false);
  16687. }
  16688. return result;
  16689. }
  16690. ////////////////////////////////////////////////////////////////////////////////
  16691. struct gguf_str {
  16692. uint64_t n; // GGUFv2
  16693. char * data;
  16694. };
  16695. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16696. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16697. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16698. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16699. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16700. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16701. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16702. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16703. [GGUF_TYPE_BOOL] = sizeof(bool),
  16704. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16705. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16706. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16707. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16708. [GGUF_TYPE_ARRAY] = 0, // undefined
  16709. };
  16710. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16711. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16712. [GGUF_TYPE_UINT8] = "u8",
  16713. [GGUF_TYPE_INT8] = "i8",
  16714. [GGUF_TYPE_UINT16] = "u16",
  16715. [GGUF_TYPE_INT16] = "i16",
  16716. [GGUF_TYPE_UINT32] = "u32",
  16717. [GGUF_TYPE_INT32] = "i32",
  16718. [GGUF_TYPE_FLOAT32] = "f32",
  16719. [GGUF_TYPE_BOOL] = "bool",
  16720. [GGUF_TYPE_STRING] = "str",
  16721. [GGUF_TYPE_ARRAY] = "arr",
  16722. [GGUF_TYPE_UINT64] = "u64",
  16723. [GGUF_TYPE_INT64] = "i64",
  16724. [GGUF_TYPE_FLOAT64] = "f64",
  16725. };
  16726. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16727. union gguf_value {
  16728. uint8_t uint8;
  16729. int8_t int8;
  16730. uint16_t uint16;
  16731. int16_t int16;
  16732. uint32_t uint32;
  16733. int32_t int32;
  16734. float float32;
  16735. uint64_t uint64;
  16736. int64_t int64;
  16737. double float64;
  16738. bool bool_;
  16739. struct gguf_str str;
  16740. struct {
  16741. enum gguf_type type;
  16742. uint64_t n; // GGUFv2
  16743. void * data;
  16744. } arr;
  16745. };
  16746. struct gguf_kv {
  16747. struct gguf_str key;
  16748. enum gguf_type type;
  16749. union gguf_value value;
  16750. };
  16751. struct gguf_header {
  16752. uint32_t magic;
  16753. uint32_t version;
  16754. uint64_t n_tensors; // GGUFv2
  16755. uint64_t n_kv; // GGUFv2
  16756. };
  16757. struct gguf_tensor_info {
  16758. struct gguf_str name;
  16759. uint32_t n_dims;
  16760. uint64_t ne[GGML_MAX_DIMS];
  16761. enum ggml_type type;
  16762. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16763. // for writing API
  16764. const void * data;
  16765. size_t size;
  16766. };
  16767. struct gguf_context {
  16768. struct gguf_header header;
  16769. struct gguf_kv * kv;
  16770. struct gguf_tensor_info * infos;
  16771. size_t alignment;
  16772. size_t offset; // offset of `data` from beginning of file
  16773. size_t size; // size of `data` in bytes
  16774. //uint8_t * padding;
  16775. void * data;
  16776. };
  16777. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16778. const size_t n = fread(dst, 1, size, file);
  16779. *offset += n;
  16780. return n == size;
  16781. }
  16782. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16783. static bool gguf_fread_str_cur(FILE * file, struct gguf_str * p, size_t * offset) {
  16784. p->n = 0;
  16785. p->data = NULL;
  16786. bool ok = true;
  16787. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  16788. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16789. return ok;
  16790. }
  16791. static bool gguf_fread_str_v1(FILE * file, struct gguf_str * p, size_t * offset) {
  16792. p->n = 0;
  16793. p->data = NULL;
  16794. bool ok = true;
  16795. uint32_t n = 0;
  16796. ok = ok && gguf_fread_el(file, &n, sizeof(n), offset); p->data = calloc(n + 1, 1); p->n = n;
  16797. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16798. return ok;
  16799. }
  16800. struct gguf_context * gguf_init_empty(void) {
  16801. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16802. ctx->header.magic = GGUF_MAGIC;
  16803. ctx->header.version = GGUF_VERSION;
  16804. ctx->header.n_tensors = 0;
  16805. ctx->header.n_kv = 0;
  16806. ctx->kv = NULL;
  16807. ctx->infos = NULL;
  16808. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16809. ctx->offset = 0;
  16810. ctx->size = 0;
  16811. ctx->data = NULL;
  16812. return ctx;
  16813. }
  16814. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16815. FILE * file = fopen(fname, "rb");
  16816. if (!file) {
  16817. return NULL;
  16818. }
  16819. // offset from start of file
  16820. size_t offset = 0;
  16821. uint32_t magic = 0;
