arg.cpp 158 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602
  1. #include "arg.h"
  2. #include "chat.h"
  3. #include "common.h"
  4. #include "json-schema-to-grammar.h"
  5. #include "log.h"
  6. #include "sampling.h"
  7. #include "download.h"
  8. // fix problem with std::min and std::max
  9. #if defined(_WIN32)
  10. #define WIN32_LEAN_AND_MEAN
  11. #ifndef NOMINMAX
  12. # define NOMINMAX
  13. #endif
  14. #include <windows.h>
  15. #endif
  16. #define JSON_ASSERT GGML_ASSERT
  17. #include <nlohmann/json.hpp>
  18. #include <algorithm>
  19. #include <cinttypes>
  20. #include <climits>
  21. #include <cstdarg>
  22. #include <fstream>
  23. #include <list>
  24. #include <regex>
  25. #include <set>
  26. #include <string>
  27. #include <thread> // for hardware_concurrency
  28. #include <vector>
  29. #ifndef __EMSCRIPTEN__
  30. #ifdef __linux__
  31. #include <linux/limits.h>
  32. #elif defined(_WIN32)
  33. # if !defined(PATH_MAX)
  34. # define PATH_MAX MAX_PATH
  35. # endif
  36. #elif defined(_AIX)
  37. #include <sys/limits.h>
  38. #else
  39. #include <sys/syslimits.h>
  40. #endif
  41. #endif
  42. #define LLAMA_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
  43. using json = nlohmann::ordered_json;
  44. using namespace common_arg_utils;
  45. static std::initializer_list<enum llama_example> mmproj_examples = {
  46. LLAMA_EXAMPLE_MTMD,
  47. LLAMA_EXAMPLE_SERVER,
  48. LLAMA_EXAMPLE_CLI,
  49. };
  50. static std::string read_file(const std::string & fname) {
  51. std::ifstream file(fname);
  52. if (!file) {
  53. throw std::runtime_error(string_format("error: failed to open file '%s'\n", fname.c_str()));
  54. }
  55. std::string content((std::istreambuf_iterator<char>(file)), std::istreambuf_iterator<char>());
  56. file.close();
  57. return content;
  58. }
  59. static const std::vector<common_arg> & get_common_arg_defs() {
  60. static const std::vector<common_arg> options = [] {
  61. common_params params;
  62. auto ctx = common_params_parser_init(params, LLAMA_EXAMPLE_SERVER, nullptr);
  63. return ctx.options;
  64. }();
  65. return options;
  66. }
  67. common_arg & common_arg::set_examples(std::initializer_list<enum llama_example> examples) {
  68. this->examples = examples;
  69. return *this;
  70. }
  71. common_arg & common_arg::set_excludes(std::initializer_list<enum llama_example> excludes) {
  72. this->excludes = excludes;
  73. return *this;
  74. }
  75. common_arg & common_arg::set_env(const char * env) {
  76. help = help + "\n(env: " + env + ")";
  77. this->env = env;
  78. return *this;
  79. }
  80. common_arg & common_arg::set_sparam() {
  81. is_sparam = true;
  82. return *this;
  83. }
  84. common_arg & common_arg::set_preset_only() {
  85. is_preset_only = true;
  86. return *this;
  87. }
  88. bool common_arg::in_example(enum llama_example ex) {
  89. return examples.find(ex) != examples.end();
  90. }
  91. bool common_arg::is_exclude(enum llama_example ex) {
  92. return excludes.find(ex) != excludes.end();
  93. }
  94. bool common_arg::get_value_from_env(std::string & output) const {
  95. if (env == nullptr) return false;
  96. if (!args_neg.empty()) {
  97. // for compatibility, we need to check LLAMA_ARG_NO_ env as well
  98. std::string neg_env = env;
  99. string_replace_all(neg_env, "LLAMA_ARG_", "LLAMA_ARG_NO_");
  100. char * neg_value = std::getenv(neg_env.c_str());
  101. if (neg_value) {
  102. output = "0"; // falsey
  103. return true;
  104. }
  105. }
  106. char * value = std::getenv(env);
  107. if (value) {
  108. output = value;
  109. return true;
  110. }
  111. return false;
  112. }
  113. bool common_arg::has_value_from_env() const {
  114. if (env != nullptr && !args_neg.empty()) {
  115. // for compatibility, we need to check LLAMA_ARG_NO_ env as well
  116. std::string neg_env = env;
  117. string_replace_all(neg_env, "LLAMA_ARG_", "LLAMA_ARG_NO_");
  118. if (std::getenv(neg_env.c_str())) {
  119. return true;
  120. }
  121. }
  122. return env != nullptr && std::getenv(env);
  123. }
  124. static std::vector<std::string> break_str_into_lines(std::string input, size_t max_char_per_line) {
  125. std::vector<std::string> result;
  126. std::istringstream iss(input);
  127. std::string line;
  128. auto add_line = [&](const std::string& l) {
  129. if (l.length() <= max_char_per_line) {
  130. result.push_back(l);
  131. } else {
  132. std::istringstream line_stream(l);
  133. std::string word, current_line;
  134. while (line_stream >> word) {
  135. if (current_line.length() + !current_line.empty() + word.length() > max_char_per_line) {
  136. if (!current_line.empty()) result.push_back(current_line);
  137. current_line = word;
  138. } else {
  139. current_line += (!current_line.empty() ? " " : "") + word;
  140. }
  141. }
  142. if (!current_line.empty()) result.push_back(current_line);
  143. }
  144. };
  145. while (std::getline(iss, line)) {
  146. add_line(line);
  147. }
  148. return result;
  149. }
  150. std::string common_arg::to_string() const {
  151. // params for printing to console
  152. const static int n_leading_spaces = 40;
  153. const static int n_char_per_line_help = 70; // TODO: detect this based on current console
  154. std::string leading_spaces(n_leading_spaces, ' ');
  155. std::ostringstream ss;
  156. auto all_args = get_args(); // also contains args_neg
  157. for (const auto & arg : all_args) {
  158. if (arg == all_args.front()) {
  159. if (all_args.size() == 1) {
  160. ss << arg;
  161. } else {
  162. // first arg is usually abbreviation, we need padding to make it more beautiful
  163. auto tmp = std::string(arg) + ", ";
  164. auto spaces = std::string(std::max(0, 7 - (int)tmp.size()), ' ');
  165. ss << tmp << spaces;
  166. }
  167. } else {
  168. ss << arg << (arg != all_args.back() ? ", " : "");
  169. }
  170. }
  171. if (value_hint) ss << " " << value_hint;
  172. if (value_hint_2) ss << " " << value_hint_2;
  173. if (ss.tellp() > n_leading_spaces - 3) {
  174. // current line is too long, add new line
  175. ss << "\n" << leading_spaces;
  176. } else {
  177. // padding between arg and help, same line
  178. ss << std::string(leading_spaces.size() - ss.tellp(), ' ');
  179. }
  180. const auto help_lines = break_str_into_lines(help, n_char_per_line_help);
  181. for (const auto & line : help_lines) {
  182. ss << (&line == &help_lines.front() ? "" : leading_spaces) << line << "\n";
  183. }
  184. return ss.str();
  185. }
  186. std::vector<std::string> common_arg::get_args() const {
  187. std::vector<std::string> result;
  188. for (const auto & arg : args) {
  189. result.push_back(std::string(arg));
  190. }
  191. for (const auto & arg : args_neg) {
  192. result.push_back(std::string(arg));
  193. }
  194. return result;
  195. }
  196. std::vector<std::string> common_arg::get_env() const {
  197. std::vector<std::string> result;
  198. if (env) {
  199. result.push_back(std::string(env));
  200. }
  201. if (!args_neg.empty() && env) {
  202. // for compatibility, we need to add LLAMA_ARG_NO_ variant
  203. std::string neg_env = env;
  204. string_replace_all(neg_env, "LLAMA_ARG_", "LLAMA_ARG_NO_");
  205. result.push_back(neg_env);
  206. }
  207. return result;
  208. }
  209. //
  210. // utils
  211. //
  212. // Helper function to parse tensor buffer override strings
  213. static void parse_tensor_buffer_overrides(const std::string & value, std::vector<llama_model_tensor_buft_override> & overrides) {
  214. std::map<std::string, ggml_backend_buffer_type_t> buft_list;
  215. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  216. auto * dev = ggml_backend_dev_get(i);
  217. auto * buft = ggml_backend_dev_buffer_type(dev);
  218. if (buft) {
  219. buft_list[ggml_backend_buft_name(buft)] = buft;
  220. }
  221. }
  222. for (const auto & override : string_split<std::string>(value, ',')) {
  223. std::string::size_type pos = override.find('=');
  224. if (pos == std::string::npos) {
  225. throw std::invalid_argument("invalid value");
  226. }
  227. std::string tensor_name = override.substr(0, pos);
  228. std::string buffer_type = override.substr(pos + 1);
  229. if (buft_list.find(buffer_type) == buft_list.end()) {
  230. printf("Available buffer types:\n");
  231. for (const auto & it : buft_list) {
  232. printf(" %s\n", ggml_backend_buft_name(it.second));
  233. }
  234. throw std::invalid_argument("unknown buffer type");
  235. }
  236. // keep strings alive and avoid leaking memory by storing them in a static vector
  237. static std::list<std::string> buft_overrides;
  238. buft_overrides.push_back(tensor_name);
  239. overrides.push_back({buft_overrides.back().c_str(), buft_list.at(buffer_type)});
  240. }
  241. }
  242. struct handle_model_result {
  243. bool found_mmproj = false;
  244. common_params_model mmproj;
  245. };
  246. static handle_model_result common_params_handle_model(
  247. struct common_params_model & model,
  248. const std::string & bearer_token,
  249. bool offline) {
  250. handle_model_result result;
  251. // handle pre-fill default model path and url based on hf_repo and hf_file
  252. {
  253. if (!model.docker_repo.empty()) { // Handle Docker URLs by resolving them to local paths
  254. model.path = common_docker_resolve_model(model.docker_repo);
  255. model.name = model.docker_repo; // set name for consistency
  256. } else if (!model.hf_repo.empty()) {
  257. // short-hand to avoid specifying --hf-file -> default it to --model
  258. if (model.hf_file.empty()) {
  259. if (model.path.empty()) {
  260. auto auto_detected = common_get_hf_file(model.hf_repo, bearer_token, offline);
  261. if (auto_detected.repo.empty() || auto_detected.ggufFile.empty()) {
  262. exit(1); // built without CURL, error message already printed
  263. }
  264. model.name = model.hf_repo; // repo name with tag
  265. model.hf_repo = auto_detected.repo; // repo name without tag
  266. model.hf_file = auto_detected.ggufFile;
  267. if (!auto_detected.mmprojFile.empty()) {
  268. result.found_mmproj = true;
  269. result.mmproj.hf_repo = model.hf_repo;
  270. result.mmproj.hf_file = auto_detected.mmprojFile;
  271. }
  272. } else {
  273. model.hf_file = model.path;
  274. }
  275. }
  276. std::string model_endpoint = get_model_endpoint();
  277. model.url = model_endpoint + model.hf_repo + "/resolve/main/" + model.hf_file;
  278. // make sure model path is present (for caching purposes)
  279. if (model.path.empty()) {
  280. // this is to avoid different repo having same file name, or same file name in different subdirs
  281. std::string filename = model.hf_repo + "_" + model.hf_file;
  282. // to make sure we don't have any slashes in the filename
  283. string_replace_all(filename, "/", "_");
  284. model.path = fs_get_cache_file(filename);
  285. }
  286. } else if (!model.url.empty()) {
  287. if (model.path.empty()) {
  288. auto f = string_split<std::string>(model.url, '#').front();
  289. f = string_split<std::string>(f, '?').front();
  290. model.path = fs_get_cache_file(string_split<std::string>(f, '/').back());
  291. }
  292. }
  293. }
  294. // then, download it if needed
  295. if (!model.url.empty()) {
  296. bool ok = common_download_model(model, bearer_token, offline);
  297. if (!ok) {
  298. LOG_ERR("error: failed to download model from %s\n", model.url.c_str());
  299. exit(1);
  300. }
  301. }
  302. return result;
  303. }
  304. const std::vector<ggml_type> kv_cache_types = {
  305. GGML_TYPE_F32,
  306. GGML_TYPE_F16,
  307. GGML_TYPE_BF16,
  308. GGML_TYPE_Q8_0,
  309. GGML_TYPE_Q4_0,
  310. GGML_TYPE_Q4_1,
  311. GGML_TYPE_IQ4_NL,
  312. GGML_TYPE_Q5_0,
  313. GGML_TYPE_Q5_1,
  314. };
  315. static ggml_type kv_cache_type_from_str(const std::string & s) {
  316. for (const auto & type : kv_cache_types) {
  317. if (ggml_type_name(type) == s) {
  318. return type;
  319. }
  320. }
  321. throw std::runtime_error("Unsupported cache type: " + s);
  322. }
  323. static std::string get_all_kv_cache_types() {
  324. std::ostringstream msg;
  325. for (const auto & type : kv_cache_types) {
  326. msg << ggml_type_name(type) << (&type == &kv_cache_types.back() ? "" : ", ");
  327. }
  328. return msg.str();
  329. }
  330. static bool parse_bool_value(const std::string & value) {
  331. if (is_truthy(value)) {
  332. return true;
  333. } else if (is_falsey(value)) {
  334. return false;
  335. } else {
  336. throw std::invalid_argument("invalid boolean value");
  337. }
  338. }
  339. //
  340. // CLI argument parsing functions
  341. //
  342. static bool common_params_parse_ex(int argc, char ** argv, common_params_context & ctx_arg) {
  343. common_params & params = ctx_arg.params;
  344. std::unordered_map<std::string, std::pair<common_arg *, bool>> arg_to_options;
  345. for (auto & opt : ctx_arg.options) {
  346. for (const auto & arg : opt.args) {
  347. arg_to_options[arg] = {&opt, /* is_positive */ true};
  348. }
  349. for (const auto & arg : opt.args_neg) {
  350. arg_to_options[arg] = {&opt, /* is_positive */ false};
  351. }
  352. }
  353. // handle environment variables
  354. for (auto & opt : ctx_arg.options) {
  355. std::string value;
  356. if (opt.get_value_from_env(value)) {
  357. try {
  358. if (opt.handler_void && is_truthy(value)) {
  359. opt.handler_void(params);
  360. }
  361. if (opt.handler_int) {
  362. opt.handler_int(params, std::stoi(value));
  363. }
  364. if (opt.handler_bool) {
  365. opt.handler_bool(params, parse_bool_value(value));
  366. }
  367. if (opt.handler_string) {
  368. opt.handler_string(params, value);
  369. continue;
  370. }
  371. } catch (std::exception & e) {
  372. throw std::invalid_argument(string_format(
  373. "error while handling environment variable \"%s\": %s\n\n", opt.env, e.what()));
  374. }
  375. }
  376. }
  377. // handle command line arguments
  378. auto check_arg = [&](int i) {
  379. if (i+1 >= argc) {
  380. throw std::invalid_argument("expected value for argument");
  381. }
  382. };
  383. std::set<std::string> seen_args;
  384. for (int i = 1; i < argc; i++) {
  385. const std::string arg_prefix = "--";
  386. std::string arg = argv[i];
  387. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  388. std::replace(arg.begin(), arg.end(), '_', '-');
  389. }
  390. if (arg_to_options.find(arg) == arg_to_options.end()) {
  391. throw std::invalid_argument(string_format("error: invalid argument: %s", arg.c_str()));
  392. }
  393. if (!seen_args.insert(arg).second) {
  394. LOG_WRN("DEPRECATED: argument '%s' specified multiple times, use comma-separated values instead (only last value will be used)\n", arg.c_str());
  395. }
  396. auto & tmp = arg_to_options[arg];
  397. auto opt = *tmp.first;
  398. bool is_positive = tmp.second;
  399. if (opt.has_value_from_env()) {
  400. fprintf(stderr, "warn: %s environment variable is set, but will be overwritten by command line argument %s\n", opt.env, arg.c_str());
  401. }
  402. try {
  403. if (opt.handler_void) {
  404. opt.handler_void(params);
  405. continue;
  406. }
  407. if (opt.handler_bool) {
  408. opt.handler_bool(params, is_positive);
  409. continue;
  410. }
  411. // arg with single value
  412. check_arg(i);
  413. std::string val = argv[++i];
  414. if (opt.handler_int) {
  415. opt.handler_int(params, std::stoi(val));
  416. continue;
  417. }
  418. if (opt.handler_string) {
  419. opt.handler_string(params, val);
  420. continue;
  421. }
  422. // arg with 2 values
  423. check_arg(i);
  424. std::string val2 = argv[++i];
  425. if (opt.handler_str_str) {
  426. opt.handler_str_str(params, val, val2);
  427. continue;
  428. }
  429. } catch (std::exception & e) {
  430. throw std::invalid_argument(string_format(
  431. "error while handling argument \"%s\": %s\n\n"
  432. "usage:\n%s\n\nto show complete usage, run with -h",
  433. arg.c_str(), e.what(), opt.to_string().c_str()));
  434. }
  435. }
  436. postprocess_cpu_params(params.cpuparams, nullptr);
  437. postprocess_cpu_params(params.cpuparams_batch, &params.cpuparams);
  438. postprocess_cpu_params(params.speculative.cpuparams, &params.cpuparams);
  439. postprocess_cpu_params(params.speculative.cpuparams_batch, &params.cpuparams_batch);
  440. if (params.prompt_cache_all && (params.interactive || params.interactive_first)) {
  441. throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
  442. }
  443. // handle model and download
  444. {
  445. auto res = common_params_handle_model(params.model, params.hf_token, params.offline);
  446. if (params.no_mmproj) {
  447. params.mmproj = {};
  448. } else if (res.found_mmproj && params.mmproj.path.empty() && params.mmproj.url.empty()) {
  449. // optionally, handle mmproj model when -hf is specified
  450. params.mmproj = res.mmproj;
  451. }
  452. // only download mmproj if the current example is using it
  453. for (auto & ex : mmproj_examples) {
  454. if (ctx_arg.ex == ex) {
  455. common_params_handle_model(params.mmproj, params.hf_token, params.offline);
  456. break;
  457. }
  458. }
  459. common_params_handle_model(params.speculative.model, params.hf_token, params.offline);
  460. common_params_handle_model(params.vocoder.model, params.hf_token, params.offline);
  461. }
  462. // model is required (except for server)
  463. // TODO @ngxson : maybe show a list of available models in CLI in this case
  464. if (params.model.path.empty() && ctx_arg.ex != LLAMA_EXAMPLE_SERVER && !params.usage && !params.completion) {
  465. throw std::invalid_argument("error: --model is required\n");
  466. }
  467. if (params.escape) {
  468. string_process_escapes(params.prompt);
  469. string_process_escapes(params.input_prefix);
  470. string_process_escapes(params.input_suffix);
  471. for (auto & antiprompt : params.antiprompt) {
  472. string_process_escapes(antiprompt);
  473. }
  474. for (auto & seq_breaker : params.sampling.dry_sequence_breakers) {
  475. string_process_escapes(seq_breaker);
  476. }
  477. for (auto & pair : params.speculative.replacements) {
  478. string_process_escapes(pair.first);
  479. string_process_escapes(pair.second);
  480. }
  481. }
  482. if (!params.kv_overrides.empty()) {
  483. params.kv_overrides.emplace_back();
  484. params.kv_overrides.back().key[0] = 0;
  485. }
  486. // pad tensor_buft_overrides for llama_params_fit:
  487. const size_t ntbo = llama_max_tensor_buft_overrides();
  488. while (params.tensor_buft_overrides.size() < ntbo) {
  489. params.tensor_buft_overrides.push_back({nullptr, nullptr});
  490. }
  491. if (!params.speculative.tensor_buft_overrides.empty()) {
  492. params.speculative.tensor_buft_overrides.push_back({nullptr, nullptr});
  493. }
  494. if (!params.chat_template.empty() && !common_chat_verify_template(params.chat_template, params.use_jinja)) {
  495. throw std::runtime_error(string_format(
  496. "error: the supplied chat template is not supported: %s%s\n",
  497. params.chat_template.c_str(),
  498. params.use_jinja ? "" : "\nnote: llama.cpp was started without --jinja, we only support commonly used templates"
  499. ));
  500. }
  501. common_log_set_verbosity_thold(params.verbosity);
  502. return true;
  503. }
  504. static void common_params_print_usage(common_params_context & ctx_arg) {
  505. auto print_options = [](std::vector<common_arg *> & options) {
  506. for (common_arg * opt : options) {
  507. printf("%s", opt->to_string().c_str());
  508. }
  509. };
  510. std::vector<common_arg *> common_options;
  511. std::vector<common_arg *> sparam_options;
  512. std::vector<common_arg *> specific_options;
