ggml-metal.metal 59 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838
  1. #include <metal_stdlib>
  2. using namespace metal;
  3. #define MAX(x, y) ((x) > (y) ? (x) : (y))
  4. #define QK4_0 32
  5. #define QR4_0 2
  6. typedef struct {
  7. half d; // delta
  8. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  9. } block_q4_0;
  10. #define QK4_1 32
  11. typedef struct {
  12. half d; // delta
  13. half m; // min
  14. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  15. } block_q4_1;
  16. static void dequantize_row_q4_0(device const block_q4_0 * x, device float * y, int k) {
  17. const int qk = QK4_0;
  18. assert(k % qk == 0);
  19. const int nb = k / qk;
  20. for (int i = 0; i < nb; i++) {
  21. const half d = x[i].d;
  22. for (int j = 0; j < qk/2; ++j) {
  23. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  24. const int x1 = (x[i].qs[j] >> 4) - 8;
  25. y[i*qk + j + 0 ] = x0*d;
  26. y[i*qk + j + qk/2] = x1*d;
  27. }
  28. }
  29. }
  30. static void dequantize_row_q4_1(device const block_q4_1 * x, device float * y, int k) {
  31. const int qk = QK4_1;
  32. assert(k % qk == 0);
  33. const int nb = k / qk;
  34. for (int i = 0; i < nb; i++) {
  35. const half d = x[i].d;
  36. const half m = x[i].m;
  37. for (int j = 0; j < qk/2; ++j) {
  38. const int x0 = (x[i].qs[j] & 0x0F);
  39. const int x1 = (x[i].qs[j] >> 4);
  40. y[i*qk + j + 0 ] = x0*d + m;
  41. y[i*qk + j + qk/2] = x1*d + m;
  42. }
  43. }
  44. }
  45. kernel void kernel_add(
  46. device const float * src0,
  47. device const float * src1,
  48. device float * dst,
  49. uint tpig[[thread_position_in_grid]]) {
  50. dst[tpig] = src0[tpig] + src1[tpig];
  51. }
  52. kernel void kernel_mul(
  53. device const float * src0,
  54. device const float * src1,
  55. device float * dst,
  56. uint tpig[[thread_position_in_grid]]) {
  57. dst[tpig] = src0[tpig] * src1[tpig];
  58. }
  59. // assumption: src1 is a row
  60. // broadcast src1 into src0
  61. kernel void kernel_mul_row(
  62. device const float * src0,
  63. device const float * src1,
  64. device float * dst,
  65. constant int64_t & ne00,
  66. uint tpig[[thread_position_in_grid]]) {
  67. dst[tpig] = src0[tpig] * src1[tpig % ne00];
  68. }
  69. kernel void kernel_scale(
  70. device const float * src0,
  71. device float * dst,
  72. constant float & scale,
  73. uint tpig[[thread_position_in_grid]]) {
  74. dst[tpig] = src0[tpig] * scale;
  75. }
  76. kernel void kernel_silu(
  77. device const float * src0,
  78. device float * dst,
  79. uint tpig[[thread_position_in_grid]]) {
  80. float x = src0[tpig];
  81. dst[tpig] = x / (1.0f + exp(-x));
  82. }
  83. kernel void kernel_relu(
  84. device const float * src0,
  85. device float * dst,
  86. uint tpig[[thread_position_in_grid]]) {
  87. dst[tpig] = max(0.0f, src0[tpig]);
  88. }
  89. constant float GELU_COEF_A = 0.044715f;
  90. constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  91. kernel void kernel_gelu(
  92. device const float * src0,
  93. device float * dst,
  94. uint tpig[[thread_position_in_grid]]) {
  95. float x = src0[tpig];
  96. dst[tpig] = 0.5f*x*(1.0f + tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  97. }
  98. kernel void kernel_soft_max(
  99. device const float * src0,
  100. device float * dst,
  101. constant int64_t & ne00,
  102. constant int64_t & ne01,
  103. constant int64_t & ne02,
  104. threadgroup float * buf [[threadgroup(0)]],
  105. uint3 tgpig[[threadgroup_position_in_grid]],
  106. uint3 tpitg[[thread_position_in_threadgroup]],
  107. uint3 ntg[[threads_per_threadgroup]]) {
  108. const int64_t i03 = tgpig[2];
  109. const int64_t i02 = tgpig[1];
  110. const int64_t i01 = tgpig[0];
  111. device const float * psrc0 = src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  112. device float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  113. // parallel max
  114. buf[tpitg[0]] = -INFINITY;
  115. for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
  116. buf[tpitg[0]] = MAX(buf[tpitg[0]], psrc0[i00]);
  117. }
  118. // reduce
  119. threadgroup_barrier(mem_flags::mem_threadgroup);
  120. for (uint i = ntg[0]/2; i > 0; i /= 2) {
  121. if (tpitg[0] < i) {
  122. buf[tpitg[0]] = MAX(buf[tpitg[0]], buf[tpitg[0] + i]);
  123. }
  124. threadgroup_barrier(mem_flags::mem_threadgroup);
  125. }
  126. // broadcast
  127. if (tpitg[0] == 0) {
  128. buf[0] = buf[0];
  129. }
  130. threadgroup_barrier(mem_flags::mem_threadgroup);
  131. const float max = buf[0];
  132. // parallel sum
  133. buf[tpitg[0]] = 0.0f;
  134. for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
  135. buf[tpitg[0]] += exp(psrc0[i00] - max);
  136. }
  137. // reduce
  138. threadgroup_barrier(mem_flags::mem_threadgroup);
  139. for (uint i = ntg[0]/2; i > 0; i /= 2) {
  140. if (tpitg[0] < i) {
  141. buf[tpitg[0]] += buf[tpitg[0] + i];
  142. }
  143. threadgroup_barrier(mem_flags::mem_threadgroup);
  144. }
  145. // broadcast
  146. if (tpitg[0] == 0) {
  147. buf[0] = buf[0];
  148. }
  149. threadgroup_barrier(mem_flags::mem_threadgroup);
  150. const float sum = buf[0];
  151. for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
  152. pdst[i00] = exp(psrc0[i00] - max) / sum;
  153. }
  154. }
  155. kernel void kernel_diag_mask_inf(
  156. device const float * src0,
  157. device float * dst,
  158. constant int64_t & ne00,
  159. constant int64_t & ne01,
  160. constant int & n_past,
  161. uint3 tpig[[thread_position_in_grid]]) {
  162. const int64_t i02 = tpig[2];
  163. const int64_t i01 = tpig[1];
  164. const int64_t i00 = tpig[0];
  165. if (i00 > n_past + i01) {
  166. dst[i02*ne01*ne00 + i01*ne00 + i00] = -INFINITY;
  167. } else {
  168. dst[i02*ne01*ne00 + i01*ne00 + i00] = src0[i02*ne01*ne00 + i01*ne00 + i00];
  169. }
  170. }
  171. kernel void kernel_get_rows_f16(
  172. device const void * src0,
  173. device const int * src1,
  174. device float * dst,
  175. constant int64_t & ne00,
  176. constant uint64_t & nb01,
  177. constant uint64_t & nb1,
  178. uint tpig[[thread_position_in_grid]]) {
  179. const int i = tpig;
  180. const int r = ((device int32_t *) src1)[i];
  181. for (int j = 0; j < ne00; j++) {
  182. dst[i*nb1 + j] = ((device half *) ((device char *) src0 + r*nb01))[j];
  183. }
  184. }
  185. kernel void kernel_get_rows_q4_0(
  186. device const void * src0,
  187. device const int * src1,
  188. device float * dst,
  189. constant int64_t & ne00,
  190. constant uint64_t & nb01,
  191. constant uint64_t & nb1,
  192. uint tpig[[thread_position_in_grid]]) {
  193. const int i = tpig;
  194. const int r = ((device int32_t *) src1)[i];
  195. dequantize_row_q4_0(
  196. (device const block_q4_0 *) ((device char *) src0 + r*nb01),
  197. (device float *) ((device char *) dst + i*nb1), ne00);
  198. }
  199. kernel void kernel_get_rows_q4_1(
  200. device const void * src0,
  201. device const int * src1,
  202. device float * dst,
  203. constant int64_t & ne00,
  204. constant uint64_t & nb01,
  205. constant uint64_t & nb1,
  206. uint tpig[[thread_position_in_grid]]) {
  207. const int i = tpig;
  208. const int r = ((device int32_t *) src1)[i];
  209. dequantize_row_q4_1(
  210. (device const block_q4_1 *) ((device char *) src0 + r*nb01),
  211. (device float *) ((device char *) dst + i*nb1), ne00);
  212. }
  213. kernel void kernel_norm(
  214. device const void * src0,
  215. device float * dst,
  216. constant int64_t & ne00,
  217. constant uint64_t & nb01,
  218. constant float & eps,