  16822. // check the magic before making allocations
  16823. {
  16824. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16825. if (magic != GGUF_MAGIC) {
  16826. fprintf(stderr, "%s: invalid magic number %08x\n", __func__, magic);
  16827. fclose(file);
  16828. return NULL;
  16829. }
  16830. }
  16831. bool ok = true;
  16832. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16833. // read the header
  16834. {
  16835. ctx->header.magic = magic;
  16836. ctx->kv = NULL;
  16837. ctx->infos = NULL;
  16838. ctx->data = NULL;
  16839. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16840. if (ctx->header.version == 1) {
  16841. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16842. uint32_t n_tensors = 0;
  16843. uint32_t n_kv = 0;
  16844. ok = ok && gguf_fread_el(file, &n_tensors, sizeof(n_tensors), &offset);
  16845. ok = ok && gguf_fread_el(file, &n_kv, sizeof(n_kv), &offset);
  16846. ctx->header.n_tensors = n_tensors;
  16847. ctx->header.n_kv = n_kv;
  16848. } else {
  16849. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16850. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16851. }
  16852. if (!ok) {
  16853. fprintf(stderr, "%s: failed to read header\n", __func__);
  16854. fclose(file);
  16855. gguf_free(ctx);
  16856. return NULL;
  16857. }
  16858. }
  16859. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16860. bool (* gguf_fread_str)(FILE *, struct gguf_str *, size_t *) = gguf_fread_str_cur;
  16861. if (ctx->header.version == 1) {
  16862. gguf_fread_str = gguf_fread_str_v1;
  16863. }
  16864. // read the kv pairs
  16865. {
  16866. ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
  16867. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16868. struct gguf_kv * kv = &ctx->kv[i];
  16869. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16870. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16871. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16872. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16873. switch (kv->type) {
  16874. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16875. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16876. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16877. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16878. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16879. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16880. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16881. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16882. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16883. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16884. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16885. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16886. case GGUF_TYPE_ARRAY:
  16887. {
  16888. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16889. if (ctx->header.version == 1) {
  16890. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16891. uint32_t n = 0;
  16892. ok = ok && gguf_fread_el(file, &n, sizeof(n), &offset);
  16893. kv->value.arr.n = n;
  16894. } else {
  16895. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16896. }
  16897. switch (kv->value.arr.type) {
  16898. case GGUF_TYPE_UINT8:
  16899. case GGUF_TYPE_INT8:
  16900. case GGUF_TYPE_UINT16:
  16901. case GGUF_TYPE_INT16:
  16902. case GGUF_TYPE_UINT32:
  16903. case GGUF_TYPE_INT32:
  16904. case GGUF_TYPE_FLOAT32:
  16905. case GGUF_TYPE_UINT64:
  16906. case GGUF_TYPE_INT64:
  16907. case GGUF_TYPE_FLOAT64:
  16908. case GGUF_TYPE_BOOL:
  16909. {
  16910. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16911. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  16912. } break;
  16913. case GGUF_TYPE_STRING:
  16914. {
  16915. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  16916. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16917. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16918. }
  16919. } break;
  16920. case GGUF_TYPE_ARRAY:
  16921. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16922. }
  16923. } break;
  16924. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16925. }
  16926. if (!ok) {
  16927. break;
  16928. }
  16929. }
  16930. if (!ok) {
  16931. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  16932. fclose(file);
  16933. gguf_free(ctx);
  16934. return NULL;
  16935. }
  16936. }
  16937. // read the tensor infos
  16938. {
  16939. ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  16940. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16941. struct gguf_tensor_info * info = &ctx->infos[i];
  16942. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16943. info->ne[j] = 1;
  16944. }
  16945. ok = ok && gguf_fread_str(file, &info->name, &offset);