  513. for (auto & opt : ctx_arg.options) {
  514. // in case multiple LLAMA_EXAMPLE_* are set, we prioritize the LLAMA_EXAMPLE_* matching current example
  515. if (opt.is_sparam) {
  516. sparam_options.push_back(&opt);
  517. } else if (opt.in_example(ctx_arg.ex)) {
  518. specific_options.push_back(&opt);
  519. } else {
  520. common_options.push_back(&opt);
  521. }
  522. }
  523. printf("----- common params -----\n\n");
  524. print_options(common_options);
  525. printf("\n\n----- sampling params -----\n\n");
  526. print_options(sparam_options);
  527. // TODO: maybe convert enum llama_example to string
  528. printf("\n\n----- example-specific params -----\n\n");
  529. print_options(specific_options);
  530. }
  531. static void common_params_print_completion(common_params_context & ctx_arg) {
  532. std::vector<common_arg *> common_options;
  533. std::vector<common_arg *> sparam_options;
  534. std::vector<common_arg *> specific_options;
  535. for (auto & opt : ctx_arg.options) {
  536. if (opt.is_sparam) {
  537. sparam_options.push_back(&opt);
  538. } else if (opt.in_example(ctx_arg.ex)) {
  539. specific_options.push_back(&opt);
  540. } else {
  541. common_options.push_back(&opt);
  542. }
  543. }
  544. printf("_llama_completions() {\n");
  545. printf(" local cur prev opts\n");
  546. printf(" COMPREPLY=()\n");
  547. printf(" cur=\"${COMP_WORDS[COMP_CWORD]}\"\n");
  548. printf(" prev=\"${COMP_WORDS[COMP_CWORD-1]}\"\n\n");
  549. printf(" opts=\"");
  550. auto print_options = [](const std::vector<common_arg *> & options) {
  551. for (const common_arg * opt : options) {
  552. for (const char * arg : opt->args) {
  553. printf("%s ", arg);
  554. }
  555. }
  556. };
  557. print_options(common_options);
  558. print_options(sparam_options);
  559. print_options(specific_options);
  560. printf("\"\n\n");
  561. printf(" case \"$prev\" in\n");
  562. printf(" --model|-m)\n");
  563. printf(" COMPREPLY=( $(compgen -f -X '!*.gguf' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
  564. printf(" return 0\n");
  565. printf(" ;;\n");
  566. printf(" --grammar-file)\n");
  567. printf(" COMPREPLY=( $(compgen -f -X '!*.gbnf' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
  568. printf(" return 0\n");
  569. printf(" ;;\n");
  570. printf(" --chat-template-file)\n");
  571. printf(" COMPREPLY=( $(compgen -f -X '!*.jinja' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
  572. printf(" return 0\n");
  573. printf(" ;;\n");
  574. printf(" *)\n");
  575. printf(" COMPREPLY=( $(compgen -W \"${opts}\" -- \"$cur\") )\n");
  576. printf(" return 0\n");
  577. printf(" ;;\n");
  578. printf(" esac\n");
  579. printf("}\n\n");
  580. std::set<std::string> executables = {
  581. "llama-batched",
  582. "llama-batched-bench",
  583. "llama-bench",
  584. "llama-cli",
  585. "llama-completion",
  586. "llama-convert-llama2c-to-ggml",
  587. "llama-cvector-generator",
  588. "llama-embedding",
  589. "llama-eval-callback",
  590. "llama-export-lora",
  591. "llama-gen-docs",
  592. "llama-gguf",
  593. "llama-gguf-hash",
  594. "llama-gguf-split",
  595. "llama-gritlm",
  596. "llama-imatrix",
  597. "llama-infill",
  598. "llama-mtmd-cli",
  599. "llama-llava-clip-quantize-cli",
  600. "llama-lookahead",
  601. "llama-lookup",
  602. "llama-lookup-create",
  603. "llama-lookup-merge",
  604. "llama-lookup-stats",
  605. "llama-parallel",
  606. "llama-passkey",
  607. "llama-perplexity",
  608. "llama-q8dot",
  609. "llama-quantize",
  610. "llama-qwen2vl-cli",
  611. "llama-retrieval",
  612. "llama-run",
  613. "llama-save-load-state",
  614. "llama-server",
  615. "llama-simple",
  616. "llama-simple-chat",
  617. "llama-speculative",
  618. "llama-speculative-simple",
  619. "llama-tokenize",
  620. "llama-tts",
  621. "llama-vdot"
  622. };
  623. for (const auto& exe : executables) {
  624. printf("complete -F _llama_completions %s\n", exe.c_str());
  625. }
  626. }
  627. static std::vector<ggml_backend_dev_t> parse_device_list(const std::string & value) {
  628. std::vector<ggml_backend_dev_t> devices;
  629. auto dev_names = string_split<std::string>(value, ',');
  630. if (dev_names.empty()) {
  631. throw std::invalid_argument("no devices specified");
  632. }
  633. if (dev_names.size() == 1 && dev_names[0] == "none") {
  634. devices.push_back(nullptr);
  635. } else {
  636. for (const auto & device : dev_names) {
  637. auto * dev = ggml_backend_dev_by_name(device.c_str());
  638. if (!dev || ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU) {
  639. throw std::invalid_argument(string_format("invalid device: %s", device.c_str()));
  640. }
  641. devices.push_back(dev);
  642. }
  643. devices.push_back(nullptr);
  644. }
  645. return devices;
  646. }
  647. static void add_rpc_devices(const std::string & servers) {
  648. auto rpc_servers = string_split<std::string>(servers, ',');
  649. if (rpc_servers.empty()) {
  650. throw std::invalid_argument("no RPC servers specified");
  651. }
  652. ggml_backend_reg_t rpc_reg = ggml_backend_reg_by_name("RPC");
  653. if (!rpc_reg) {
  654. throw std::invalid_argument("failed to find RPC backend");
  655. }
  656. typedef ggml_backend_reg_t (*ggml_backend_rpc_add_server_t)(const char * endpoint);
  657. ggml_backend_rpc_add_server_t ggml_backend_rpc_add_server_fn = (ggml_backend_rpc_add_server_t) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_server");
  658. if (!ggml_backend_rpc_add_server_fn) {
  659. throw std::invalid_argument("failed to find RPC add server function");
  660. }
  661. for (const auto & server : rpc_servers) {
  662. auto reg = ggml_backend_rpc_add_server_fn(server.c_str());
  663. ggml_backend_register(reg);
  664. }
  665. }
  666. bool common_params_to_map(int argc, char ** argv, llama_example ex, std::map<common_arg, std::string> & out_map) {
  667. common_params dummy_params;
  668. common_params_context ctx_arg = common_params_parser_init(dummy_params, ex, nullptr);
  669. std::unordered_map<std::string, common_arg *> arg_to_options;
  670. for (auto & opt : ctx_arg.options) {
  671. for (const auto & arg : opt.args) {
  672. arg_to_options[arg] = &opt;
  673. }
  674. for (const auto & arg : opt.args_neg) {
  675. arg_to_options[arg] = &opt;
  676. }
  677. }
  678. // TODO @ngxson : find a way to deduplicate this code
  679. // handle command line arguments
  680. auto check_arg = [&](int i) {
  681. if (i+1 >= argc) {
  682. throw std::invalid_argument("expected value for argument");
  683. }
  684. };
  685. std::set<std::string> seen_args;
  686. for (int i = 1; i < argc; i++) {
  687. const std::string arg_prefix = "--";
  688. std::string arg = argv[i];
  689. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  690. std::replace(arg.begin(), arg.end(), '_', '-');
  691. }
  692. if (arg_to_options.find(arg) == arg_to_options.end()) {
  693. throw std::invalid_argument(string_format("error: invalid argument: %s", arg.c_str()));
  694. }
  695. if (!seen_args.insert(arg).second) {
  696. LOG_WRN("DEPRECATED: argument '%s' specified multiple times, use comma-separated values instead (only last value will be used)\n", arg.c_str());
  697. }
  698. auto opt = *arg_to_options[arg];
  699. std::string val;
  700. if (opt.value_hint == nullptr && opt.value_hint_2 == nullptr) {
  701. // bool arg (need to reverse the meaning for negative args)
  702. bool is_neg = std::find(opt.args_neg.begin(), opt.args_neg.end(), arg) != opt.args_neg.end();
  703. val = is_neg ? "0" : "1";
  704. }
  705. if (opt.value_hint != nullptr) {
  706. // arg with single value
  707. check_arg(i);
  708. val = argv[++i];
  709. }
  710. if (opt.value_hint_2 != nullptr) {
  711. // TODO: support arg with 2 values
  712. throw std::invalid_argument("error: argument with 2 values is not yet supported\n");
  713. }
  714. out_map[opt] = val;
  715. }
  716. return true;
  717. }
  718. bool common_params_parse(int argc, char ** argv, common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
  719. auto ctx_arg = common_params_parser_init(params, ex, print_usage);
  720. const common_params params_org = ctx_arg.params; // the example can modify the default params
  721. try {
  722. if (!common_params_parse_ex(argc, argv, ctx_arg)) {
  723. ctx_arg.params = params_org;
  724. return false;
  725. }
  726. if (ctx_arg.params.usage) {
  727. common_params_print_usage(ctx_arg);
  728. if (ctx_arg.print_usage) {
  729. ctx_arg.print_usage(argc, argv);
  730. }
  731. exit(0);
  732. }
  733. if (ctx_arg.params.completion) {
  734. common_params_print_completion(ctx_arg);
  735. exit(0);
  736. }
  737. params.lr.init();
  738. } catch (const std::invalid_argument & ex) {
  739. fprintf(stderr, "%s\n", ex.what());
  740. ctx_arg.params = params_org;
  741. return false;
  742. } catch (std::exception & ex) {
  743. fprintf(stderr, "%s\n", ex.what());
  744. exit(1); // for other exceptions, we exit with status code 1
  745. }
  746. return true;
  747. }
  748. static std::string list_builtin_chat_templates() {
  749. std::vector<const char *> supported_tmpl;
  750. int32_t res = llama_chat_builtin_templates(nullptr, 0);
  751. supported_tmpl.resize(res);
  752. res = llama_chat_builtin_templates(supported_tmpl.data(), supported_tmpl.size());
  753. std::ostringstream msg;
  754. for (auto & tmpl : supported_tmpl) {
  755. msg << tmpl << (&tmpl == &supported_tmpl.back() ? "" : ", ");
  756. }
  757. return msg.str();
  758. }
  759. bool common_arg_utils::is_truthy(const std::string & value) {
  760. return value == "on" || value == "enabled" || value == "true" || value == "1";
  761. }
  762. bool common_arg_utils::is_falsey(const std::string & value) {
  763. return value == "off" || value == "disabled" || value == "false" || value == "0";
  764. }
  765. bool common_arg_utils::is_autoy(const std::string & value) {
  766. return value == "auto" || value == "-1";
  767. }
  768. // Simple CSV parser that handles quoted fields and escaped quotes
  769. // example:
  770. // input: value1,"value, with, commas","value with ""escaped"" quotes",value4
  771. // output: [value1] [value, with, commas] [value with "escaped" quotes] [value4]
  772. static std::vector<std::string> parse_csv_row(const std::string& input) {
  773. std::vector<std::string> fields;
  774. std::string field;
  775. bool in_quotes = false;
  776. for (size_t i = 0; i < input.length(); ++i) {
  777. char ch = input[i];
  778. if (ch == '"') {
  779. if (!in_quotes) {
  780. // start of quoted field (only valid if at beginning of field)
  781. if (!field.empty()) {
  782. // quote appeared in middle of unquoted field, treat as literal
  783. field += '"';
  784. } else {
  785. in_quotes = true; // start
  786. }
  787. } else {
  788. if (i + 1 < input.length() && input[i + 1] == '"') {
  789. // escaped quote: ""
  790. field += '"';
  791. ++i; // skip the next quote
  792. } else {
  793. in_quotes = false; // end
  794. }
  795. }
  796. } else if (ch == ',') {
  797. if (in_quotes) {
  798. field += ',';
  799. } else {
  800. fields.push_back(std::move(field));
  801. field.clear();
  802. }
  803. } else {
  804. field += ch;
  805. }
  806. }
  807. // Add the last field
  808. fields.push_back(std::move(field));
  809. return fields;
  810. }
  811. common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
  812. // per-example default params
  813. // we define here to make sure it's included in llama-gen-docs
  814. if (ex == LLAMA_EXAMPLE_COMPLETION) {
  815. params.use_jinja = false; // disable jinja by default
  816. } else if (ex == LLAMA_EXAMPLE_MTMD) {
  817. params.use_jinja = false; // disable jinja by default
  818. params.sampling.temp = 0.2; // lower temp by default for better quality
  819. } else if (ex == LLAMA_EXAMPLE_SERVER) {
  820. params.n_parallel = -1; // auto by default
  821. }
  822. params.use_color = tty_can_use_colors();
  823. // load dynamic backends
  824. ggml_backend_load_all();
  825. common_params_context ctx_arg(params);
  826. ctx_arg.print_usage = print_usage;
  827. ctx_arg.ex = ex;
  828. std::string sampler_type_chars;
  829. std::string sampler_type_names;
  830. for (const auto & sampler : params.sampling.samplers) {
  831. sampler_type_chars += common_sampler_type_to_chr(sampler);
  832. sampler_type_names += common_sampler_type_to_str(sampler) + ";";
  833. }
  834. if (!sampler_type_names.empty()) {
  835. sampler_type_names.pop_back(); // remove last semicolon
  836. }
  837. /**
  838. * filter options by example
  839. * rules:
  840. * - all examples inherit options from LLAMA_EXAMPLE_COMMON
  841. * - if LLAMA_EXAMPLE_* is set (other than COMMON), we only show the option in the corresponding example
  842. * - if both {LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_*,} are set, we will prioritize the LLAMA_EXAMPLE_* matching current example
  843. */
  844. auto add_opt = [&](common_arg arg) {
  845. if ((arg.in_example(ex) || arg.in_example(LLAMA_EXAMPLE_COMMON)) && !arg.is_exclude(ex)) {
  846. ctx_arg.options.push_back(std::move(arg));
  847. }
  848. };
  849. add_opt(common_arg(
  850. {"-h", "--help", "--usage"},
  851. "print usage and exit",
  852. [](common_params & params) {
  853. params.usage = true;
  854. }
  855. ));
  856. add_opt(common_arg(
  857. {"--version"},
  858. "show version and build info",
  859. [](common_params &) {
  860. fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
  861. fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
  862. exit(0);
  863. }
  864. ));
  865. add_opt(common_arg(
  866. {"-cl", "--cache-list"},
  867. "show list of models in cache",
  868. [](common_params &) {
  869. printf("model cache directory: %s\n", fs_get_cache_directory().c_str());
  870. auto models = common_list_cached_models();
  871. printf("number of models in cache: %zu\n", models.size());
  872. for (size_t i = 0; i < models.size(); i++) {
  873. auto & model = models[i];
  874. printf("%4d. %s\n", (int) i + 1, model.to_string().c_str());
  875. }
  876. exit(0);
  877. }
  878. ));
  879. add_opt(common_arg(
  880. {"--completion-bash"},
  881. "print source-able bash completion script for llama.cpp",
  882. [](common_params & params) {
  883. params.completion = true;
  884. }
  885. ));
  886. add_opt(common_arg(
  887. {"--verbose-prompt"},
  888. string_format("print a verbose prompt before generation (default: %s)", params.verbose_prompt ? "true" : "false"),
  889. [](common_params & params) {
  890. params.verbose_prompt = true;
  891. }
  892. ));
  893. add_opt(common_arg(
  894. {"--display-prompt"},
  895. {"--no-display-prompt"},
  896. string_format("whether to print prompt at generation (default: %s)", params.display_prompt ? "true" : "false"),
  897. [](common_params & params, bool value) {
  898. params.display_prompt = value;
  899. }
  900. ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI}));
  901. add_opt(common_arg(
  902. {"-co", "--color"}, "[on|off|auto]",
  903. "Colorize output to distinguish prompt and user input from generations ('on', 'off', or 'auto', default: 'auto')\n"
  904. "'auto' enables colors when output is to a terminal",
  905. [](common_params & params, const std::string & value) {
  906. if (is_truthy(value)) {
  907. params.use_color = true;
  908. } else if (is_falsey(value)) {
  909. params.use_color = false;
  910. } else if (is_autoy(value)) {
  911. params.use_color = tty_can_use_colors();
  912. } else {
  913. throw std::invalid_argument(
  914. string_format("error: unknown value for --color: '%s'\n", value.c_str()));
  915. }
  916. }
  917. ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP}));
  918. add_opt(common_arg(
  919. {"-t", "--threads"}, "N",
  920. string_format("number of CPU threads to use during generation (default: %d)", params.cpuparams.n_threads),
  921. [](common_params & params, int value) {
  922. params.cpuparams.n_threads = value;
  923. if (params.cpuparams.n_threads <= 0) {
  924. params.cpuparams.n_threads = std::thread::hardware_concurrency();
  925. }
  926. }
  927. ).set_env("LLAMA_ARG_THREADS"));
  928. add_opt(common_arg(
  929. {"-tb", "--threads-batch"}, "N",
  930. "number of threads to use during batch and prompt processing (default: same as --threads)",
  931. [](common_params & params, int value) {
  932. params.cpuparams_batch.n_threads = value;
  933. if (params.cpuparams_batch.n_threads <= 0) {
  934. params.cpuparams_batch.n_threads = std::thread::hardware_concurrency();
  935. }
  936. }
  937. ));
  938. add_opt(common_arg(
  939. {"-C", "--cpu-mask"}, "M",
  940. "CPU affinity mask: arbitrarily long hex. Complements cpu-range (default: \"\")",
  941. [](common_params & params, const std::string & mask) {
  942. params.cpuparams.mask_valid = true;
  943. if (!parse_cpu_mask(mask, params.cpuparams.cpumask)) {
  944. throw std::invalid_argument("invalid cpumask");
  945. }
  946. }
  947. ));
  948. add_opt(common_arg(
  949. {"-Cr", "--cpu-range"}, "lo-hi",
  950. "range of CPUs for affinity. Complements --cpu-mask",
  951. [](common_params & params, const std::string & range) {
  952. params.cpuparams.mask_valid = true;
  953. if (!parse_cpu_range(range, params.cpuparams.cpumask)) {
  954. throw std::invalid_argument("invalid range");
  955. }
  956. }
  957. ));
  958. add_opt(common_arg(
  959. {"--cpu-strict"}, "<0|1>",
  960. string_format("use strict CPU placement (default: %u)\n", (unsigned) params.cpuparams.strict_cpu),
  961. [](common_params & params, const std::string & value) {
  962. params.cpuparams.strict_cpu = std::stoul(value);
  963. }
  964. ));
  965. add_opt(common_arg(
  966. {"--prio"}, "N",
  967. string_format("set process/thread priority : low(-1), normal(0), medium(1), high(2), realtime(3) (default: %d)\n", params.cpuparams.priority),
  968. [](common_params & params, int prio) {
  969. if (prio < GGML_SCHED_PRIO_LOW || prio > GGML_SCHED_PRIO_REALTIME) {
  970. throw std::invalid_argument("invalid value");
  971. }
  972. params.cpuparams.priority = (enum ggml_sched_priority) prio;
  973. }
  974. ));
  975. add_opt(common_arg(
  976. {"--poll"}, "<0...100>",
  977. string_format("use polling level to wait for work (0 - no polling, default: %u)\n", (unsigned) params.cpuparams.poll),
  978. [](common_params & params, const std::string & value) {
  979. params.cpuparams.poll = std::stoul(value);
  980. }
  981. ));
  982. add_opt(common_arg(
  983. {"-Cb", "--cpu-mask-batch"}, "M",
  984. "CPU affinity mask: arbitrarily long hex. Complements cpu-range-batch (default: same as --cpu-mask)",
  985. [](common_params & params, const std::string & mask) {
  986. params.cpuparams_batch.mask_valid = true;
  987. if (!parse_cpu_mask(mask, params.cpuparams_batch.cpumask)) {
  988. throw std::invalid_argument("invalid cpumask");
  989. }
  990. }
  991. ));
  992. add_opt(common_arg(
  993. {"-Crb", "--cpu-range-batch"}, "lo-hi",
  994. "ranges of CPUs for affinity. Complements --cpu-mask-batch",
  995. [](common_params & params, const std::string & range) {
  996. params.cpuparams_batch.mask_valid = true;
  997. if (!parse_cpu_range(range, params.cpuparams_batch.cpumask)) {
  998. throw std::invalid_argument("invalid range");
  999. }
  1000. }
  1001. ));
  1002. add_opt(common_arg(
  1003. {"--cpu-strict-batch"}, "<0|1>",
  1004. "use strict CPU placement (default: same as --cpu-strict)",
  1005. [](common_params & params, int value) {
  1006. params.cpuparams_batch.strict_cpu = value;
  1007. }
  1008. ));
  1009. add_opt(common_arg(
  1010. {"--prio-batch"}, "N",
