1
0

ggml.h 74 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096
  1. #pragma once
  2. //
  3. // GGML Tensor Library
  4. //
  5. // This documentation is still a work in progress.
  6. // If you wish some specific topics to be covered, feel free to drop a comment:
  7. //
  8. // https://github.com/ggerganov/whisper.cpp/issues/40
  9. //
  10. // ## Overview
  11. //
  12. // This library implements:
  13. //
  14. // - a set of tensor operations
  15. // - automatic differentiation
  16. // - basic optimization algorithms
  17. //
  18. // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
  19. // but is not limited to, the following:
  20. //
  21. // - linear regression
  22. // - support vector machines
  23. // - neural networks
  24. //
  25. // The library allows the user to define a certain function using the available tensor operations. This function
  26. // definition is represented internally via a computation graph. Each tensor operation in the function definition
  27. // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
  28. // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
  29. // using one of the available optimization algorithms.
  30. //
  31. // For example, here we define the function: f(x) = a*x^2 + b
  32. //
  33. // {
  34. // struct ggml_init_params params = {
  35. // .mem_size = 16*1024*1024,
  36. // .mem_buffer = NULL,
  37. // };
  38. //
  39. // // memory allocation happens here
  40. // struct ggml_context * ctx = ggml_init(params);
  41. //
  42. // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  43. //
  44. // ggml_set_param(ctx, x); // x is an input variable
  45. //
  46. // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  47. // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  48. // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
  49. // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
  50. //
  51. // ...
  52. // }
  53. //
  54. // Notice that the function definition above does not involve any actual computation. The computation is performed only
  55. // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
  56. //
  57. // {
  58. // ...
  59. //
  60. // struct ggml_cgraph gf = ggml_build_forward(f);
  61. //
  62. // // set the input variable and parameter values
  63. // ggml_set_f32(x, 2.0f);
  64. // ggml_set_f32(a, 3.0f);
  65. // ggml_set_f32(b, 4.0f);
  66. //
  67. // ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
  68. //
  69. // printf("f = %f\n", ggml_get_f32_1d(f, 0));
  70. //
  71. // ...
  72. // }
  73. //
  74. // The actual computation is performed in the ggml_graph_compute() function.
  75. //
  76. // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
  77. // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
  78. // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
  79. // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
  80. // actually needed.
  81. //
  82. // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
  83. // differentiation and optimization algorithms.
  84. //
  85. // The described approach allows to define the function graph once and then compute its forward or backward graphs
  86. // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
  87. // the user can avoid the memory allocation overhead at runtime.
  88. //
  89. // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
  90. // citizens, but in theory the library can be extended to support FP8 and integer data types.
  91. //
  92. // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
  93. // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
  94. // clear that the library needs to support more complex operations. The way to support these operations is not clear
  95. // yet, but a few examples are demonstrated in the following operations:
  96. //
  97. // - ggml_permute()
  98. // - ggml_conv_1d_1s()
  99. // - ggml_conv_1d_2s()
  100. //
  101. // For each tensor operator, the library implements a forward and backward computation function. The forward function
  102. // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
  103. // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
  104. // calculus class, or watch the following video:
  105. //
  106. // What is Automatic Differentiation?
  107. // https://www.youtube.com/watch?v=wG_nF1awSSY
  108. //
  109. //
  110. // ## Tensor data (struct ggml_tensor)
  111. //
  112. // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
  113. // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
  114. // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
  115. //
  116. // {
  117. // struct ggml_tensor * c = ggml_add(ctx, a, b);
  118. //
  119. // assert(c->src[0] == a);
  120. // assert(c->src[1] == b);
  121. // }
  122. //
  123. // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
  124. // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
  125. // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
  126. // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
  127. // contiguous in memory.
  128. //
  129. // The data of the tensor is accessed via the "data" pointer. For example:
  130. //
  131. // {
  132. // const int nx = 2;
  133. // const int ny = 3;
  134. //
  135. // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
  136. //
  137. // for (int y = 0; y < ny; y++) {
  138. // for (int x = 0; x < nx; x++) {
  139. // *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
  140. // }
  141. // }
  142. //
  143. // ...
  144. // }
  145. //
  146. // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
  147. //
  148. // ## The matrix multiplication operator (ggml_mul_mat)
  149. //
  150. // TODO
  151. //
  152. //
  153. // ## Multi-threading
  154. //
  155. // TODO
  156. //
  157. //
  158. // ## Overview of ggml.c
  159. //
  160. // TODO
  161. //
  162. //
  163. // ## SIMD optimizations
  164. //
  165. // TODO
  166. //
  167. //
  168. // ## Debugging ggml
  169. //
  170. // TODO
  171. //
  172. //
  173. #ifdef GGML_SHARED
  174. # if defined(_WIN32) && !defined(__MINGW32__)
  175. # ifdef GGML_BUILD
  176. # define GGML_API __declspec(dllexport)
  177. # else
  178. # define GGML_API __declspec(dllimport)
  179. # endif
  180. # else
  181. # define GGML_API __attribute__ ((visibility ("default")))
  182. # endif
  183. #else
  184. # define GGML_API
  185. #endif
  186. // TODO: support for clang
  187. #ifdef __GNUC__
  188. # define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  189. #elif defined(_MSC_VER)
  190. # define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  191. #else
  192. # define GGML_DEPRECATED(func, hint) func
  193. #endif
  194. #ifndef __GNUC__
  195. # define GGML_ATTRIBUTE_FORMAT(...)
  196. #elif defined(__MINGW32__)
  197. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  198. #else
  199. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  200. #endif
  201. #include <stdint.h>
  202. #include <stddef.h>
  203. #include <stdbool.h>
  204. #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
  205. #define GGML_FILE_VERSION 1
  206. #define GGML_QNT_VERSION 2 // bump this on quantization format changes
  207. #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
  208. #define GGML_MAX_DIMS 4
  209. #define GGML_MAX_NODES 16384
  210. #define GGML_MAX_PARAMS 1024
  211. #define GGML_MAX_CONTEXTS 64
  212. #define GGML_MAX_SRC 6
  213. #define GGML_MAX_NAME 64
  214. #define GGML_MAX_OP_PARAMS 32
  215. #define GGML_DEFAULT_N_THREADS 4
  216. #if UINTPTR_MAX == 0xFFFFFFFF
  217. #define GGML_MEM_ALIGN 4
  218. #else
  219. #define GGML_MEM_ALIGN 16
  220. #endif
  221. #define GGML_EXIT_SUCCESS 0
  222. #define GGML_EXIT_ABORTED 1
  223. #define GGUF_MAGIC 0x46554747 // "GGUF"
  224. #define GGUF_VERSION 2
  225. #define GGUF_DEFAULT_ALIGNMENT 32
  226. #define GGML_UNUSED(x) (void)(x)
  227. #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
  228. #define GGML_ASSERT(x) \
  229. do { \
  230. if (!(x)) { \
  231. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  232. abort(); \
  233. } \
  234. } while (0)
  235. #ifndef NDEBUG
  236. #define GGML_UNREACHABLE() GGML_ASSERT(!"statement should not be reached")
  237. #elif defined(__GNUC__)
  238. #define GGML_UNREACHABLE() __builtin_unreachable()
  239. #else
  240. #define GGML_UNREACHABLE() ((void) 0)
  241. #endif
  242. // used to copy the number of elements and stride in bytes of tensors into local variables.
  243. // main purpose is to reduce code duplication and improve readability.