  219. threadgroup float * sum [[threadgroup(0)]],
  220. uint tgpig[[threadgroup_position_in_grid]],
  221. uint tpitg[[thread_position_in_threadgroup]],
  222. uint ntg[[threads_per_threadgroup]]) {
  223. device const float * x = (device const float *) ((device const char *) src0 + tgpig*nb01);
  224. // MEAN
  225. // parallel sum
  226. sum[tpitg] = 0.0f;
  227. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  228. sum[tpitg] += x[i00];
  229. }
  230. // reduce
  231. threadgroup_barrier(mem_flags::mem_threadgroup);
  232. for (uint i = ntg/2; i > 0; i /= 2) {
  233. if (tpitg < i) {
  234. sum[tpitg] += sum[tpitg + i];
  235. }
  236. threadgroup_barrier(mem_flags::mem_threadgroup);
  237. }
  238. // broadcast
  239. if (tpitg == 0) {
  240. sum[0] /= ne00;
  241. }
  242. threadgroup_barrier(mem_flags::mem_threadgroup);
  243. const float mean = sum[0];
  244. // recenter
  245. device float * y = dst + tgpig*ne00;
  246. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  247. y[i00] = x[i00] - mean;
  248. }
  249. // VARIANCE
  250. // parallel sum
  251. sum[tpitg] = 0.0f;
  252. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  253. sum[tpitg] += y[i00] * y[i00];
  254. }
  255. // reduce
  256. threadgroup_barrier(mem_flags::mem_threadgroup);
  257. for (uint i = ntg/2; i > 0; i /= 2) {
  258. if (tpitg < i) {
  259. sum[tpitg] += sum[tpitg + i];
  260. }
  261. threadgroup_barrier(mem_flags::mem_threadgroup);
  262. }
  263. // broadcast
  264. if (tpitg == 0) {
  265. sum[0] /= ne00;
  266. }
  267. threadgroup_barrier(mem_flags::mem_threadgroup);
  268. const float variance = sum[0];
  269. const float scale = 1.0f/sqrt(variance + eps);
  270. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  271. y[i00] = y[i00] * scale;
  272. }
  273. }
  274. kernel void kernel_rms_norm(
  275. device const void * src0,
  276. device float * dst,
  277. constant int64_t & ne00,
  278. constant uint64_t & nb01,
  279. constant float & eps,
  280. threadgroup float * sum [[threadgroup(0)]],
  281. uint tgpig[[threadgroup_position_in_grid]],
  282. uint tpitg[[thread_position_in_threadgroup]],
  283. uint ntg[[threads_per_threadgroup]]) {
  284. device const float * x = (device const float *) ((device const char *) src0 + tgpig*nb01);
  285. // parallel sum
  286. sum[tpitg] = 0.0f;
  287. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  288. sum[tpitg] += x[i00] * x[i00];
  289. }
  290. // reduce
  291. threadgroup_barrier(mem_flags::mem_threadgroup);
  292. for (uint i = ntg/2; i > 0; i /= 2) {
  293. if (tpitg < i) {
  294. sum[tpitg] += sum[tpitg + i];
  295. }
  296. threadgroup_barrier(mem_flags::mem_threadgroup);
  297. }
  298. // broadcast
  299. if (tpitg == 0) {
  300. sum[0] /= ne00;
  301. }
  302. threadgroup_barrier(mem_flags::mem_threadgroup);
  303. const float mean = sum[0];
  304. const float scale = 1.0f/sqrt(mean + eps);
  305. device float * y = dst + tgpig*ne00;
  306. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  307. y[i00] = x[i00] * scale;
  308. }
  309. }
  310. // putting them in the kernel cause a significant performance penalty
  311. #define N_DST 4 // each SIMD group works on 4 rows
  312. #define N_SIMDGROUP 2 // number of SIMD groups in a thread group
  313. #define N_SIMDWIDTH 32 // assuming SIMD group size is 32
  314. kernel void kernel_mul_mat_q4_0_f32(
  315. device const void * src0,
  316. device const float * src1,
  317. device float * dst,
  318. constant int64_t & ne00,
  319. constant int64_t & ne10,
  320. constant int64_t & ne0,
  321. constant int64_t & ne01[[buffer(4)]],
  322. uint2 tgpig[[threadgroup_position_in_grid]],
  323. uint tiisg[[thread_index_in_simdgroup]],
  324. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  325. const int nb = ne00/QK4_0;
  326. const int r0 = tgpig.x;
  327. const int r1 = tgpig.y;
  328. device const block_q4_0 * x = (device const block_q4_0 *) src0 + (r0 * N_SIMDGROUP + sgitg) * N_DST * nb;
  329. device const float * y = (device const float *) src1 + r1*ne10;
  330. block_q4_0 qb_curr, qb_next;
  331. float4 y_curr[8]; // src1 vector cache
  332. float sumf[N_DST]={0.f}, all_sum;
  333. thread float * yl=(thread float *)y_curr;
  334. // bootstrap
  335. qb_curr = x[tiisg];
  336. // each thread in a SIMD group deals with 1 block.
  337. for (int column = 0; column < nb / N_SIMDWIDTH; column++) {
  338. for (int i = 0; i < QK4_0 / 4; i++) {
  339. y_curr[i] = *((device float4 *)(y + N_SIMDWIDTH * (tiisg + column * QK4_0) + 4 * i));
  340. }
  341. for (int row = 0; row < N_DST; row++) {
  342. // prefetch next x block
  343. qb_next = x[tiisg + ((row + 1) % N_DST) * nb + (column + ((row + 1) / N_DST)) * N_SIMDWIDTH];
  344. // calculate
  345. float d = qb_curr.d;
  346. float2 acc = {0.0f, 0.0f};
  347. for (int i = 0; i < 16; i++) {
  348. acc[0] += yl[i] * (qb_curr.qs[i] & 0xF) + yl[i+16] * (qb_curr.qs[i] >> 4);
  349. acc[1] += yl[i] + yl[i+16];
  350. }
  351. sumf[row] += d * (acc[0] - 8.f*acc[1]);
  352. qb_curr = qb_next;
  353. }
  354. }
  355. for (int i = 0; i < QK4_0 / 4; i++) {
  356. y_curr[i] = *((device float4 *)(y + N_SIMDWIDTH * (tiisg + (nb / N_SIMDWIDTH) * QK4_0) + 4 * i));
  357. }
  358. for (int row = 0; row < N_DST; row++) {
  359. // prefetch next x block
  360. qb_next = x[tiisg + ((row + 1) % N_DST) * nb + (nb / N_SIMDWIDTH + ((row + 1) / N_DST)) * N_SIMDWIDTH];
  361. // calculate
  362. float d = qb_curr.d;
  363. float2 acc = {0.0f, 0.0f};
  364. for (int i = 0; i < 16; i++) {
  365. acc[0] += yl[i] * (qb_curr.qs[i] & 0xF) + yl[i+16] * (qb_curr.qs[i] >> 4);
  366. acc[1] += yl[i] + yl[i+16];
  367. }
  368. if (tiisg < nb % N_SIMDWIDTH) {
  369. sumf[row] += d * (acc[0] - 8.f*acc[1]);
  370. }
  371. qb_curr = qb_next;
  372. all_sum = simd_sum(sumf[row]);
  373. if (tiisg == 0 && ((r0 * N_SIMDGROUP + sgitg) * N_DST + row) < ne01) {
  374. dst[r1*ne0 + (r0 * N_SIMDGROUP + sgitg) * N_DST + row] = all_sum;
  375. }
  376. }
  377. }
  378. kernel void kernel_mul_mat_q4_1_f32(
  379. device const void * src0,
  380. device const float * src1,
  381. device float * dst,
  382. constant int64_t & ne00,
  383. constant int64_t & ne10,
  384. constant int64_t & ne0,
  385. threadgroup float * sum [[threadgroup(0)]],
  386. uint2 tgpig[[threadgroup_position_in_grid]],
  387. uint2 tpitg[[thread_position_in_threadgroup]],
  388. uint2 tptg[[threads_per_threadgroup]]) {
  389. const int nb = ne00/QK4_1;
  390. const int64_t r0 = tgpig.x;
  391. const int64_t r1 = tgpig.y;
  392. device const block_q4_1 * x = (device const block_q4_1 *) src0 + r0*nb;
  393. device const float * y = (device const float *) src1 + r1*ne10;
  394. const uint nth = tptg.x*tptg.y;
  395. const uint ith = tptg.y*tpitg.x + tpitg.y;
  396. const int ix = tpitg.y/4; // 0 or 1
  397. const int iy = tpitg.y - 4*ix; // 0...3
  398. const int first = 4 * iy;
  399. float sumf = 0;
  400. for (int i = 2*tpitg.x + ix; i < nb; i += 2*tptg.x) {
  401. const float d = (float)x[i].d;
  402. const float m = (float)x[i].m;
  403. device const uint8_t * xl = x[i].qs + first;
  404. device const float * yl = y + i * QK4_1 + first;
  405. float2 acc = {0.0f, 0.0f};
  406. for (int j = 0; j < 4; ++j) {
  407. acc[0] += yl[j+ 0] * (d * (xl[j] & 0xF) + m);
  408. acc[1] += yl[j+16] * (d * (xl[j] >> 4) + m);
  409. }
  410. sumf += acc[0] + acc[1];
  411. }
  412. sum[ith] = sumf;
  413. //
  414. // Accumulate the sum from all threads in the threadgroup
  415. //
  416. threadgroup_barrier(mem_flags::mem_threadgroup);