  1011. string_format("set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.cpuparams_batch.priority),
  1012. [](common_params & params, int prio) {
  1013. if (prio < 0 || prio > 3) {
  1014. throw std::invalid_argument("invalid value");
  1015. }
  1016. params.cpuparams_batch.priority = (enum ggml_sched_priority) prio;
  1017. }
  1018. ));
  1019. add_opt(common_arg(
  1020. {"--poll-batch"}, "<0|1>",
  1021. "use polling to wait for work (default: same as --poll)",
  1022. [](common_params & params, int value) {
  1023. params.cpuparams_batch.poll = value;
  1024. }
  1025. ));
  1026. add_opt(common_arg(
  1027. {"-lcs", "--lookup-cache-static"}, "FNAME",
  1028. "path to static lookup cache to use for lookup decoding (not updated by generation)",
  1029. [](common_params & params, const std::string & value) {
  1030. params.lookup_cache_static = value;
  1031. }
  1032. ).set_examples({LLAMA_EXAMPLE_LOOKUP}));
  1033. add_opt(common_arg(
  1034. {"-lcd", "--lookup-cache-dynamic"}, "FNAME",
  1035. "path to dynamic lookup cache to use for lookup decoding (updated by generation)",
  1036. [](common_params & params, const std::string & value) {
  1037. params.lookup_cache_dynamic = value;
  1038. }
  1039. ).set_examples({LLAMA_EXAMPLE_LOOKUP}));
  1040. add_opt(common_arg(
  1041. {"-c", "--ctx-size"}, "N",
  1042. string_format("size of the prompt context (default: %d, 0 = loaded from model)", params.n_ctx),
  1043. [](common_params & params, int value) {
  1044. params.n_ctx = value;
  1045. }
  1046. ).set_env("LLAMA_ARG_CTX_SIZE"));
  1047. add_opt(common_arg(
  1048. {"-n", "--predict", "--n-predict"}, "N",
  1049. string_format(
  1050. ex == LLAMA_EXAMPLE_COMPLETION
  1051. ? "number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)"
  1052. : "number of tokens to predict (default: %d, -1 = infinity)",
  1053. params.n_predict),
  1054. [](common_params & params, int value) {
  1055. params.n_predict = value;
  1056. }
  1057. ).set_env("LLAMA_ARG_N_PREDICT"));
  1058. add_opt(common_arg(
  1059. {"-b", "--batch-size"}, "N",
  1060. string_format("logical maximum batch size (default: %d)", params.n_batch),
  1061. [](common_params & params, int value) {
  1062. params.n_batch = value;
  1063. }
  1064. ).set_env("LLAMA_ARG_BATCH"));
  1065. add_opt(common_arg(
  1066. {"-ub", "--ubatch-size"}, "N",
  1067. string_format("physical maximum batch size (default: %d)", params.n_ubatch),
  1068. [](common_params & params, int value) {
  1069. params.n_ubatch = value;
  1070. }
  1071. ).set_env("LLAMA_ARG_UBATCH"));
  1072. add_opt(common_arg(
  1073. {"--keep"}, "N",
  1074. string_format("number of tokens to keep from the initial prompt (default: %d, -1 = all)", params.n_keep),
  1075. [](common_params & params, int value) {
  1076. params.n_keep = value;
  1077. }
  1078. ));
  1079. add_opt(common_arg(
  1080. {"--swa-full"},
  1081. string_format("use full-size SWA cache (default: %s)\n"
  1082. "[(more info)](https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)", params.swa_full ? "true" : "false"),
  1083. [](common_params & params) {
  1084. params.swa_full = true;
  1085. }
  1086. ).set_env("LLAMA_ARG_SWA_FULL"));
  1087. add_opt(common_arg(
  1088. {"--ctx-checkpoints", "--swa-checkpoints"}, "N",
  1089. string_format("max number of context checkpoints to create per slot (default: %d)"
  1090. "[(more info)](https://github.com/ggml-org/llama.cpp/pull/15293)", params.n_ctx_checkpoints),
  1091. [](common_params & params, int value) {
  1092. params.n_ctx_checkpoints = value;
  1093. }
  1094. ).set_env("LLAMA_ARG_CTX_CHECKPOINTS").set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}));
  1095. add_opt(common_arg(
  1096. {"-cram", "--cache-ram"}, "N",
  1097. string_format("set the maximum cache size in MiB (default: %d, -1 - no limit, 0 - disable)"
  1098. "[(more info)](https://github.com/ggml-org/llama.cpp/pull/16391)", params.cache_ram_mib),
  1099. [](common_params & params, int value) {
  1100. params.cache_ram_mib = value;
  1101. }
  1102. ).set_env("LLAMA_ARG_CACHE_RAM").set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}));
  1103. add_opt(common_arg(
  1104. {"-kvu", "--kv-unified"},
  1105. "use single unified KV buffer shared across all sequences (default: enabled if number of slots is auto)",
  1106. [](common_params & params) {
  1107. params.kv_unified = true;
  1108. }
  1109. ).set_env("LLAMA_ARG_KV_UNIFIED").set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_PERPLEXITY}));
  1110. add_opt(common_arg(
  1111. {"--context-shift"},
  1112. {"--no-context-shift"},
  1113. string_format("whether to use context shift on infinite text generation (default: %s)", params.ctx_shift ? "enabled" : "disabled"),
  1114. [](common_params & params, bool value) {
  1115. params.ctx_shift = value;
  1116. }
  1117. ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY}).set_env("LLAMA_ARG_CONTEXT_SHIFT"));
  1118. add_opt(common_arg(
  1119. {"--chunks"}, "N",
  1120. string_format("max number of chunks to process (default: %d, -1 = all)", params.n_chunks),
  1121. [](common_params & params, int value) {
  1122. params.n_chunks = value;
  1123. }
  1124. ).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_RETRIEVAL}));
  1125. add_opt(common_arg({ "-fa", "--flash-attn" }, "[on|off|auto]",
  1126. string_format("set Flash Attention use ('on', 'off', or 'auto', default: '%s')",
  1127. llama_flash_attn_type_name(params.flash_attn_type)),
  1128. [](common_params & params, const std::string & value) {
  1129. if (is_truthy(value)) {
  1130. params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_ENABLED;
  1131. } else if (is_falsey(value)) {
  1132. params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_DISABLED;
  1133. } else if (is_autoy(value)) {
  1134. params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_AUTO;
  1135. } else {
  1136. throw std::runtime_error(
  1137. string_format("error: unknown value for --flash-attn: '%s'\n", value.c_str()));
  1138. }
  1139. }).set_env("LLAMA_ARG_FLASH_ATTN"));
  1140. add_opt(common_arg(
  1141. {"-p", "--prompt"}, "PROMPT",
  1142. "prompt to start generation with; for system message, use -sys",
  1143. [](common_params & params, const std::string & value) {
  1144. params.prompt = value;
  1145. }
  1146. ).set_excludes({LLAMA_EXAMPLE_SERVER}));
  1147. add_opt(common_arg(
  1148. {"-sys", "--system-prompt"}, "PROMPT",
  1149. "system prompt to use with model (if applicable, depending on chat template)",
  1150. [](common_params & params, const std::string & value) {
  1151. params.system_prompt = value;
  1152. }
  1153. ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_DIFFUSION, LLAMA_EXAMPLE_MTMD}));
  1154. add_opt(common_arg(
  1155. {"--perf"},
  1156. {"--no-perf"},
  1157. string_format("whether to enable internal libllama performance timings (default: %s)", params.no_perf ? "true" : "false"),
  1158. [](common_params & params, bool value) {
  1159. params.no_perf = !value;
  1160. params.sampling.no_perf = !value;
  1161. }
  1162. ).set_env("LLAMA_ARG_PERF"));
  1163. add_opt(common_arg(
  1164. {"--show-timings"},
  1165. {"--no-show-timings"},
  1166. string_format("whether to show timing information after each response (default: %s)", params.show_timings ? "true" : "false"),
  1167. [](common_params & params, bool value) {
  1168. params.show_timings = value;
  1169. }
  1170. ).set_examples({LLAMA_EXAMPLE_CLI}).set_env("LLAMA_ARG_SHOW_TIMINGS"));
  1171. add_opt(common_arg(
  1172. {"-f", "--file"}, "FNAME",
  1173. "a file containing the prompt (default: none)",
  1174. [](common_params & params, const std::string & value) {
  1175. params.prompt = read_file(value);
  1176. // store the external file name in params
  1177. params.prompt_file = value;
  1178. if (!params.prompt.empty() && params.prompt.back() == '\n') {
  1179. params.prompt.pop_back();
  1180. }
  1181. }
  1182. ).set_excludes({LLAMA_EXAMPLE_SERVER}));
  1183. add_opt(common_arg(
  1184. {"-sysf", "--system-prompt-file"}, "FNAME",
  1185. "a file containing the system prompt (default: none)",
  1186. [](common_params & params, const std::string & value) {
  1187. params.system_prompt = read_file(value);
  1188. if (!params.system_prompt.empty() && params.system_prompt.back() == '\n') {
  1189. params.system_prompt.pop_back();
  1190. }
  1191. }
  1192. ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_DIFFUSION}));
  1193. add_opt(common_arg(
  1194. {"--in-file"}, "FNAME",
  1195. "an input file (use comma-separated values to specify multiple files)",
  1196. [](common_params & params, const std::string & value) {
  1197. for (const auto & item : parse_csv_row(value)) {
  1198. std::ifstream file(item);
  1199. if (!file) {
  1200. throw std::runtime_error(string_format("error: failed to open file '%s'\n", item.c_str()));
  1201. }
  1202. params.in_files.push_back(item);
  1203. }
  1204. }
  1205. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  1206. add_opt(common_arg(
  1207. {"-bf", "--binary-file"}, "FNAME",
  1208. "binary file containing the prompt (default: none)",
  1209. [](common_params & params, const std::string & value) {
  1210. std::ifstream file(value, std::ios::binary);
  1211. if (!file) {
  1212. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  1213. }
  1214. // store the external file name in params
  1215. params.prompt_file = value;
  1216. std::ostringstream ss;
  1217. ss << file.rdbuf();
  1218. params.prompt = ss.str();
  1219. fprintf(stderr, "Read %zu bytes from binary file %s\n", params.prompt.size(), value.c_str());
  1220. }
  1221. ).set_excludes({LLAMA_EXAMPLE_SERVER}));
  1222. add_opt(common_arg(
  1223. {"-e", "--escape"},
  1224. {"--no-escape"},
  1225. string_format("whether to process escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\) (default: %s)", params.escape ? "true" : "false"),
  1226. [](common_params & params, bool value) {
  1227. params.escape = value;
  1228. }
  1229. ));
  1230. add_opt(common_arg(
  1231. {"-ptc", "--print-token-count"}, "N",
  1232. string_format("print token count every N tokens (default: %d)", params.n_print),
  1233. [](common_params & params, int value) {
  1234. params.n_print = value;
  1235. }
  1236. ).set_examples({LLAMA_EXAMPLE_COMPLETION}));
  1237. add_opt(common_arg(
  1238. {"--prompt-cache"}, "FNAME",
  1239. "file to cache prompt state for faster startup (default: none)",
  1240. [](common_params & params, const std::string & value) {
  1241. params.path_prompt_cache = value;
  1242. }
  1243. ).set_examples({LLAMA_EXAMPLE_COMPLETION}));
  1244. add_opt(common_arg(
  1245. {"--prompt-cache-all"},
  1246. "if specified, saves user input and generations to cache as well\n",
  1247. [](common_params & params) {
  1248. params.prompt_cache_all = true;
  1249. }
  1250. ).set_examples({LLAMA_EXAMPLE_COMPLETION}));
  1251. add_opt(common_arg(
  1252. {"--prompt-cache-ro"},
  1253. "if specified, uses the prompt cache but does not update it",
  1254. [](common_params & params) {
  1255. params.prompt_cache_ro = true;
  1256. }
  1257. ).set_examples({LLAMA_EXAMPLE_COMPLETION}));
  1258. add_opt(common_arg(
  1259. {"-r", "--reverse-prompt"}, "PROMPT",
  1260. "halt generation at PROMPT, return control in interactive mode\n",
  1261. [](common_params & params, const std::string & value) {
  1262. params.antiprompt.emplace_back(value);
  1263. }
  1264. ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_SERVER}));
  1265. add_opt(common_arg(
  1266. {"-sp", "--special"},
  1267. string_format("special tokens output enabled (default: %s)", params.special ? "true" : "false"),
  1268. [](common_params & params) {
  1269. params.special = true;
  1270. }
  1271. ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_SERVER}));
  1272. add_opt(common_arg(
  1273. {"-cnv", "--conversation"},
  1274. {"-no-cnv", "--no-conversation"},
  1275. "whether to run in conversation mode:\n"
  1276. "- does not print special tokens and suffix/prefix\n"
  1277. "- interactive mode is also enabled\n"
  1278. "(default: auto enabled if chat template is available)",
  1279. [](common_params & params, bool value) {
  1280. params.conversation_mode = value ? COMMON_CONVERSATION_MODE_ENABLED : COMMON_CONVERSATION_MODE_DISABLED;
  1281. }
  1282. ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI}));
  1283. add_opt(common_arg(
  1284. {"-st", "--single-turn"},
  1285. "run conversation for a single turn only, then exit when done\n"
  1286. "will not be interactive if first turn is predefined with --prompt\n"
  1287. "(default: false)",
  1288. [](common_params & params) {
  1289. params.single_turn = true;
  1290. }
  1291. ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI}));
  1292. add_opt(common_arg(
  1293. {"-i", "--interactive"},
  1294. string_format("run in interactive mode (default: %s)", params.interactive ? "true" : "false"),
  1295. [](common_params & params) {
  1296. params.interactive = true;
  1297. }
  1298. ).set_examples({LLAMA_EXAMPLE_COMPLETION}));
  1299. add_opt(common_arg(
  1300. {"-if", "--interactive-first"},
  1301. string_format("run in interactive mode and wait for input right away (default: %s)", params.interactive_first ? "true" : "false"),
  1302. [](common_params & params) {
  1303. params.interactive_first = true;
  1304. }
  1305. ).set_examples({LLAMA_EXAMPLE_COMPLETION}));
  1306. add_opt(common_arg(
  1307. {"-mli", "--multiline-input"},
  1308. "allows you to write or paste multiple lines without ending each in '\\'",
  1309. [](common_params & params) {
  1310. params.multiline_input = true;
  1311. }
  1312. ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI}));
  1313. add_opt(common_arg(
  1314. {"--in-prefix-bos"},
  1315. "prefix BOS to user inputs, preceding the `--in-prefix` string",
  1316. [](common_params & params) {
  1317. params.input_prefix_bos = true;
  1318. params.enable_chat_template = false;
  1319. }
  1320. ).set_examples({LLAMA_EXAMPLE_COMPLETION}));
  1321. add_opt(common_arg(
  1322. {"--in-prefix"}, "STRING",
  1323. "string to prefix user inputs with (default: empty)",
  1324. [](common_params & params, const std::string & value) {
  1325. params.input_prefix = value;
  1326. params.enable_chat_template = false;
  1327. }
  1328. ).set_examples({LLAMA_EXAMPLE_COMPLETION}));
  1329. add_opt(common_arg(
  1330. {"--in-suffix"}, "STRING",
  1331. "string to suffix after user inputs with (default: empty)",
  1332. [](common_params & params, const std::string & value) {
  1333. params.input_suffix = value;
  1334. params.enable_chat_template = false;
  1335. }
  1336. ).set_examples({LLAMA_EXAMPLE_COMPLETION}));
  1337. add_opt(common_arg(
  1338. {"--warmup"},
  1339. {"--no-warmup"},
  1340. string_format("whether to perform warmup with an empty run (default: %s)", params.warmup ? "enabled" : "disabled"),
  1341. [](common_params & params, bool value) {
  1342. params.warmup = value;
  1343. }
  1344. ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MTMD, LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_DEBUG}));
  1345. add_opt(common_arg(
  1346. {"--spm-infill"},
  1347. string_format(
  1348. "use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: %s)",
  1349. params.spm_infill ? "enabled" : "disabled"
  1350. ),
  1351. [](common_params & params) {
  1352. params.spm_infill = true;
  1353. }
  1354. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  1355. add_opt(common_arg(
  1356. {"--samplers"}, "SAMPLERS",
  1357. string_format("samplers that will be used for generation in the order, separated by \';\'\n(default: %s)", sampler_type_names.c_str()),
  1358. [](common_params & params, const std::string & value) {
  1359. const auto sampler_names = string_split<std::string>(value, ';');
  1360. params.sampling.samplers = common_sampler_types_from_names(sampler_names, true);
  1361. params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_SAMPLERS;
  1362. }
  1363. ).set_sparam());
  1364. add_opt(common_arg(
  1365. {"-s", "--seed"}, "SEED",
  1366. string_format("RNG seed (default: %d, use random seed for %d)", params.sampling.seed, LLAMA_DEFAULT_SEED),
  1367. [](common_params & params, const std::string & value) {
  1368. params.sampling.seed = std::stoul(value);
  1369. }
  1370. ).set_sparam());
  1371. add_opt(common_arg(
  1372. {"--sampler-seq", "--sampling-seq"}, "SEQUENCE",
  1373. string_format("simplified sequence for samplers that will be used (default: %s)", sampler_type_chars.c_str()),
  1374. [](common_params & params, const std::string & value) {
  1375. params.sampling.samplers = common_sampler_types_from_chars(value);
  1376. }
  1377. ).set_sparam());
  1378. add_opt(common_arg(
  1379. {"--ignore-eos"},
  1380. "ignore end of stream token and continue generating (implies --logit-bias EOS-inf)",
  1381. [](common_params & params) {
  1382. params.sampling.ignore_eos = true;
  1383. }
  1384. ).set_sparam());
  1385. add_opt(common_arg(
  1386. {"--temp"}, "N",
  1387. string_format("temperature (default: %.1f)", (double)params.sampling.temp),
  1388. [](common_params & params, const std::string & value) {
  1389. params.sampling.temp = std::stof(value);
  1390. params.sampling.temp = std::max(params.sampling.temp, 0.0f);
  1391. params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TEMP;
  1392. }
  1393. ).set_sparam());
  1394. add_opt(common_arg(
  1395. {"--top-k"}, "N",
  1396. string_format("top-k sampling (default: %d, 0 = disabled)", params.sampling.top_k),
  1397. [](common_params & params, int value) {
  1398. params.sampling.top_k = value;
  1399. params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_K;
  1400. }
  1401. ).set_sparam().set_env("LLAMA_ARG_TOP_K"));
  1402. add_opt(common_arg(
  1403. {"--top-p"}, "N",
  1404. string_format("top-p sampling (default: %.1f, 1.0 = disabled)", (double)params.sampling.top_p),
  1405. [](common_params & params, const std::string & value) {
  1406. params.sampling.top_p = std::stof(value);
  1407. params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_P;
  1408. }
  1409. ).set_sparam());
  1410. add_opt(common_arg(
  1411. {"--min-p"}, "N",
  1412. string_format("min-p sampling (default: %.1f, 0.0 = disabled)", (double)params.sampling.min_p),
  1413. [](common_params & params, const std::string & value) {
  1414. params.sampling.min_p = std::stof(value);
  1415. params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIN_P;
  1416. }
  1417. ).set_sparam());
  1418. add_opt(common_arg(
  1419. {"--top-nsigma"}, "N",
  1420. string_format("top-n-sigma sampling (default: %.1f, -1.0 = disabled)", params.sampling.top_n_sigma),
  1421. [](common_params & params, const std::string & value) {
  1422. params.sampling.top_n_sigma = std::stof(value);
  1423. }
  1424. ).set_sparam());
  1425. add_opt(common_arg(
  1426. {"--xtc-probability"}, "N",
  1427. string_format("xtc probability (default: %.1f, 0.0 = disabled)", (double)params.sampling.xtc_probability),
  1428. [](common_params & params, const std::string & value) {
  1429. params.sampling.xtc_probability = std::stof(value);
  1430. params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_PROBABILITY;
  1431. }
  1432. ).set_sparam());
  1433. add_opt(common_arg(
  1434. {"--xtc-threshold"}, "N",
  1435. string_format("xtc threshold (default: %.1f, 1.0 = disabled)", (double)params.sampling.xtc_threshold),
  1436. [](common_params & params, const std::string & value) {
  1437. params.sampling.xtc_threshold = std::stof(value);