  16946. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  16947. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16948. if (ctx->header.version == 1) {
  16949. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16950. uint32_t t = 0;
  16951. ok = ok && gguf_fread_el(file, &t, sizeof(t), &offset);
  16952. info->ne[j] = t;
  16953. } else {
  16954. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  16955. }
  16956. }
  16957. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  16958. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  16959. if (!ok) {
  16960. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  16961. fclose(file);
  16962. gguf_free(ctx);
  16963. return NULL;
  16964. }
  16965. }
  16966. }
  16967. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16968. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  16969. if (alignment_idx != -1) {
  16970. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  16971. }
  16972. // we require the data section to be aligned, so take into account any padding
  16973. {
  16974. const size_t offset_pad = offset % ctx->alignment;
  16975. if (offset_pad != 0) {
  16976. offset += ctx->alignment - offset_pad;
  16977. fseek(file, offset, SEEK_SET);
  16978. }
  16979. }
  16980. // store the current file offset - this is where the data section starts
  16981. ctx->offset = offset;
  16982. // compute the total size of the data section, taking into account the alignment
  16983. {
  16984. ctx->size = 0;
  16985. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16986. struct gguf_tensor_info * info = &ctx->infos[i];
  16987. const int64_t ne =
  16988. (int64_t) info->ne[0] *
  16989. (int64_t) info->ne[1] *
  16990. (int64_t) info->ne[2] *
  16991. (int64_t) info->ne[3];
  16992. if (ne % ggml_blck_size(info->type) != 0) {
  16993. fprintf(stderr, "%s: tensor '%s' number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  16994. __func__, info->name.data, ne, ggml_blck_size(info->type));
  16995. fclose(file);
  16996. gguf_free(ctx);
  16997. return NULL;
  16998. }
  16999. const size_t size_cur = (ne*ggml_type_size(info->type))/ggml_blck_size(info->type);
  17000. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  17001. }
  17002. }
  17003. // load the tensor data only if requested
  17004. if (params.ctx != NULL) {
  17005. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  17006. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  17007. // the ggml_tensor structs to the appropriate locations in the binary blob
  17008. // compute the exact size needed for the new ggml_context
  17009. const size_t mem_size =
  17010. params.no_alloc ?
  17011. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  17012. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  17013. struct ggml_init_params pdata = {
  17014. .mem_size = mem_size,
  17015. .mem_buffer = NULL,
  17016. .no_alloc = params.no_alloc,
  17017. };
  17018. *params.ctx = ggml_init(pdata);
  17019. struct ggml_context * ctx_data = *params.ctx;
  17020. struct ggml_tensor * data = NULL;
  17021. if (!params.no_alloc) {
  17022. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  17023. ok = ok && data != NULL;
  17024. // read the binary blob with the tensor data
  17025. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  17026. if (!ok) {
  17027. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  17028. fclose(file);
  17029. ggml_free(ctx_data);
  17030. gguf_free(ctx);
  17031. return NULL;
  17032. }
  17033. ctx->data = data->data;
  17034. }
  17035. ggml_set_no_alloc(ctx_data, true);
  17036. // create the tensors
  17037. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17038. const int64_t ne[GGML_MAX_DIMS] = {
  17039. ctx->infos[i].ne[0],
  17040. ctx->infos[i].ne[1],
  17041. ctx->infos[i].ne[2],
  17042. ctx->infos[i].ne[3],
  17043. };
  17044. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  17045. ok = ok && cur != NULL;
  17046. ggml_set_name(cur, ctx->infos[i].name.data);
  17047. if (!ok) {
  17048. break;
  17049. }
  17050. // point the data member to the appropriate location in the binary blob using the tensor infos
  17051. if (!params.no_alloc) {
  17052. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  17053. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  17054. }
  17055. }
  17056. if (!ok) {
  17057. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  17058. fclose(file);
  17059. ggml_free(ctx_data);
  17060. gguf_free(ctx);
  17061. return NULL;
  17062. }
  17063. ggml_set_no_alloc(ctx_data, params.no_alloc);
  17064. }
  17065. fclose(file);
  17066. return ctx;
  17067. }
  17068. void gguf_free(struct gguf_context * ctx) {
  17069. if (ctx == NULL) {
  17070. return;
  17071. }
  17072. if (ctx->kv) {
  17073. // free string memory - not great..