  417. if (ith%4 == 0) {
  418. sum[ith] += sum[ith+1] + sum[ith+2] + sum[ith+3];
  419. }
  420. threadgroup_barrier(mem_flags::mem_threadgroup);
  421. if (ith%16 == 0) {
  422. sum[ith] += sum[ith+4] + sum[ith+8] + sum[ith+12];
  423. }
  424. threadgroup_barrier(mem_flags::mem_threadgroup);
  425. if (ith == 0) {
  426. for (uint i = 16; i < nth; i += 16) sum[0] += sum[i];
  427. dst[r1*ne0 + r0] = sum[0];
  428. }
  429. }
  430. kernel void kernel_mul_mat_f16_f32(
  431. device const char * src0,
  432. device const char * src1,
  433. device float * dst,
  434. constant int64_t & ne00,
  435. constant int64_t & ne01,
  436. constant uint64_t & nb00,
  437. constant uint64_t & nb01,
  438. constant uint64_t & nb02,
  439. constant int64_t & ne10,
  440. constant int64_t & ne11,
  441. constant uint64_t & nb10,
  442. constant uint64_t & nb11,
  443. constant uint64_t & nb12,
  444. constant int64_t & ne0,
  445. constant int64_t & ne1,
  446. threadgroup float * sum [[threadgroup(0)]],
  447. uint3 tgpig[[threadgroup_position_in_grid]],
  448. uint3 tpig[[thread_position_in_grid]],
  449. uint3 tpitg[[thread_position_in_threadgroup]],
  450. uint3 tptg[[threads_per_threadgroup]]) {
  451. const int64_t r0 = tgpig.x;
  452. const int64_t r1 = tgpig.y;
  453. const int64_t im = tgpig.z;
  454. device const half * x = (device const half *) (src0 + r0*nb01 + im*nb02);
  455. device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
  456. sum[tpitg.x] = 0.0f;
  457. for (int i = tpitg.x; i < ne00; i += tptg.x) {
  458. sum[tpitg.x] += (float) x[i] * (float) y[i];
  459. }
  460. // accumulate the sum from all threads in the threadgroup
  461. threadgroup_barrier(mem_flags::mem_threadgroup);
  462. for (uint i = tptg.x/2; i > 0; i /= 2) {
  463. if (tpitg.x < i) {
  464. sum[tpitg.x] += sum[tpitg.x + i];
  465. }
  466. threadgroup_barrier(mem_flags::mem_threadgroup);
  467. }
  468. if (tpitg.x == 0) {
  469. dst[im*ne1*ne0 + r1*ne0 + r0] = sum[0];
  470. }
  471. }
  472. kernel void kernel_alibi_f32(
  473. device const float * src0,
  474. device float * dst,
  475. constant int64_t & ne00,
  476. constant int64_t & ne01,
  477. constant int64_t & ne02,
  478. constant int64_t & ne03,
  479. constant uint64_t & nb00,
  480. constant uint64_t & nb01,
  481. constant uint64_t & nb02,
  482. constant uint64_t & nb03,
  483. constant int64_t & ne0,
  484. constant int64_t & ne1,
  485. constant int64_t & ne2,
  486. constant int64_t & ne3,
  487. constant uint64_t & nb0,
  488. constant uint64_t & nb1,
  489. constant uint64_t & nb2,
  490. constant uint64_t & nb3,
  491. constant float & m0,
  492. uint3 tgpig[[threadgroup_position_in_grid]],
  493. uint3 tpitg[[thread_position_in_threadgroup]],
  494. uint3 ntg[[threads_per_threadgroup]]) {
  495. const int64_t i03 = tgpig[2];
  496. const int64_t i02 = tgpig[1];
  497. const int64_t i01 = tgpig[0];
  498. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  499. const int64_t i3 = n / (ne2*ne1*ne0);
  500. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  501. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  502. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
  503. device float * dst_data = (device float *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  504. float m_k = pow(m0, i2 + 1);
  505. for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
  506. device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  507. dst_data[i00] = src[0] + m_k * (i00 - ne00 + 1);
  508. }
  509. }
  510. kernel void kernel_rope(
  511. device const void * src0,
  512. device float * dst,
  513. constant int64_t & ne00,
  514. constant int64_t & ne01,
  515. constant int64_t & ne02,
  516. constant int64_t & ne03,
  517. constant uint64_t & nb00,
  518. constant uint64_t & nb01,
  519. constant uint64_t & nb02,
  520. constant uint64_t & nb03,
  521. constant int64_t & ne0,
  522. constant int64_t & ne1,
  523. constant int64_t & ne2,
  524. constant int64_t & ne3,
  525. constant uint64_t & nb0,
  526. constant uint64_t & nb1,
  527. constant uint64_t & nb2,
  528. constant uint64_t & nb3,
  529. constant int & n_past,
  530. constant int & n_dims,
  531. constant int & mode,
  532. uint3 tpig[[thread_position_in_grid]]) {
  533. const int64_t i3 = tpig[2];
  534. const int64_t i2 = tpig[1];
  535. const int64_t i1 = tpig[0];
  536. const bool is_neox = mode & 2;
  537. const float theta_scale = pow(10000.0, -2.0f/n_dims);
  538. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  539. float theta = (float)p;
  540. if (!is_neox) {
  541. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  542. const float cos_theta = cos(theta);
  543. const float sin_theta = sin(theta);
  544. theta *= theta_scale;
  545. device const float * const src = (device float *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  546. device float * dst_data = (device float *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  547. const float x0 = src[0];
  548. const float x1 = src[1];
  549. dst_data[0] = x0*cos_theta - x1*sin_theta;
  550. dst_data[1] = x0*sin_theta + x1*cos_theta;
  551. }
  552. } else {
  553. // TODO: implement
  554. }
  555. }
  556. kernel void kernel_cpy_f16_f16(
  557. device const half * src0,
  558. device half * dst,
  559. constant int64_t & ne00,
  560. constant int64_t & ne01,
  561. constant int64_t & ne02,
  562. constant int64_t & ne03,
  563. constant uint64_t & nb00,
  564. constant uint64_t & nb01,
  565. constant uint64_t & nb02,
  566. constant uint64_t & nb03,
  567. constant int64_t & ne0,
  568. constant int64_t & ne1,
  569. constant int64_t & ne2,
  570. constant int64_t & ne3,
  571. constant uint64_t & nb0,
  572. constant uint64_t & nb1,
  573. constant uint64_t & nb2,
  574. constant uint64_t & nb3,
  575. uint3 tgpig[[threadgroup_position_in_grid]],
  576. uint3 tpitg[[thread_position_in_threadgroup]],
  577. uint3 ntg[[threads_per_threadgroup]]) {
  578. const int64_t i03 = tgpig[2];
  579. const int64_t i02 = tgpig[1];
  580. const int64_t i01 = tgpig[0];
  581. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  582. const int64_t i3 = n / (ne2*ne1*ne0);
  583. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  584. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  585. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
  586. device half * dst_data = (device half *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  587. for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
  588. device const half * src = (device half *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  589. dst_data[i00] = src[0];
  590. }
  591. }
  592. kernel void kernel_cpy_f32_f16(
  593. device const float * src0,
  594. device half * dst,
  595. constant int64_t & ne00,
  596. constant int64_t & ne01,
  597. constant int64_t & ne02,
  598. constant int64_t & ne03,
  599. constant uint64_t & nb00,
  600. constant uint64_t & nb01,
  601. constant uint64_t & nb02,
  602. constant uint64_t & nb03,
  603. constant int64_t & ne0,
  604. constant int64_t & ne1,
  605. constant int64_t & ne2,
  606. constant int64_t & ne3,
  607. constant uint64_t & nb0,
  608. constant uint64_t & nb1,
  609. constant uint64_t & nb2,
  610. constant uint64_t & nb3,
  611. uint3 tgpig[[threadgroup_position_in_grid]],
  612. uint3 tpitg[[thread_position_in_threadgroup]],
  613. uint3 ntg[[threads_per_threadgroup]]) {
  614. const int64_t i03 = tgpig[2];
  615. const int64_t i02 = tgpig[1];