  1438. params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_THRESHOLD;
  1439. }
  1440. ).set_sparam());
  1441. add_opt(common_arg(
  1442. {"--typical"}, "N",
  1443. string_format("locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)", (double)params.sampling.typ_p),
  1444. [](common_params & params, const std::string & value) {
  1445. params.sampling.typ_p = std::stof(value);
  1446. }
  1447. ).set_sparam());
  1448. add_opt(common_arg(
  1449. {"--repeat-last-n"}, "N",
  1450. string_format("last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)", params.sampling.penalty_last_n),
  1451. [](common_params & params, int value) {
  1452. if (value < -1) {
  1453. throw std::runtime_error(string_format("error: invalid repeat-last-n = %d\n", value));
  1454. }
  1455. params.sampling.penalty_last_n = value;
  1456. params.sampling.n_prev = std::max(params.sampling.n_prev, params.sampling.penalty_last_n);
  1457. params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_LAST_N;
  1458. }
  1459. ).set_sparam());
  1460. add_opt(common_arg(
  1461. {"--repeat-penalty"}, "N",
  1462. string_format("penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)", (double)params.sampling.penalty_repeat),
  1463. [](common_params & params, const std::string & value) {
  1464. params.sampling.penalty_repeat = std::stof(value);
  1465. params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_REPEAT;
  1466. }
  1467. ).set_sparam());
  1468. add_opt(common_arg(
  1469. {"--presence-penalty"}, "N",
  1470. string_format("repeat alpha presence penalty (default: %.1f, 0.0 = disabled)", (double)params.sampling.penalty_present),
  1471. [](common_params & params, const std::string & value) {
  1472. params.sampling.penalty_present = std::stof(value);
  1473. }
  1474. ).set_sparam());
  1475. add_opt(common_arg(
  1476. {"--frequency-penalty"}, "N",
  1477. string_format("repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)", (double)params.sampling.penalty_freq),
  1478. [](common_params & params, const std::string & value) {
  1479. params.sampling.penalty_freq = std::stof(value);
  1480. }
  1481. ).set_sparam());
  1482. add_opt(common_arg(
  1483. {"--dry-multiplier"}, "N",
  1484. string_format("set DRY sampling multiplier (default: %.1f, 0.0 = disabled)", (double)params.sampling.dry_multiplier),
  1485. [](common_params & params, const std::string & value) {
  1486. params.sampling.dry_multiplier = std::stof(value);
  1487. }
  1488. ).set_sparam());
  1489. add_opt(common_arg(
  1490. {"--dry-base"}, "N",
  1491. string_format("set DRY sampling base value (default: %.2f)", (double)params.sampling.dry_base),
  1492. [](common_params & params, const std::string & value) {
  1493. float potential_base = std::stof(value);
  1494. if (potential_base >= 1.0f)
  1495. {
  1496. params.sampling.dry_base = potential_base;
  1497. }
  1498. }
  1499. ).set_sparam());
  1500. add_opt(common_arg(
  1501. {"--dry-allowed-length"}, "N",
  1502. string_format("set allowed length for DRY sampling (default: %d)", params.sampling.dry_allowed_length),
  1503. [](common_params & params, int value) {
  1504. params.sampling.dry_allowed_length = value;
  1505. }
  1506. ).set_sparam());
  1507. add_opt(common_arg(
  1508. {"--dry-penalty-last-n"}, "N",
  1509. string_format("set DRY penalty for the last n tokens (default: %d, 0 = disable, -1 = context size)", params.sampling.dry_penalty_last_n),
  1510. [](common_params & params, int value) {
  1511. if (value < -1) {
  1512. throw std::runtime_error(string_format("error: invalid dry-penalty-last-n = %d\n", value));
  1513. }
  1514. params.sampling.dry_penalty_last_n = value;
  1515. }
  1516. ).set_sparam());
  1517. add_opt(common_arg(
  1518. {"--dry-sequence-breaker"}, "STRING",
  1519. string_format("add sequence breaker for DRY sampling, clearing out default breakers (%s) in the process; use \"none\" to not use any sequence breakers\n",
  1520. params.sampling.dry_sequence_breakers.empty() ? "none" :
  1521. std::accumulate(std::next(params.sampling.dry_sequence_breakers.begin()),
  1522. params.sampling.dry_sequence_breakers.end(),
  1523. std::string("'") + (params.sampling.dry_sequence_breakers[0] == "\n" ? "\\n" : params.sampling.dry_sequence_breakers[0]) + "'",
  1524. [](const std::string& a, const std::string& b) {
  1525. std::string formatted_b = (b == "\n") ? "\\n" : b;
  1526. return a + ", '" + formatted_b + "'";
  1527. }).c_str()),
  1528. [](common_params & params, const std::string & value) {
  1529. static bool defaults_cleared = false;
  1530. if (!defaults_cleared) {
  1531. params.sampling.dry_sequence_breakers.clear();
  1532. defaults_cleared = true;
  1533. }
  1534. if (value == "none") {
  1535. params.sampling.dry_sequence_breakers.clear();
  1536. } else {
  1537. params.sampling.dry_sequence_breakers.emplace_back(value);
  1538. }
  1539. }
  1540. ).set_sparam());
  1541. add_opt(common_arg(
  1542. {"--dynatemp-range"}, "N",
  1543. string_format("dynamic temperature range (default: %.1f, 0.0 = disabled)", (double)params.sampling.dynatemp_range),
  1544. [](common_params & params, const std::string & value) {
  1545. params.sampling.dynatemp_range = std::stof(value);
  1546. }
  1547. ).set_sparam());
  1548. add_opt(common_arg(
  1549. {"--dynatemp-exp"}, "N",
  1550. string_format("dynamic temperature exponent (default: %.1f)", (double)params.sampling.dynatemp_exponent),
  1551. [](common_params & params, const std::string & value) {
  1552. params.sampling.dynatemp_exponent = std::stof(value);
  1553. }
  1554. ).set_sparam());
  1555. add_opt(common_arg(
  1556. {"--mirostat"}, "N",
  1557. string_format("use Mirostat sampling.\nTop K, Nucleus and Locally Typical samplers are ignored if used.\n"
  1558. "(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", params.sampling.mirostat),
  1559. [](common_params & params, int value) {
  1560. params.sampling.mirostat = value;
  1561. params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT;
  1562. }
  1563. ).set_sparam());
  1564. add_opt(common_arg(
  1565. {"--mirostat-lr"}, "N",
  1566. string_format("Mirostat learning rate, parameter eta (default: %.1f)", (double)params.sampling.mirostat_eta),
  1567. [](common_params & params, const std::string & value) {
  1568. params.sampling.mirostat_eta = std::stof(value);
  1569. params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA;
  1570. }
  1571. ).set_sparam());
  1572. add_opt(common_arg(
  1573. {"--mirostat-ent"}, "N",
  1574. string_format("Mirostat target entropy, parameter tau (default: %.1f)", (double)params.sampling.mirostat_tau),
  1575. [](common_params & params, const std::string & value) {
  1576. params.sampling.mirostat_tau = std::stof(value);
  1577. params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_TAU;
  1578. }
  1579. ).set_sparam());
  1580. add_opt(common_arg(
  1581. {"-l", "--logit-bias"}, "TOKEN_ID(+/-)BIAS",
  1582. "modifies the likelihood of token appearing in the completion,\n"
  1583. "i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n"
  1584. "or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'",
  1585. [](common_params & params, const std::string & value) {
  1586. std::stringstream ss(value);
  1587. llama_token key;
  1588. char sign;
  1589. std::string value_str;
  1590. try {
  1591. if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
  1592. const float bias = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
  1593. params.sampling.logit_bias.push_back({key, bias});
  1594. } else {
  1595. throw std::invalid_argument("invalid input format");
  1596. }
  1597. } catch (const std::exception&) {
  1598. throw std::invalid_argument("invalid input format");
  1599. }
  1600. }
  1601. ).set_sparam());
  1602. add_opt(common_arg(
  1603. {"--grammar"}, "GRAMMAR",
  1604. string_format("BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '%s')", params.sampling.grammar.c_str()),
  1605. [](common_params & params, const std::string & value) {
  1606. params.sampling.grammar = value;
  1607. }
  1608. ).set_sparam());
  1609. add_opt(common_arg(
  1610. {"--grammar-file"}, "FNAME",
  1611. "file to read grammar from",
  1612. [](common_params & params, const std::string & value) {
  1613. params.sampling.grammar = read_file(value);
  1614. }
  1615. ).set_sparam());
  1616. add_opt(common_arg(
  1617. {"-j", "--json-schema"}, "SCHEMA",
  1618. "JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\nFor schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead",
  1619. [](common_params & params, const std::string & value) {
  1620. params.sampling.grammar = json_schema_to_grammar(json::parse(value));
  1621. }
  1622. ).set_sparam());
  1623. add_opt(common_arg(
  1624. {"-jf", "--json-schema-file"}, "FILE",
  1625. "File containing a JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\nFor schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead",
  1626. [](common_params & params, const std::string & value) {
  1627. std::ifstream file(value);
  1628. if (!file) {
  1629. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  1630. }
  1631. std::string schema;
  1632. std::copy(
  1633. std::istreambuf_iterator<char>(file),
  1634. std::istreambuf_iterator<char>(),
  1635. std::back_inserter(schema)
  1636. );
  1637. params.sampling.grammar = json_schema_to_grammar(json::parse(schema));
  1638. }
  1639. ).set_sparam());
  1640. add_opt(common_arg(
  1641. {"-bs", "--backend-sampling"},
  1642. "enable backend sampling (experimental) (default: disabled)",
  1643. [](common_params & params) {
  1644. params.sampling.backend_sampling = true;
  1645. }
  1646. ).set_sparam().set_env("LLAMA_ARG_BACKEND_SAMPLING"));
  1647. add_opt(common_arg(
  1648. {"--pooling"}, "{none,mean,cls,last,rank}",
  1649. "pooling type for embeddings, use model default if unspecified",
  1650. [](common_params & params, const std::string & value) {
  1651. /**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
  1652. else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
  1653. else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
  1654. else if (value == "last") { params.pooling_type = LLAMA_POOLING_TYPE_LAST; }
  1655. else if (value == "rank") { params.pooling_type = LLAMA_POOLING_TYPE_RANK; }
  1656. else { throw std::invalid_argument("invalid value"); }
  1657. }
  1658. ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_DEBUG}).set_env("LLAMA_ARG_POOLING"));
  1659. add_opt(common_arg(
  1660. {"--attention"}, "{causal,non-causal}",
  1661. "attention type for embeddings, use model default if unspecified",
  1662. [](common_params & params, const std::string & value) {
  1663. /**/ if (value == "causal") { params.attention_type = LLAMA_ATTENTION_TYPE_CAUSAL; }
  1664. else if (value == "non-causal") { params.attention_type = LLAMA_ATTENTION_TYPE_NON_CAUSAL; }
  1665. else { throw std::invalid_argument("invalid value"); }
  1666. }
  1667. ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
  1668. add_opt(common_arg(
  1669. {"--rope-scaling"}, "{none,linear,yarn}",
  1670. "RoPE frequency scaling method, defaults to linear unless specified by the model",
  1671. [](common_params & params, const std::string & value) {
  1672. /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
  1673. else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
  1674. else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
  1675. else { throw std::invalid_argument("invalid value"); }
  1676. }
  1677. ).set_env("LLAMA_ARG_ROPE_SCALING_TYPE"));
  1678. add_opt(common_arg(
  1679. {"--rope-scale"}, "N",
  1680. "RoPE context scaling factor, expands context by a factor of N",
  1681. [](common_params & params, const std::string & value) {
  1682. params.rope_freq_scale = 1.0f / std::stof(value);
  1683. }
  1684. ).set_env("LLAMA_ARG_ROPE_SCALE"));
  1685. add_opt(common_arg(
  1686. {"--rope-freq-base"}, "N",
  1687. "RoPE base frequency, used by NTK-aware scaling (default: loaded from model)",
  1688. [](common_params & params, const std::string & value) {
  1689. params.rope_freq_base = std::stof(value);
  1690. }
  1691. ).set_env("LLAMA_ARG_ROPE_FREQ_BASE"));
  1692. add_opt(common_arg(
  1693. {"--rope-freq-scale"}, "N",
  1694. "RoPE frequency scaling factor, expands context by a factor of 1/N",
  1695. [](common_params & params, const std::string & value) {
  1696. params.rope_freq_scale = std::stof(value);
  1697. }
  1698. ).set_env("LLAMA_ARG_ROPE_FREQ_SCALE"));
  1699. add_opt(common_arg(
  1700. {"--yarn-orig-ctx"}, "N",
  1701. string_format("YaRN: original context size of model (default: %d = model training context size)", params.yarn_orig_ctx),
  1702. [](common_params & params, int value) {
  1703. params.yarn_orig_ctx = value;
  1704. }
  1705. ).set_env("LLAMA_ARG_YARN_ORIG_CTX"));
  1706. add_opt(common_arg(
  1707. {"--yarn-ext-factor"}, "N",
  1708. string_format("YaRN: extrapolation mix factor (default: %.1f, 0.0 = full interpolation)", (double)params.yarn_ext_factor),
  1709. [](common_params & params, const std::string & value) {
  1710. params.yarn_ext_factor = std::stof(value);
  1711. }
  1712. ).set_env("LLAMA_ARG_YARN_EXT_FACTOR"));
  1713. add_opt(common_arg(
  1714. {"--yarn-attn-factor"}, "N",
  1715. string_format("YaRN: scale sqrt(t) or attention magnitude (default: %.1f)", (double)params.yarn_attn_factor),
  1716. [](common_params & params, const std::string & value) {
  1717. params.yarn_attn_factor = std::stof(value);
  1718. }
  1719. ).set_env("LLAMA_ARG_YARN_ATTN_FACTOR"));
  1720. add_opt(common_arg(
  1721. {"--yarn-beta-slow"}, "N",
  1722. string_format("YaRN: high correction dim or alpha (default: %.1f)", (double)params.yarn_beta_slow),
  1723. [](common_params & params, const std::string & value) {
  1724. params.yarn_beta_slow = std::stof(value);
  1725. }
  1726. ).set_env("LLAMA_ARG_YARN_BETA_SLOW"));
  1727. add_opt(common_arg(
  1728. {"--yarn-beta-fast"}, "N",
  1729. string_format("YaRN: low correction dim or beta (default: %.1f)", (double)params.yarn_beta_fast),
  1730. [](common_params & params, const std::string & value) {
  1731. params.yarn_beta_fast = std::stof(value);
  1732. }
  1733. ).set_env("LLAMA_ARG_YARN_BETA_FAST"));
  1734. add_opt(common_arg(
  1735. {"-gan", "--grp-attn-n"}, "N",
  1736. string_format("group-attention factor (default: %d)", params.grp_attn_n),
  1737. [](common_params & params, int value) {
  1738. params.grp_attn_n = value;
  1739. }
  1740. ).set_env("LLAMA_ARG_GRP_ATTN_N").set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_PASSKEY}));
  1741. add_opt(common_arg(
  1742. {"-gaw", "--grp-attn-w"}, "N",
  1743. string_format("group-attention width (default: %d)", params.grp_attn_w),
  1744. [](common_params & params, int value) {
  1745. params.grp_attn_w = value;
  1746. }
  1747. ).set_env("LLAMA_ARG_GRP_ATTN_W").set_examples({LLAMA_EXAMPLE_COMPLETION}));
  1748. add_opt(common_arg(
  1749. {"-kvo", "--kv-offload"},
  1750. {"-nkvo", "--no-kv-offload"},
  1751. string_format("whether to enable KV cache offloading (default: %s)", params.no_kv_offload ? "disabled" : "enabled"),
  1752. [](common_params & params, bool value) {
  1753. params.no_kv_offload = !value;
  1754. }
  1755. ).set_env("LLAMA_ARG_KV_OFFLOAD"));
  1756. add_opt(common_arg(
  1757. {"--repack"},
  1758. {"-nr", "--no-repack"},
  1759. string_format("whether to enable weight repacking (default: %s)", params.no_extra_bufts ? "disabled" : "enabled"),
  1760. [](common_params & params, bool value) {
  1761. params.no_extra_bufts = !value;
  1762. }
  1763. ).set_env("LLAMA_ARG_REPACK"));
  1764. add_opt(common_arg(
  1765. {"--no-host"},
  1766. "bypass host buffer allowing extra buffers to be used",
  1767. [](common_params & params) {
  1768. params.no_host = true;
  1769. }
  1770. ).set_env("LLAMA_ARG_NO_HOST"));
  1771. add_opt(common_arg(
  1772. {"-ctk", "--cache-type-k"}, "TYPE",
  1773. string_format(
  1774. "KV cache data type for K\n"
  1775. "allowed values: %s\n"
  1776. "(default: %s)",
  1777. get_all_kv_cache_types().c_str(),
  1778. ggml_type_name(params.cache_type_k)
  1779. ),
  1780. [](common_params & params, const std::string & value) {
  1781. params.cache_type_k = kv_cache_type_from_str(value);
  1782. }
  1783. ).set_env("LLAMA_ARG_CACHE_TYPE_K"));
  1784. add_opt(common_arg(
  1785. {"-ctv", "--cache-type-v"}, "TYPE",
  1786. string_format(
  1787. "KV cache data type for V\n"
  1788. "allowed values: %s\n"
  1789. "(default: %s)",
  1790. get_all_kv_cache_types().c_str(),
  1791. ggml_type_name(params.cache_type_v)
  1792. ),
  1793. [](common_params & params, const std::string & value) {
  1794. params.cache_type_v = kv_cache_type_from_str(value);
  1795. }
  1796. ).set_env("LLAMA_ARG_CACHE_TYPE_V"));
  1797. add_opt(common_arg(
  1798. {"--hellaswag"},
  1799. "compute HellaSwag score over random tasks from datafile supplied with -f",
  1800. [](common_params & params) {
  1801. params.hellaswag = true;
  1802. }
  1803. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1804. add_opt(common_arg(
  1805. {"--hellaswag-tasks"}, "N",
  1806. string_format("number of tasks to use when computing the HellaSwag score (default: %zu)", params.hellaswag_tasks),
  1807. [](common_params & params, int value) {
  1808. params.hellaswag_tasks = value;
  1809. }
  1810. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1811. add_opt(common_arg(
  1812. {"--winogrande"},
  1813. "compute Winogrande score over random tasks from datafile supplied with -f",
  1814. [](common_params & params) {
  1815. params.winogrande = true;
  1816. }
  1817. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1818. add_opt(common_arg(
  1819. {"--winogrande-tasks"}, "N",
  1820. string_format("number of tasks to use when computing the Winogrande score (default: %zu)", params.winogrande_tasks),
  1821. [](common_params & params, int value) {
  1822. params.winogrande_tasks = value;
  1823. }
  1824. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1825. add_opt(common_arg(
  1826. {"--multiple-choice"},
  1827. "compute multiple choice score over random tasks from datafile supplied with -f",
  1828. [](common_params & params) {
  1829. params.multiple_choice = true;
  1830. }
  1831. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1832. add_opt(common_arg(
  1833. {"--multiple-choice-tasks"}, "N",
  1834. string_format("number of tasks to use when computing the multiple choice score (default: %zu)", params.multiple_choice_tasks),
  1835. [](common_params & params, int value) {
  1836. params.multiple_choice_tasks = value;
  1837. }
  1838. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1839. add_opt(common_arg(
  1840. {"--kl-divergence"},
  1841. "computes KL-divergence to logits provided via --kl-divergence-base",
  1842. [](common_params & params) {
  1843. params.kl_divergence = true;
  1844. }
  1845. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1846. add_opt(common_arg(
  1847. {"--save-all-logits", "--kl-divergence-base"}, "FNAME",
  1848. "set logits file",
  1849. [](common_params & params, const std::string & value) {
  1850. params.logits_file = value;
  1851. }
  1852. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1853. add_opt(common_arg(
  1854. {"--ppl-stride"}, "N",
  1855. string_format("stride for perplexity calculation (default: %d)", params.ppl_stride),
  1856. [](common_params & params, int value) {
  1857. params.ppl_stride = value;
  1858. }
  1859. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1860. add_opt(common_arg(