  17074. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17075. struct gguf_kv * kv = &ctx->kv[i];
  17076. if (kv->key.data) {
  17077. free(kv->key.data);
  17078. }
  17079. if (kv->type == GGUF_TYPE_STRING) {
  17080. if (kv->value.str.data) {
  17081. free(kv->value.str.data);
  17082. }
  17083. }
  17084. if (kv->type == GGUF_TYPE_ARRAY) {
  17085. if (kv->value.arr.data) {
  17086. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  17087. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17088. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  17089. if (str->data) {
  17090. free(str->data);
  17091. }
  17092. }
  17093. }
  17094. free(kv->value.arr.data);
  17095. }
  17096. }
  17097. }
  17098. free(ctx->kv);
  17099. }
  17100. if (ctx->infos) {
  17101. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17102. struct gguf_tensor_info * info = &ctx->infos[i];
  17103. if (info->name.data) {
  17104. free(info->name.data);
  17105. }
  17106. }
  17107. free(ctx->infos);
  17108. }
  17109. GGML_ALIGNED_FREE(ctx);
  17110. }
  17111. const char * gguf_type_name(enum gguf_type type) {
  17112. return GGUF_TYPE_NAME[type];
  17113. }
  17114. int gguf_get_version(const struct gguf_context * ctx) {
  17115. return ctx->header.version;
  17116. }
  17117. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  17118. return ctx->alignment;
  17119. }
  17120. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  17121. return ctx->offset;
  17122. }
  17123. void * gguf_get_data(const struct gguf_context * ctx) {
  17124. return ctx->data;
  17125. }
  17126. int gguf_get_n_kv(const struct gguf_context * ctx) {
  17127. return ctx->header.n_kv;
  17128. }
  17129. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  17130. // return -1 if key not found
  17131. int keyfound = -1;
  17132. const int n_kv = gguf_get_n_kv(ctx);
  17133. for (int i = 0; i < n_kv; ++i) {
  17134. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  17135. keyfound = i;
  17136. break;
  17137. }
  17138. }
  17139. return keyfound;
  17140. }
  17141. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  17142. return ctx->kv[key_id].key.data;
  17143. }
  17144. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  17145. return ctx->kv[key_id].type;
  17146. }
  17147. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  17148. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17149. return ctx->kv[key_id].value.arr.type;
  17150. }
  17151. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  17152. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17153. return ctx->kv[key_id].value.arr.data;
  17154. }
  17155. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  17156. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17157. struct gguf_kv * kv = &ctx->kv[key_id];
  17158. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  17159. return str->data;
  17160. }
  17161. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  17162. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17163. return ctx->kv[key_id].value.arr.n;
  17164. }
  17165. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  17166. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  17167. return ctx->kv[key_id].value.uint8;
  17168. }
  17169. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  17170. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  17171. return ctx->kv[key_id].value.int8;
  17172. }
  17173. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  17174. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  17175. return ctx->kv[key_id].value.uint16;
  17176. }
  17177. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  17178. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  17179. return ctx->kv[key_id].value.int16;
  17180. }
  17181. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  17182. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  17183. return ctx->kv[key_id].value.uint32;
  17184. }
  17185. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  17186. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  17187. return ctx->kv[key_id].value.int32;
  17188. }
  17189. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  17190. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  17191. return ctx->kv[key_id].value.float32;
  17192. }
  17193. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  17194. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  17195. return ctx->kv[key_id].value.uint64;
  17196. }
  17197. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  17198. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  17199. return ctx->kv[key_id].value.int64;