  244. //
  245. // example:
  246. //
  247. // GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  248. // GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  249. //
  250. #define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
  251. const type prefix##0 = (pointer)->array[0]; \
  252. GGML_UNUSED(prefix##0);
  253. #define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
  254. GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
  255. const type prefix##1 = (pointer)->array[1]; \
  256. GGML_UNUSED(prefix##1);
  257. #define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
  258. GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
  259. const type prefix##2 = (pointer)->array[2]; \
  260. GGML_UNUSED(prefix##2);
  261. #define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
  262. GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
  263. const type prefix##3 = (pointer)->array[3]; \
  264. GGML_UNUSED(prefix##3);
  265. #ifdef __cplusplus
  266. extern "C" {
  267. #endif
  268. #if defined(__ARM_NEON) && defined(__CUDACC__)
  269. typedef half ggml_fp16_t;
  270. #elif defined(__ARM_NEON)
  271. typedef __fp16 ggml_fp16_t;
  272. #else
  273. typedef uint16_t ggml_fp16_t;
  274. #endif
  275. // convert FP16 <-> FP32
  276. GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
  277. GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
  278. GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n);
  279. GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n);
  280. struct ggml_object;
  281. struct ggml_context;
  282. enum ggml_type {
  283. GGML_TYPE_F32 = 0,
  284. GGML_TYPE_F16 = 1,
  285. GGML_TYPE_Q4_0 = 2,
  286. GGML_TYPE_Q4_1 = 3,
  287. // GGML_TYPE_Q4_2 = 4, support has been removed
  288. // GGML_TYPE_Q4_3 (5) support has been removed
  289. GGML_TYPE_Q5_0 = 6,
  290. GGML_TYPE_Q5_1 = 7,
  291. GGML_TYPE_Q8_0 = 8,
  292. GGML_TYPE_Q8_1 = 9,
  293. // k-quantizations
  294. GGML_TYPE_Q2_K = 10,
  295. GGML_TYPE_Q3_K = 11,
  296. GGML_TYPE_Q4_K = 12,
  297. GGML_TYPE_Q5_K = 13,
  298. GGML_TYPE_Q6_K = 14,
  299. GGML_TYPE_Q8_K = 15,
  300. GGML_TYPE_I8,
  301. GGML_TYPE_I16,
  302. GGML_TYPE_I32,
  303. GGML_TYPE_COUNT,
  304. };
  305. enum ggml_backend {
  306. GGML_BACKEND_CPU = 0,
  307. GGML_BACKEND_GPU = 10,
  308. GGML_BACKEND_GPU_SPLIT = 20,
  309. };
  310. // model file types
  311. enum ggml_ftype {
  312. GGML_FTYPE_UNKNOWN = -1,
  313. GGML_FTYPE_ALL_F32 = 0,
  314. GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  315. GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  316. GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  317. GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  318. GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  319. GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  320. GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  321. GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  322. GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
  323. GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
  324. GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
  325. GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
  326. };
  327. // available tensor operations:
  328. enum ggml_op {
  329. GGML_OP_NONE = 0,
  330. GGML_OP_DUP,
  331. GGML_OP_ADD,
  332. GGML_OP_ADD1,
  333. GGML_OP_ACC,
  334. GGML_OP_SUB,
  335. GGML_OP_MUL,
  336. GGML_OP_DIV,
  337. GGML_OP_SQR,
  338. GGML_OP_SQRT,
  339. GGML_OP_LOG,
  340. GGML_OP_SUM,
  341. GGML_OP_SUM_ROWS,
  342. GGML_OP_MEAN,
  343. GGML_OP_ARGMAX,
  344. GGML_OP_REPEAT,
  345. GGML_OP_REPEAT_BACK,
  346. GGML_OP_CONCAT,
  347. GGML_OP_SILU_BACK,
  348. GGML_OP_NORM, // normalize
  349. GGML_OP_RMS_NORM,
  350. GGML_OP_RMS_NORM_BACK,
  351. GGML_OP_GROUP_NORM,
  352. GGML_OP_MUL_MAT,
  353. GGML_OP_OUT_PROD,
  354. GGML_OP_SCALE,
  355. GGML_OP_SET,
  356. GGML_OP_CPY,
  357. GGML_OP_CONT,
  358. GGML_OP_RESHAPE,
  359. GGML_OP_VIEW,
  360. GGML_OP_PERMUTE,
  361. GGML_OP_TRANSPOSE,
  362. GGML_OP_GET_ROWS,
  363. GGML_OP_GET_ROWS_BACK,
  364. GGML_OP_DIAG,
  365. GGML_OP_DIAG_MASK_INF,
  366. GGML_OP_DIAG_MASK_ZERO,
  367. GGML_OP_SOFT_MAX,
  368. GGML_OP_SOFT_MAX_BACK,
  369. GGML_OP_ROPE,
  370. GGML_OP_ROPE_BACK,
  371. GGML_OP_ALIBI,
  372. GGML_OP_CLAMP,
  373. GGML_OP_CONV_1D,
  374. GGML_OP_CONV_2D,
  375. GGML_OP_CONV_TRANSPOSE_2D,
  376. GGML_OP_POOL_1D,
  377. GGML_OP_POOL_2D,
  378. GGML_OP_UPSCALE, // nearest interpolate
  379. GGML_OP_FLASH_ATTN,
  380. GGML_OP_FLASH_FF,
  381. GGML_OP_FLASH_ATTN_BACK,
  382. GGML_OP_WIN_PART,
  383. GGML_OP_WIN_UNPART,
  384. GGML_OP_GET_REL_POS,
  385. GGML_OP_ADD_REL_POS,
  386. GGML_OP_UNARY,
  387. GGML_OP_MAP_UNARY,
  388. GGML_OP_MAP_BINARY,
  389. GGML_OP_MAP_CUSTOM1_F32,
  390. GGML_OP_MAP_CUSTOM2_F32,
  391. GGML_OP_MAP_CUSTOM3_F32,
  392. GGML_OP_MAP_CUSTOM1,
  393. GGML_OP_MAP_CUSTOM2,
  394. GGML_OP_MAP_CUSTOM3,
  395. GGML_OP_CROSS_ENTROPY_LOSS,
  396. GGML_OP_CROSS_ENTROPY_LOSS_BACK,
  397. GGML_OP_COUNT,
  398. };
  399. enum ggml_unary_op {
  400. GGML_UNARY_OP_ABS,
  401. GGML_UNARY_OP_SGN,
  402. GGML_UNARY_OP_NEG,
  403. GGML_UNARY_OP_STEP,
  404. GGML_UNARY_OP_TANH,
  405. GGML_UNARY_OP_ELU,
  406. GGML_UNARY_OP_RELU,
  407. GGML_UNARY_OP_GELU,
  408. GGML_UNARY_OP_GELU_QUICK,
  409. GGML_UNARY_OP_SILU,
  410. };
  411. enum ggml_object_type {
  412. GGML_OBJECT_TENSOR,
  413. GGML_OBJECT_GRAPH,
  414. GGML_OBJECT_WORK_BUFFER
  415. };
  416. enum ggml_log_level {
  417. GGML_LOG_LEVEL_ERROR = 2,
  418. GGML_LOG_LEVEL_WARN = 3,
  419. GGML_LOG_LEVEL_INFO = 4
  420. };
  421. // ggml object
  422. struct ggml_object {
  423. size_t offs;
  424. size_t size;
  425. struct ggml_object * next;
  426. enum ggml_object_type type;
  427. char padding[4];
  428. };
  429. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  430. // n-dimensional tensor
  431. struct ggml_tensor {
  432. enum ggml_type type;
  433. enum ggml_backend backend;
  434. int n_dims;
  435. int64_t ne[GGML_MAX_DIMS]; // number of elements
  436. size_t nb[GGML_MAX_DIMS]; // stride in bytes:
  437. // nb[0] = ggml_type_size(type)
  438. // nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding
  439. // nb[i] = nb[i-1] * ne[i-1]
  440. // compute data
  441. enum ggml_op op;
  442. // op params - allocated as int32_t for alignment
  443. int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
  444. bool is_param;
  445. struct ggml_tensor * grad;
  446. struct ggml_tensor * src[GGML_MAX_SRC];
  447. // performance
  448. int perf_runs;
  449. int64_t perf_cycles;
  450. int64_t perf_time_us;
  451. struct ggml_tensor * view_src;
  452. size_t view_offs;
  453. void * data;
  454. char name[GGML_MAX_NAME];
  455. void * extra; // extra things e.g. for ggml-cuda.cu
  456. char padding[4];
  457. };
  458. static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
  459. // the compute plan that needs to be prepared for ggml_graph_compute()
  460. // since https://github.com/ggerganov/ggml/issues/287
  461. struct ggml_cplan {
  462. size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
  463. uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
  464. int n_threads;
  465. // the `n_tasks` of nodes, 1:1 mapping to cgraph nodes
  466. int n_tasks[GGML_MAX_NODES];
  467. // abort ggml_graph_compute when true
  468. bool (*abort_callback)(void * data);
  469. void * abort_callback_data;
  470. };
  471. // next prime after GGML_MAX_NODES
  472. // #define GGML_GRAPH_HASHTABLE_SIZE 4099
  473. // next prime after GGML_MAX_NODES * 2 (nodes + leafs)
  474. // #define GGML_GRAPH_HASHTABLE_SIZE 8273
  475. // #define GGML_GRAPH_HASHTABLE_SIZE 16411
  476. #define GGML_GRAPH_HASHTABLE_SIZE 32771
  477. enum ggml_cgraph_eval_order {
  478. GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0,
  479. GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT,
  480. GGML_CGRAPH_EVAL_ORDER_COUNT
  481. };
  482. // computation graph
  483. struct ggml_cgraph {
  484. int n_nodes;
  485. int n_leafs;
  486. struct ggml_tensor * nodes[GGML_MAX_NODES];
  487. struct ggml_tensor * grads[GGML_MAX_NODES];
  488. struct ggml_tensor * leafs[GGML_MAX_NODES];
  489. void * visited_hash_table[GGML_GRAPH_HASHTABLE_SIZE];
  490. enum ggml_cgraph_eval_order order;
  491. // performance
  492. int perf_runs;
  493. int64_t perf_cycles;
  494. int64_t perf_time_us;
  495. };
  496. static const size_t GGML_GRAPH_SIZE = sizeof(struct ggml_cgraph);
  497. // scratch buffer
  498. struct ggml_scratch {
  499. size_t offs;
  500. size_t size;
  501. void * data;
  502. };
  503. struct ggml_init_params {
  504. // memory pool
  505. size_t mem_size; // bytes
  506. void * mem_buffer; // if NULL, memory will be allocated internally
  507. bool no_alloc; // don't allocate memory for the tensor data
  508. };
  509. // compute types
  510. // NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled.
