llava.py 2.7 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970
  1. import sys
  2. import os
  3. sys.path.insert(0, os.path.dirname(__file__))
  4. from embd_input import MyModel
  5. import numpy as np
  6. from torch import nn
  7. import torch
  8. from transformers import CLIPVisionModel, CLIPImageProcessor
  9. from PIL import Image
  10. # model parameters from 'liuhaotian/LLaVA-13b-delta-v1-1'
  11. vision_tower = "openai/clip-vit-large-patch14"
  12. select_hidden_state_layer = -2
  13. # (vision_config.image_size // vision_config.patch_size) ** 2
  14. image_token_len = (224//14)**2
  15. class Llava:
  16. def __init__(self, args):
  17. self.image_processor = CLIPImageProcessor.from_pretrained(vision_tower)
  18. self.vision_tower = CLIPVisionModel.from_pretrained(vision_tower)
  19. self.mm_projector = nn.Linear(1024, 5120)
  20. self.model = MyModel(["main", *args])
  21. def load_projection(self, path):
  22. state = torch.load(path)
  23. self.mm_projector.load_state_dict({
  24. "weight": state["model.mm_projector.weight"],
  25. "bias": state["model.mm_projector.bias"]})
  26. def chat(self, question):
  27. self.model.eval_string("user: ")
  28. self.model.eval_string(question)
  29. self.model.eval_string("\nassistant: ")
  30. return self.model.generate_with_print()
  31. def chat_with_image(self, image, question):
  32. with torch.no_grad():
  33. embd_image = self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
  34. image_forward_out = self.vision_tower(embd_image.unsqueeze(0), output_hidden_states=True)
  35. select_hidden_state = image_forward_out.hidden_states[select_hidden_state_layer]
  36. image_feature = select_hidden_state[:, 1:]
  37. embd_image = self.mm_projector(image_feature)
  38. embd_image = embd_image.cpu().numpy()[0]
  39. self.model.eval_string("user: ")
  40. self.model.eval_token(32003-2) # im_start
  41. self.model.eval_float(embd_image.T)
  42. for i in range(image_token_len-embd_image.shape[0]):
  43. self.model.eval_token(32003-3) # im_patch
  44. self.model.eval_token(32003-1) # im_end
  45. self.model.eval_string(question)
  46. self.model.eval_string("\nassistant: ")
  47. return self.model.generate_with_print()
  48. if __name__=="__main__":
  49. # model form liuhaotian/LLaVA-13b-delta-v1-1
  50. a = Llava(["--model", "./models/ggml-llava-13b-v1.1.bin", "-c", "2048"])
  51. # Extract from https://huggingface.co/liuhaotian/LLaVA-13b-delta-v1-1/blob/main/pytorch_model-00003-of-00003.bin.
  52. # Also here can use pytorch_model-00003-of-00003.bin directly.
  53. a.load_projection(os.path.join(
  54. os.path.dirname(__file__) ,
  55. "llava_projection.pth"))
  56. respose = a.chat_with_image(
  57. Image.open("./media/llama1-logo.png").convert('RGB'),
  58. "what is the text in the picture?")
  59. respose
  60. a.chat("what is the color of it?")