  17200. }
  17201. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  17202. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  17203. return ctx->kv[key_id].value.float64;
  17204. }
  17205. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  17206. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  17207. return ctx->kv[key_id].value.bool_;
  17208. }
  17209. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  17210. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  17211. return ctx->kv[key_id].value.str.data;
  17212. }
  17213. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  17214. return ctx->header.n_tensors;
  17215. }
  17216. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  17217. // return -1 if tensor not found
  17218. int tensorfound = -1;
  17219. const int n_tensors = gguf_get_n_tensors(ctx);
  17220. for (int i = 0; i < n_tensors; ++i) {
  17221. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  17222. tensorfound = i;
  17223. break;
  17224. }
  17225. }
  17226. return tensorfound;
  17227. }
  17228. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  17229. return ctx->infos[i].offset;
  17230. }
  17231. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  17232. return ctx->infos[i].name.data;
  17233. }
  17234. // returns the index
  17235. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  17236. const int idx = gguf_find_key(ctx, key);
  17237. if (idx >= 0) {
  17238. return idx;
  17239. }
  17240. const int n_kv = gguf_get_n_kv(ctx);
  17241. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  17242. ctx->kv[n_kv].key.n = strlen(key);
  17243. ctx->kv[n_kv].key.data = strdup(key);
  17244. ctx->header.n_kv++;
  17245. return n_kv;
  17246. }
  17247. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  17248. const int idx = gguf_get_or_add_key(ctx, key);
  17249. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  17250. ctx->kv[idx].value.uint8 = val;
  17251. }
  17252. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  17253. const int idx = gguf_get_or_add_key(ctx, key);
  17254. ctx->kv[idx].type = GGUF_TYPE_INT8;
  17255. ctx->kv[idx].value.int8 = val;
  17256. }
  17257. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  17258. const int idx = gguf_get_or_add_key(ctx, key);
  17259. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  17260. ctx->kv[idx].value.uint16 = val;
  17261. }
  17262. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  17263. const int idx = gguf_get_or_add_key(ctx, key);
  17264. ctx->kv[idx].type = GGUF_TYPE_INT16;
  17265. ctx->kv[idx].value.int16 = val;
  17266. }
  17267. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  17268. const int idx = gguf_get_or_add_key(ctx, key);
  17269. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  17270. ctx->kv[idx].value.uint32 = val;
  17271. }
  17272. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  17273. const int idx = gguf_get_or_add_key(ctx, key);
  17274. ctx->kv[idx].type = GGUF_TYPE_INT32;
  17275. ctx->kv[idx].value.int32 = val;
  17276. }
  17277. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  17278. const int idx = gguf_get_or_add_key(ctx, key);
  17279. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  17280. ctx->kv[idx].value.float32 = val;
  17281. }
  17282. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  17283. const int idx = gguf_get_or_add_key(ctx, key);
  17284. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  17285. ctx->kv[idx].value.uint64 = val;
  17286. }
  17287. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  17288. const int idx = gguf_get_or_add_key(ctx, key);
  17289. ctx->kv[idx].type = GGUF_TYPE_INT64;
  17290. ctx->kv[idx].value.int64 = val;
  17291. }
  17292. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  17293. const int idx = gguf_get_or_add_key(ctx, key);
  17294. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  17295. ctx->kv[idx].value.float64 = val;
  17296. }
  17297. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  17298. const int idx = gguf_get_or_add_key(ctx, key);
  17299. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  17300. ctx->kv[idx].value.bool_ = val;
  17301. }
  17302. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  17303. const int idx = gguf_get_or_add_key(ctx, key);
  17304. ctx->kv[idx].type = GGUF_TYPE_STRING;
  17305. ctx->kv[idx].value.str.n = strlen(val);
  17306. ctx->kv[idx].value.str.data = strdup(val);
  17307. }
  17308. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  17309. const int idx = gguf_get_or_add_key(ctx, key);