  1861. {"--ppl-output-type"}, "<0|1>",
  1862. string_format("output type for perplexity calculation (default: %d)", params.ppl_output_type),
  1863. [](common_params & params, int value) {
  1864. params.ppl_output_type = value;
  1865. }
  1866. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1867. add_opt(common_arg(
  1868. {"-dt", "--defrag-thold"}, "N",
  1869. string_format("KV cache defragmentation threshold (DEPRECATED)"),
  1870. [](common_params & params, const std::string & value) {
  1871. GGML_UNUSED(params);
  1872. GGML_UNUSED(value);
  1873. LOG_WRN("DEPRECATED: --defrag-thold is deprecated and no longer necessary to specify\n");
  1874. }
  1875. ).set_env("LLAMA_ARG_DEFRAG_THOLD"));
  1876. if (ex == LLAMA_EXAMPLE_SERVER) {
  1877. // this is to make sure this option appears in the server-specific section of the help message
  1878. add_opt(common_arg(
  1879. {"-np", "--parallel"}, "N",
  1880. string_format("number of server slots (default: %d, -1 = auto)", params.n_parallel),
  1881. [](common_params & params, int value) {
  1882. if (value == 0) {
  1883. throw std::invalid_argument("error: invalid value for n_parallel\n");
  1884. }
  1885. params.n_parallel = value;
  1886. }
  1887. ).set_env("LLAMA_ARG_N_PARALLEL").set_examples({LLAMA_EXAMPLE_SERVER}));
  1888. } else {
  1889. add_opt(common_arg(
  1890. {"-np", "--parallel"}, "N",
  1891. string_format("number of parallel sequences to decode (default: %d)", params.n_parallel),
  1892. [](common_params & params, int value) {
  1893. params.n_parallel = value;
  1894. }
  1895. ).set_env("LLAMA_ARG_N_PARALLEL"));
  1896. }
  1897. add_opt(common_arg(
  1898. {"-ns", "--sequences"}, "N",
  1899. string_format("number of sequences to decode (default: %d)", params.n_sequences),
  1900. [](common_params & params, int value) {
  1901. params.n_sequences = value;
  1902. }
  1903. ).set_examples({LLAMA_EXAMPLE_PARALLEL}));
  1904. add_opt(common_arg(
  1905. {"-cb", "--cont-batching"},
  1906. {"-nocb", "--no-cont-batching"},
  1907. string_format("whether to enable continuous batching (a.k.a dynamic batching) (default: %s)", params.cont_batching ? "enabled" : "disabled"),
  1908. [](common_params & params, bool value) {
  1909. params.cont_batching = value;
  1910. }
  1911. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CONT_BATCHING"));
  1912. add_opt(common_arg(
  1913. {"-mm", "--mmproj"}, "FILE",
  1914. "path to a multimodal projector file. see tools/mtmd/README.md\n"
  1915. "note: if -hf is used, this argument can be omitted",
  1916. [](common_params & params, const std::string & value) {
  1917. params.mmproj.path = value;
  1918. }
  1919. ).set_examples(mmproj_examples).set_env("LLAMA_ARG_MMPROJ"));
  1920. add_opt(common_arg(
  1921. {"-mmu", "--mmproj-url"}, "URL",
  1922. "URL to a multimodal projector file. see tools/mtmd/README.md",
  1923. [](common_params & params, const std::string & value) {
  1924. params.mmproj.url = value;
  1925. }
  1926. ).set_examples(mmproj_examples).set_env("LLAMA_ARG_MMPROJ_URL"));
  1927. add_opt(common_arg(
  1928. {"--mmproj-auto"},
  1929. {"--no-mmproj", "--no-mmproj-auto"},
  1930. string_format("whether to use multimodal projector file (if available), useful when using -hf (default: %s)", params.no_mmproj ? "disabled" : "enabled"),
  1931. [](common_params & params, bool value) {
  1932. params.no_mmproj = !value;
  1933. }
  1934. ).set_examples(mmproj_examples).set_env("LLAMA_ARG_MMPROJ_AUTO"));
  1935. add_opt(common_arg(
  1936. {"--mmproj-offload"},
  1937. {"--no-mmproj-offload"},
  1938. string_format("whether to enable GPU offloading for multimodal projector (default: %s)", params.mmproj_use_gpu ? "enabled" : "disabled"),
  1939. [](common_params & params, bool value) {
  1940. params.mmproj_use_gpu = value;
  1941. }
  1942. ).set_examples(mmproj_examples).set_env("LLAMA_ARG_MMPROJ_OFFLOAD"));
  1943. add_opt(common_arg(
  1944. {"--image", "--audio"}, "FILE",
  1945. "path to an image or audio file. use with multimodal models, use comma-separated values for multiple files\n",
  1946. [](common_params & params, const std::string & value) {
  1947. for (const auto & item : parse_csv_row(value)) {
  1948. params.image.emplace_back(item);
  1949. }
  1950. }
  1951. ).set_examples({LLAMA_EXAMPLE_MTMD, LLAMA_EXAMPLE_CLI}));
  1952. add_opt(common_arg(
  1953. {"--image-min-tokens"}, "N",
  1954. "minimum number of tokens each image can take, only used by vision models with dynamic resolution (default: read from model)",
  1955. [](common_params & params, int value) {
  1956. params.image_min_tokens = value;
  1957. }
  1958. ).set_examples(mmproj_examples).set_env("LLAMA_ARG_IMAGE_MIN_TOKENS"));
  1959. add_opt(common_arg(
  1960. {"--image-max-tokens"}, "N",
  1961. "maximum number of tokens each image can take, only used by vision models with dynamic resolution (default: read from model)",
  1962. [](common_params & params, int value) {
  1963. params.image_max_tokens = value;
  1964. }
  1965. ).set_examples(mmproj_examples).set_env("LLAMA_ARG_IMAGE_MAX_TOKENS"));
  1966. if (llama_supports_rpc()) {
  1967. add_opt(common_arg(
  1968. {"--rpc"}, "SERVERS",
  1969. "comma separated list of RPC servers (host:port)",
  1970. [](common_params & params, const std::string & value) {
  1971. add_rpc_devices(value);
  1972. GGML_UNUSED(params);
  1973. }
  1974. ).set_env("LLAMA_ARG_RPC"));
  1975. }
  1976. add_opt(common_arg(
  1977. {"--mlock"},
  1978. "force system to keep model in RAM rather than swapping or compressing",
  1979. [](common_params & params) {
  1980. params.use_mlock = true;
  1981. }
  1982. ).set_env("LLAMA_ARG_MLOCK"));
  1983. add_opt(common_arg(
  1984. {"--mmap"},
  1985. {"--no-mmap"},
  1986. string_format("whether to memory-map model (if disabled, slower load but may reduce pageouts if not using mlock) (default: %s)", params.use_mmap ? "enabled" : "disabled"),
  1987. [](common_params & params, bool value) {
  1988. params.use_mmap = value;
  1989. }
  1990. ).set_env("LLAMA_ARG_MMAP"));
  1991. add_opt(common_arg(
  1992. {"--numa"}, "TYPE",
  1993. "attempt optimizations that help on some NUMA systems\n"
  1994. "- distribute: spread execution evenly over all nodes\n"
  1995. "- isolate: only spawn threads on CPUs on the node that execution started on\n"
  1996. "- numactl: use the CPU map provided by numactl\n"
  1997. "if run without this previously, it is recommended to drop the system page cache before using this\n"
  1998. "see https://github.com/ggml-org/llama.cpp/issues/1437",
  1999. [](common_params & params, const std::string & value) {
  2000. /**/ if (value == "distribute" || value == "") { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
  2001. else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
  2002. else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
  2003. else { throw std::invalid_argument("invalid value"); }
  2004. }
  2005. ).set_env("LLAMA_ARG_NUMA"));
  2006. add_opt(common_arg(
  2007. {"-dev", "--device"}, "<dev1,dev2,..>",
  2008. "comma-separated list of devices to use for offloading (none = don't offload)\n"
  2009. "use --list-devices to see a list of available devices",
  2010. [](common_params & params, const std::string & value) {
  2011. params.devices = parse_device_list(value);
  2012. }
  2013. ).set_env("LLAMA_ARG_DEVICE"));
  2014. add_opt(common_arg(
  2015. {"--list-devices"},
  2016. "print list of available devices and exit",
  2017. [](common_params &) {
  2018. std::vector<ggml_backend_dev_t> devices;
  2019. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  2020. auto * dev = ggml_backend_dev_get(i);
  2021. if (ggml_backend_dev_type(dev) != GGML_BACKEND_DEVICE_TYPE_CPU) {
  2022. devices.push_back(dev);
  2023. }
  2024. }
  2025. printf("Available devices:\n");
  2026. for (auto * dev : devices) {
  2027. size_t free, total;
  2028. ggml_backend_dev_memory(dev, &free, &total);
  2029. printf(" %s: %s (%zu MiB, %zu MiB free)\n", ggml_backend_dev_name(dev), ggml_backend_dev_description(dev), total / 1024 / 1024, free / 1024 / 1024);
  2030. }
  2031. exit(0);
  2032. }
  2033. ));
  2034. add_opt(common_arg(
  2035. {"-ot", "--override-tensor"}, "<tensor name pattern>=<buffer type>,...",
  2036. "override tensor buffer type", [](common_params & params, const std::string & value) {
  2037. parse_tensor_buffer_overrides(value, params.tensor_buft_overrides);
  2038. }
  2039. ).set_env("LLAMA_ARG_OVERRIDE_TENSOR"));
  2040. add_opt(common_arg(
  2041. {"-otd", "--override-tensor-draft"}, "<tensor name pattern>=<buffer type>,...",
  2042. "override tensor buffer type for draft model", [](common_params & params, const std::string & value) {
  2043. parse_tensor_buffer_overrides(value, params.speculative.tensor_buft_overrides);
  2044. }
  2045. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}));
  2046. add_opt(common_arg(
  2047. {"-cmoe", "--cpu-moe"},
  2048. "keep all Mixture of Experts (MoE) weights in the CPU",
  2049. [](common_params & params) {
  2050. params.tensor_buft_overrides.push_back(llm_ffn_exps_cpu_override());
  2051. }
  2052. ).set_env("LLAMA_ARG_CPU_MOE"));
  2053. add_opt(common_arg(
  2054. {"-ncmoe", "--n-cpu-moe"}, "N",
  2055. "keep the Mixture of Experts (MoE) weights of the first N layers in the CPU",
  2056. [](common_params & params, int value) {
  2057. if (value < 0) {
  2058. throw std::invalid_argument("invalid value");
  2059. }
  2060. for (int i = 0; i < value; ++i) {
  2061. // keep strings alive and avoid leaking memory by storing them in a static vector
  2062. static std::list<std::string> buft_overrides;
  2063. buft_overrides.push_back(llm_ffn_exps_block_regex(i));
  2064. params.tensor_buft_overrides.push_back({buft_overrides.back().c_str(), ggml_backend_cpu_buffer_type()});
  2065. }
  2066. }
  2067. ).set_env("LLAMA_ARG_N_CPU_MOE"));
  2068. add_opt(common_arg(
  2069. {"-cmoed", "--cpu-moe-draft"},
  2070. "keep all Mixture of Experts (MoE) weights in the CPU for the draft model",
  2071. [](common_params & params) {
  2072. params.speculative.tensor_buft_overrides.push_back(llm_ffn_exps_cpu_override());
  2073. }
  2074. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}).set_env("LLAMA_ARG_CPU_MOE_DRAFT"));
  2075. add_opt(common_arg(
  2076. {"-ncmoed", "--n-cpu-moe-draft"}, "N",
  2077. "keep the Mixture of Experts (MoE) weights of the first N layers in the CPU for the draft model",
  2078. [](common_params & params, int value) {
  2079. if (value < 0) {
  2080. throw std::invalid_argument("invalid value");
  2081. }
  2082. for (int i = 0; i < value; ++i) {
  2083. static std::list<std::string> buft_overrides_draft;
  2084. buft_overrides_draft.push_back(llm_ffn_exps_block_regex(i));
  2085. params.speculative.tensor_buft_overrides.push_back({buft_overrides_draft.back().c_str(), ggml_backend_cpu_buffer_type()});
  2086. }
  2087. }
  2088. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}).set_env("LLAMA_ARG_N_CPU_MOE_DRAFT"));
  2089. GGML_ASSERT(params.n_gpu_layers < 0); // string_format would need to be extended for a default >= 0
  2090. add_opt(common_arg(
  2091. {"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N",
  2092. string_format("max. number of layers to store in VRAM, either an exact number, 'auto', or 'all' (default: %s)", params.n_gpu_layers == -1 ? "auto" : "all"),
  2093. [](common_params & params, const std::string & value) {
  2094. if (value == "auto") {
  2095. params.n_gpu_layers = -1;
  2096. } else if (value == "all") {
  2097. params.n_gpu_layers = -2;
  2098. } else {
  2099. params.n_gpu_layers = std::stoi(value);
  2100. }
  2101. if (!llama_supports_gpu_offload()) {
  2102. fprintf(stderr, "warning: no usable GPU found, --gpu-layers option will be ignored\n");
  2103. fprintf(stderr, "warning: one possible reason is that llama.cpp was compiled without GPU support\n");
  2104. fprintf(stderr, "warning: consult docs/build.md for compilation instructions\n");
  2105. }
  2106. }
  2107. ).set_env("LLAMA_ARG_N_GPU_LAYERS"));
  2108. add_opt(common_arg(
  2109. {"-sm", "--split-mode"}, "{none,layer,row}",
  2110. "how to split the model across multiple GPUs, one of:\n"
  2111. "- none: use one GPU only\n"
  2112. "- layer (default): split layers and KV across GPUs\n"
  2113. "- row: split rows across GPUs",
  2114. [](common_params & params, const std::string & value) {
  2115. std::string arg_next = value;
  2116. if (arg_next == "none") {
  2117. params.split_mode = LLAMA_SPLIT_MODE_NONE;
  2118. } else if (arg_next == "layer") {
  2119. params.split_mode = LLAMA_SPLIT_MODE_LAYER;
  2120. } else if (arg_next == "row") {
  2121. params.split_mode = LLAMA_SPLIT_MODE_ROW;
  2122. } else {
  2123. throw std::invalid_argument("invalid value");
  2124. }
  2125. if (!llama_supports_gpu_offload()) {
  2126. fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the split mode has no effect.\n");
  2127. }
  2128. }
  2129. ).set_env("LLAMA_ARG_SPLIT_MODE"));
  2130. add_opt(common_arg(
  2131. {"-ts", "--tensor-split"}, "N0,N1,N2,...",
  2132. "fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1",
  2133. [](common_params & params, const std::string & value) {
  2134. std::string arg_next = value;
  2135. // split string by , and /
  2136. const std::regex regex{ R"([,/]+)" };
  2137. std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 };
  2138. std::vector<std::string> split_arg{ it, {} };
  2139. if (split_arg.size() >= llama_max_devices()) {
  2140. throw std::invalid_argument(
  2141. string_format("got %d input configs, but system only has %d devices", (int)split_arg.size(), (int)llama_max_devices())
  2142. );
  2143. }
  2144. for (size_t i = 0; i < llama_max_devices(); ++i) {
  2145. if (i < split_arg.size()) {
  2146. params.tensor_split[i] = std::stof(split_arg[i]);
  2147. } else {
  2148. params.tensor_split[i] = 0.0f;
  2149. }
  2150. }
  2151. if (!llama_supports_gpu_offload()) {
  2152. fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting a tensor split has no effect.\n");
  2153. }
  2154. }
  2155. ).set_env("LLAMA_ARG_TENSOR_SPLIT"));
  2156. add_opt(common_arg(
  2157. {"-mg", "--main-gpu"}, "INDEX",
  2158. string_format("the GPU to use for the model (with split-mode = none), or for intermediate results and KV (with split-mode = row) (default: %d)", params.main_gpu),
  2159. [](common_params & params, int value) {
  2160. params.main_gpu = value;
  2161. if (!llama_supports_gpu_offload()) {
  2162. fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the main GPU has no effect.\n");
  2163. }
  2164. }
  2165. ).set_env("LLAMA_ARG_MAIN_GPU"));
  2166. add_opt(common_arg(
  2167. { "-fit", "--fit" }, "[on|off]",
  2168. string_format("whether to adjust unset arguments to fit in device memory ('on' or 'off', default: '%s')", params.fit_params ? "on" : "off"),
  2169. [](common_params & params, const std::string & value) {
  2170. if (is_truthy(value)) {
  2171. params.fit_params = true;
  2172. } else if (is_falsey(value)) {
  2173. params.fit_params = false;
  2174. } else {
  2175. throw std::runtime_error(
  2176. string_format("error: unkown value for --fit: '%s'\n", value.c_str()));
  2177. }
  2178. }
  2179. ).set_env("LLAMA_ARG_FIT"));
  2180. add_opt(common_arg(
  2181. { "-fitt", "--fit-target" }, "MiB",
  2182. string_format("target margin per device for --fit option, default: %zu", params.fit_params_target/(1024*1024)),
  2183. [](common_params & params, int value) {
  2184. params.fit_params_target = value * size_t(1024*1024);
  2185. }
  2186. ).set_env("LLAMA_ARG_FIT_TARGET"));
  2187. add_opt(common_arg(
  2188. { "-fitc", "--fit-ctx" }, "N",
  2189. string_format("minimum ctx size that can be set by --fit option, default: %" PRIu32, params.fit_params_min_ctx),
  2190. [](common_params & params, int value) {
  2191. params.fit_params_min_ctx = value;
  2192. }
  2193. ).set_env("LLAMA_ARG_FIT_CTX"));
  2194. add_opt(common_arg(
  2195. {"--check-tensors"},
  2196. string_format("check model tensor data for invalid values (default: %s)", params.check_tensors ? "true" : "false"),
  2197. [](common_params & params) {
  2198. params.check_tensors = true;
  2199. }
  2200. ));
  2201. add_opt(common_arg(
  2202. {"--override-kv"}, "KEY=TYPE:VALUE,...",
  2203. "advanced option to override model metadata by key. to specify multiple overrides, either use comma-separated values.\n"
  2204. "types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false,tokenizer.ggml.add_eos_token=bool:false",
  2205. [](common_params & params, const std::string & value) {
  2206. for (const auto & item : parse_csv_row(value)) {
  2207. if (!string_parse_kv_override(item.c_str(), params.kv_overrides)) {
  2208. throw std::runtime_error(string_format("error: Invalid type for KV override: %s\n", item.c_str()));
  2209. }
  2210. }
  2211. }
  2212. ));
  2213. add_opt(common_arg(
  2214. {"--op-offload"},
  2215. {"--no-op-offload"},
  2216. string_format("whether to offload host tensor operations to device (default: %s)", params.no_op_offload ? "false" : "true"),
  2217. [](common_params & params, bool value) {
  2218. params.no_op_offload = !value;
  2219. }
  2220. ));
  2221. add_opt(common_arg(
  2222. {"--lora"}, "FNAME",
  2223. "path to LoRA adapter (use comma-separated values to load multiple adapters)",
  2224. [](common_params & params, const std::string & value) {
  2225. for (const auto & item : parse_csv_row(value)) {
  2226. params.lora_adapters.push_back({ item, 1.0, "", "", nullptr });
  2227. }
  2228. }
  2229. // we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg
  2230. ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}));
  2231. add_opt(common_arg(
  2232. {"--lora-scaled"}, "FNAME:SCALE,...",
  2233. "path to LoRA adapter with user defined scaling (format: FNAME:SCALE,...)\n"
  2234. "note: use comma-separated values",
  2235. [](common_params & params, const std::string & value) {
  2236. for (const auto & item : parse_csv_row(value)) {
  2237. auto parts = string_split<std::string>(item, ':');
  2238. if (parts.size() != 2) {
  2239. throw std::invalid_argument("lora-scaled format: FNAME:SCALE");
  2240. }
  2241. params.lora_adapters.push_back({ parts[0], std::stof(parts[1]), "", "", nullptr });
  2242. }
  2243. }
  2244. // we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg
  2245. ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}));
  2246. add_opt(common_arg(
  2247. {"--control-vector"}, "FNAME",
  2248. "add a control vector\nnote: use comma-separated values to add multiple control vectors",
  2249. [](common_params & params, const std::string & value) {
  2250. for (const auto & item : parse_csv_row(value)) {
  2251. params.control_vectors.push_back({ 1.0f, item, });
  2252. }
  2253. }
  2254. ));
  2255. add_opt(common_arg(
  2256. {"--control-vector-scaled"}, "FNAME:SCALE,...",
  2257. "add a control vector with user defined scaling SCALE\n"
  2258. "note: use comma-separated values (format: FNAME:SCALE,...)",
  2259. [](common_params & params, const std::string & value) {
  2260. for (const auto & item : parse_csv_row(value)) {
  2261. auto parts = string_split<std::string>(item, ':');
  2262. if (parts.size() != 2) {
  2263. throw std::invalid_argument("control-vector-scaled format: FNAME:SCALE");
  2264. }
  2265. params.control_vectors.push_back({ std::stof(parts[1]), parts[0] });
  2266. }
  2267. }
  2268. ));
  2269. add_opt(common_arg(
  2270. {"--control-vector-layer-range"}, "START", "END",
  2271. "layer range to apply the control vector(s) to, start and end inclusive",