  511. // This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995.
  512. enum ggml_task_type {
  513. GGML_TASK_INIT = 0,
  514. GGML_TASK_COMPUTE,
  515. GGML_TASK_FINALIZE,
  516. };
  517. struct ggml_compute_params {
  518. enum ggml_task_type type;
  519. // ith = thread index, nth = number of threads
  520. int ith, nth;
  521. // work buffer for all threads
  522. size_t wsize;
  523. void * wdata;
  524. };
  525. // misc
  526. GGML_API void ggml_time_init(void); // call this once at the beginning of the program
  527. GGML_API int64_t ggml_time_ms(void);
  528. GGML_API int64_t ggml_time_us(void);
  529. GGML_API int64_t ggml_cycles(void);
  530. GGML_API int64_t ggml_cycles_per_ms(void);
  531. GGML_API void ggml_numa_init(void); // call once for better performance on NUMA systems
  532. GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
  533. GGML_API void ggml_print_object (const struct ggml_object * obj);
  534. GGML_API void ggml_print_objects(const struct ggml_context * ctx);
  535. GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);
  536. GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
  537. GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
  538. GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
  539. GGML_API size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split);
  540. GGML_API int ggml_blck_size (enum ggml_type type);
  541. GGML_API size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
  542. GGML_API float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float
  543. GGML_API const char * ggml_type_name(enum ggml_type type);
  544. GGML_API const char * ggml_op_name (enum ggml_op op);
  545. GGML_API const char * ggml_op_symbol(enum ggml_op op);
  546. GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
  547. GGML_API bool ggml_is_quantized(enum ggml_type type);
  548. // TODO: temporary until model loading of ggml examples is refactored
  549. GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
  550. GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
  551. GGML_API bool ggml_is_contiguous(const struct ggml_tensor * tensor);
  552. GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
  553. GGML_API bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  554. // use this to compute the memory overhead of a tensor
  555. GGML_API size_t ggml_tensor_overhead(void);
  556. // main
  557. GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
  558. GGML_API void ggml_free(struct ggml_context * ctx);
  559. GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
  560. GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
  561. GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
  562. GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
  563. GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
  564. GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
  565. GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
  566. GGML_API struct ggml_tensor * ggml_new_tensor(
  567. struct ggml_context * ctx,
  568. enum ggml_type type,
  569. int n_dims,
  570. const int64_t *ne);
  571. GGML_API struct ggml_tensor * ggml_new_tensor_1d(
  572. struct ggml_context * ctx,
  573. enum ggml_type type,
  574. int64_t ne0);
  575. GGML_API struct ggml_tensor * ggml_new_tensor_2d(
  576. struct ggml_context * ctx,
  577. enum ggml_type type,
  578. int64_t ne0,
  579. int64_t ne1);
  580. GGML_API struct ggml_tensor * ggml_new_tensor_3d(
  581. struct ggml_context * ctx,
  582. enum ggml_type type,
  583. int64_t ne0,
  584. int64_t ne1,
  585. int64_t ne2);
  586. GGML_API struct ggml_tensor * ggml_new_tensor_4d(
  587. struct ggml_context * ctx,
  588. enum ggml_type type,
  589. int64_t ne0,
  590. int64_t ne1,
  591. int64_t ne2,
  592. int64_t ne3);
  593. GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
  594. GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
  595. GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
  596. GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
  597. GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
  598. GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
  599. GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
  600. GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
  601. // Converts a flat index into coordinates
  602. GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
  603. GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
  604. GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
  605. GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
  606. GGML_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
  607. GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
  608. GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
  609. GGML_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
  610. GGML_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
  611. GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
  612. GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
  613. GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
  614. GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
  615. GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
  616. GGML_ATTRIBUTE_FORMAT(2, 3)
  617. GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
  618. //
  619. // operations on tensors with backpropagation
  620. //
  621. GGML_API struct ggml_tensor * ggml_dup(
  622. struct ggml_context * ctx,
  623. struct ggml_tensor * a);
  624. // in-place, returns view(a)
  625. GGML_API struct ggml_tensor * ggml_dup_inplace(
  626. struct ggml_context * ctx,
  627. struct ggml_tensor * a);
  628. GGML_API struct ggml_tensor * ggml_add(
  629. struct ggml_context * ctx,
  630. struct ggml_tensor * a,
  631. struct ggml_tensor * b);
  632. GGML_API struct ggml_tensor * ggml_add_inplace(
  633. struct ggml_context * ctx,
  634. struct ggml_tensor * a,
  635. struct ggml_tensor * b);
  636. GGML_API struct ggml_tensor * ggml_add_cast(
  637. struct ggml_context * ctx,
  638. struct ggml_tensor * a,
  639. struct ggml_tensor * b,
  640. enum ggml_type type);
  641. GGML_API struct ggml_tensor * ggml_add1(
  642. struct ggml_context * ctx,
  643. struct ggml_tensor * a,
  644. struct ggml_tensor * b);
  645. GGML_API struct ggml_tensor * ggml_add1_inplace(
  646. struct ggml_context * ctx,
  647. struct ggml_tensor * a,
  648. struct ggml_tensor * b);
  649. GGML_API struct ggml_tensor * ggml_acc(
  650. struct ggml_context * ctx,
  651. struct ggml_tensor * a,
  652. struct ggml_tensor * b,
  653. size_t nb1,
  654. size_t nb2,
  655. size_t nb3,
  656. size_t offset);
  657. GGML_API struct ggml_tensor * ggml_acc_inplace(
  658. struct ggml_context * ctx,
  659. struct ggml_tensor * a,
  660. struct ggml_tensor * b,
  661. size_t nb1,
  662. size_t nb2,
  663. size_t nb3,
  664. size_t offset);
  665. GGML_API struct ggml_tensor * ggml_sub(
  666. struct ggml_context * ctx,
  667. struct ggml_tensor * a,
  668. struct ggml_tensor * b);
  669. GGML_API struct ggml_tensor * ggml_sub_inplace(
  670. struct ggml_context * ctx,
  671. struct ggml_tensor * a,
  672. struct ggml_tensor * b);
  673. GGML_API struct ggml_tensor * ggml_mul(
  674. struct ggml_context * ctx,
  675. struct ggml_tensor * a,
  676. struct ggml_tensor * b);
  677. GGML_API struct ggml_tensor * ggml_mul_inplace(
  678. struct ggml_context * ctx,
  679. struct ggml_tensor * a,
  680. struct ggml_tensor * b);
  681. GGML_API struct ggml_tensor * ggml_div(
  682. struct ggml_context * ctx,
  683. struct ggml_tensor * a,
  684. struct ggml_tensor * b);
  685. GGML_API struct ggml_tensor * ggml_div_inplace(
  686. struct ggml_context * ctx,
  687. struct ggml_tensor * a,
  688. struct ggml_tensor * b);
  689. GGML_API struct ggml_tensor * ggml_sqr(
  690. struct ggml_context * ctx,
  691. struct ggml_tensor * a);
  692. GGML_API struct ggml_tensor * ggml_sqr_inplace(
  693. struct ggml_context * ctx,
  694. struct ggml_tensor * a);
  695. GGML_API struct ggml_tensor * ggml_sqrt(
  696. struct ggml_context * ctx,
  697. struct ggml_tensor * a);