  616. const int64_t i01 = tgpig[0];
  617. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  618. const int64_t i3 = n / (ne2*ne1*ne0);
  619. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  620. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  621. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
  622. device half * dst_data = (device half *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  623. for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
  624. device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  625. dst_data[i00] = src[0];
  626. }
  627. }
  628. kernel void kernel_cpy_f32_f32(
  629. device const float * src0,
  630. device float * dst,
  631. constant int64_t & ne00,
  632. constant int64_t & ne01,
  633. constant int64_t & ne02,
  634. constant int64_t & ne03,
  635. constant uint64_t & nb00,
  636. constant uint64_t & nb01,
  637. constant uint64_t & nb02,
  638. constant uint64_t & nb03,
  639. constant int64_t & ne0,
  640. constant int64_t & ne1,
  641. constant int64_t & ne2,
  642. constant int64_t & ne3,
  643. constant uint64_t & nb0,
  644. constant uint64_t & nb1,
  645. constant uint64_t & nb2,
  646. constant uint64_t & nb3,
  647. uint3 tgpig[[threadgroup_position_in_grid]],
  648. uint3 tpitg[[thread_position_in_threadgroup]],
  649. uint3 ntg[[threads_per_threadgroup]]) {
  650. const int64_t i03 = tgpig[2];
  651. const int64_t i02 = tgpig[1];
  652. const int64_t i01 = tgpig[0];
  653. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  654. const int64_t i3 = n / (ne2*ne1*ne0);
  655. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  656. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  657. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
  658. device float * dst_data = (device float *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  659. for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
  660. device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  661. dst_data[i00] = src[0];
  662. }
  663. }
  664. //============================================ k-quants ======================================================
  665. #ifndef QK_K
  666. #define QK_K 256
  667. #else
  668. static_assert(QK_K == 256 || QK_K == 64, "QK_K must be 256 or 64");
  669. #endif
  670. #if QK_K == 256
  671. #define K_SCALE_SIZE 12
  672. #else
  673. #define K_SCALE_SIZE 4
  674. #endif
  675. typedef struct {
  676. uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
  677. uint8_t qs[QK_K/4]; // quants
  678. half d; // super-block scale for quantized scales
  679. half dmin; // super-block scale for quantized mins
  680. } block_q2_K;
  681. // 84 bytes / block
  682. typedef struct {
  683. uint8_t hmask[QK_K/8]; // quants - high bit
  684. uint8_t qs[QK_K/4]; // quants - low 2 bits
  685. #if QK_K == 64
  686. uint8_t scales[2];
  687. #else
  688. uint8_t scales[K_SCALE_SIZE]; // scales, quantized with 6 bits
  689. #endif
  690. half d; // super-block scale
  691. } block_q3_K;
  692. #if QK_K == 64
  693. typedef struct {
  694. half d[2]; // super-block scales/mins
  695. uint8_t scales[2];
  696. uint8_t qs[QK_K/2]; // 4-bit quants
  697. } block_q4_K;
  698. #else
  699. typedef struct {
  700. half d; // super-block scale for quantized scales
  701. half dmin; // super-block scale for quantized mins
  702. uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
  703. uint8_t qs[QK_K/2]; // 4--bit quants
  704. } block_q4_K;
  705. #endif
  706. #if QK_K == 64
  707. typedef struct {
  708. half d; // super-block scales/mins
  709. int8_t scales[QK_K/16]; // 8-bit block scales
  710. uint8_t qh[QK_K/8]; // quants, high bit
  711. uint8_t qs[QK_K/2]; // quants, low 4 bits
  712. } block_q5_K;
  713. #else
  714. typedef struct {
  715. half d; // super-block scale for quantized scales
  716. half dmin; // super-block scale for quantized mins
  717. uint8_t scales[3*QK_K/64]; // scales and mins, quantized with 6 bits
  718. uint8_t qh[QK_K/8]; // quants, high bit
  719. uint8_t qs[QK_K/2]; // quants, low 4 bits
  720. } block_q5_K;
  721. // 176 bytes / block
  722. #endif
  723. typedef struct {
  724. uint8_t ql[QK_K/2]; // quants, lower 4 bits
  725. uint8_t qh[QK_K/4]; // quants, upper 2 bits
  726. int8_t scales[QK_K/16]; // scales, quantized with 8 bits
  727. half d; // super-block scale
  728. } block_q6_K;
  729. // 210 bytes / block
  730. static inline uchar4 get_scale_min_k4(int j, device const uint8_t * q) {
  731. uchar4 r;
  732. if (j < 4) {
  733. r[0] = q[j+0] & 63;
  734. r[2] = q[j+1] & 63;
  735. r[1] = q[j+4] & 63;
  736. r[3] = q[j+5] & 63;
  737. } else {
  738. r[0] = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
  739. r[2] = (q[j+5] & 0xF) | ((q[j-3] >> 6) << 4);
  740. r[1] = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
  741. r[3] = (q[j+5] >> 4) | ((q[j+1] >> 6) << 4);
  742. }
  743. return r;
  744. }
  745. //========================================== dequantization =============================
  746. static void dequantize_row_q2_K(device const block_q2_K * x, device float * y, int k) {
  747. assert(k % QK_K == 0);
  748. const int nb = k / QK_K;
  749. for (int i = 0; i < nb; i++) {
  750. const float d = x[i].d;
  751. const float min = x[i].dmin;
  752. device const uint8_t * q = x[i].qs;
  753. #if QK_K == 256
  754. int is = 0;
  755. float dl, ml;
  756. for (int n = 0; n < QK_K; n += 128) {
  757. int shift = 0;
  758. for (int j = 0; j < 4; ++j) {
  759. uint8_t sc = x[i].scales[is++];
  760. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  761. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml;
  762. sc = x[i].scales[is++];
  763. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  764. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml;
  765. shift += 2;
  766. }
  767. q += 32;
  768. }
  769. #else
  770. float dl1 = d * (x[i].scales[0] & 0xF), ml1 = min * (x[i].scales[0] >> 4);
  771. float dl2 = d * (x[i].scales[1] & 0xF), ml2 = min * (x[i].scales[1] >> 4);
  772. float dl3 = d * (x[i].scales[2] & 0xF), ml3 = min * (x[i].scales[2] >> 4);
  773. float dl4 = d * (x[i].scales[3] & 0xF), ml4 = min * (x[i].scales[3] >> 4);
  774. for (int l = 0; l < 16; ++l) {
  775. y[l+ 0] = dl1 * ((q[l] >> 0) & 3) - ml1;
  776. y[l+16] = dl2 * ((q[l] >> 2) & 3) - ml2;
  777. y[l+32] = dl3 * ((q[l] >> 4) & 3) - ml3;
  778. y[l+48] = dl4 * ((q[l] >> 6) & 3) - ml4;
  779. }
  780. y += QK_K;
  781. #endif
  782. }
  783. }
  784. static void dequantize_row_q3_K(device const block_q3_K * x, device float * y, int k) {
  785. assert(k % QK_K == 0);
  786. const int nb = k / QK_K;
  787. #if QK_K == 256
  788. const uint16_t kmask1 = 0x0303;
  789. const uint16_t kmask2 = 0x0f0f;
  790. uint16_t aux[8];
  791. thread const int8_t * scales = (thread const int8_t*)aux;
  792. for (int i = 0; i < nb; i++) {
  793. const float d_all = (float)(x[i].d);
  794. device const uint8_t * q = x[i].qs;
  795. device const uint8_t * h = x[i].hmask;
  796. uint8_t m = 1;
  797. device const uint16_t * a = (device const uint16_t *)x[i].scales;
  798. aux[0] = (a[0] & kmask2) | (((a[4] >> 0) & kmask1) << 4);
  799. aux[1] = (a[1] & kmask2) | (((a[5] >> 0) & kmask1) << 4);
  800. aux[2] = (a[2] & kmask2) | (((a[4] >> 2) & kmask1) << 4);
  801. aux[3] = (a[3] & kmask2) | (((a[5] >> 2) & kmask1) << 4);
  802. aux[4] = ((a[0] >> 4) & kmask2) | (((a[4] >> 4) & kmask1) << 4);
  803. aux[5] = ((a[1] >> 4) & kmask2) | (((a[5] >> 4) & kmask1) << 4);
  804. aux[6] = ((a[2] >> 4) & kmask2) | (((a[4] >> 6) & kmask1) << 4);