  2272. [](common_params & params, const std::string & start, const std::string & end) {
  2273. params.control_vector_layer_start = std::stoi(start);
  2274. params.control_vector_layer_end = std::stoi(end);
  2275. }
  2276. ));
  2277. add_opt(common_arg(
  2278. {"-a", "--alias"}, "STRING",
  2279. "set alias for model name (to be used by REST API)",
  2280. [](common_params & params, const std::string & value) {
  2281. params.model_alias = value;
  2282. }
  2283. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ALIAS"));
  2284. add_opt(common_arg(
  2285. {"-m", "--model"}, "FNAME",
  2286. ex == LLAMA_EXAMPLE_EXPORT_LORA
  2287. ? "model path from which to load base model"
  2288. : "model path to load",
  2289. [](common_params & params, const std::string & value) {
  2290. params.model.path = value;
  2291. }
  2292. ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}).set_env("LLAMA_ARG_MODEL"));
  2293. add_opt(common_arg(
  2294. {"-mu", "--model-url"}, "MODEL_URL",
  2295. "model download url (default: unused)",
  2296. [](common_params & params, const std::string & value) {
  2297. params.model.url = value;
  2298. }
  2299. ).set_env("LLAMA_ARG_MODEL_URL"));
  2300. add_opt(common_arg(
  2301. { "-dr", "--docker-repo" }, "[<repo>/]<model>[:quant]",
  2302. "Docker Hub model repository. repo is optional, default to ai/. quant is optional, default to :latest.\n"
  2303. "example: gemma3\n"
  2304. "(default: unused)",
  2305. [](common_params & params, const std::string & value) {
  2306. params.model.docker_repo = value;
  2307. }
  2308. ).set_env("LLAMA_ARG_DOCKER_REPO"));
  2309. add_opt(common_arg(
  2310. {"-hf", "-hfr", "--hf-repo"}, "<user>/<model>[:quant]",
  2311. "Hugging Face model repository; quant is optional, case-insensitive, default to Q4_K_M, or falls back to the first file in the repo if Q4_K_M doesn't exist.\n"
  2312. "mmproj is also downloaded automatically if available. to disable, add --no-mmproj\n"
  2313. "example: unsloth/phi-4-GGUF:q4_k_m\n"
  2314. "(default: unused)",
  2315. [](common_params & params, const std::string & value) {
  2316. params.model.hf_repo = value;
  2317. }
  2318. ).set_env("LLAMA_ARG_HF_REPO"));
  2319. add_opt(common_arg(
  2320. {"-hfd", "-hfrd", "--hf-repo-draft"}, "<user>/<model>[:quant]",
  2321. "Same as --hf-repo, but for the draft model (default: unused)",
  2322. [](common_params & params, const std::string & value) {
  2323. params.speculative.model.hf_repo = value;
  2324. }
  2325. ).set_env("LLAMA_ARG_HFD_REPO"));
  2326. add_opt(common_arg(
  2327. {"-hff", "--hf-file"}, "FILE",
  2328. "Hugging Face model file. If specified, it will override the quant in --hf-repo (default: unused)",
  2329. [](common_params & params, const std::string & value) {
  2330. params.model.hf_file = value;
  2331. }
  2332. ).set_env("LLAMA_ARG_HF_FILE"));
  2333. add_opt(common_arg(
  2334. {"-hfv", "-hfrv", "--hf-repo-v"}, "<user>/<model>[:quant]",
  2335. "Hugging Face model repository for the vocoder model (default: unused)",
  2336. [](common_params & params, const std::string & value) {
  2337. params.vocoder.model.hf_repo = value;
  2338. }
  2339. ).set_env("LLAMA_ARG_HF_REPO_V"));
  2340. add_opt(common_arg(
  2341. {"-hffv", "--hf-file-v"}, "FILE",
  2342. "Hugging Face model file for the vocoder model (default: unused)",
  2343. [](common_params & params, const std::string & value) {
  2344. params.vocoder.model.hf_file = value;
  2345. }
  2346. ).set_env("LLAMA_ARG_HF_FILE_V"));
  2347. add_opt(common_arg(
  2348. {"-hft", "--hf-token"}, "TOKEN",
  2349. "Hugging Face access token (default: value from HF_TOKEN environment variable)",
  2350. [](common_params & params, const std::string & value) {
  2351. params.hf_token = value;
  2352. }
  2353. ).set_env("HF_TOKEN"));
  2354. add_opt(common_arg(
  2355. {"--context-file"}, "FNAME",
  2356. "file to load context from (use comma-separated values to specify multiple files)",
  2357. [](common_params & params, const std::string & value) {
  2358. for (const auto & item : parse_csv_row(value)) {
  2359. std::ifstream file(item, std::ios::binary);
  2360. if (!file) {
  2361. throw std::runtime_error(string_format("error: failed to open file '%s'\n", item.c_str()));
  2362. }
  2363. params.context_files.push_back(item);
  2364. }
  2365. }
  2366. ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
  2367. add_opt(common_arg(
  2368. {"--chunk-size"}, "N",
  2369. string_format("minimum length of embedded text chunks (default: %d)", params.chunk_size),
  2370. [](common_params & params, int value) {
  2371. params.chunk_size = value;
  2372. }
  2373. ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
  2374. add_opt(common_arg(
  2375. {"--chunk-separator"}, "STRING",
  2376. string_format("separator between chunks (default: '%s')", params.chunk_separator.c_str()),
  2377. [](common_params & params, const std::string & value) {
  2378. params.chunk_separator = value;
  2379. }
  2380. ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
  2381. add_opt(common_arg(
  2382. {"--junk"}, "N",
  2383. string_format("number of times to repeat the junk text (default: %d)", params.n_junk),
  2384. [](common_params & params, int value) {
  2385. params.n_junk = value;
  2386. }
  2387. ).set_examples({LLAMA_EXAMPLE_PASSKEY, LLAMA_EXAMPLE_PARALLEL}));
  2388. add_opt(common_arg(
  2389. {"--pos"}, "N",
  2390. string_format("position of the passkey in the junk text (default: %d)", params.i_pos),
  2391. [](common_params & params, int value) {
  2392. params.i_pos = value;
  2393. }
  2394. ).set_examples({LLAMA_EXAMPLE_PASSKEY}));
  2395. add_opt(common_arg(
  2396. {"-o", "--output", "--output-file"}, "FNAME",
  2397. string_format("output file (default: '%s')", params.out_file.c_str()),
  2398. [](common_params & params, const std::string & value) {
  2399. params.out_file = value;
  2400. }
  2401. ).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_CVECTOR_GENERATOR, LLAMA_EXAMPLE_EXPORT_LORA, LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_FINETUNE}));
  2402. add_opt(common_arg(
  2403. {"-ofreq", "--output-frequency"}, "N",
  2404. string_format("output the imatrix every N iterations (default: %d)", params.n_out_freq),
  2405. [](common_params & params, int value) {
  2406. params.n_out_freq = value;
  2407. }
  2408. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2409. add_opt(common_arg(
  2410. {"--output-format"}, "{gguf,dat}",
  2411. string_format("output format for imatrix file (default: %s)", params.imat_dat > 0 ? "dat" : "gguf"),
  2412. [](common_params & params, const std::string & value) {
  2413. /**/ if (value == "gguf") { params.imat_dat = -1; }
  2414. else if (value == "dat") { params.imat_dat = 1; }
  2415. else { throw std::invalid_argument("invalid output format"); }
  2416. }
  2417. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2418. add_opt(common_arg(
  2419. {"--save-frequency"}, "N",
  2420. string_format("save an imatrix copy every N iterations (default: %d)", params.n_save_freq),
  2421. [](common_params & params, int value) {
  2422. params.n_save_freq = value;
  2423. }
  2424. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2425. add_opt(common_arg(
  2426. {"--process-output"},
  2427. string_format("collect data for the output tensor (default: %s)", params.process_output ? "true" : "false"),
  2428. [](common_params & params) {
  2429. params.process_output = true;
  2430. }
  2431. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2432. add_opt(common_arg(
  2433. {"--ppl"},
  2434. {"--no-ppl"},
  2435. string_format("whether to compute perplexity (default: %s)", params.compute_ppl ? "true" : "false"),
  2436. [](common_params & params, bool value) {
  2437. params.compute_ppl = value;
  2438. }
  2439. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2440. add_opt(common_arg(
  2441. {"--chunk", "--from-chunk"}, "N",
  2442. string_format("start processing the input from chunk N (default: %d)", params.i_chunk),
  2443. [](common_params & params, int value) {
  2444. params.i_chunk = value;
  2445. }
  2446. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2447. add_opt(common_arg(
  2448. {"--show-statistics"},
  2449. string_format("show imatrix statistics and then exit (default: %s)", params.show_statistics ? "true" : "false"),
  2450. [](common_params & params) {
  2451. params.show_statistics = true;
  2452. }
  2453. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2454. add_opt(common_arg(
  2455. {"--parse-special"},
  2456. string_format("parse special tokens (chat, tool, etc) (default: %s)", params.parse_special ? "true" : "false"),
  2457. [](common_params & params) {
  2458. params.parse_special = true;
  2459. }
  2460. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2461. add_opt(common_arg(
  2462. {"-pps"},
  2463. string_format("is the prompt shared across parallel sequences (default: %s)", params.is_pp_shared ? "true" : "false"),
  2464. [](common_params & params) {
  2465. params.is_pp_shared = true;
  2466. }
  2467. ).set_examples({LLAMA_EXAMPLE_BENCH, LLAMA_EXAMPLE_PARALLEL}));
  2468. add_opt(common_arg(
  2469. {"-tgs"},
  2470. string_format("is the text generation separated across the different sequences (default: %s)", params.is_tg_separate ? "true" : "false"),
  2471. [](common_params & params) {
  2472. params.is_tg_separate = true;
  2473. }
  2474. ).set_examples({LLAMA_EXAMPLE_BENCH, LLAMA_EXAMPLE_PARALLEL}));
  2475. add_opt(common_arg(
  2476. {"-npp"}, "n0,n1,...",
  2477. "number of prompt tokens",
  2478. [](common_params & params, const std::string & value) {
  2479. auto p = string_split<int>(value, ',');
  2480. params.n_pp.insert(params.n_pp.end(), p.begin(), p.end());
  2481. }
  2482. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  2483. add_opt(common_arg(
  2484. {"-ntg"}, "n0,n1,...",
  2485. "number of text generation tokens",
  2486. [](common_params & params, const std::string & value) {
  2487. auto p = string_split<int>(value, ',');
  2488. params.n_tg.insert(params.n_tg.end(), p.begin(), p.end());
  2489. }
  2490. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  2491. add_opt(common_arg(
  2492. {"-npl"}, "n0,n1,...",
  2493. "number of parallel prompts",
  2494. [](common_params & params, const std::string & value) {
  2495. auto p = string_split<int>(value, ',');
  2496. params.n_pl.insert(params.n_pl.end(), p.begin(), p.end());
  2497. }
  2498. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  2499. add_opt(common_arg(
  2500. {"--embd-normalize"}, "N",
  2501. string_format("normalisation for embeddings (default: %d) (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)", params.embd_normalize),
  2502. [](common_params & params, int value) {
  2503. params.embd_normalize = value;
  2504. }
  2505. ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_DEBUG}));
  2506. add_opt(common_arg(
  2507. {"--embd-output-format"}, "FORMAT",
  2508. "empty = default, \"array\" = [[],[]...], \"json\" = openai style, \"json+\" = same \"json\" + cosine similarity matrix, \"raw\" = plain whitespace-delimited output (one embedding per line)",
  2509. [](common_params & params, const std::string & value) {
  2510. params.embd_out = value;
  2511. }
  2512. ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
  2513. add_opt(common_arg(
  2514. {"--embd-separator"}, "STRING",
  2515. "separator of embeddings (default \\n) for example \"<#sep#>\"",
  2516. [](common_params & params, const std::string & value) {
  2517. params.embd_sep = value;
  2518. }
  2519. ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
  2520. add_opt(common_arg(
  2521. {"--cls-separator"}, "STRING",
  2522. "separator of classification sequences (default \\t) for example \"<#seq#>\"",
  2523. [](common_params & params, const std::string & value) {
  2524. params.cls_sep = value;
  2525. }
  2526. ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
  2527. add_opt(common_arg(
  2528. {"--host"}, "HOST",
  2529. string_format("ip address to listen, or bind to an UNIX socket if the address ends with .sock (default: %s)", params.hostname.c_str()),
  2530. [](common_params & params, const std::string & value) {
  2531. params.hostname = value;
  2532. }
  2533. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_HOST"));
  2534. add_opt(common_arg(
  2535. {"--port"}, "PORT",
  2536. string_format("port to listen (default: %d)", params.port),
  2537. [](common_params & params, int value) {
  2538. params.port = value;
  2539. }
  2540. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_PORT"));
  2541. add_opt(common_arg(
  2542. {"--path"}, "PATH",
  2543. string_format("path to serve static files from (default: %s)", params.public_path.c_str()),
  2544. [](common_params & params, const std::string & value) {
  2545. params.public_path = value;
  2546. }
  2547. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_STATIC_PATH"));
  2548. add_opt(common_arg(
  2549. {"--api-prefix"}, "PREFIX",
  2550. string_format("prefix path the server serves from, without the trailing slash (default: %s)", params.api_prefix.c_str()),
  2551. [](common_params & params, const std::string & value) {
  2552. params.api_prefix = value;
  2553. }
  2554. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_API_PREFIX"));
  2555. add_opt(common_arg(
  2556. {"--webui-config"}, "JSON",
  2557. "JSON that provides default WebUI settings (overrides WebUI defaults)",
  2558. [](common_params & params, const std::string & value) {
  2559. params.webui_config_json = value;
  2560. }
  2561. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_WEBUI_CONFIG"));
  2562. add_opt(common_arg(
  2563. {"--webui-config-file"}, "PATH",
  2564. "JSON file that provides default WebUI settings (overrides WebUI defaults)",
  2565. [](common_params & params, const std::string & value) {
  2566. params.webui_config_json = read_file(value);
  2567. }
  2568. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_WEBUI_CONFIG_FILE"));
  2569. add_opt(common_arg(
  2570. {"--webui"},
  2571. {"--no-webui"},
  2572. string_format("whether to enable the Web UI (default: %s)", params.webui ? "enabled" : "disabled"),
  2573. [](common_params & params, bool value) {
  2574. params.webui = value;
  2575. }
  2576. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_WEBUI"));
  2577. add_opt(common_arg(
  2578. {"--embedding", "--embeddings"},
  2579. string_format("restrict to only support embedding use case; use only with dedicated embedding models (default: %s)", params.embedding ? "enabled" : "disabled"),
  2580. [](common_params & params) {
  2581. params.embedding = true;
  2582. }
  2583. ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_DEBUG}).set_env("LLAMA_ARG_EMBEDDINGS"));
  2584. add_opt(common_arg(
  2585. {"--rerank", "--reranking"},
  2586. string_format("enable reranking endpoint on server (default: %s)", "disabled"),
  2587. [](common_params & params) {
  2588. params.embedding = true;
  2589. params.pooling_type = LLAMA_POOLING_TYPE_RANK;
  2590. }
  2591. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_RERANKING"));
  2592. add_opt(common_arg(
  2593. {"--api-key"}, "KEY",
  2594. "API key to use for authentication, multiple keys can be provided as a comma-separated list (default: none)",
  2595. [](common_params & params, const std::string & value) {
  2596. for (const auto & key : parse_csv_row(value)) {
  2597. if (!key.empty()) {
  2598. params.api_keys.push_back(key);
  2599. }
  2600. }
  2601. }
  2602. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_API_KEY"));
  2603. add_opt(common_arg(
  2604. {"--api-key-file"}, "FNAME",
  2605. "path to file containing API keys (default: none)",
  2606. [](common_params & params, const std::string & value) {
  2607. std::ifstream key_file(value);
  2608. if (!key_file) {
  2609. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  2610. }
  2611. std::string key;
  2612. while (std::getline(key_file, key)) {
  2613. if (!key.empty()) {
  2614. params.api_keys.push_back(key);
  2615. }
  2616. }
  2617. key_file.close();
  2618. }
  2619. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2620. add_opt(common_arg(
  2621. {"--ssl-key-file"}, "FNAME",
  2622. "path to file a PEM-encoded SSL private key",
  2623. [](common_params & params, const std::string & value) {
  2624. params.ssl_file_key = value;
  2625. }
  2626. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_KEY_FILE"));
  2627. add_opt(common_arg(
  2628. {"--ssl-cert-file"}, "FNAME",
  2629. "path to file a PEM-encoded SSL certificate",
  2630. [](common_params & params, const std::string & value) {
  2631. params.ssl_file_cert = value;
  2632. }
  2633. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_CERT_FILE"));
  2634. add_opt(common_arg(
  2635. {"--chat-template-kwargs"}, "STRING",
  2636. "sets additional params for the json template parser, must be a valid json object string, e.g. '{\"key1\":\"value1\",\"key2\":\"value2\"}'",
  2637. [](common_params & params, const std::string & value) {
  2638. auto parsed = json::parse(value);
  2639. for (const auto & item : parsed.items()) {
  2640. params.default_template_kwargs[item.key()] = item.value().dump();
  2641. }
  2642. }
  2643. ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}).set_env("LLAMA_CHAT_TEMPLATE_KWARGS"));
  2644. add_opt(common_arg(
  2645. {"-to", "--timeout"}, "N",
  2646. string_format("server read/write timeout in seconds (default: %d)", params.timeout_read),
  2647. [](common_params & params, int value) {
  2648. params.timeout_read = value;
  2649. params.timeout_write = value;
  2650. }
  2651. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_TIMEOUT"));
  2652. add_opt(common_arg(
  2653. {"--threads-http"}, "N",
  2654. string_format("number of threads used to process HTTP requests (default: %d)", params.n_threads_http),
  2655. [](common_params & params, int value) {
  2656. params.n_threads_http = value;
  2657. }
  2658. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_THREADS_HTTP"));
  2659. add_opt(common_arg(
  2660. {"--cache-reuse"}, "N",
  2661. string_format(
  2662. "min chunk size to attempt reusing from the cache via KV shifting (default: %d)\n"
  2663. "[(card)](https://ggml.ai/f0.png)", params.n_cache_reuse
  2664. ),
  2665. [](common_params & params, int value) {
  2666. params.n_cache_reuse = value;
  2667. }
  2668. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CACHE_REUSE"));
  2669. add_opt(common_arg(
  2670. {"--metrics"},
  2671. string_format("enable prometheus compatible metrics endpoint (default: %s)", params.endpoint_metrics ? "enabled" : "disabled"),
  2672. [](common_params & params) {
  2673. params.endpoint_metrics = true;
  2674. }
  2675. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_METRICS"));
  2676. add_opt(common_arg(
  2677. {"--props"},
  2678. string_format("enable changing global properties via POST /props (default: %s)", params.endpoint_props ? "enabled" : "disabled"),
  2679. [](common_params & params) {
  2680. params.endpoint_props = true;
  2681. }
  2682. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_PROPS"));
  2683. add_opt(common_arg(
  2684. {"--slots"},
  2685. {"--no-slots"},
  2686. string_format("expose slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled"),
  2687. [](common_params & params, bool value) {
  2688. params.endpoint_slots = value;
  2689. }
  2690. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_SLOTS"));
  2691. add_opt(common_arg(