  698. GGML_API struct ggml_tensor * ggml_sqrt_inplace(
  699. struct ggml_context * ctx,
  700. struct ggml_tensor * a);
  701. GGML_API struct ggml_tensor * ggml_log(
  702. struct ggml_context * ctx,
  703. struct ggml_tensor * a);
  704. GGML_API struct ggml_tensor * ggml_log_inplace(
  705. struct ggml_context * ctx,
  706. struct ggml_tensor * a);
  707. // return scalar
  708. GGML_API struct ggml_tensor * ggml_sum(
  709. struct ggml_context * ctx,
  710. struct ggml_tensor * a);
  711. // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
  712. GGML_API struct ggml_tensor * ggml_sum_rows(
  713. struct ggml_context * ctx,
  714. struct ggml_tensor * a);
  715. // mean along rows
  716. GGML_API struct ggml_tensor * ggml_mean(
  717. struct ggml_context * ctx,
  718. struct ggml_tensor * a);
  719. // argmax along rows
  720. GGML_API struct ggml_tensor * ggml_argmax(
  721. struct ggml_context * ctx,
  722. struct ggml_tensor * a);
  723. // if a is the same shape as b, and a is not parameter, return a
  724. // otherwise, return a new tensor: repeat(a) to fit in b
  725. GGML_API struct ggml_tensor * ggml_repeat(
  726. struct ggml_context * ctx,
  727. struct ggml_tensor * a,
  728. struct ggml_tensor * b);
  729. // sums repetitions in a into shape of b
  730. GGML_API struct ggml_tensor * ggml_repeat_back(
  731. struct ggml_context * ctx,
  732. struct ggml_tensor * a,
  733. struct ggml_tensor * b);
  734. // concat a and b on dim 2
  735. // used in stable-diffusion
  736. GGML_API struct ggml_tensor * ggml_concat(
  737. struct ggml_context * ctx,
  738. struct ggml_tensor * a,
  739. struct ggml_tensor * b);
  740. GGML_API struct ggml_tensor * ggml_abs(
  741. struct ggml_context * ctx,
  742. struct ggml_tensor * a);
  743. GGML_API struct ggml_tensor * ggml_abs_inplace(
  744. struct ggml_context * ctx,
  745. struct ggml_tensor * a);
  746. GGML_API struct ggml_tensor * ggml_sgn(
  747. struct ggml_context * ctx,
  748. struct ggml_tensor * a);
  749. GGML_API struct ggml_tensor * ggml_sgn_inplace(
  750. struct ggml_context * ctx,
  751. struct ggml_tensor * a);
  752. GGML_API struct ggml_tensor * ggml_neg(
  753. struct ggml_context * ctx,
  754. struct ggml_tensor * a);
  755. GGML_API struct ggml_tensor * ggml_neg_inplace(
  756. struct ggml_context * ctx,
  757. struct ggml_tensor * a);
  758. GGML_API struct ggml_tensor * ggml_step(
  759. struct ggml_context * ctx,
  760. struct ggml_tensor * a);
  761. GGML_API struct ggml_tensor * ggml_step_inplace(
  762. struct ggml_context * ctx,
  763. struct ggml_tensor * a);
  764. GGML_API struct ggml_tensor * ggml_tanh(
  765. struct ggml_context * ctx,
  766. struct ggml_tensor * a);
  767. GGML_API struct ggml_tensor * ggml_tanh_inplace(
  768. struct ggml_context * ctx,
  769. struct ggml_tensor * a);
  770. GGML_API struct ggml_tensor * ggml_elu(
  771. struct ggml_context * ctx,
  772. struct ggml_tensor * a);
  773. GGML_API struct ggml_tensor * ggml_elu_inplace(
  774. struct ggml_context * ctx,
  775. struct ggml_tensor * a);
  776. GGML_API struct ggml_tensor * ggml_relu(
  777. struct ggml_context * ctx,
  778. struct ggml_tensor * a);
  779. GGML_API struct ggml_tensor * ggml_relu_inplace(
  780. struct ggml_context * ctx,
  781. struct ggml_tensor * a);
  782. // TODO: double-check this computation is correct
  783. GGML_API struct ggml_tensor * ggml_gelu(
  784. struct ggml_context * ctx,
  785. struct ggml_tensor * a);
  786. GGML_API struct ggml_tensor * ggml_gelu_inplace(
  787. struct ggml_context * ctx,
  788. struct ggml_tensor * a);
  789. GGML_API struct ggml_tensor * ggml_gelu_quick(
  790. struct ggml_context * ctx,
  791. struct ggml_tensor * a);
  792. GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
  793. struct ggml_context * ctx,
  794. struct ggml_tensor * a);
  795. GGML_API struct ggml_tensor * ggml_silu(
  796. struct ggml_context * ctx,
  797. struct ggml_tensor * a);
  798. GGML_API struct ggml_tensor * ggml_silu_inplace(
  799. struct ggml_context * ctx,
  800. struct ggml_tensor * a);
  801. // a - x
  802. // b - dy
  803. GGML_API struct ggml_tensor * ggml_silu_back(
  804. struct ggml_context * ctx,
  805. struct ggml_tensor * a,
  806. struct ggml_tensor * b);
  807. // normalize along rows
  808. GGML_API struct ggml_tensor * ggml_norm(
  809. struct ggml_context * ctx,
  810. struct ggml_tensor * a,
  811. float eps);
  812. GGML_API struct ggml_tensor * ggml_norm_inplace(
  813. struct ggml_context * ctx,
  814. struct ggml_tensor * a,
  815. float eps);
  816. GGML_API struct ggml_tensor * ggml_rms_norm(
  817. struct ggml_context * ctx,
  818. struct ggml_tensor * a,
  819. float eps);
  820. GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
  821. struct ggml_context * ctx,
  822. struct ggml_tensor * a,
  823. float eps);
  824. // group normalize along ne0*ne1*n_groups
  825. // used in stable-diffusion
  826. // TODO: eps is hardcoded to 1e-6 for now
  827. GGML_API struct ggml_tensor * ggml_group_norm(
  828. struct ggml_context * ctx,
  829. struct ggml_tensor * a,
  830. int n_groups);
  831. GGML_API struct ggml_tensor * ggml_group_norm_inplace(
  832. struct ggml_context * ctx,
  833. struct ggml_tensor * a,
  834. int n_groups);
  835. // a - x
  836. // b - dy
  837. GGML_API struct ggml_tensor * ggml_rms_norm_back(
  838. struct ggml_context * ctx,
  839. struct ggml_tensor * a,
  840. struct ggml_tensor * b,
  841. float eps);
  842. // A: n columns, m rows
  843. // B: n columns, p rows (i.e. we transpose it internally)
  844. // result is m columns, p rows
  845. GGML_API struct ggml_tensor * ggml_mul_mat(
  846. struct ggml_context * ctx,
  847. struct ggml_tensor * a,
  848. struct ggml_tensor * b);
  849. // A: m columns, n rows,
  850. // B: p columns, n rows,
  851. // result is m columns, p rows
  852. GGML_API struct ggml_tensor * ggml_out_prod(
  853. struct ggml_context * ctx,
  854. struct ggml_tensor * a,
  855. struct ggml_tensor * b);
  856. //
  857. // operations on tensors without backpropagation
  858. //
  859. GGML_API struct ggml_tensor * ggml_scale(
  860. struct ggml_context * ctx,
  861. struct ggml_tensor * a,
  862. struct ggml_tensor * b);
  863. // in-place, returns view(a)
  864. GGML_API struct ggml_tensor * ggml_scale_inplace(
  865. struct ggml_context * ctx,
  866. struct ggml_tensor * a,
  867. struct ggml_tensor * b);
  868. // b -> view(a,offset,nb1,nb2,3), return modified a
  869. GGML_API struct ggml_tensor * ggml_set(
  870. struct ggml_context * ctx,
  871. struct ggml_tensor * a,
  872. struct ggml_tensor * b,
  873. size_t nb1,
  874. size_t nb2,
  875. size_t nb3,
  876. size_t offset);
  877. // b -> view(a,offset,nb1,nb2,3), return view(a)
  878. GGML_API struct ggml_tensor * ggml_set_inplace(
  879. struct ggml_context * ctx,
  880. struct ggml_tensor * a,
  881. struct ggml_tensor * b,
  882. size_t nb1,
  883. size_t nb2,
  884. size_t nb3,
  885. size_t offset);
  886. GGML_API struct ggml_tensor * ggml_set_1d(
  887. struct ggml_context * ctx,
  888. struct ggml_tensor * a,
  889. struct ggml_tensor * b,
  890. size_t offset);
  891. GGML_API struct ggml_tensor * ggml_set_1d_inplace(
  892. struct ggml_context * ctx,
  893. struct ggml_tensor * a,
  894. struct ggml_tensor * b,
  895. size_t offset);
  896. // b -> view(a,offset,nb1,nb2,3), return modified a
  897. GGML_API struct ggml_tensor * ggml_set_2d(
  898. struct ggml_context * ctx,
  899. struct ggml_tensor * a,
  900. struct ggml_tensor * b,
  901. size_t nb1,
  902. size_t offset);
  903. // b -> view(a,offset,nb1,nb2,3), return view(a)
  904. GGML_API struct ggml_tensor * ggml_set_2d_inplace(
  905. struct ggml_context * ctx,
  906. struct ggml_tensor * a,
  907. struct ggml_tensor * b,
  908. size_t nb1,
  909. size_t offset);
  910. // a -> b, return view(b)
  911. GGML_API struct ggml_tensor * ggml_cpy(
  912. struct ggml_context * ctx,
  913. struct ggml_tensor * a,
  914. struct ggml_tensor * b);
  915. // a -> b, in-place, return view(b)
  916. GGML_API struct ggml_tensor * ggml_cpy_inplace(
  917. struct ggml_context * ctx,