  17310. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17311. ctx->kv[idx].value.arr.type = type;
  17312. ctx->kv[idx].value.arr.n = n;
  17313. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  17314. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  17315. }
  17316. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  17317. const int idx = gguf_get_or_add_key(ctx, key);
  17318. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17319. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  17320. ctx->kv[idx].value.arr.n = n;
  17321. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  17322. for (int i = 0; i < n; i++) {
  17323. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  17324. str->n = strlen(data[i]);
  17325. str->data = strdup(data[i]);
  17326. }
  17327. }
  17328. // set or add KV pairs from another context
  17329. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  17330. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  17331. switch (src->kv[i].type) {
  17332. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  17333. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  17334. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  17335. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  17336. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  17337. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  17338. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  17339. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  17340. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  17341. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  17342. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  17343. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  17344. case GGUF_TYPE_ARRAY:
  17345. {
  17346. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  17347. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  17348. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  17349. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  17350. }
  17351. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  17352. free(data);
  17353. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  17354. GGML_ASSERT(false && "nested arrays not supported");
  17355. } else {
  17356. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  17357. }
  17358. } break;
  17359. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  17360. }
  17361. }
  17362. }
  17363. void gguf_add_tensor(
  17364. struct gguf_context * ctx,
  17365. const struct ggml_tensor * tensor) {
  17366. const int idx = ctx->header.n_tensors;
  17367. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  17368. ctx->infos[idx].name.n = strlen(tensor->name);
  17369. ctx->infos[idx].name.data = strdup(tensor->name);
  17370. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  17371. ctx->infos[idx].ne[i] = 1;
  17372. }
  17373. ctx->infos[idx].n_dims = tensor->n_dims;
  17374. for (int i = 0; i < tensor->n_dims; i++) {
  17375. ctx->infos[idx].ne[i] = tensor->ne[i];
  17376. }
  17377. ctx->infos[idx].type = tensor->type;
  17378. ctx->infos[idx].offset = 0;
  17379. ctx->infos[idx].data = tensor->data;
  17380. ctx->infos[idx].size = ggml_nbytes(tensor);
  17381. if (ctx->header.n_tensors > 0) {
  17382. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  17383. }
  17384. ctx->header.n_tensors++;
  17385. }
  17386. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  17387. const int idx = gguf_find_tensor(ctx, name);
  17388. if (idx < 0) {
  17389. GGML_ASSERT(false && "tensor not found");
  17390. }
  17391. ctx->infos[idx].type = type;
  17392. }
  17393. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  17394. const int idx = gguf_find_tensor(ctx, name);
  17395. if (idx < 0) {
  17396. GGML_ASSERT(false && "tensor not found");
  17397. }
  17398. ctx->infos[idx].data = data;
  17399. ctx->infos[idx].size = size;
  17400. // update offsets
  17401. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  17402. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  17403. }
  17404. }
  17405. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  17406. // fwrite(&val->n, sizeof(val->n), 1, file);
  17407. // fwrite(val->data, sizeof(char), val->n, file);
  17408. //}
  17409. //
  17410. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  17411. // fwrite(val, sizeof(char), size, file);
  17412. //}
  17413. struct gguf_buf {
  17414. void * data;
  17415. size_t size;
  17416. size_t offset;
  17417. };
  17418. static struct gguf_buf gguf_buf_init(size_t size) {