  2692. {"--slot-save-path"}, "PATH",
  2693. "path to save slot kv cache (default: disabled)",
  2694. [](common_params & params, const std::string & value) {
  2695. params.slot_save_path = value;
  2696. if (!fs_is_directory(params.slot_save_path)) {
  2697. throw std::invalid_argument("not a directory: " + value);
  2698. }
  2699. // if doesn't end with DIRECTORY_SEPARATOR, add it
  2700. if (!params.slot_save_path.empty() && params.slot_save_path[params.slot_save_path.size() - 1] != DIRECTORY_SEPARATOR) {
  2701. params.slot_save_path += DIRECTORY_SEPARATOR;
  2702. }
  2703. }
  2704. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2705. add_opt(common_arg(
  2706. {"--media-path"}, "PATH",
  2707. "directory for loading local media files; files can be accessed via file:// URLs using relative paths (default: disabled)",
  2708. [](common_params & params, const std::string & value) {
  2709. params.media_path = value;
  2710. if (!fs_is_directory(params.media_path)) {
  2711. throw std::invalid_argument("not a directory: " + value);
  2712. }
  2713. // if doesn't end with DIRECTORY_SEPARATOR, add it
  2714. if (!params.media_path.empty() && params.media_path[params.media_path.size() - 1] != DIRECTORY_SEPARATOR) {
  2715. params.media_path += DIRECTORY_SEPARATOR;
  2716. }
  2717. }
  2718. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2719. add_opt(common_arg(
  2720. {"--models-dir"}, "PATH",
  2721. "directory containing models for the router server (default: disabled)",
  2722. [](common_params & params, const std::string & value) {
  2723. params.models_dir = value;
  2724. }
  2725. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODELS_DIR"));
  2726. add_opt(common_arg(
  2727. {"--models-preset"}, "PATH",
  2728. "path to INI file containing model presets for the router server (default: disabled)",
  2729. [](common_params & params, const std::string & value) {
  2730. params.models_preset = value;
  2731. }
  2732. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODELS_PRESET"));
  2733. add_opt(common_arg(
  2734. {"--models-max"}, "N",
  2735. string_format("for router server, maximum number of models to load simultaneously (default: %d, 0 = unlimited)", params.models_max),
  2736. [](common_params & params, int value) {
  2737. params.models_max = value;
  2738. }
  2739. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODELS_MAX"));
  2740. add_opt(common_arg(
  2741. {"--models-autoload"},
  2742. {"--no-models-autoload"},
  2743. string_format("for router server, whether to automatically load models (default: %s)", params.models_autoload ? "enabled" : "disabled"),
  2744. [](common_params & params, bool value) {
  2745. params.models_autoload = value;
  2746. }
  2747. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODELS_AUTOLOAD"));
  2748. add_opt(common_arg(
  2749. {"--jinja"},
  2750. {"--no-jinja"},
  2751. string_format("whether to use jinja template engine for chat (default: %s)", params.use_jinja ? "enabled" : "disabled"),
  2752. [](common_params & params, bool value) {
  2753. params.use_jinja = value;
  2754. }
  2755. ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_MTMD}).set_env("LLAMA_ARG_JINJA"));
  2756. add_opt(common_arg(
  2757. {"--reasoning-format"}, "FORMAT",
  2758. "controls whether thought tags are allowed and/or extracted from the response, and in which format they're returned; one of:\n"
  2759. "- none: leaves thoughts unparsed in `message.content`\n"
  2760. "- deepseek: puts thoughts in `message.reasoning_content`\n"
  2761. "- deepseek-legacy: keeps `<think>` tags in `message.content` while also populating `message.reasoning_content`\n"
  2762. "(default: auto)",
  2763. [](common_params & params, const std::string & value) {
  2764. params.reasoning_format = common_reasoning_format_from_name(value);
  2765. }
  2766. ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI}).set_env("LLAMA_ARG_THINK"));
  2767. add_opt(common_arg(
  2768. {"--reasoning-budget"}, "N",
  2769. "controls the amount of thinking allowed; currently only one of: -1 for unrestricted thinking budget, or 0 to disable thinking (default: -1)",
  2770. [](common_params & params, int value) {
  2771. if (value != 0 && value != -1) { throw std::invalid_argument("invalid value"); }
  2772. params.reasoning_budget = value;
  2773. }
  2774. ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI}).set_env("LLAMA_ARG_THINK_BUDGET"));
  2775. add_opt(common_arg(
  2776. {"--chat-template"}, "JINJA_TEMPLATE",
  2777. string_format(
  2778. "set custom jinja chat template (default: template taken from model's metadata)\n"
  2779. "if suffix/prefix are specified, template will be disabled\n"
  2780. "only commonly used templates are accepted (unless --jinja is set before this flag):\n"
  2781. "list of built-in templates:\n%s", list_builtin_chat_templates().c_str()
  2782. ),
  2783. [](common_params & params, const std::string & value) {
  2784. params.chat_template = value;
  2785. }
  2786. ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MTMD}).set_env("LLAMA_ARG_CHAT_TEMPLATE"));
  2787. add_opt(common_arg(
  2788. {"--chat-template-file"}, "JINJA_TEMPLATE_FILE",
  2789. string_format(
  2790. "set custom jinja chat template file (default: template taken from model's metadata)\n"
  2791. "if suffix/prefix are specified, template will be disabled\n"
  2792. "only commonly used templates are accepted (unless --jinja is set before this flag):\n"
  2793. "list of built-in templates:\n%s", list_builtin_chat_templates().c_str()
  2794. ),
  2795. [](common_params & params, const std::string & value) {
  2796. params.chat_template = read_file(value);
  2797. }
  2798. ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CHAT_TEMPLATE_FILE"));
  2799. add_opt(common_arg(
  2800. {"--prefill-assistant"},
  2801. {"--no-prefill-assistant"},
  2802. string_format(
  2803. "whether to prefill the assistant's response if the last message is an assistant message (default: prefill enabled)\n"
  2804. "when this flag is set, if the last message is an assistant message then it will be treated as a full message and not prefilled\n"
  2805. ),
  2806. [](common_params & params, bool value) {
  2807. params.prefill_assistant = value;
  2808. }
  2809. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_PREFILL_ASSISTANT"));
  2810. add_opt(common_arg(
  2811. {"-sps", "--slot-prompt-similarity"}, "SIMILARITY",
  2812. string_format("how much the prompt of a request must match the prompt of a slot in order to use that slot (default: %.2f, 0.0 = disabled)\n", params.slot_prompt_similarity),
  2813. [](common_params & params, const std::string & value) {
  2814. params.slot_prompt_similarity = std::stof(value);
  2815. }
  2816. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2817. add_opt(common_arg(
  2818. {"--lora-init-without-apply"},
  2819. string_format("load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: %s)", params.lora_init_without_apply ? "enabled" : "disabled"),
  2820. [](common_params & params) {
  2821. params.lora_init_without_apply = true;
  2822. }
  2823. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2824. add_opt(common_arg(
  2825. {"--sleep-idle-seconds"}, "SECONDS",
  2826. string_format("number of seconds of idleness after which the server will sleep (default: %d; -1 = disabled)", params.sleep_idle_seconds),
  2827. [](common_params & params, int value) {
  2828. if (value == 0 || value < -1) {
  2829. throw std::invalid_argument("invalid value: cannot be 0 or less than -1");
  2830. }
  2831. params.sleep_idle_seconds = value;
  2832. }
  2833. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2834. add_opt(common_arg(
  2835. {"--simple-io"},
  2836. "use basic IO for better compatibility in subprocesses and limited consoles",
  2837. [](common_params & params) {
  2838. params.simple_io = true;
  2839. }
  2840. ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI}));
  2841. add_opt(common_arg(
  2842. {"--positive-file"}, "FNAME",
  2843. string_format("positive prompts file, one prompt per line (default: '%s')", params.cvector_positive_file.c_str()),
  2844. [](common_params & params, const std::string & value) {
  2845. params.cvector_positive_file = value;
  2846. }
  2847. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2848. add_opt(common_arg(
  2849. {"--negative-file"}, "FNAME",
  2850. string_format("negative prompts file, one prompt per line (default: '%s')", params.cvector_negative_file.c_str()),
  2851. [](common_params & params, const std::string & value) {
  2852. params.cvector_negative_file = value;
  2853. }
  2854. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2855. add_opt(common_arg(
  2856. {"--pca-batch"}, "N",
  2857. string_format("batch size used for PCA. Larger batch runs faster, but uses more memory (default: %d)", params.n_pca_batch),
  2858. [](common_params & params, int value) {
  2859. params.n_pca_batch = value;
  2860. }
  2861. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2862. add_opt(common_arg(
  2863. {"--pca-iter"}, "N",
  2864. string_format("number of iterations used for PCA (default: %d)", params.n_pca_iterations),
  2865. [](common_params & params, int value) {
  2866. params.n_pca_iterations = value;
  2867. }
  2868. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2869. add_opt(common_arg(
  2870. {"--method"}, "{pca, mean}",
  2871. "dimensionality reduction method to be used (default: pca)",
  2872. [](common_params & params, const std::string & value) {
  2873. /**/ if (value == "pca") { params.cvector_dimre_method = DIMRE_METHOD_PCA; }
  2874. else if (value == "mean") { params.cvector_dimre_method = DIMRE_METHOD_MEAN; }
  2875. else { throw std::invalid_argument("invalid value"); }
  2876. }
  2877. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2878. add_opt(common_arg(
  2879. {"--output-format"}, "{md,jsonl}",
  2880. "output format for batched-bench results (default: md)",
  2881. [](common_params & params, const std::string & value) {
  2882. /**/ if (value == "jsonl") { params.batched_bench_output_jsonl = true; }
  2883. else if (value == "md") { params.batched_bench_output_jsonl = false; }
  2884. else { throw std::invalid_argument("invalid value"); }
  2885. }
  2886. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  2887. add_opt(common_arg(
  2888. {"--log-disable"},
  2889. "Log disable",
  2890. [](common_params &) {
  2891. common_log_pause(common_log_main());
  2892. }
  2893. ));
  2894. add_opt(common_arg(
  2895. {"--log-file"}, "FNAME",
  2896. "Log to file",
  2897. [](common_params &, const std::string & value) {
  2898. common_log_set_file(common_log_main(), value.c_str());
  2899. }
  2900. ).set_env("LLAMA_LOG_FILE"));
  2901. add_opt(common_arg(
  2902. {"--log-colors"}, "[on|off|auto]",
  2903. "Set colored logging ('on', 'off', or 'auto', default: 'auto')\n"
  2904. "'auto' enables colors when output is to a terminal",
  2905. [](common_params &, const std::string & value) {
  2906. if (is_truthy(value)) {
  2907. common_log_set_colors(common_log_main(), LOG_COLORS_ENABLED);
  2908. } else if (is_falsey(value)) {
  2909. common_log_set_colors(common_log_main(), LOG_COLORS_DISABLED);
  2910. } else if (is_autoy(value)) {
  2911. common_log_set_colors(common_log_main(), LOG_COLORS_AUTO);
  2912. } else {
  2913. throw std::invalid_argument(
  2914. string_format("error: unknown value for --log-colors: '%s'\n", value.c_str()));
  2915. }
  2916. }
  2917. ).set_env("LLAMA_LOG_COLORS"));
  2918. add_opt(common_arg(
  2919. {"-v", "--verbose", "--log-verbose"},
  2920. "Set verbosity level to infinity (i.e. log all messages, useful for debugging)",
  2921. [](common_params & params) {
  2922. params.verbosity = INT_MAX;
  2923. }
  2924. ));
  2925. add_opt(common_arg(
  2926. {"--offline"},
  2927. "Offline mode: forces use of cache, prevents network access",
  2928. [](common_params & params) {
  2929. params.offline = true;
  2930. }
  2931. ).set_env("LLAMA_OFFLINE"));
  2932. add_opt(common_arg(
  2933. {"-lv", "--verbosity", "--log-verbosity"}, "N",
  2934. string_format("Set the verbosity threshold. Messages with a higher verbosity will be ignored. Values:\n"
  2935. " - 0: generic output\n"
  2936. " - 1: error\n"
  2937. " - 2: warning\n"
  2938. " - 3: info\n"
  2939. " - 4: debug\n"
  2940. "(default: %d)\n", params.verbosity),
  2941. [](common_params & params, int value) {
  2942. params.verbosity = value;
  2943. }
  2944. ).set_env("LLAMA_LOG_VERBOSITY"));
  2945. add_opt(common_arg(
  2946. {"--log-prefix"},
  2947. "Enable prefix in log messages",
  2948. [](common_params &) {
  2949. common_log_set_prefix(common_log_main(), true);
  2950. }
  2951. ).set_env("LLAMA_LOG_PREFIX"));
  2952. add_opt(common_arg(
  2953. {"--log-timestamps"},
  2954. "Enable timestamps in log messages",
  2955. [](common_params &) {
  2956. common_log_set_timestamps(common_log_main(), true);
  2957. }
  2958. ).set_env("LLAMA_LOG_TIMESTAMPS"));
  2959. // speculative parameters
  2960. add_opt(common_arg(
  2961. {"-td", "--threads-draft"}, "N",
  2962. "number of threads to use during generation (default: same as --threads)",
  2963. [](common_params & params, int value) {
  2964. params.speculative.cpuparams.n_threads = value;
  2965. if (params.speculative.cpuparams.n_threads <= 0) {
  2966. params.speculative.cpuparams.n_threads = std::thread::hardware_concurrency();
  2967. }
  2968. }
  2969. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
  2970. add_opt(common_arg(
  2971. {"-tbd", "--threads-batch-draft"}, "N",
  2972. "number of threads to use during batch and prompt processing (default: same as --threads-draft)",
  2973. [](common_params & params, int value) {
  2974. params.speculative.cpuparams_batch.n_threads = value;
  2975. if (params.speculative.cpuparams_batch.n_threads <= 0) {
  2976. params.speculative.cpuparams_batch.n_threads = std::thread::hardware_concurrency();
  2977. }
  2978. }
  2979. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
  2980. add_opt(common_arg(
  2981. {"-Cd", "--cpu-mask-draft"}, "M",
  2982. "Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)",
  2983. [](common_params & params, const std::string & mask) {
  2984. params.speculative.cpuparams.mask_valid = true;
  2985. if (!parse_cpu_mask(mask, params.speculative.cpuparams.cpumask)) {
  2986. throw std::invalid_argument("invalid cpumask");
  2987. }
  2988. }
  2989. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2990. add_opt(common_arg(
  2991. {"-Crd", "--cpu-range-draft"}, "lo-hi",
  2992. "Ranges of CPUs for affinity. Complements --cpu-mask-draft",
  2993. [](common_params & params, const std::string & range) {
  2994. params.speculative.cpuparams.mask_valid = true;
  2995. if (!parse_cpu_range(range, params.speculative.cpuparams.cpumask)) {
  2996. throw std::invalid_argument("invalid range");
  2997. }
  2998. }
  2999. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  3000. add_opt(common_arg(
  3001. {"--cpu-strict-draft"}, "<0|1>",
  3002. "Use strict CPU placement for draft model (default: same as --cpu-strict)",
  3003. [](common_params & params, int value) {
  3004. params.speculative.cpuparams.strict_cpu = value;
  3005. }
  3006. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  3007. add_opt(common_arg(
  3008. {"--prio-draft"}, "N",
  3009. string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.speculative.cpuparams.priority),
  3010. [](common_params & params, int prio) {
  3011. if (prio < 0 || prio > 3) {
  3012. throw std::invalid_argument("invalid value");
  3013. }
  3014. params.speculative.cpuparams.priority = (enum ggml_sched_priority) prio;
  3015. }
  3016. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  3017. add_opt(common_arg(
  3018. {"--poll-draft"}, "<0|1>",
  3019. "Use polling to wait for draft model work (default: same as --poll])",
  3020. [](common_params & params, int value) {
  3021. params.speculative.cpuparams.poll = value;
  3022. }
  3023. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  3024. add_opt(common_arg(
  3025. {"-Cbd", "--cpu-mask-batch-draft"}, "M",
  3026. "Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)",
  3027. [](common_params & params, const std::string & mask) {
  3028. params.speculative.cpuparams_batch.mask_valid = true;
  3029. if (!parse_cpu_mask(mask, params.speculative.cpuparams_batch.cpumask)) {
  3030. throw std::invalid_argument("invalid cpumask");
  3031. }
  3032. }
  3033. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  3034. add_opt(common_arg(
  3035. {"-Crbd", "--cpu-range-batch-draft"}, "lo-hi",
  3036. "Ranges of CPUs for affinity. Complements --cpu-mask-draft-batch)",
  3037. [](common_params & params, const std::string & range) {
  3038. params.speculative.cpuparams_batch.mask_valid = true;
  3039. if (!parse_cpu_range(range, params.speculative.cpuparams_batch.cpumask)) {
  3040. throw std::invalid_argument("invalid cpumask");
  3041. }
  3042. }
  3043. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  3044. add_opt(common_arg(
  3045. {"--cpu-strict-batch-draft"}, "<0|1>",
  3046. "Use strict CPU placement for draft model (default: --cpu-strict-draft)",
  3047. [](common_params & params, int value) {
  3048. params.speculative.cpuparams_batch.strict_cpu = value;
  3049. }
  3050. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  3051. add_opt(common_arg(
  3052. {"--prio-batch-draft"}, "N",
  3053. string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.speculative.cpuparams_batch.priority),
  3054. [](common_params & params, int prio) {
  3055. if (prio < 0 || prio > 3) {
  3056. throw std::invalid_argument("invalid value");
  3057. }
  3058. params.speculative.cpuparams_batch.priority = (enum ggml_sched_priority) prio;
  3059. }
  3060. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  3061. add_opt(common_arg(
  3062. {"--poll-batch-draft"}, "<0|1>",
  3063. "Use polling to wait for draft model work (default: --poll-draft)",
  3064. [](common_params & params, int value) {
  3065. params.speculative.cpuparams_batch.poll = value;
  3066. }
  3067. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  3068. add_opt(common_arg(
  3069. {"--draft", "--draft-n", "--draft-max"}, "N",
  3070. string_format("number of tokens to draft for speculative decoding (default: %d)", params.speculative.n_max),
  3071. [](common_params & params, int value) {
  3072. params.speculative.n_max = value;
  3073. }
  3074. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}).set_env("LLAMA_ARG_DRAFT_MAX"));
  3075. add_opt(common_arg(
  3076. {"--draft-min", "--draft-n-min"}, "N",
  3077. string_format("minimum number of draft tokens to use for speculative decoding (default: %d)", params.speculative.n_min),
  3078. [](common_params & params, int value) {
  3079. params.speculative.n_min = value;
  3080. }
  3081. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}).set_env("LLAMA_ARG_DRAFT_MIN"));
  3082. add_opt(common_arg(
  3083. {"--draft-p-split"}, "P",
  3084. string_format("speculative decoding split probability (default: %.1f)", (double)params.speculative.p_split),
  3085. [](common_params & params, const std::string & value) {
  3086. params.speculative.p_split = std::stof(value);
  3087. }
  3088. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}).set_env("LLAMA_ARG_DRAFT_P_SPLIT"));
  3089. add_opt(common_arg(
  3090. {"--draft-p-min"}, "P",
  3091. string_format("minimum speculative decoding probability (greedy) (default: %.1f)", (double)params.speculative.p_min),