  805. aux[7] = ((a[3] >> 4) & kmask2) | (((a[5] >> 6) & kmask1) << 4);
  806. int is = 0;
  807. float dl;
  808. for (int n = 0; n < QK_K; n += 128) {
  809. int shift = 0;
  810. for (int j = 0; j < 4; ++j) {
  811. dl = d_all * (scales[is++] - 32);
  812. for (int l = 0; l < 16; ++l) {
  813. *y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((h[l+ 0] & m) ? 0 : 4));
  814. }
  815. dl = d_all * (scales[is++] - 32);
  816. for (int l = 0; l < 16; ++l) {
  817. *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((h[l+16] & m) ? 0 : 4));
  818. }
  819. shift += 2;
  820. m <<= 1;
  821. }
  822. q += 32;
  823. }
  824. }
  825. #else
  826. for (int i = 0; i < nb; i++) {
  827. const float d_all = (float)(x[i].d);
  828. device const uint8_t * q = x[i].qs;
  829. device const uint8_t * hm = x[i].hmask;
  830. const float d1 = d_all * ((x[i].scales[0] & 0xF) - 8);
  831. const float d2 = d_all * ((x[i].scales[0] >> 4) - 8);
  832. const float d3 = d_all * ((x[i].scales[1] & 0xF) - 8);
  833. const float d4 = d_all * ((x[i].scales[1] >> 4) - 8);
  834. for (int l = 0; l < 8; ++l) {
  835. uint8_t h = hm[l];
  836. y[l+ 0] = d1 * ((int8_t)((q[l+0] >> 0) & 3) - ((h & 0x01) ? 0 : 4));
  837. y[l+ 8] = d1 * ((int8_t)((q[l+8] >> 0) & 3) - ((h & 0x02) ? 0 : 4));
  838. y[l+16] = d2 * ((int8_t)((q[l+0] >> 2) & 3) - ((h & 0x04) ? 0 : 4));
  839. y[l+24] = d2 * ((int8_t)((q[l+8] >> 2) & 3) - ((h & 0x08) ? 0 : 4));
  840. y[l+32] = d3 * ((int8_t)((q[l+0] >> 4) & 3) - ((h & 0x10) ? 0 : 4));
  841. y[l+40] = d3 * ((int8_t)((q[l+8] >> 4) & 3) - ((h & 0x20) ? 0 : 4));
  842. y[l+48] = d4 * ((int8_t)((q[l+0] >> 6) & 3) - ((h & 0x40) ? 0 : 4));
  843. y[l+56] = d4 * ((int8_t)((q[l+8] >> 6) & 3) - ((h & 0x80) ? 0 : 4));
  844. }
  845. y += QK_K;
  846. }
  847. #endif
  848. }
  849. static void dequantize_row_q4_K(device const block_q4_K * x, device float * y, int k) {
  850. assert(k % QK_K == 0);
  851. const int nb = k / QK_K;
  852. for (int i = 0; i < nb; i++) {
  853. device const uint8_t * q = x[i].qs;
  854. #if QK_K == 256
  855. const float d = x[i].d;
  856. const float min = x[i].dmin;
  857. device const uint8_t * scales = x[i].scales;
  858. int is = 0;
  859. for (int j = 0; j < QK_K; j += 64) {
  860. const uchar4 sc = get_scale_min_k4(is, scales);
  861. const float d1 = d * sc[0]; const float m1 = min * sc[1];
  862. const float d2 = d * sc[2]; const float m2 = min * sc[3];
  863. for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1;
  864. for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l] >> 4) - m2;
  865. q += 32; is += 2;
  866. }
  867. #else
  868. device const uint8_t * s = x[i].scales;
  869. device const half2 * dh = (device const half2 *)x[i].d;
  870. const float2 d = (float2)dh[0];
  871. const float d1 = d[0] * (s[0] & 0xF);
  872. const float d2 = d[0] * (s[1] & 0xF);
  873. const float m1 = d[1] * (s[0] >> 4);
  874. const float m2 = d[1] * (s[1] >> 4);
  875. for (int l = 0; l < 32; ++l) {
  876. y[l+ 0] = d1 * (q[l] & 0xF) - m1;
  877. y[l+32] = d2 * (q[l] >> 4) - m2;
  878. }
  879. y += QK_K;
  880. #endif
  881. }
  882. }
  883. static void dequantize_row_q5_K(device const block_q5_K * x, device float * y, int k) {
  884. assert(k % QK_K == 0);
  885. const int nb = k / QK_K;
  886. #if QK_K == 256
  887. for (int i = 0; i < nb; i++) {
  888. const float d = (float)(x[i].d);
  889. const float min = (float)(x[i].dmin);
  890. device const uint8_t * ql = x[i].qs;
  891. device const uint8_t * qh = x[i].qh;
  892. int is = 0;
  893. uint8_t u1 = 1, u2 = 2;
  894. for (int j = 0; j < QK_K; j += 64) {
  895. const uchar4 sc = get_scale_min_k4(is, x[i].scales);
  896. const float d1 = d * sc[0]; const float m1 = min * sc[1];
  897. const float d2 = d * sc[2]; const float m2 = min * sc[3];
  898. for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1;
  899. for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l] >> 4) + (qh[l] & u2 ? 16 : 0)) - m2;
  900. ql += 32; is += 2;
  901. u1 <<= 2; u2 <<= 2;
  902. }
  903. }
  904. #else
  905. for (int i = 0; i < nb; i++) {
  906. const float d = (float)x[i].d;
  907. device const uint8_t * ql = x[i].qs;
  908. device const uint8_t * qh = x[i].qh;
  909. device const int8_t * sc = x[i].scales;
  910. for (int l = 0; l < 8; ++l) {
  911. y[l+ 0] = d * sc[0] * ((ql[l+ 0] & 0xF) - (qh[l] & 0x01 ? 0 : 16));
  912. y[l+ 8] = d * sc[0] * ((ql[l+ 8] & 0xF) - (qh[l] & 0x02 ? 0 : 16));
  913. y[l+16] = d * sc[1] * ((ql[l+16] & 0xF) - (qh[l] & 0x04 ? 0 : 16));
  914. y[l+24] = d * sc[1] * ((ql[l+24] & 0xF) - (qh[l] & 0x08 ? 0 : 16));
  915. y[l+32] = d * sc[2] * ((ql[l+ 0] >> 4) - (qh[l] & 0x10 ? 0 : 16));
  916. y[l+40] = d * sc[2] * ((ql[l+ 8] >> 4) - (qh[l] & 0x20 ? 0 : 16));
  917. y[l+48] = d * sc[3] * ((ql[l+16] >> 4) - (qh[l] & 0x40 ? 0 : 16));
  918. y[l+56] = d * sc[3] * ((ql[l+24] >> 4) - (qh[l] & 0x80 ? 0 : 16));
  919. }
  920. y += QK_K;
  921. }
  922. #endif
  923. }
  924. static void dequantize_row_q6_K(device const block_q6_K * x, device float * y, int k) {
  925. assert(k % QK_K == 0);
  926. const int nb = k / QK_K;
  927. for (int i = 0; i < nb; i++) {
  928. device const uint8_t * ql = x[i].ql;
  929. device const uint8_t * qh = x[i].qh;
  930. device const int8_t * sc = x[i].scales;
  931. const float d = x[i].d;
  932. #if QK_K == 256
  933. for (int n = 0; n < QK_K; n += 128) {
  934. for (int l = 0; l < 32; ++l) {
  935. int is = l/16;
  936. const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  937. const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  938. const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  939. const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  940. y[l + 0] = d * sc[is + 0] * q1;
  941. y[l + 32] = d * sc[is + 2] * q2;
  942. y[l + 64] = d * sc[is + 4] * q3;
  943. y[l + 96] = d * sc[is + 6] * q4;
  944. }
  945. y += 128;
  946. ql += 64;
  947. qh += 32;
  948. sc += 8;
  949. }
  950. #else
  951. for (int l = 0; l < 16; ++l) {
  952. const int8_t q1 = (int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  953. const int8_t q2 = (int8_t)((ql[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  954. const int8_t q3 = (int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  955. const int8_t q4 = (int8_t)((ql[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  956. y[l+ 0] = d * sc[0] * q1;
  957. y[l+16] = d * sc[1] * q2;
  958. y[l+32] = d * sc[2] * q3;
  959. y[l+48] = d * sc[3] * q4;
  960. }
  961. y += 64;
  962. #endif
  963. }
  964. }
  965. kernel void kernel_get_rows_q2_K(
  966. device const void * src0,
  967. device const int * src1,
  968. device float * dst,
  969. constant int64_t & ne00,
  970. constant uint64_t & nb01,
  971. constant uint64_t & nb1,
  972. uint tpig[[thread_position_in_grid]]) {
  973. const int i = tpig;
  974. const int r = ((device int32_t *) src1)[i];
  975. dequantize_row_q2_K(
  976. (device const block_q2_K *) ((device char *) src0 + r*nb01),
  977. (device float *) ((device char *) dst + i*nb1), ne00);
  978. }
  979. kernel void kernel_get_rows_q3_K(
  980. device const void * src0,
  981. device const int * src1,
  982. device float * dst,
  983. constant int64_t & ne00,
  984. constant uint64_t & nb01,
  985. constant uint64_t & nb1,
  986. uint tpig[[thread_position_in_grid]]) {
  987. const int i = tpig;
  988. const int r = ((device int32_t *) src1)[i];
  989. dequantize_row_q3_K(
  990. (device const block_q3_K *) ((device char *) src0 + r*nb01),