  17419. struct gguf_buf buf = {
  17420. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  17421. /*buf.size =*/ size,
  17422. /*buf.offset =*/ 0,
  17423. };
  17424. return buf;
  17425. }
  17426. static void gguf_buf_free(struct gguf_buf buf) {
  17427. if (buf.data) {
  17428. free(buf.data);
  17429. }
  17430. }
  17431. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  17432. if (buf->offset + size > buf->size) {
  17433. buf->size = 1.5*(buf->offset + size);
  17434. if (buf->data) {
  17435. buf->data = realloc(buf->data, buf->size);
  17436. }
  17437. }
  17438. }
  17439. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  17440. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  17441. if (buf->data) {
  17442. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  17443. }
  17444. buf->offset += sizeof(val->n);
  17445. if (buf->data) {
  17446. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  17447. }
  17448. buf->offset += val->n;
  17449. }
  17450. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  17451. gguf_buf_grow(buf, el_size);
  17452. if (buf->data) {
  17453. memcpy((char *) buf->data + buf->offset, val, el_size);
  17454. }
  17455. buf->offset += el_size;
  17456. }
  17457. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  17458. // write header
  17459. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  17460. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  17461. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  17462. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  17463. // write key-value pairs
  17464. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17465. struct gguf_kv * kv = &ctx->kv[i];
  17466. gguf_bwrite_str(buf, &kv->key);
  17467. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  17468. switch (kv->type) {
  17469. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  17470. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  17471. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  17472. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  17473. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  17474. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  17475. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  17476. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  17477. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  17478. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  17479. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  17480. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  17481. case GGUF_TYPE_ARRAY:
  17482. {
  17483. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  17484. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  17485. switch (kv->value.arr.type) {
  17486. case GGUF_TYPE_UINT8:
  17487. case GGUF_TYPE_INT8:
  17488. case GGUF_TYPE_UINT16:
  17489. case GGUF_TYPE_INT16:
  17490. case GGUF_TYPE_UINT32:
  17491. case GGUF_TYPE_INT32:
  17492. case GGUF_TYPE_FLOAT32:
  17493. case GGUF_TYPE_UINT64:
  17494. case GGUF_TYPE_INT64:
  17495. case GGUF_TYPE_FLOAT64:
  17496. case GGUF_TYPE_BOOL:
  17497. {
  17498. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  17499. } break;
  17500. case GGUF_TYPE_STRING:
  17501. {
  17502. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17503. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  17504. }
  17505. } break;
  17506. case GGUF_TYPE_ARRAY:
  17507. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  17508. }
  17509. } break;
  17510. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  17511. }
  17512. }
  17513. // write tensor infos
  17514. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17515. struct gguf_tensor_info * info = &ctx->infos[i];
  17516. gguf_bwrite_str(buf, &info->name);
  17517. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  17518. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17519. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  17520. }
  17521. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  17522. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  17523. }
  17524. // we require the data section to be aligned, so take into account any padding
  17525. {
  17526. const size_t offset = buf->offset;
  17527. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  17528. if (offset_pad != offset) {
  17529. uint8_t pad = 0;
  17530. for (size_t i = 0; i < offset_pad - offset; ++i) {
  17531. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17532. }
  17533. }
  17534. }
  17535. if (only_meta) {
  17536. return;
  17537. }
  17538. size_t offset = 0;