  3092. [](common_params & params, const std::string & value) {
  3093. params.speculative.p_min = std::stof(value);
  3094. }
  3095. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}).set_env("LLAMA_ARG_DRAFT_P_MIN"));
  3096. add_opt(common_arg(
  3097. {"-cd", "--ctx-size-draft"}, "N",
  3098. string_format("size of the prompt context for the draft model (default: %d, 0 = loaded from model)", params.speculative.n_ctx),
  3099. [](common_params & params, int value) {
  3100. params.speculative.n_ctx = value;
  3101. }
  3102. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}).set_env("LLAMA_ARG_CTX_SIZE_DRAFT"));
  3103. add_opt(common_arg(
  3104. {"-devd", "--device-draft"}, "<dev1,dev2,..>",
  3105. "comma-separated list of devices to use for offloading the draft model (none = don't offload)\n"
  3106. "use --list-devices to see a list of available devices",
  3107. [](common_params & params, const std::string & value) {
  3108. params.speculative.devices = parse_device_list(value);
  3109. }
  3110. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}));
  3111. GGML_ASSERT(params.speculative.n_gpu_layers < 0); // string_format would need to be extended for a default >= 0
  3112. add_opt(common_arg(
  3113. {"-ngld", "--gpu-layers-draft", "--n-gpu-layers-draft"}, "N",
  3114. string_format("max. number of draft model layers to store in VRAM, either an exact number, 'auto', or 'all' (default: %s)",
  3115. params.speculative.n_gpu_layers == -1 ? "auto" : "all"),
  3116. [](common_params & params, const std::string & value) {
  3117. if (value == "auto") {
  3118. params.speculative.n_gpu_layers = -1;
  3119. } else if (value == "all") {
  3120. params.speculative.n_gpu_layers = -2;
  3121. } else {
  3122. params.speculative.n_gpu_layers = std::stoi(value);
  3123. }
  3124. if (!llama_supports_gpu_offload()) {
  3125. fprintf(stderr, "warning: no usable GPU found, --gpu-layers-draft option will be ignored\n");
  3126. fprintf(stderr, "warning: one possible reason is that llama.cpp was compiled without GPU support\n");
  3127. fprintf(stderr, "warning: consult docs/build.md for compilation instructions\n");
  3128. }
  3129. }
  3130. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}).set_env("LLAMA_ARG_N_GPU_LAYERS_DRAFT"));
  3131. add_opt(common_arg(
  3132. {"-md", "--model-draft"}, "FNAME",
  3133. "draft model for speculative decoding (default: unused)",
  3134. [](common_params & params, const std::string & value) {
  3135. params.speculative.model.path = value;
  3136. }
  3137. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}).set_env("LLAMA_ARG_MODEL_DRAFT"));
  3138. add_opt(common_arg(
  3139. {"--spec-replace"}, "TARGET", "DRAFT",
  3140. "translate the string in TARGET into DRAFT if the draft model and main model are not compatible",
  3141. [](common_params & params, const std::string & tgt, const std::string & dft) {
  3142. params.speculative.replacements.push_back({ tgt, dft });
  3143. }
  3144. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}));
  3145. add_opt(common_arg(
  3146. {"-ctkd", "--cache-type-k-draft"}, "TYPE",
  3147. string_format(
  3148. "KV cache data type for K for the draft model\n"
  3149. "allowed values: %s\n"
  3150. "(default: %s)",
  3151. get_all_kv_cache_types().c_str(),
  3152. ggml_type_name(params.speculative.cache_type_k)
  3153. ),
  3154. [](common_params & params, const std::string & value) {
  3155. params.speculative.cache_type_k = kv_cache_type_from_str(value);
  3156. }
  3157. ).set_env("LLAMA_ARG_CACHE_TYPE_K_DRAFT"));
  3158. add_opt(common_arg(
  3159. {"-ctvd", "--cache-type-v-draft"}, "TYPE",
  3160. string_format(
  3161. "KV cache data type for V for the draft model\n"
  3162. "allowed values: %s\n"
  3163. "(default: %s)",
  3164. get_all_kv_cache_types().c_str(),
  3165. ggml_type_name(params.speculative.cache_type_v)
  3166. ),
  3167. [](common_params & params, const std::string & value) {
  3168. params.speculative.cache_type_v = kv_cache_type_from_str(value);
  3169. }
  3170. ).set_env("LLAMA_ARG_CACHE_TYPE_V_DRAFT"));
  3171. add_opt(common_arg(
  3172. {"-mv", "--model-vocoder"}, "FNAME",
  3173. "vocoder model for audio generation (default: unused)",
  3174. [](common_params & params, const std::string & value) {
  3175. params.vocoder.model.path = value;
  3176. }
  3177. ).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER}));
  3178. add_opt(common_arg(
  3179. {"--tts-use-guide-tokens"},
  3180. "Use guide tokens to improve TTS word recall",
  3181. [](common_params & params) {
  3182. params.vocoder.use_guide_tokens = true;
  3183. }
  3184. ).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER}));
  3185. add_opt(common_arg(
  3186. {"--tts-speaker-file"}, "FNAME",
  3187. "speaker file path for audio generation",
  3188. [](common_params & params, const std::string & value) {
  3189. params.vocoder.speaker_file = value;
  3190. }
  3191. ).set_examples({LLAMA_EXAMPLE_TTS}));
  3192. add_opt(common_arg(
  3193. {"--diffusion-steps"}, "N",
  3194. string_format("number of diffusion steps (default: %d)", params.diffusion.steps),
  3195. [](common_params & params, int value) { params.diffusion.steps = value; }
  3196. ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
  3197. add_opt(common_arg(
  3198. {"--diffusion-visual"},
  3199. string_format("enable visual diffusion mode (show progressive generation) (default: %s)", params.diffusion.visual_mode ? "true" : "false"),
  3200. [](common_params & params) { params.diffusion.visual_mode = true; }
  3201. ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
  3202. add_opt(common_arg(
  3203. {"--diffusion-eps"}, "F",
  3204. string_format("epsilon for timesteps (default: %.6f)", (double) params.diffusion.eps),
  3205. [](common_params & params, const std::string & value) { params.diffusion.eps = std::stof(value); }
  3206. ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
  3207. add_opt(common_arg(
  3208. {"--diffusion-algorithm"}, "N",
  3209. string_format("diffusion algorithm: 0=ORIGIN, 1=ENTROPY_BASED, 2=MARGIN_BASED, 3=RANDOM, 4=LOW_CONFIDENCE (default: %d)", params.diffusion.algorithm),
  3210. [](common_params & params, int value) { params.diffusion.algorithm = value; }
  3211. ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
  3212. add_opt(common_arg(
  3213. {"--diffusion-alg-temp"}, "F",
  3214. string_format("dream algorithm temperature (default: %.3f)", (double) params.diffusion.alg_temp),
  3215. [](common_params & params, const std::string & value) { params.diffusion.alg_temp = std::stof(value); }
  3216. ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
  3217. add_opt(common_arg(
  3218. {"--diffusion-block-length"}, "N",
  3219. string_format("llada block length for generation (default: %d)", params.diffusion.block_length),
  3220. [](common_params & params, int value) { params.diffusion.block_length = value; }
  3221. ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
  3222. add_opt(common_arg(
  3223. {"--diffusion-cfg-scale"}, "F",
  3224. string_format("llada classifier-free guidance scale (default: %.3f)", (double) params.diffusion.cfg_scale),
  3225. [](common_params & params, const std::string & value) { params.diffusion.cfg_scale = std::stof(value); }
  3226. ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
  3227. add_opt(common_arg(
  3228. {"--diffusion-add-gumbel-noise"}, "F",
  3229. string_format("add gumbel noise to the logits if temp > 0.0 (default: %s)", params.diffusion.add_gumbel_noise ? "true" : "false"),
  3230. [](common_params & params, const std::string & value) { params.diffusion.add_gumbel_noise = std::stof(value); }
  3231. ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
  3232. add_opt(common_arg(
  3233. { "-lr", "--learning-rate" }, "ALPHA",
  3234. string_format("adamw or sgd optimizer alpha (default: %.2g); note: sgd alpha recommended ~10x (no momentum)", (double) params.lr.lr0),
  3235. [](common_params & params, const std::string & value) { params.lr.lr0 = std::stof(value); }
  3236. ).set_examples({ LLAMA_EXAMPLE_FINETUNE }));
  3237. add_opt(common_arg({ "-lr-min", "--learning-rate-min" }, "ALPHA",
  3238. string_format("(if >0) final learning rate after decay (if -decay-epochs is set, default=%.2g)",
  3239. (double) params.lr.lr_min),
  3240. [](common_params & params, const std::string & value) { params.lr.lr_min = std::stof(value); }
  3241. ).set_examples({ LLAMA_EXAMPLE_FINETUNE }));
  3242. add_opt(common_arg(
  3243. {"-decay-epochs", "--learning-rate-decay-epochs"}, "ALPHA",
  3244. string_format("(if >0) decay learning rate to -lr-min after this many epochs (exponential decay, default=%.2g)", (double) params.lr.decay_epochs),
  3245. [](common_params & params, const std::string & value) { params.lr.decay_epochs = std::stof(value); }
  3246. ).set_examples({ LLAMA_EXAMPLE_FINETUNE }));
  3247. add_opt(common_arg(
  3248. {"-wd", "--weight-decay"}, "WD",
  3249. string_format("adamw or sgd optimizer weight decay (0 is off; recommend very small e.g. 1e-9) (default: %.2g).", (double) params.lr.wd),
  3250. [](common_params & params, const std::string & value) { params.lr.wd = std::stof(value); }
  3251. ).set_examples({ LLAMA_EXAMPLE_FINETUNE }));
  3252. add_opt(common_arg(
  3253. {"-val-split", "--val-split"}, "FRACTION",
  3254. string_format("fraction of data to use as validation set for training (default: %.2g).", (double) params.val_split),
  3255. [](common_params & params, const std::string & value) { params.val_split = std::stof(value); }
  3256. ).set_examples({ LLAMA_EXAMPLE_FINETUNE }));
  3257. add_opt(common_arg(
  3258. {"-epochs", "--epochs"}, "N",
  3259. string_format("optimizer max # of epochs (default: %d)", params.lr.epochs),
  3260. [](common_params & params, int epochs) { params.lr.epochs = epochs; }
  3261. ).set_examples({ LLAMA_EXAMPLE_FINETUNE }));
  3262. add_opt(common_arg(
  3263. {"-opt", "--optimizer"}, "sgd|adamw", "adamw or sgd",
  3264. [](common_params & params, const std::string & name) {
  3265. params.optimizer = common_opt_get_optimizer(name.c_str());
  3266. if (params.optimizer == GGML_OPT_OPTIMIZER_TYPE_COUNT) {
  3267. throw std::invalid_argument("invalid --optimizer, valid options: adamw, sgd");
  3268. }
  3269. }
  3270. ).set_examples({ LLAMA_EXAMPLE_FINETUNE }));
  3271. add_opt(common_arg(
  3272. {"--save-logits"},
  3273. string_format("save final logits to files for verification (default: %s)", params.save_logits ? "true" : "false"),
  3274. [](common_params & params) {
  3275. params.save_logits = true;
  3276. }
  3277. ).set_examples({LLAMA_EXAMPLE_DEBUG}));
  3278. add_opt(common_arg(
  3279. {"--logits-output-dir"}, "PATH",
  3280. string_format("directory for saving logits output files (default: %s)", params.logits_output_dir.c_str()),
  3281. [](common_params & params, const std::string & value) {
  3282. params.logits_output_dir = value;
  3283. }
  3284. ).set_examples({LLAMA_EXAMPLE_DEBUG}));
  3285. add_opt(common_arg(
  3286. {"--tensor-filter"}, "REGEX",
  3287. "filter tensor names for debug output (regex pattern, can be specified multiple times)",
  3288. [](common_params & params, const std::string & value) {
  3289. params.tensor_filter.push_back(value);
  3290. }
  3291. ).set_examples({LLAMA_EXAMPLE_DEBUG}));
  3292. // presets
  3293. add_opt(common_arg(
  3294. {"--tts-oute-default"},
  3295. string_format("use default OuteTTS models (note: can download weights from the internet)"),
  3296. [](common_params & params) {
  3297. params.model.hf_repo = "OuteAI/OuteTTS-0.2-500M-GGUF";
  3298. params.model.hf_file = "OuteTTS-0.2-500M-Q8_0.gguf";
  3299. params.vocoder.model.hf_repo = "ggml-org/WavTokenizer";
  3300. params.vocoder.model.hf_file = "WavTokenizer-Large-75-F16.gguf";
  3301. }
  3302. ).set_examples({LLAMA_EXAMPLE_TTS}));
  3303. add_opt(common_arg(
  3304. {"--embd-gemma-default"},
  3305. string_format("use default EmbeddingGemma model (note: can download weights from the internet)"),
  3306. [](common_params & params) {
  3307. params.model.hf_repo = "ggml-org/embeddinggemma-300M-qat-q4_0-GGUF";
  3308. params.model.hf_file = "embeddinggemma-300M-qat-Q4_0.gguf";
  3309. params.port = 8011;
  3310. params.n_ubatch = 2048;
  3311. params.n_batch = 2048;
  3312. params.n_parallel = 32;
  3313. params.n_ctx = 2048*params.n_parallel;
  3314. params.verbose_prompt = true;
  3315. params.embedding = true;
  3316. }
  3317. ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_SERVER}));
  3318. add_opt(common_arg(
  3319. {"--fim-qwen-1.5b-default"},
  3320. string_format("use default Qwen 2.5 Coder 1.5B (note: can download weights from the internet)"),
  3321. [](common_params & params) {
  3322. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-1.5B-Q8_0-GGUF";
  3323. params.model.hf_file = "qwen2.5-coder-1.5b-q8_0.gguf";
  3324. params.port = 8012;
  3325. params.n_ubatch = 1024;
  3326. params.n_batch = 1024;
  3327. params.n_ctx = 0;
  3328. params.n_cache_reuse = 256;
  3329. }
  3330. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3331. add_opt(common_arg(
  3332. {"--fim-qwen-3b-default"},
  3333. string_format("use default Qwen 2.5 Coder 3B (note: can download weights from the internet)"),
  3334. [](common_params & params) {
  3335. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-3B-Q8_0-GGUF";
  3336. params.model.hf_file = "qwen2.5-coder-3b-q8_0.gguf";
  3337. params.port = 8012;
  3338. params.n_ubatch = 1024;
  3339. params.n_batch = 1024;
  3340. params.n_ctx = 0;
  3341. params.n_cache_reuse = 256;
  3342. }
  3343. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3344. add_opt(common_arg(
  3345. {"--fim-qwen-7b-default"},
  3346. string_format("use default Qwen 2.5 Coder 7B (note: can download weights from the internet)"),
  3347. [](common_params & params) {
  3348. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
  3349. params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
  3350. params.port = 8012;
  3351. params.n_ubatch = 1024;
  3352. params.n_batch = 1024;
  3353. params.n_ctx = 0;
  3354. params.n_cache_reuse = 256;
  3355. }
  3356. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3357. add_opt(common_arg(
  3358. {"--fim-qwen-7b-spec"},
  3359. string_format("use Qwen 2.5 Coder 7B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
  3360. [](common_params & params) {
  3361. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
  3362. params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
  3363. params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
  3364. params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
  3365. params.port = 8012;
  3366. params.n_ubatch = 1024;
  3367. params.n_batch = 1024;
  3368. params.n_ctx = 0;
  3369. params.n_cache_reuse = 256;
  3370. }
  3371. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3372. add_opt(common_arg(
  3373. {"--fim-qwen-14b-spec"},
  3374. string_format("use Qwen 2.5 Coder 14B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
  3375. [](common_params & params) {
  3376. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-14B-Q8_0-GGUF";
  3377. params.model.hf_file = "qwen2.5-coder-14b-q8_0.gguf";
  3378. params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
  3379. params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
  3380. params.port = 8012;
  3381. params.n_ubatch = 1024;
  3382. params.n_batch = 1024;
  3383. params.n_ctx = 0;
  3384. params.n_cache_reuse = 256;
  3385. }
  3386. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3387. add_opt(common_arg(
  3388. {"--fim-qwen-30b-default"},
  3389. string_format("use default Qwen 3 Coder 30B A3B Instruct (note: can download weights from the internet)"),
  3390. [](common_params & params) {
  3391. params.model.hf_repo = "ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF";
  3392. params.model.hf_file = "qwen3-coder-30b-a3b-instruct-q8_0.gguf";
  3393. params.port = 8012;
  3394. params.n_ubatch = 1024;
  3395. params.n_batch = 1024;
  3396. params.n_ctx = 0;
  3397. params.n_cache_reuse = 256;
  3398. }
  3399. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3400. add_opt(common_arg(
  3401. {"--gpt-oss-20b-default"},
  3402. string_format("use gpt-oss-20b (note: can download weights from the internet)"),
  3403. [](common_params & params) {
  3404. params.model.hf_repo = "ggml-org/gpt-oss-20b-GGUF";
  3405. params.model.hf_file = "gpt-oss-20b-mxfp4.gguf";
  3406. params.port = 8013;
  3407. params.n_ubatch = 2048;
  3408. params.n_batch = 32768;
  3409. params.n_parallel = 2;
  3410. params.n_ctx = 131072*params.n_parallel;
  3411. params.sampling.temp = 1.0f;
  3412. params.sampling.top_p = 1.0f;
  3413. params.sampling.top_k = 0;
  3414. params.sampling.min_p = 0.01f;
  3415. params.use_jinja = true;
  3416. //params.default_template_kwargs["reasoning_effort"] = "\"high\"";
  3417. }
  3418. ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}));
  3419. add_opt(common_arg(
  3420. {"--gpt-oss-120b-default"},
  3421. string_format("use gpt-oss-120b (note: can download weights from the internet)"),
  3422. [](common_params & params) {
  3423. params.model.hf_repo = "ggml-org/gpt-oss-120b-GGUF";
  3424. params.port = 8013;
  3425. params.n_ubatch = 2048;
  3426. params.n_batch = 32768;
  3427. params.n_parallel = 2;
  3428. params.n_ctx = 131072*params.n_parallel;
  3429. params.sampling.temp = 1.0f;
  3430. params.sampling.top_p = 1.0f;
  3431. params.sampling.top_k = 0;
  3432. params.sampling.min_p = 0.01f;
  3433. params.use_jinja = true;
  3434. //params.default_template_kwargs["reasoning_effort"] = "\"high\"";
  3435. }
  3436. ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}));
  3437. add_opt(common_arg(
  3438. {"--vision-gemma-4b-default"},
  3439. string_format("use Gemma 3 4B QAT (note: can download weights from the internet)"),
  3440. [](common_params & params) {
  3441. params.model.hf_repo = "ggml-org/gemma-3-4b-it-qat-GGUF";
  3442. params.port = 8014;
  3443. params.n_ctx = 0;
  3444. params.use_jinja = true;
  3445. }
  3446. ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}));
  3447. add_opt(common_arg(
  3448. {"--vision-gemma-12b-default"},
  3449. string_format("use Gemma 3 12B QAT (note: can download weights from the internet)"),
  3450. [](common_params & params) {
  3451. params.model.hf_repo = "ggml-org/gemma-3-12b-it-qat-GGUF";
  3452. params.port = 8014;
  3453. params.n_ctx = 0;
  3454. params.use_jinja = true;
  3455. }
  3456. ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}));
  3457. return ctx_arg;
  3458. }
  3459. void common_params_add_preset_options(std::vector<common_arg> & args) {
  3460. // arguments below won't be treated as CLI args, only preset options
  3461. args.push_back(common_arg(
  3462. {"load-on-startup"}, "NAME",
  3463. "in server router mode, autoload this model on startup",
  3464. [](common_params &, const std::string &) { /* unused */ }
  3465. ).set_env(COMMON_ARG_PRESET_LOAD_ON_STARTUP).set_preset_only());
  3466. args.push_back(common_arg(
  3467. {"stop-timeout"}, "SECONDS",
  3468. "in server router mode, force-kill model instance after this many seconds of graceful shutdown",
  3469. [](common_params &, int) { /* unused */ }
  3470. ).set_env(COMMON_ARG_PRESET_STOP_TIMEOUT).set_preset_only());
  3471. // args.push_back(common_arg(
  3472. // {"pin"},
  3473. // "in server router mode, do not unload this model if models_max is exceeded",
  3474. // [](common_params &) { /* unused */ }
  3475. // ).set_preset_only());
  3476. }