  991. (device float *) ((device char *) dst + i*nb1), ne00);
  992. }
  993. kernel void kernel_get_rows_q4_K(
  994. device const void * src0,
  995. device const int * src1,
  996. device float * dst,
  997. constant int64_t & ne00,
  998. constant uint64_t & nb01,
  999. constant uint64_t & nb1,
  1000. uint tpig[[thread_position_in_grid]]) {
  1001. const int i = tpig;
  1002. const int r = ((device int32_t *) src1)[i];
  1003. dequantize_row_q4_K(
  1004. (device const block_q4_K *) ((device char *) src0 + r*nb01),
  1005. (device float *) ((device char *) dst + i*nb1), ne00);
  1006. }
  1007. kernel void kernel_get_rows_q5_K(
  1008. device const void * src0,
  1009. device const int * src1,
  1010. device float * dst,
  1011. constant int64_t & ne00,
  1012. constant uint64_t & nb01,
  1013. constant uint64_t & nb1,
  1014. uint tpig[[thread_position_in_grid]]) {
  1015. const int i = tpig;
  1016. const int r = ((device int32_t *) src1)[i];
  1017. dequantize_row_q5_K(
  1018. (device const block_q5_K *) ((device char *) src0 + r*nb01),
  1019. (device float *) ((device char *) dst + i*nb1), ne00);
  1020. }
  1021. kernel void kernel_get_rows_q6_K(
  1022. device const void * src0,
  1023. device const int * src1,
  1024. device float * dst,
  1025. constant int64_t & ne00,
  1026. constant uint64_t & nb01,
  1027. constant uint64_t & nb1,
  1028. uint tpig[[thread_position_in_grid]]) {
  1029. const int i = tpig;
  1030. const int r = ((device int32_t *) src1)[i];
  1031. dequantize_row_q6_K(
  1032. (device const block_q6_K *) ((device char *) src0 + r*nb01),
  1033. (device float *) ((device char *) dst + i*nb1), ne00);
  1034. }
  1035. //====================================== dot products =========================
  1036. kernel void kernel_mul_mat_q2_K_f32(
  1037. device const void * src0,
  1038. device const float * src1,
  1039. device float * dst,
  1040. constant int64_t & ne00,
  1041. constant int64_t & ne10,
  1042. constant int64_t & ne0,
  1043. threadgroup float * sum [[threadgroup(0)]],
  1044. uint2 tgpig[[threadgroup_position_in_grid]],
  1045. uint2 tpitg[[thread_position_in_threadgroup]],
  1046. uint2 tptg[[threads_per_threadgroup]]) {
  1047. const int nb = ne00/QK_K;
  1048. const int64_t r0 = tgpig.x;
  1049. const int64_t r1 = tgpig.y;
  1050. device const block_q2_K * x = (device const block_q2_K *) src0 + r0*nb;
  1051. device const float * yy = (device const float *) src1 + r1*ne10;
  1052. const int nth = tptg.x*tptg.y;
  1053. const int ith = tptg.y*tpitg.x + tpitg.y;
  1054. float sumf = 0;
  1055. #if QK_K == 256
  1056. const int tid = tpitg.y; // 0...16
  1057. const int il = tid/4; // 0...3
  1058. const int ir = tid%4; // 0...3
  1059. const int ip = il/2; // 0 or 1
  1060. const int shift1 = 4*(il%2);// 0 or 4
  1061. const int shift2 = shift1+2;// 2 or 6
  1062. const int n = 8;
  1063. const int is = 4*il + (n*ir)/16;
  1064. const int y_offset = 64*il + n*ir;
  1065. const int q_offset = 32*ip + n*ir;
  1066. for (int i = tpitg.x; i < nb; i += tptg.x) {
  1067. device const uint8_t * q = x[i].qs + q_offset;
  1068. device const uint8_t * scales = x[i].scales + is;
  1069. uint8_t d1 = scales[0] & 0xF;
  1070. uint8_t d2 = scales[2] & 0xF;
  1071. uint8_t m1 = scales[0] >> 4;
  1072. uint8_t m2 = scales[2] >> 4;
  1073. device const float * y = yy + i*QK_K + y_offset;
  1074. float2 s = {0.f, 0.f};
  1075. float smin = 0;
  1076. for (int l = 0; l < n; ++l) {
  1077. s[0] += y[l+ 0] * ((q[l] >> shift1) & 3);
  1078. s[1] += y[l+32] * ((q[l] >> shift2) & 3);
  1079. smin += y[l+ 0] * m1 + y[l+32] * m2;
  1080. }
  1081. const float dall = (float)x[i].d;
  1082. const float dmin = (float)x[i].dmin;
  1083. sumf += dall * (s[0] * d1 + s[1] * d2) - dmin * smin;
  1084. }
  1085. #else
  1086. const int il = 4 * tpitg.x;
  1087. uint32_t aux[2];
  1088. thread const uint8_t * d = (thread const uint8_t *)aux;
  1089. thread const uint8_t * m = (thread const uint8_t *)aux + 4;
  1090. for (int i = tpitg.y; i < nb; i += tptg.y) {
  1091. device const uint8_t * q = x[i].qs + il;
  1092. device const float * y = yy + i*QK_K + il;
  1093. const float dall = (float)x[i].d;
  1094. const float dmin = (float)x[i].dmin;
  1095. device const uint32_t * a = (device const uint32_t *)x[i].scales;
  1096. aux[0] = a[0] & 0x0f0f0f0f;
  1097. aux[1] = (a[0] >> 4) & 0x0f0f0f0f;
  1098. for (int l = 0; l < 4; ++l) {
  1099. sumf += y[l+ 0] * (dall * d[0] * ((q[l] >> 0) & 3) - dmin * m[0])
  1100. + y[l+16] * (dall * d[1] * ((q[l] >> 2) & 3) - dmin * m[1])
  1101. + y[l+32] * (dall * d[2] * ((q[l] >> 4) & 3) - dmin * m[2])
  1102. + y[l+48] * (dall * d[3] * ((q[l] >> 6) & 3) - dmin * m[3]);
  1103. }
  1104. }
  1105. #endif
  1106. sum[ith] = sumf;
  1107. //
  1108. // Accumulate the sum from all threads in the threadgroup
  1109. //
  1110. threadgroup_barrier(mem_flags::mem_threadgroup);
  1111. if (ith%4 == 0) {
  1112. for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i];
  1113. }
  1114. threadgroup_barrier(mem_flags::mem_threadgroup);
  1115. if (ith%16 == 0) {
  1116. for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i];
  1117. }
  1118. threadgroup_barrier(mem_flags::mem_threadgroup);
  1119. if (ith == 0) {
  1120. for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
  1121. dst[r1*ne0 + r0] = sum[0];
  1122. }
  1123. }
  1124. kernel void kernel_mul_mat_q3_K_f32(
  1125. device const void * src0,
  1126. device const float * src1,
  1127. device float * dst,
  1128. constant int64_t & ne00,
  1129. constant int64_t & ne10,
  1130. constant int64_t & ne0,
  1131. constant int64_t & ne1,
  1132. threadgroup float * sum [[threadgroup(0)]],
  1133. uint2 tgpig[[threadgroup_position_in_grid]],
  1134. uint2 tpitg[[thread_position_in_threadgroup]],
  1135. uint2 tptg[[threads_per_threadgroup]]) {
  1136. const int nb = ne00/QK_K;
  1137. const int64_t r0 = tgpig.x;
  1138. const int64_t r1 = tgpig.y;
  1139. device const block_q3_K * x = (device const block_q3_K *) src0 + r0*nb;
  1140. device const float * yy = (device const float *) src1 + r1*ne10;
  1141. const int nth = tptg.x*tptg.y;
  1142. const int ith = tptg.y*tpitg.x + tpitg.y;
  1143. #if QK_K == 256
  1144. const uint8_t m3 = 3;
  1145. const int8_t m4 = 4;
  1146. const uint16_t kmask1 = 0x0303;
  1147. const uint16_t kmask2 = 0x0f0f;
  1148. const int tid = tpitg.y; // expecting 16
  1149. const int ip = tid/8; // 0 or 1
  1150. const int il = tid/2 - 4*ip; // 0...3
  1151. const int ir = tid%2;
  1152. const int n = 8;
  1153. const int l0 = n*ir;
  1154. const uint8_t m = 1 << (4*ip + il);
  1155. const int shift = 2*il;
  1156. const uint16_t s_shift1 = 4*ip;
  1157. const uint16_t s_shift2 = s_shift1 + 2*(il/2);
  1158. const int ik = 4 + (il%2);
  1159. const int q_offset = 32*ip + l0;
  1160. const int y_offset = 128*ip + 32*il + l0;
  1161. //float sumf = 0;
  1162. float sumf1 = 0, sumf2 = 0;
  1163. for (int i = tpitg.x; i < nb; i += tptg.x) {
  1164. const float d_all = (float)(x[i].d);
  1165. device const uint8_t * q = x[i].qs + q_offset;
  1166. device const uint8_t * h = x[i].hmask + l0;
  1167. device const float * y = yy + i * QK_K + y_offset;
  1168. device const uint16_t * a = (device const uint16_t *)x[i].scales;
  1169. const char2 scales = as_type<char2>((uint16_t)(((a[il] >> s_shift1) & kmask2) | (((a[ik] >> s_shift2) & kmask1) << 4)));
  1170. float s = 0;
  1171. for (int l = 0; l < n; ++l) {
  1172. s += y[l+ 0] * ((int8_t)((q[l+ 0] >> shift) & m3) - ((h[l+ 0] & m) ? 0 : m4));