  918. struct ggml_tensor * a,
  919. struct ggml_tensor * b);
  920. // make contiguous
  921. GGML_API struct ggml_tensor * ggml_cont(
  922. struct ggml_context * ctx,
  923. struct ggml_tensor * a);
  924. // make contiguous, in-place
  925. GGML_API struct ggml_tensor * ggml_cont_inplace(
  926. struct ggml_context * ctx,
  927. struct ggml_tensor * a);
  928. // make contiguous, with new shape
  929. GGML_API struct ggml_tensor * ggml_cont_1d(
  930. struct ggml_context * ctx,
  931. struct ggml_tensor * a,
  932. int64_t ne0);
  933. GGML_API struct ggml_tensor * ggml_cont_2d(
  934. struct ggml_context * ctx,
  935. struct ggml_tensor * a,
  936. int64_t ne0,
  937. int64_t ne1);
  938. GGML_API struct ggml_tensor * ggml_cont_3d(
  939. struct ggml_context * ctx,
  940. struct ggml_tensor * a,
  941. int64_t ne0,
  942. int64_t ne1,
  943. int64_t ne2);
  944. GGML_API struct ggml_tensor * ggml_cont_4d(
  945. struct ggml_context * ctx,
  946. struct ggml_tensor * a,
  947. int64_t ne0,
  948. int64_t ne1,
  949. int64_t ne2,
  950. int64_t ne3);
  951. // return view(a), b specifies the new shape
  952. // TODO: when we start computing gradient, make a copy instead of view
  953. GGML_API struct ggml_tensor * ggml_reshape(
  954. struct ggml_context * ctx,
  955. struct ggml_tensor * a,
  956. struct ggml_tensor * b);
  957. // return view(a)
  958. // TODO: when we start computing gradient, make a copy instead of view
  959. GGML_API struct ggml_tensor * ggml_reshape_1d(
  960. struct ggml_context * ctx,
  961. struct ggml_tensor * a,
  962. int64_t ne0);
  963. GGML_API struct ggml_tensor * ggml_reshape_2d(
  964. struct ggml_context * ctx,
  965. struct ggml_tensor * a,
  966. int64_t ne0,
  967. int64_t ne1);
  968. // return view(a)
  969. // TODO: when we start computing gradient, make a copy instead of view
  970. GGML_API struct ggml_tensor * ggml_reshape_3d(
  971. struct ggml_context * ctx,
  972. struct ggml_tensor * a,
  973. int64_t ne0,
  974. int64_t ne1,
  975. int64_t ne2);
  976. GGML_API struct ggml_tensor * ggml_reshape_4d(
  977. struct ggml_context * ctx,
  978. struct ggml_tensor * a,
  979. int64_t ne0,
  980. int64_t ne1,
  981. int64_t ne2,
  982. int64_t ne3);
  983. // offset in bytes
  984. GGML_API struct ggml_tensor * ggml_view_1d(
  985. struct ggml_context * ctx,
  986. struct ggml_tensor * a,
  987. int64_t ne0,
  988. size_t offset);
  989. GGML_API struct ggml_tensor * ggml_view_2d(
  990. struct ggml_context * ctx,
  991. struct ggml_tensor * a,
  992. int64_t ne0,
  993. int64_t ne1,
  994. size_t nb1, // row stride in bytes
  995. size_t offset);
  996. GGML_API struct ggml_tensor * ggml_view_3d(
  997. struct ggml_context * ctx,
  998. struct ggml_tensor * a,
  999. int64_t ne0,
  1000. int64_t ne1,
  1001. int64_t ne2,
  1002. size_t nb1, // row stride in bytes
  1003. size_t nb2, // slice stride in bytes
  1004. size_t offset);
  1005. GGML_API struct ggml_tensor * ggml_view_4d(
  1006. struct ggml_context * ctx,
  1007. struct ggml_tensor * a,
  1008. int64_t ne0,
  1009. int64_t ne1,
  1010. int64_t ne2,
  1011. int64_t ne3,
  1012. size_t nb1, // row stride in bytes
  1013. size_t nb2, // slice stride in bytes
  1014. size_t nb3,
  1015. size_t offset);
  1016. GGML_API struct ggml_tensor * ggml_permute(
  1017. struct ggml_context * ctx,
  1018. struct ggml_tensor * a,
  1019. int axis0,
  1020. int axis1,
  1021. int axis2,
  1022. int axis3);
  1023. // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
  1024. GGML_API struct ggml_tensor * ggml_transpose(
  1025. struct ggml_context * ctx,
  1026. struct ggml_tensor * a);
  1027. GGML_API struct ggml_tensor * ggml_get_rows(
  1028. struct ggml_context * ctx,
  1029. struct ggml_tensor * a,
  1030. struct ggml_tensor * b);
  1031. GGML_API struct ggml_tensor * ggml_get_rows_back(
  1032. struct ggml_context * ctx,
  1033. struct ggml_tensor * a,
  1034. struct ggml_tensor * b,
  1035. struct ggml_tensor * c);
  1036. GGML_API struct ggml_tensor * ggml_diag(
  1037. struct ggml_context * ctx,
  1038. struct ggml_tensor * a);
  1039. // set elements above the diagonal to -INF
  1040. GGML_API struct ggml_tensor * ggml_diag_mask_inf(
  1041. struct ggml_context * ctx,
  1042. struct ggml_tensor * a,
  1043. int n_past);
  1044. // in-place, returns view(a)
  1045. GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
  1046. struct ggml_context * ctx,
  1047. struct ggml_tensor * a,
  1048. int n_past);
  1049. // set elements above the diagonal to 0
  1050. GGML_API struct ggml_tensor * ggml_diag_mask_zero(
  1051. struct ggml_context * ctx,
  1052. struct ggml_tensor * a,
  1053. int n_past);
  1054. // in-place, returns view(a)
  1055. GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
  1056. struct ggml_context * ctx,
  1057. struct ggml_tensor * a,
  1058. int n_past);
  1059. GGML_API struct ggml_tensor * ggml_soft_max(
  1060. struct ggml_context * ctx,
  1061. struct ggml_tensor * a);
  1062. // in-place, returns view(a)
  1063. GGML_API struct ggml_tensor * ggml_soft_max_inplace(
  1064. struct ggml_context * ctx,
  1065. struct ggml_tensor * a);
  1066. GGML_API struct ggml_tensor * ggml_soft_max_back(
  1067. struct ggml_context * ctx,
  1068. struct ggml_tensor * a,
  1069. struct ggml_tensor * b);
  1070. // in-place, returns view(a)
  1071. GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
  1072. struct ggml_context * ctx,
  1073. struct ggml_tensor * a,
  1074. struct ggml_tensor * b);
  1075. // rotary position embedding
  1076. // if mode & 1 == 1, skip n_past elements (DEPRECATED)
  1077. // if mode & 2 == 1, GPT-NeoX style
  1078. // if mode & 4 == 1, ChatGLM style
  1079. //
  1080. // b is an int32 vector with size a->ne[2], it contains the positions
  1081. GGML_API struct ggml_tensor * ggml_rope(
  1082. struct ggml_context * ctx,
  1083. struct ggml_tensor * a,
  1084. struct ggml_tensor * b,
  1085. int n_dims,
  1086. int mode,
  1087. int n_ctx);
  1088. // in-place, returns view(a)
  1089. GGML_API struct ggml_tensor * ggml_rope_inplace(
  1090. struct ggml_context * ctx,
  1091. struct ggml_tensor * a,
  1092. struct ggml_tensor * b,
  1093. int n_dims,
  1094. int mode,
  1095. int n_ctx);
  1096. // custom RoPE
  1097. GGML_API struct ggml_tensor * ggml_rope_custom(
  1098. struct ggml_context * ctx,
  1099. struct ggml_tensor * a,
  1100. struct ggml_tensor * b,
  1101. int n_dims,
  1102. int mode,
  1103. int n_ctx,
  1104. float freq_base,
  1105. float freq_scale);
  1106. // in-place, returns view(a)
  1107. GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
  1108. struct ggml_context * ctx,
  1109. struct ggml_tensor * a,
  1110. struct ggml_tensor * b,
  1111. int n_dims,
  1112. int mode,
  1113. int n_ctx,
  1114. float freq_base,
  1115. float freq_scale);
  1116. // xPos RoPE, in-place, returns view(a)
  1117. GGML_API struct ggml_tensor * ggml_rope_xpos_inplace(
  1118. struct ggml_context * ctx,
  1119. struct ggml_tensor * a,
  1120. struct ggml_tensor * b,
  1121. int n_dims,
  1122. float base,
  1123. bool down);
  1124. // rotary position embedding backward, i.e compute dx from dy
  1125. // a - dy
  1126. GGML_API struct ggml_tensor * ggml_rope_back(
  1127. struct ggml_context * ctx,
  1128. struct ggml_tensor * a,
  1129. struct ggml_tensor * b,
  1130. int n_dims,
  1131. int mode,
  1132. int n_ctx,
  1133. float freq_base,
  1134. float freq_scale,
  1135. float xpos_base,
  1136. bool xpos_down);
  1137. // alibi position embedding
  1138. // in-place, returns view(a)
  1139. struct ggml_tensor * ggml_alibi(
  1140. struct ggml_context * ctx,
  1141. struct ggml_tensor * a,
  1142. int n_past,
  1143. int n_head,
  1144. float bias_max);
  1145. // clamp
  1146. // in-place, returns view(a)
  1147. struct ggml_tensor * ggml_clamp(
  1148. struct ggml_context * ctx,
  1149. struct ggml_tensor * a,
  1150. float min,
  1151. float max);
  1152. GGML_API struct ggml_tensor * ggml_conv_1d(
  1153. struct ggml_context * ctx,
  1154. struct ggml_tensor * a,
  1155. struct ggml_tensor * b,