  17539. // write tensor data
  17540. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17541. struct gguf_tensor_info * info = &ctx->infos[i];
  17542. const size_t size = info->size;
  17543. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  17544. gguf_bwrite_el(buf, info->data, size);
  17545. if (size_pad != size) {
  17546. uint8_t pad = 0;
  17547. for (size_t j = 0; j < size_pad - size; ++j) {
  17548. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17549. }
  17550. }
  17551. GGML_ASSERT(offset == info->offset);
  17552. offset += size_pad;
  17553. }
  17554. }
  17555. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  17556. FILE * file = fopen(fname, "wb");
  17557. if (!file) {
  17558. GGML_ASSERT(false && "failed to open file for writing");
  17559. }
  17560. struct gguf_buf buf = gguf_buf_init(16*1024);
  17561. gguf_write_to_buf(ctx, &buf, only_meta);
  17562. fwrite(buf.data, 1, buf.offset, file);
  17563. gguf_buf_free(buf);
  17564. fclose(file);
  17565. }
  17566. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  17567. // no allocs - only compute size
  17568. struct gguf_buf buf = gguf_buf_init(0);
  17569. gguf_write_to_buf(ctx, &buf, true);
  17570. return buf.offset;
  17571. }
  17572. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  17573. struct gguf_buf buf = gguf_buf_init(16*1024);
  17574. gguf_write_to_buf(ctx, &buf, true);
  17575. memcpy(data, buf.data, buf.offset);
  17576. gguf_buf_free(buf);
  17577. }
  17578. ////////////////////////////////////////////////////////////////////////////////
  17579. int ggml_cpu_has_avx(void) {
  17580. #if defined(__AVX__)
  17581. return 1;
  17582. #else
  17583. return 0;
  17584. #endif
  17585. }
  17586. int ggml_cpu_has_avx2(void) {
  17587. #if defined(__AVX2__)
  17588. return 1;
  17589. #else
  17590. return 0;
  17591. #endif
  17592. }
  17593. int ggml_cpu_has_avx512(void) {
  17594. #if defined(__AVX512F__)
  17595. return 1;
  17596. #else
  17597. return 0;
  17598. #endif
  17599. }
  17600. int ggml_cpu_has_avx512_vbmi(void) {
  17601. #if defined(__AVX512VBMI__)
  17602. return 1;
  17603. #else
  17604. return 0;
  17605. #endif
  17606. }
  17607. int ggml_cpu_has_avx512_vnni(void) {
  17608. #if defined(__AVX512VNNI__)
  17609. return 1;
  17610. #else
  17611. return 0;
  17612. #endif
  17613. }
  17614. int ggml_cpu_has_fma(void) {
  17615. #if defined(__FMA__)
  17616. return 1;
  17617. #else
  17618. return 0;
  17619. #endif
  17620. }
  17621. int ggml_cpu_has_neon(void) {
  17622. #if defined(__ARM_NEON)
  17623. return 1;
  17624. #else
  17625. return 0;
  17626. #endif
  17627. }
  17628. int ggml_cpu_has_arm_fma(void) {
  17629. #if defined(__ARM_FEATURE_FMA)
  17630. return 1;
  17631. #else
  17632. return 0;
  17633. #endif
  17634. }
  17635. int ggml_cpu_has_metal(void) {
  17636. #if defined(GGML_USE_METAL)
  17637. return 1;
  17638. #else
  17639. return 0;
  17640. #endif
  17641. }
  17642. int ggml_cpu_has_f16c(void) {
  17643. #if defined(__F16C__)
  17644. return 1;
  17645. #else
  17646. return 0;
  17647. #endif
  17648. }
  17649. int ggml_cpu_has_fp16_va(void) {
  17650. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  17651. return 1;
  17652. #else
  17653. return 0;
  17654. #endif
  17655. }
  17656. int ggml_cpu_has_wasm_simd(void) {
  17657. #if defined(__wasm_simd128__)
  17658. return 1;
  17659. #else
  17660. return 0;
  17661. #endif
  17662. }
  17663. int ggml_cpu_has_blas(void) {
  17664. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  17665. return 1;
  17666. #else
  17667. return 0;
  17668. #endif
  17669. }
  17670. int ggml_cpu_has_cublas(void) {
  17671. #if defined(GGML_USE_CUBLAS)
  17672. return 1;
  17673. #else
  17674. return 0;
  17675. #endif
  17676. }
  17677. int ggml_cpu_has_clblast(void) {
  17678. #if defined(GGML_USE_CLBLAST)
  17679. return 1;
  17680. #else
  17681. return 0;
  17682. #endif
  17683. }
  17684. int ggml_cpu_has_gpublas(void) {
  17685. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  17686. }
  17687. int ggml_cpu_has_sse3(void) {
  17688. #if defined(__SSE3__)
  17689. return 1;
  17690. #else
  17691. return 0;
  17692. #endif
  17693. }
  17694. int ggml_cpu_has_ssse3(void) {
  17695. #if defined(__SSSE3__)
  17696. return 1;
  17697. #else
  17698. return 0;
  17699. #endif
  17700. }
  17701. int ggml_cpu_has_vsx(void) {
  17702. #if defined(__POWER9_VECTOR__)
  17703. return 1;
  17704. #else
  17705. return 0;
  17706. #endif
  17707. }
  17708. ////////////////////////////////////////////////////////////////////////////////