  1173. }
  1174. float d = d_all * s;
  1175. sumf1 += d * scales[0];
  1176. sumf2 += d;
  1177. //sumf += d_all * s * (scales[0] - 32);
  1178. s = 0;
  1179. for (int l = 0; l < n; ++l) {
  1180. s += y[l+16] * ((int8_t)((q[l+16] >> shift) & m3) - ((h[l+16] & m) ? 0 : m4));
  1181. }
  1182. d = d_all * s;
  1183. sumf1 += d * scales[1];
  1184. sumf2 += d;
  1185. //sumf += d_all * s * (scales[1] - 32);
  1186. }
  1187. //sum[ith] = sumf;
  1188. sum[ith] = sumf1 - 32.f*sumf2;
  1189. #else
  1190. const int il = 4 * tpitg.x; // 0, 4, 8, 12
  1191. const int im = il/8; // 0, 0, 1, 1
  1192. const int in = il%8; // 0, 4, 0, 4
  1193. float sumf = 0;
  1194. for (int i = tpitg.y; i < nb; i += tptg.y) {
  1195. const float d_all = (float)(x[i].d);
  1196. device const uint8_t * q = x[i].qs + il;
  1197. device const uint8_t * h = x[i].hmask + in;
  1198. device const float * y = yy + i * QK_K + il;
  1199. const float d1 = d_all * ((x[i].scales[0] & 0xF) - 8);
  1200. const float d2 = d_all * ((x[i].scales[0] >> 4) - 8);
  1201. const float d3 = d_all * ((x[i].scales[1] & 0xF) - 8);
  1202. const float d4 = d_all * ((x[i].scales[1] >> 4) - 8);
  1203. for (int l = 0; l < 4; ++l) {
  1204. const uint8_t hm = h[l] >> im;
  1205. sumf += y[l+ 0] * d1 * ((int8_t)((q[l+0] >> 0) & 3) - ((hm & 0x01) ? 0 : 4))
  1206. + y[l+16] * d2 * ((int8_t)((q[l+0] >> 2) & 3) - ((hm & 0x04) ? 0 : 4))
  1207. + y[l+32] * d3 * ((int8_t)((q[l+0] >> 4) & 3) - ((hm & 0x10) ? 0 : 4))
  1208. + y[l+48] * d4 * ((int8_t)((q[l+0] >> 6) & 3) - ((hm & 0x40) ? 0 : 4));
  1209. }
  1210. }
  1211. sum[ith] = sumf;
  1212. #endif
  1213. //
  1214. // Accumulate the sum from all threads in the threadgroup
  1215. //
  1216. threadgroup_barrier(mem_flags::mem_threadgroup);
  1217. if (ith%4 == 0) {
  1218. for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i];
  1219. }
  1220. threadgroup_barrier(mem_flags::mem_threadgroup);
  1221. if (ith%16 == 0) {
  1222. for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i];
  1223. }
  1224. threadgroup_barrier(mem_flags::mem_threadgroup);
  1225. if (ith == 0) {
  1226. for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
  1227. dst[r1*ne0 + r0] = sum[0];
  1228. }
  1229. }
  1230. kernel void kernel_mul_mat_q4_K_f32(
  1231. device const void * src0,
  1232. device const float * src1,
  1233. device float * dst,
  1234. constant int64_t & ne00,
  1235. constant int64_t & ne10,
  1236. constant int64_t & ne0,
  1237. threadgroup float * sum [[threadgroup(0)]],
  1238. uint2 tgpig[[threadgroup_position_in_grid]],
  1239. uint2 tpitg[[thread_position_in_threadgroup]],
  1240. uint2 tptg[[threads_per_threadgroup]]) {
  1241. const int nb = ne00/QK_K;
  1242. const int64_t r0 = tgpig.x;
  1243. const int64_t r1 = tgpig.y;
  1244. const int nth = tptg.x*tptg.y;
  1245. const int ith = tptg.y*tpitg.x + tpitg.y;
  1246. device const block_q4_K * x = (device const block_q4_K *) src0 + r0*nb;
  1247. device const float * yy = (device const float *) src1 + r1*ne10;
  1248. float sumf = 0;
  1249. #if QK_K == 256
  1250. const uint16_t kmask1 = 0x3f3f;
  1251. const uint16_t kmask2 = 0x0f0f;
  1252. const uint16_t kmask3 = 0xc0c0;
  1253. const int tid = tpitg.y; // 0...16
  1254. const int il = tid/4; // 0...3
  1255. const int ir = tid - 4*il;// 0...3
  1256. const int n = 4;
  1257. const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
  1258. const int in = il%2;
  1259. const int l0 = n*(2*ir + in);
  1260. const int q_offset = 32*im + l0;
  1261. const int y_offset = 64*im + l0;
  1262. uchar2 sc1, sc2, sc3, sc4;
  1263. for (int i = tpitg.x; i < nb; i += tptg.x) {
  1264. device const uint8_t * q1 = (x + i)->qs + q_offset;
  1265. device const uint8_t * q2 = q1 + 64;
  1266. device const float * y1 = yy + i*QK_K + y_offset;
  1267. device const float * y2 = y1 + 128;
  1268. const float dall = (float)((x + i)->d);
  1269. const float dmin = (float)((x + i)->dmin);
  1270. device const uint16_t * a = (device const uint16_t *)(x + i)->scales;
  1271. sc1 = as_type<uchar2>((uint16_t)(a[im+0] & kmask1));
  1272. sc2 = as_type<uchar2>((uint16_t)(a[im+2] & kmask1));
  1273. sc3 = as_type<uchar2>((uint16_t)(((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2)));
  1274. sc4 = as_type<uchar2>((uint16_t)(((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2)));
  1275. float4 s = {0.f, 0.f, 0.f, 0.f};
  1276. float smin = 0;
  1277. for (int l = 0; l < n; ++l) {
  1278. s[0] += y1[l] * (q1[l] & 0xF); s[1] += y1[l+32] * (q1[l] >> 4);
  1279. s[2] += y2[l] * (q2[l] & 0xF); s[3] += y2[l+32] * (q2[l] >> 4);
  1280. smin += y1[l] * sc2[0] + y1[l+32] * sc2[1] + y2[l] * sc4[0] + y2[l+32] * sc4[1];
  1281. }
  1282. sumf += dall * (s[0] * sc1[0] + s[1] * sc1[1] + s[2] * sc3[0] + s[3] * sc3[1]) - dmin * smin;
  1283. }
  1284. #else
  1285. uint16_t aux16[2];
  1286. thread const uint8_t * scales = (thread const uint8_t *)aux16;
  1287. const int il = 4*tpitg.x;
  1288. for (int i = tpitg.y; i < nb; i += tptg.y) {
  1289. device const uint8_t * q = x[i].qs + il;
  1290. device const float * y = yy + i * QK_K + il;
  1291. const float d = (float)x[i].d[0];
  1292. const float m = (float)x[i].d[1];
  1293. device const uint16_t * a = (device const uint16_t *)x[i].scales;
  1294. aux16[0] = a[0] & 0x0f0f;
  1295. aux16[1] = (a[0] >> 4) & 0x0f0f;
  1296. for (int l = 0; l < 4; ++l) {
  1297. sumf += d * scales[0] * (y[l+ 0] * (q[l] & 0xF) + y[l+16] * (q[l+16] & 0xF)) - m * scales[2] * (y[l+ 0] + y[l+16])
  1298. + d * scales[1] * (y[l+32] * (q[l] >> 4) + y[l+48] * (q[l+16] >> 4)) - m * scales[3] * (y[l+32] + y[l+48]);
  1299. }
  1300. }
  1301. #endif
  1302. sum[ith] = sumf;
  1303. //
  1304. // Accumulate the sum from all threads in the threadgroup
  1305. // This version is slightly faster than the commented out one below,
  1306. // which I copy-pasted from ggerganov's q4_0 dot product for metal.
  1307. //
  1308. threadgroup_barrier(mem_flags::mem_threadgroup);
  1309. if (ith%4 == 0) {
  1310. for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i];
  1311. }
  1312. threadgroup_barrier(mem_flags::mem_threadgroup);
  1313. if (ith%16 == 0) {
  1314. for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i];
  1315. }
  1316. threadgroup_barrier(mem_flags::mem_threadgroup);
  1317. if (ith == 0) {
  1318. for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
  1319. dst[r1*ne0 + r0] = sum[0];
  1320. }
  1321. //// accumulate the sum from all threads in the threadgroup
  1322. //threadgroup_barrier(mem_flags::mem_threadgroup);
  1323. //for (uint i = nth/2; i > 0; i /= 2) {
  1324. // if (ith < i) {
  1325. // sum[ith] += sum[ith + i];
  1326. // }
  1327. // threadgroup_barrier(mem_flags::mem_threadgroup);
  1328. //}
  1329. //if (ith == 0) {
  1330. // dst[r1*ne0 + r0] = sum[0];
  1331. //}
  1332. }
  1333. kernel void kernel_mul_mat_q5_K_f32(
  1334. device const void * src0,
  1335. device const float * src1,
  1336. device float * dst,
  1337. constant int64_t & ne00,
  1338. constant int64_t & ne10,
  1339. constant int64_t & ne0,
  1340. threadgroup float * sum [[threadgroup(0)]],
  1341. uint2 tgpig[[threadgroup_position_in_grid]],
  1342. uint2 tpitg[[thread_position_in_threadgroup]],
  1343. uint2 tptg[[threads_per_threadgroup]]) {
  1344. const int nb = ne00/QK_K;
  1345. const int64_t r0 = tgpig.x;
  1346. const int64_t r1 = tgpig.y;
  1347. device const block_q5_K * x = (device const block_q5_K *) src0 + r0*nb;
  1348. device const float * yy = (device const float *) src1 + r1*ne10;