  1156. int s0, // stride
  1157. int p0, // padding
  1158. int d0); // dilation
  1159. // conv_1d with padding = half
  1160. // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
  1161. GGML_API struct ggml_tensor* ggml_conv_1d_ph(
  1162. struct ggml_context * ctx,
  1163. struct ggml_tensor * a,
  1164. struct ggml_tensor * b,
  1165. int s,
  1166. int d);
  1167. GGML_API struct ggml_tensor * ggml_conv_2d(
  1168. struct ggml_context * ctx,
  1169. struct ggml_tensor * a,
  1170. struct ggml_tensor * b,
  1171. int s0,
  1172. int s1,
  1173. int p0,
  1174. int p1,
  1175. int d0,
  1176. int d1);
  1177. // kernel size is a->ne[0] x a->ne[1]
  1178. // stride is equal to kernel size
  1179. // padding is zero
  1180. // example:
  1181. // a: 16 16 3 768
  1182. // b: 1024 1024 3 1
  1183. // res: 64 64 768 1
  1184. // used in sam
  1185. GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
  1186. struct ggml_context * ctx,
  1187. struct ggml_tensor * a,
  1188. struct ggml_tensor * b);
  1189. // kernel size is a->ne[0] x a->ne[1]
  1190. // stride is 1
  1191. // padding is half
  1192. // example:
  1193. // a: 3 3 256 256
  1194. // b: 64 64 256 1
  1195. // res: 64 64 256 1
  1196. // used in sam
  1197. GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
  1198. struct ggml_context * ctx,
  1199. struct ggml_tensor * a,
  1200. struct ggml_tensor * b);
  1201. GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
  1202. struct ggml_context * ctx,
  1203. struct ggml_tensor * a,
  1204. struct ggml_tensor * b,
  1205. int stride);
  1206. enum ggml_op_pool {
  1207. GGML_OP_POOL_MAX,
  1208. GGML_OP_POOL_AVG,
  1209. GGML_OP_POOL_COUNT,
  1210. };
  1211. GGML_API struct ggml_tensor * ggml_pool_1d(
  1212. struct ggml_context * ctx,
  1213. struct ggml_tensor * a,
  1214. enum ggml_op_pool op,
  1215. int k0, // kernel size
  1216. int s0, // stride
  1217. int p0); // padding
  1218. GGML_API struct ggml_tensor * ggml_pool_2d(
  1219. struct ggml_context * ctx,
  1220. struct ggml_tensor * a,
  1221. enum ggml_op_pool op,
  1222. int k0,
  1223. int k1,
  1224. int s0,
  1225. int s1,
  1226. int p0,
  1227. int p1);
  1228. // nearest interpolate
  1229. // used in stable-diffusion
  1230. GGML_API struct ggml_tensor * ggml_upscale(
  1231. struct ggml_context * ctx,
  1232. struct ggml_tensor * a,
  1233. int scale_factor);
  1234. GGML_API struct ggml_tensor * ggml_flash_attn(
  1235. struct ggml_context * ctx,
  1236. struct ggml_tensor * q,
  1237. struct ggml_tensor * k,
  1238. struct ggml_tensor * v,
  1239. bool masked);
  1240. GGML_API struct ggml_tensor * ggml_flash_attn_back(
  1241. struct ggml_context * ctx,
  1242. struct ggml_tensor * q,
  1243. struct ggml_tensor * k,
  1244. struct ggml_tensor * v,
  1245. struct ggml_tensor * d,
  1246. bool masked);
  1247. GGML_API struct ggml_tensor * ggml_flash_ff(
  1248. struct ggml_context * ctx,
  1249. struct ggml_tensor * a,
  1250. struct ggml_tensor * b0,
  1251. struct ggml_tensor * b1,
  1252. struct ggml_tensor * c0,
  1253. struct ggml_tensor * c1);
  1254. // partition into non-overlapping windows with padding if needed
  1255. // example:
  1256. // a: 768 64 64 1
  1257. // w: 14
  1258. // res: 768 14 14 25
  1259. // used in sam
  1260. GGML_API struct ggml_tensor * ggml_win_part(
  1261. struct ggml_context * ctx,
  1262. struct ggml_tensor * a,
  1263. int w);
  1264. // reverse of ggml_win_part
  1265. // used in sam
  1266. GGML_API struct ggml_tensor * ggml_win_unpart(
  1267. struct ggml_context * ctx,
  1268. struct ggml_tensor * a,
  1269. int w0,
  1270. int h0,
  1271. int w);
  1272. GGML_API struct ggml_tensor * ggml_unary(
  1273. struct ggml_context * ctx,
  1274. struct ggml_tensor * a,
  1275. enum ggml_unary_op op);
  1276. GGML_API struct ggml_tensor * ggml_unary_inplace(
  1277. struct ggml_context * ctx,
  1278. struct ggml_tensor * a,
  1279. enum ggml_unary_op op);
  1280. // used in sam
  1281. GGML_API struct ggml_tensor * ggml_get_rel_pos(
  1282. struct ggml_context * ctx,
  1283. struct ggml_tensor * a,
  1284. int qh,
  1285. int kh);
  1286. // used in sam
  1287. GGML_API struct ggml_tensor * ggml_add_rel_pos(
  1288. struct ggml_context * ctx,
  1289. struct ggml_tensor * a,
  1290. struct ggml_tensor * pw,
  1291. struct ggml_tensor * ph);
  1292. GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
  1293. struct ggml_context * ctx,
  1294. struct ggml_tensor * a,
  1295. struct ggml_tensor * pw,
  1296. struct ggml_tensor * ph);
  1297. // custom operators
  1298. typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
  1299. typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
  1300. typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
  1301. typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1302. typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1303. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
  1304. struct ggml_context * ctx,
  1305. struct ggml_tensor * a,
  1306. ggml_unary_op_f32_t fun),
  1307. "use ggml_map_custom1 instead");
  1308. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
  1309. struct ggml_context * ctx,
  1310. struct ggml_tensor * a,
  1311. ggml_unary_op_f32_t fun),
  1312. "use ggml_map_custom1_inplace instead");
  1313. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
  1314. struct ggml_context * ctx,
  1315. struct ggml_tensor * a,
  1316. struct ggml_tensor * b,
  1317. ggml_binary_op_f32_t fun),
  1318. "use ggml_map_custom2 instead");
  1319. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
  1320. struct ggml_context * ctx,
  1321. struct ggml_tensor * a,
  1322. struct ggml_tensor * b,
  1323. ggml_binary_op_f32_t fun),
  1324. "use ggml_map_custom2_inplace instead");
  1325. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
  1326. struct ggml_context * ctx,
  1327. struct ggml_tensor * a,
  1328. ggml_custom1_op_f32_t fun),
  1329. "use ggml_map_custom1 instead");
  1330. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
  1331. struct ggml_context * ctx,
  1332. struct ggml_tensor * a,
  1333. ggml_custom1_op_f32_t fun),
  1334. "use ggml_map_custom1_inplace instead");
  1335. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
  1336. struct ggml_context * ctx,
  1337. struct ggml_tensor * a,
  1338. struct ggml_tensor * b,
  1339. ggml_custom2_op_f32_t fun),
  1340. "use ggml_map_custom2 instead");
  1341. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
  1342. struct ggml_context * ctx,
  1343. struct ggml_tensor * a,
  1344. struct ggml_tensor * b,
  1345. ggml_custom2_op_f32_t fun),
  1346. "use ggml_map_custom2_inplace instead");
  1347. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
  1348. struct ggml_context * ctx,
  1349. struct ggml_tensor * a,
  1350. struct ggml_tensor * b,
  1351. struct ggml_tensor * c,
  1352. ggml_custom3_op_f32_t fun),
  1353. "use ggml_map_custom3 instead");
  1354. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
  1355. struct ggml_context * ctx,
  1356. struct ggml_tensor * a,
  1357. struct ggml_tensor * b,
  1358. struct ggml_tensor * c,
  1359. ggml_custom3_op_f32_t fun),
  1360. "use ggml_map_custom3_inplace instead");
  1361. // custom operators v2
  1362. typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
  1363. typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
  1364. typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
  1365. #define GGML_N_TASKS_MAX -1
  1366. GGML_API struct ggml_tensor * ggml_map_custom1(
  1367. struct ggml_context * ctx,
  1368. struct ggml_tensor * a,
  1369. ggml_custom1_op_t fun,
  1370. int n_tasks,
  1371. void * userdata);
  1372. GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
  1373. struct ggml_context * ctx,
  1374. struct ggml_tensor * a,
  1375. ggml_custom1_op_t fun,
  1376. int n_tasks,
  1377. void * userdata);
  1378. GGML_API struct ggml_tensor * ggml_map_custom2(
  1379. struct ggml_context * ctx,
  1380. struct ggml_tensor * a,
  1381. struct ggml_tensor * b,
  1382. ggml_custom2_op_t fun,
  1383. int n_tasks,
  1384. void * userdata);
