| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181 |
- #ifndef _GNU_SOURCE
- #define _GNU_SOURCE
- #endif
- #include "common.h"
- #include "llama.h"
- #include "build-info.h"
- #include <cassert>
- #include <cinttypes>
- #include <cmath>
- #include <cstdio>
- #include <cstring>
- #include <ctime>
- #include <fstream>
- #include <iostream>
- #include <string>
- #include <vector>
- #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
- #include <signal.h>
- #include <unistd.h>
- #elif defined (_WIN32)
- #define WIN32_LEAN_AND_MEAN
- #define NOMINMAX
- #include <windows.h>
- #include <signal.h>
- #endif
- int main(int argc, char ** argv)
- {
- gpt_params params;
- //---------------------------------
- // Print help :
- //---------------------------------
- if ( argc == 1 || argv[1][0] == '-' )
- {
- printf( "usage: %s MODEL_PATH [PROMPT]\n" , argv[0] );
- return 1 ;
- }
- //---------------------------------
- // Load parameters :
- //---------------------------------
- if ( argc >= 2 )
- {
- params.model = argv[1];
- }
- if ( argc >= 3 )
- {
- params.prompt = argv[2];
- }
- if ( params.prompt.empty() )
- {
- params.prompt = "Hello my name is";
- }
- //---------------------------------
- // Init LLM :
- //---------------------------------
- llama_backend_init(params.numa);
- llama_model * model;
- llama_context * ctx;
- std::tie(model, ctx) = llama_init_from_gpt_params( params );
- if ( model == NULL )
- {
- fprintf( stderr , "%s: error: unable to load model\n" , __func__ );
- return 1;
- }
- //---------------------------------
- // Tokenize the prompt :
- //---------------------------------
- std::vector<llama_token> tokens_list;
- tokens_list = ::llama_tokenize( ctx , params.prompt , true );
- const int max_context_size = llama_n_ctx( ctx );
- const int max_tokens_list_size = max_context_size - 4 ;
- if ( (int)tokens_list.size() > max_tokens_list_size )
- {
- fprintf( stderr , "%s: error: prompt too long (%d tokens, max %d)\n" ,
- __func__ , (int)tokens_list.size() , max_tokens_list_size );
- return 1;
- }
- fprintf( stderr, "\n\n" );
- // Print the tokens from the prompt :
- for( auto id : tokens_list )
- {
- printf( "%s" , llama_token_to_str( ctx , id ) );
- }
- fflush(stdout);
- //---------------------------------
- // Main prediction loop :
- //---------------------------------
- // The LLM keeps a contextual cache memory of previous token evaluation.
- // Usually, once this cache is full, it is required to recompute a compressed context based on previous
- // tokens (see "infinite text generation via context swapping" in the main example), but in this minimalist
- // example, we will just stop the loop once this cache is full or once an end of stream is detected.
- while ( llama_get_kv_cache_token_count( ctx ) < max_context_size )
- {
- //---------------------------------
- // Evaluate the tokens :
- //---------------------------------
- if ( llama_eval( ctx , tokens_list.data() , int(tokens_list.size()) , llama_get_kv_cache_token_count( ctx ) , params.n_threads ) )
- {
- fprintf( stderr, "%s : failed to eval\n" , __func__ );
- return 1;
- }
- tokens_list.clear();
- //---------------------------------
- // Select the best prediction :
- //---------------------------------
- llama_token new_token_id = 0;
- auto logits = llama_get_logits( ctx );
- auto n_vocab = llama_n_vocab( ctx ); // the size of the LLM vocabulary (in tokens)
- std::vector<llama_token_data> candidates;
- candidates.reserve( n_vocab );
- for( llama_token token_id = 0 ; token_id < n_vocab ; token_id++ )
- {
- candidates.emplace_back( llama_token_data{ token_id , logits[ token_id ] , 0.0f } );
- }
- llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
- // Select it using the "Greedy sampling" method :
- new_token_id = llama_sample_token_greedy( ctx , &candidates_p );
- // is it an end of stream ?
- if ( new_token_id == llama_token_eos() )
- {
- fprintf(stderr, " [end of text]\n");
- break;
- }
- // Print the new token :
- printf( "%s" , llama_token_to_str( ctx , new_token_id ) );
- fflush( stdout );
- // Push this new token for next evaluation :
- tokens_list.push_back( new_token_id );
- } // wend of main loop
- llama_free( ctx );
- llama_free_model( model );
- llama_backend_free();
- return 0;
- }
- // EOF
|