  1349. const int nth = tptg.x*tptg.y;
  1350. const int ith = tptg.y*tpitg.x + tpitg.y;
  1351. float sumf = 0;
  1352. #if QK_K == 256
  1353. const uint16_t kmask1 = 0x3f3f;
  1354. const uint16_t kmask2 = 0x0f0f;
  1355. const uint16_t kmask3 = 0xc0c0;
  1356. const int tid = tpitg.y; // 0...16
  1357. const int il = tid/4; // 0...3
  1358. const int ir = tid - 4*il;// 0...3
  1359. const int n = 4;
  1360. const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
  1361. const int in = il%2;
  1362. const int l0 = n*(2*ir + in);
  1363. const int q_offset = 32*im + l0;
  1364. const int y_offset = 64*im + l0;
  1365. const uint8_t hm1 = 1u << (2*im);
  1366. const uint8_t hm2 = hm1 << 1;
  1367. const uint8_t hm3 = hm1 << 4;
  1368. const uint8_t hm4 = hm2 << 4;
  1369. uchar2 sc1, sc2, sc3, sc4;
  1370. for (int i = tpitg.x; i < nb; i += tptg.x) {
  1371. device const uint8_t * q1 = (x + i)->qs + q_offset;
  1372. device const uint8_t * q2 = q1 + 64;
  1373. device const uint8_t * qh = (x + i)->qh + l0;
  1374. device const float * y1 = yy + i*QK_K + y_offset;
  1375. device const float * y2 = y1 + 128;
  1376. const float dall = (float)((x + i)->d);
  1377. const float dmin = (float)((x + i)->dmin);
  1378. device const uint16_t * a = (device const uint16_t *)(x + i)->scales;
  1379. sc1 = as_type<uchar2>((uint16_t)(a[im+0] & kmask1));
  1380. sc2 = as_type<uchar2>((uint16_t)(a[im+2] & kmask1));
  1381. sc3 = as_type<uchar2>((uint16_t)(((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2)));
  1382. sc4 = as_type<uchar2>((uint16_t)(((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2)));
  1383. float4 s = {0.f, 0.f, 0.f, 0.f};
  1384. float smin = 0;
  1385. for (int l = 0; l < n; ++l) {
  1386. s[0] += y1[l+ 0] * ((q1[l] & 0xF) + (qh[l] & hm1 ? 16 : 0));
  1387. s[1] += y1[l+32] * ((q1[l] >> 4) + (qh[l] & hm2 ? 16 : 0));
  1388. s[2] += y2[l+ 0] * ((q2[l] & 0xF) + (qh[l] & hm3 ? 16 : 0));
  1389. s[3] += y2[l+32] * ((q2[l] >> 4) + (qh[l] & hm4 ? 16 : 0));
  1390. smin += y1[l] * sc2[0] + y1[l+32] * sc2[1] + y2[l] * sc4[0] + y2[l+32] * sc4[1];
  1391. }
  1392. sumf += dall * (s[0] * sc1[0] + s[1] * sc1[1] + s[2] * sc3[0] + s[3] * sc3[1]) - dmin * smin;
  1393. }
  1394. #else
  1395. const int il = 4 * tpitg.x; // 0, 4, 8, 12
  1396. const int im = il/8; // 0, 0, 1, 1
  1397. const int in = il%8; // 0, 4, 0, 4
  1398. for (int i = tpitg.y; i < nb; i += tptg.y) {
  1399. const float d = (float)x[i].d;
  1400. device const uint8_t * q = x[i].qs + il;
  1401. device const uint8_t * h = x[i].qh + in;
  1402. device const int8_t * s = x[i].scales;
  1403. device const float * y = yy + i*QK_K + il;
  1404. for (int l = 0; l < 4; ++l) {
  1405. const uint8_t hl = h[l] >> im;
  1406. sumf += y[l+ 0] * d * s[0] * ((q[l+ 0] & 0xF) - (hl & 0x01 ? 0 : 16))
  1407. + y[l+16] * d * s[1] * ((q[l+16] & 0xF) - (hl & 0x04 ? 0 : 16))
  1408. + y[l+32] * d * s[2] * ((q[l+ 0] >> 4) - (hl & 0x10 ? 0 : 16))
  1409. + y[l+48] * d * s[3] * ((q[l+16] >> 4) - (hl & 0x40 ? 0 : 16));
  1410. }
  1411. }
  1412. #endif
  1413. sum[ith] = sumf;
  1414. //
  1415. // Accumulate the sum from all threads in the threadgroup
  1416. //
  1417. threadgroup_barrier(mem_flags::mem_threadgroup);
  1418. if (ith%4 == 0) {
  1419. sum[ith] += sum[ith+1] + sum[ith+2] + sum[ith+3];
  1420. }
  1421. threadgroup_barrier(mem_flags::mem_threadgroup);
  1422. if (ith%16 == 0) {
  1423. sum[ith] += sum[ith+4] + sum[ith+8] + sum[ith+12];
  1424. }
  1425. threadgroup_barrier(mem_flags::mem_threadgroup);
  1426. if (ith == 0) {
  1427. for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
  1428. dst[r1*ne0 + r0] = sum[0];
  1429. }
  1430. }
  1431. kernel void kernel_mul_mat_q6_K_f32(
  1432. device const void * src0,
  1433. device const float * src1,
  1434. device float * dst,
  1435. constant int64_t & ne00,
  1436. constant int64_t & ne10,
  1437. constant int64_t & ne0,
  1438. threadgroup float * sum [[threadgroup(0)]],
  1439. uint2 tgpig[[threadgroup_position_in_grid]],
  1440. uint2 tpitg[[thread_position_in_threadgroup]],
  1441. uint2 tptg[[threads_per_threadgroup]]) {
  1442. const uint8_t kmask1 = 0x03;
  1443. const uint8_t kmask2 = 0x0C;
  1444. const uint8_t kmask3 = 0x30;
  1445. const uint8_t kmask4 = 0xC0;
  1446. const int nb = ne00/QK_K;
  1447. const int64_t r0 = tgpig.x;
  1448. const int64_t r1 = tgpig.y;
  1449. device const block_q6_K * x = (device const block_q6_K *) src0 + r0*nb;
  1450. device const float * yy = (device const float *) src1 + r1*ne10;
  1451. const int nth = tptg.x*tptg.y;
  1452. const int ith = tptg.y*tpitg.x + tpitg.y;
  1453. float sumf = 0;
  1454. #if QK_K == 256
  1455. // Note: we absolutely assume that tptg.y = 16 and QK_K = 256!
  1456. const int iqs = 16 * tpitg.y;
  1457. const int ip = iqs / 128; // 0 or 1
  1458. const int il = (iqs - 128*ip)/16; // 0...7
  1459. const int n = 4;
  1460. const int l0 = n*il;
  1461. const int is = 8*ip + l0/16;
  1462. const int y_offset = 128*ip + l0;
  1463. const int q_offset_l = 64*ip + l0;
  1464. const int q_offset_h = 32*ip + l0;
  1465. for (int i = tpitg.x; i < nb; i += tptg.x) {
  1466. device const uint8_t * ql = x[i].ql + q_offset_l;
  1467. device const uint8_t * qh = x[i].qh + q_offset_h;
  1468. device const int8_t * sc = x[i].scales + is;
  1469. device const float * y = yy + i * QK_K + y_offset;
  1470. const float dall = x[i].d;
  1471. float4 sums = {0.f, 0.f, 0.f, 0.f};
  1472. for (int l = 0; l < n; ++l) {
  1473. sums[0] += y[l+ 0] * ((int8_t)((ql[l+ 0] & 0xF) | ((qh[l] & kmask1) << 4)) - 32);
  1474. sums[1] += y[l+32] * ((int8_t)((ql[l+32] & 0xF) | ((qh[l] & kmask2) << 2)) - 32);
  1475. sums[2] += y[l+64] * ((int8_t)((ql[l+ 0] >> 4) | ((qh[l] & kmask3) << 0)) - 32);
  1476. sums[3] += y[l+96] * ((int8_t)((ql[l+32] >> 4) | ((qh[l] & kmask4) >> 2)) - 32);
  1477. }
  1478. sumf += dall * (sums[0] * sc[0] + sums[1] * sc[2] + sums[2] * sc[4] + sums[3] * sc[6]);
  1479. }
  1480. #else
  1481. const int il = 4*tpitg.x; // 0, 4, 8, 12
  1482. for (int i = tpitg.y; i < nb; i += tptg.y) {
  1483. device const float * y = yy + i * QK_K + il;
  1484. device const uint8_t * ql = x[i].ql + il;
  1485. device const uint8_t * qh = x[i].qh + il;
  1486. device const int8_t * s = x[i].scales;
  1487. const float d = x[i].d;
  1488. float4 sums = {0.f, 0.f, 0.f, 0.f};
  1489. for (int l = 0; l < 4; ++l) {
  1490. sums[0] += y[l+ 0] * ((int8_t)((ql[l+ 0] & 0xF) | ((qh[l] & kmask1) << 4)) - 32);
  1491. sums[1] += y[l+16] * ((int8_t)((ql[l+16] & 0xF) | ((qh[l] & kmask2) << 2)) - 32);
  1492. sums[2] += y[l+32] * ((int8_t)((ql[l+ 0] >> 4) | ((qh[l] & kmask3) >> 0)) - 32);
  1493. sums[3] += y[l+48] * ((int8_t)((ql[l+16] >> 4) | ((qh[l] & kmask4) >> 2)) - 32);
  1494. }
  1495. sumf += d * (sums[0] * s[0] + sums[1] * s[1] + sums[2] * s[2] + sums[3] * s[3]);
  1496. }
  1497. #endif
  1498. sum[ith] = sumf;
  1499. //
  1500. // Accumulate the sum from all threads in the threadgroup
  1501. //
  1502. threadgroup_barrier(mem_flags::mem_threadgroup);
  1503. if (ith%4 == 0) {
  1504. for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i];
  1505. }
  1506. threadgroup_barrier(mem_flags::mem_threadgroup);
  1507. if (ith%16 == 0) {
  1508. for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i];
  1509. }
  1510. threadgroup_barrier(mem_flags::mem_threadgroup);
  1511. if (ith == 0) {
  1512. for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
  1513. dst[r1*ne0 + r0] = sum[0];
  1514. }
  1515. }