  1385. GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
  1386. struct ggml_context * ctx,
  1387. struct ggml_tensor * a,
  1388. struct ggml_tensor * b,
  1389. ggml_custom2_op_t fun,
  1390. int n_tasks,
  1391. void * userdata);
  1392. GGML_API struct ggml_tensor * ggml_map_custom3(
  1393. struct ggml_context * ctx,
  1394. struct ggml_tensor * a,
  1395. struct ggml_tensor * b,
  1396. struct ggml_tensor * c,
  1397. ggml_custom3_op_t fun,
  1398. int n_tasks,
  1399. void * userdata);
  1400. GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
  1401. struct ggml_context * ctx,
  1402. struct ggml_tensor * a,
  1403. struct ggml_tensor * b,
  1404. struct ggml_tensor * c,
  1405. ggml_custom3_op_t fun,
  1406. int n_tasks,
  1407. void * userdata);
  1408. // loss function
  1409. GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
  1410. struct ggml_context * ctx,
  1411. struct ggml_tensor * a,
  1412. struct ggml_tensor * b);
  1413. GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
  1414. struct ggml_context * ctx,
  1415. struct ggml_tensor * a,
  1416. struct ggml_tensor * b,
  1417. struct ggml_tensor * c);
  1418. //
  1419. // automatic differentiation
  1420. //
  1421. GGML_API void ggml_set_param(
  1422. struct ggml_context * ctx,
  1423. struct ggml_tensor * tensor);
  1424. GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  1425. GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);
  1426. GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
  1427. GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
  1428. // graph allocation in a context
  1429. GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx);
  1430. GGML_API struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor);
  1431. GGML_API size_t ggml_graph_overhead(void);
  1432. // ggml_graph_plan() has to be called before ggml_graph_compute()
  1433. // when plan.work_size > 0, caller must allocate memory for plan.work_data
  1434. GGML_API struct ggml_cplan ggml_graph_plan (struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
  1435. GGML_API int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
  1436. GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph);
  1437. // same as ggml_graph_compute() but the work data is allocated as a part of the context
  1438. // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
  1439. GGML_API void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
  1440. GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
  1441. GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
  1442. GGML_API struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
  1443. // print info and performance information for the graph
  1444. GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
  1445. // dump the graph into a file using the dot format
  1446. GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
  1447. // build gradient checkpointing backward graph gb for gf using provided checkpoints
  1448. // gb_tmp will contain original backward graph with rewritten backward process nodes,
  1449. // but without the second forward pass nodes.
  1450. GGML_API void ggml_build_backward_gradient_checkpointing(
  1451. struct ggml_context * ctx,
  1452. struct ggml_cgraph * gf,
  1453. struct ggml_cgraph * gb,
  1454. struct ggml_cgraph * gb_tmp,
  1455. struct ggml_tensor * * checkpoints,
  1456. int n_checkpoints);
  1457. //
  1458. // optimization
  1459. //
  1460. // optimization methods
  1461. enum ggml_opt_type {
  1462. GGML_OPT_ADAM,
  1463. GGML_OPT_LBFGS,
  1464. };
  1465. // linesearch methods
  1466. enum ggml_linesearch {
  1467. GGML_LINESEARCH_DEFAULT = 1,
  1468. GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
  1469. GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
  1470. GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
  1471. };
  1472. // optimization return values
  1473. enum ggml_opt_result {
  1474. GGML_OPT_OK = 0,
  1475. GGML_OPT_DID_NOT_CONVERGE,
  1476. GGML_OPT_NO_CONTEXT,
  1477. GGML_OPT_INVALID_WOLFE,
  1478. GGML_OPT_FAIL,
  1479. GGML_LINESEARCH_FAIL = -128,
  1480. GGML_LINESEARCH_MINIMUM_STEP,
  1481. GGML_LINESEARCH_MAXIMUM_STEP,
  1482. GGML_LINESEARCH_MAXIMUM_ITERATIONS,
  1483. GGML_LINESEARCH_INVALID_PARAMETERS,
  1484. };
  1485. typedef void (*ggml_opt_callback)(void * data, int accum_step, float * sched, bool * cancel);
  1486. typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
  1487. // optimization parameters
  1488. //
  1489. // see ggml.c (ggml_opt_default_params) for default values
  1490. //
  1491. struct ggml_opt_params {
  1492. enum ggml_opt_type type;
  1493. int n_threads;
  1494. // delta-based convergence test
  1495. //
  1496. // if past == 0 - disabled
  1497. // if past > 0:
  1498. // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
  1499. //
  1500. int past;
  1501. float delta;
  1502. // maximum number of iterations without improvement
  1503. //
  1504. // if 0 - disabled
  1505. // if > 0:
  1506. // assume convergence if no cost improvement in this number of iterations
  1507. //
  1508. int max_no_improvement;
  1509. bool print_forward_graph;
  1510. bool print_backward_graph;
  1511. int n_gradient_accumulation;
  1512. // ADAM parameters
  1513. struct {
  1514. int n_iter;
  1515. float sched; // schedule multiplier (fixed, decay or warmup)
  1516. float decay; // weight decay for AdamW, use 0.0f to disable
  1517. int decay_min_ndim; // minimum number of tensor dimension to apply weight decay
  1518. float alpha; // learning rate
  1519. float beta1;
  1520. float beta2;
  1521. float eps; // epsilon for numerical stability
  1522. float eps_f; // epsilon for convergence test
  1523. float eps_g; // epsilon for convergence test
  1524. float gclip; // gradient clipping
  1525. } adam;
  1526. // LBFGS parameters
  1527. struct {
  1528. int m; // number of corrections to approximate the inv. Hessian
  1529. int n_iter;
  1530. int max_linesearch;
  1531. float eps; // convergence tolerance
  1532. float ftol; // line search tolerance
  1533. float wolfe;
  1534. float min_step;
  1535. float max_step;
  1536. enum ggml_linesearch linesearch;
  1537. } lbfgs;
  1538. };
  1539. struct ggml_opt_context {
  1540. struct ggml_context * ctx;
  1541. struct ggml_opt_params params;
  1542. int iter;
  1543. int64_t nx; // number of parameter elements
  1544. bool just_initialized;
  1545. float loss_before;
  1546. float loss_after;
  1547. struct {
  1548. struct ggml_tensor * g; // current gradient
  1549. struct ggml_tensor * m; // first moment
  1550. struct ggml_tensor * v; // second moment
  1551. struct ggml_tensor * pf; // past function values
  1552. float fx_best;
  1553. float fx_prev;
  1554. int n_no_improvement;
  1555. } adam;
  1556. struct {
  1557. struct ggml_tensor * x; // current parameters
  1558. struct ggml_tensor * xp; // previous parameters
  1559. struct ggml_tensor * g; // current gradient
  1560. struct ggml_tensor * gp; // previous gradient
  1561. struct ggml_tensor * d; // search direction
  1562. struct ggml_tensor * pf; // past function values
  1563. struct ggml_tensor * lmal; // the L-BFGS memory alpha
  1564. struct ggml_tensor * lmys; // the L-BFGS memory ys
  1565. struct ggml_tensor * lms; // the L-BFGS memory s
  1566. struct ggml_tensor * lmy; // the L-BFGS memory y
  1567. float fx_best;
  1568. float step;
  1569. int j;
  1570. int k;
  1571. int end;
  1572. int n_no_improvement;
  1573. } lbfgs;
  1574. };
  1575. GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
  1576. // optimize the function defined by the tensor f
  1577. GGML_API enum ggml_opt_result ggml_opt(
  1578. struct ggml_context * ctx,
  1579. struct ggml_opt_params params,
  1580. struct ggml_tensor * f);
  1581. // initialize optimizer context
  1582. GGML_API void ggml_opt_init(
  1583. struct ggml_context * ctx,
  1584. struct ggml_opt_context * opt,
  1585. struct ggml_opt_params params,
  1586. int64_t nx);
  1587. // continue optimizing the function defined by the tensor f
  1588. GGML_API enum ggml_opt_result ggml_opt_resume(
  1589. struct ggml_context * ctx,
  1590. struct ggml_opt_context * opt,
  1591. struct ggml_tensor * f);
  1592. // continue optimizing the function defined by the tensor f
  1593. GGML_API enum ggml_opt_result ggml_opt_resume_g(
  1594. struct ggml_context * ctx,
  1595. struct ggml_opt_context * opt,
  1596. struct ggml_tensor * f,
  1597. struct ggml_cgraph * gf,
  1598. struct ggml_cgraph * gb,
  1599. ggml_opt_callback callback,
  1600. void * callback_data);
  1601. //
  1602. // quantization
  1603. //
  1604. GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1605. GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
  1606. GGML_API size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1607. GGML_API size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist);
  1608. GGML_API size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1609. GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);
  1610. //
  1611. // gguf
  1612. //
  1613. enum gguf_type {
  1614. GGUF_TYPE_UINT8 = 0,
  1615. GGUF_TYPE_INT8 = 1,
  1616. GGUF_TYPE_UINT16 = 2,
  1617. GGUF_TYPE_INT16 = 3,
  1618. GGUF_TYPE_UINT32 = 4,
  1619. GGUF_TYPE_INT32 = 5,
  1620. GGUF_TYPE_FLOAT32 = 6,
  1621. GGUF_TYPE_BOOL = 7,
  1622. GGUF_TYPE_STRING = 8,
  1623. GGUF_TYPE_ARRAY = 9,
  1624. GGUF_TYPE_UINT64 = 10,
  1625. GGUF_TYPE_INT64 = 11,
  1626. GGUF_TYPE_FLOAT64 = 12,
  1627. GGUF_TYPE_COUNT, // marks the end of the enum
  1628. };
  1629. struct gguf_context;
  1630. struct gguf_init_params {
  1631. bool no_alloc;
  1632. // if not NULL, create a ggml_context and allocate the tensor data in it
  1633. struct ggml_context ** ctx;
  1634. };
  1635. GGML_API struct gguf_context * gguf_init_empty(void);
  1636. GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
  1637. //GGML_API struct gguf_context * gguf_init_from_buffer(..);
  1638. GGML_API void gguf_free(struct gguf_context * ctx);
  1639. GGML_API const char * gguf_type_name(enum gguf_type type);
  1640. GGML_API int gguf_get_version (const struct gguf_context * ctx);
  1641. GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx);
  1642. GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
  1643. GGML_API void * gguf_get_data (const struct gguf_context * ctx);
  1644. GGML_API int gguf_get_n_kv(const struct gguf_context * ctx);
  1645. GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key);
  1646. GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id);
  1647. GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id);
  1648. GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id);
  1649. // will abort if the wrong type is used for the key
  1650. GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int key_id);
  1651. GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int key_id);
  1652. GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int key_id);
  1653. GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int key_id);
  1654. GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int key_id);
  1655. GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int key_id);
  1656. GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int key_id);
  1657. GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int key_id);
  1658. GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int key_id);
  1659. GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
  1660. GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
  1661. GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
  1662. GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id);
  1663. GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
  1664. GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
  1665. GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
  1666. GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name);
  1667. GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i);
  1668. GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i);
  1669. // overrides existing values or adds a new one
  1670. GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
  1671. GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
  1672. GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
  1673. GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
  1674. GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
  1675. GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
  1676. GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
  1677. GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
  1678. GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
  1679. GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
  1680. GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
  1681. GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
  1682. GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
  1683. GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);
  1684. // set or add KV pairs from another context
  1685. GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);
  1686. // manage tensor info
  1687. GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
  1688. GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
  1689. GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);
  1690. // writing gguf files can be done in 2 ways:
  1691. //
  1692. // - write the entire gguf_context to a binary file in a single pass:
  1693. //
  1694. // gguf_write_to_file(ctx, fname);
  1695. //
  1696. // - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
  1697. //
  1698. // FILE * f = fopen(fname, "wb");
  1699. // fseek(f, gguf_get_meta_size(ctx), SEEK_SET);
  1700. // fwrite(f, ...);
  1701. // void * data = gguf_meta_get_meta_data(ctx);
  1702. // fseek(f, 0, SEEK_SET);
  1703. // fwrite(f, data, gguf_get_meta_size(ctx));
  1704. // free(data);
  1705. // fclose(f);
  1706. //
  1707. // write the entire context to a binary file
  1708. GGML_API void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);
  1709. // get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
  1710. GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
  1711. GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
  1712. //
  1713. // system info
  1714. //
  1715. GGML_API int ggml_cpu_has_avx (void);
  1716. GGML_API int ggml_cpu_has_avx2 (void);
  1717. GGML_API int ggml_cpu_has_avx512 (void);
  1718. GGML_API int ggml_cpu_has_avx512_vbmi(void);
  1719. GGML_API int ggml_cpu_has_avx512_vnni(void);
  1720. GGML_API int ggml_cpu_has_fma (void);
  1721. GGML_API int ggml_cpu_has_neon (void);
  1722. GGML_API int ggml_cpu_has_arm_fma (void);
  1723. GGML_API int ggml_cpu_has_metal (void);
  1724. GGML_API int ggml_cpu_has_f16c (void);
  1725. GGML_API int ggml_cpu_has_fp16_va (void);
  1726. GGML_API int ggml_cpu_has_wasm_simd (void);
  1727. GGML_API int ggml_cpu_has_blas (void);
  1728. GGML_API int ggml_cpu_has_cublas (void);
  1729. GGML_API int ggml_cpu_has_clblast (void);
  1730. GGML_API int ggml_cpu_has_gpublas (void);
  1731. GGML_API int ggml_cpu_has_sse3 (void);
  1732. GGML_API int ggml_cpu_has_ssse3 (void);
  1733. GGML_API int ggml_cpu_has_vsx (void);
  1734. //
  1735. // Internal types and functions exposed for tests and benchmarks
  1736. //
  1737. #ifdef __cplusplus
  1738. // restrict not standard in C++
  1739. #define GGML_RESTRICT
  1740. #else
  1741. #define GGML_RESTRICT restrict
  1742. #endif
  1743. typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
  1744. typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
  1745. typedef void (*ggml_vec_dot_t) (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
  1746. typedef struct {
  1747. const char * type_name;
  1748. int blck_size;
  1749. size_t type_size;
  1750. bool is_quantized;
  1751. ggml_to_float_t to_float;
  1752. ggml_from_float_t from_float;
  1753. ggml_from_float_t from_float_reference;
  1754. ggml_vec_dot_t vec_dot;
  1755. enum ggml_type vec_dot_type;
  1756. } ggml_type_traits_t;
  1757. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type);
  1758. #ifdef __cplusplus
  1759. }
  1760. #endif