| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421 |
- #include "arg.h"
- #include "common.h"
- #include "log.h"
- #include "llama.h"
- #include "ggml.h"
- #include <cmath>
- #include <cstdint>
- #include <cstdlib>
- #include <string>
- #include <vector>
- #include <filesystem>
- #include <fstream>
- #include <regex>
- static void print_usage(int, char ** argv) {
- const std::string usage_template = R"(
- example usage:
- Print tensors:
- {prog} -m model.gguf -p "Hello my name is" --verbose
- The tensors to be printed can be filtered with --tensor-filter option.
- Save logits/embeddings:
- {prog} -m model.gguf -p "Hello my name is" --save-logits
- Add --embedding to save embeddings)" "\n";
- // Fix the source code indentation above that is introduced by the raw string literal.
- std::string usage = std::regex_replace(usage_template, std::regex("\\n {8}"), "\n");
- usage = std::regex_replace(usage, std::regex("\\{prog\\}"), argv[0]);
- LOG("%s\n", usage.c_str());
- }
- static bool ggml_debug(struct ggml_tensor * t, bool ask, void * user_data);
- struct callback_data {
- std::vector<uint8_t> data;
- std::vector<std::regex> tensor_filters;
- callback_data() = default;
- callback_data(common_params & params, const std::vector<std::string> & filter_patterns) {
- for (const auto & pattern : filter_patterns) {
- try {
- std::string anchored_pattern = "^" + pattern;
- tensor_filters.emplace_back(anchored_pattern, std::regex::optimize);
- } catch (const std::regex_error & e) {
- throw std::runtime_error("Invalid regex pattern '" + pattern + "': " + e.what());
- }
- }
- params.cb_eval = ggml_debug;
- params.cb_eval_user_data = this;
- }
- };
- struct output_data {
- float * data_ptr = nullptr;
- int data_size = 0;
- std::string type_suffix;
- std::vector<float> storage;
- std::string prompt;
- std::vector<llama_token> tokens;
- output_data(llama_context * ctx, const llama_model * model, const common_params & params) {
- const llama_vocab * vocab = llama_model_get_vocab(model);
- const bool add_bos = llama_vocab_get_add_bos(vocab);
- tokens = common_tokenize(ctx, params.prompt, add_bos);
- prompt = params.prompt;
- if (params.embedding) {
- const int n_embd = llama_model_n_embd_out(model);
- const bool pooling_enabled = llama_pooling_type(ctx) != LLAMA_POOLING_TYPE_NONE;
- const int n_embd_count = pooling_enabled ? 1 : tokens.size();
- const int n_embeddings = n_embd * n_embd_count;
- float * embeddings;
- if (pooling_enabled) {
- embeddings = llama_get_embeddings_seq(ctx, 0);
- storage.resize(n_embeddings);
- common_embd_normalize(embeddings, storage.data(), n_embeddings, params.embd_normalize);
- embeddings = storage.data();
- } else {
- embeddings = llama_get_embeddings(ctx);
- }
- data_ptr = embeddings;
- data_size = n_embeddings;
- type_suffix = "-embeddings";
- } else {
- const float * logits = llama_get_logits_ith(ctx, tokens.size() - 1);
- const int n_logits = llama_vocab_n_tokens(vocab);
- data_ptr = const_cast<float*>(logits);
- data_size = n_logits;
- type_suffix = "";
- }
- }
- };
- static std::string ggml_ne_string(const ggml_tensor * t) {
- std::string str;
- for (int i = 0; i < GGML_MAX_DIMS; ++i) {
- str += std::to_string(t->ne[i]);
- if (i + 1 < GGML_MAX_DIMS) {
- str += ", ";
- }
- }
- return str;
- }
- static inline float ggml_compute_bf16_to_fp32(ggml_bf16_t h) {
- union {
- float f;
- uint32_t i;
- } u;
- u.i = (uint32_t)h.bits << 16;
- return u.f;
- }
- static float ggml_get_float_value(const uint8_t * data, ggml_type type,
- const size_t * nb, size_t i0, size_t i1, size_t i2, size_t i3) {
- size_t i = i3 * nb[3] + i2 * nb[2] + i1 * nb[1] + i0 * nb[0];
- switch (type) {
- case GGML_TYPE_F16:
- return ggml_fp16_to_fp32(*(const ggml_fp16_t *) &data[i]);
- case GGML_TYPE_F32:
- return *(const float *) &data[i];
- case GGML_TYPE_I64:
- return (float) *(const int64_t *) &data[i];
- case GGML_TYPE_I32:
- return (float) *(const int32_t *) &data[i];
- case GGML_TYPE_I16:
- return (float) *(const int16_t *) &data[i];
- case GGML_TYPE_I8:
- return (float) *(const int8_t *) &data[i];
- case GGML_TYPE_BF16:
- return ggml_compute_bf16_to_fp32(*(const ggml_bf16_t *) &data[i]);
- default:
- GGML_ABORT("fatal error");
- }
- }
- static void ggml_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne, const size_t * nb, int64_t n) {
- GGML_ASSERT(n > 0);
- float sum = 0;
- float sum_sq = 0.0;
- for (int64_t i3 = 0; i3 < ne[3]; i3++) {
- for (int64_t i2 = 0; i2 < ne[2]; i2++) {
- for (int64_t i1 = 0; i1 < ne[1]; i1++) {
- for (int64_t i0 = 0; i0 < ne[0]; i0++) {
- const float v = ggml_get_float_value(data, type, nb, i0, i1, i2, i3);
- sum += v;
- sum_sq += v * v;
- }
- }
- }
- }
- for (int64_t i3 = 0; i3 < ne[3]; i3++) {
- LOG_DBG(" [\n");
- for (int64_t i2 = 0; i2 < ne[2]; i2++) {
- if (i2 == n && ne[2] > 2*n) {
- LOG_DBG(" ..., \n");
- i2 = ne[2] - n;
- }
- LOG_DBG(" [\n");
- for (int64_t i1 = 0; i1 < ne[1]; i1++) {
- if (i1 == n && ne[1] > 2*n) {
- LOG_DBG(" ..., \n");
- i1 = ne[1] - n;
- }
- LOG_DBG(" [");
- for (int64_t i0 = 0; i0 < ne[0]; i0++) {
- if (i0 == n && ne[0] > 2*n) {
- LOG_DBG("..., ");
- i0 = ne[0] - n;
- }
- const float v = ggml_get_float_value(data, type, nb, i0, i1, i2, i3);
- LOG_DBG("%12.4f", v);
- if (i0 < ne[0] - 1) {
- LOG_DBG(", ");
- }
- }
- LOG_DBG("],\n");
- }
- LOG_DBG(" ],\n");
- }
- LOG_DBG(" ]\n");
- LOG_DBG(" sum = %f\n", sum);
- LOG_DBG(" sum_sq = %f\n", sum_sq);
- }
- if (std::isnan(sum)) {
- LOG_ERR("encountered NaN - aborting\n");
- exit(0);
- }
- }
- /**
- * GGML operations callback during the graph execution.
- *
- * @param t current tensor
- * @param ask when ask is true, the scheduler wants to know if we are interested in data from this tensor
- * if we return true, a follow-up call will be made with ask=false in which we can do the actual collection.
- * see ggml_backend_sched_eval_callback
- * @param user_data user data to pass at each call back
- * @return true to receive data or continue the graph, false otherwise
- */
- static bool ggml_debug(struct ggml_tensor * t, bool ask, void * user_data) {
- auto * cb_data = (callback_data *) user_data;
- const struct ggml_tensor * src0 = t->src[0];
- const struct ggml_tensor * src1 = t->src[1];
- if (ask) {
- return true; // Always retrieve data
- }
- bool matches_filter = cb_data->tensor_filters.empty();
- if (!matches_filter) {
- for (const auto & filter : cb_data->tensor_filters) {
- if (std::regex_search(t->name, filter)) {
- matches_filter = true;
- break;
- }
- }
- }
- char src1_str[128] = {0};
- if (src1) {
- snprintf(src1_str, sizeof(src1_str), "%s{%s}", src1->name, ggml_ne_string(src1).c_str());
- }
- if (matches_filter) {
- LOG_DBG("%s: %24s = (%s) %10s(%s{%s}, %s}) = {%s}\n", __func__,
- t->name,
- ggml_type_name(t->type),
- ggml_op_desc(t),
- src0->name,
- ggml_ne_string(src0).c_str(),
- src1 ? src1_str : "",
- ggml_ne_string(t).c_str());
- }
- const bool is_host = ggml_backend_buffer_is_host(t->buffer);
- if (!is_host) {
- auto n_bytes = ggml_nbytes(t);
- cb_data->data.resize(n_bytes);
- ggml_backend_tensor_get(t, cb_data->data.data(), 0, n_bytes);
- }
- if (!ggml_is_quantized(t->type) && matches_filter) {
- uint8_t * data = is_host ? (uint8_t *) t->data : cb_data->data.data();
- ggml_print_tensor(data, t->type, t->ne, t->nb, 3);
- }
- return true;
- }
- static void save_output_data(const output_data & output, const std::string & model_name, const std::string & output_dir) {
- std::filesystem::create_directory(output_dir);
- auto base_path = std::filesystem::path{output_dir} / ("llamacpp-" + model_name + output.type_suffix);
- // Save logits/embeddings to binary file.
- {
- std::filesystem::path filepath{base_path.string() + ".bin"};
- std::ofstream file{filepath, std::ios::binary};
- if (!file) {
- throw std::runtime_error("failed to open binary output file: " + filepath.string());
- }
- file.write(reinterpret_cast<const char*>(output.data_ptr), output.data_size * sizeof(float));
- LOG("Data saved to %s\n", filepath.c_str());
- }
- // Save logits/embeddings to text file.
- {
- std::filesystem::path filepath{base_path.string() + ".txt"};
- std::ofstream file{filepath};
- if (!file) {
- throw std::runtime_error("failed to open text output file: " + filepath.string());
- }
- for (int i = 0; i < output.data_size; i++) {
- file << i << ": " << output.data_ptr[i] << '\n';
- }
- LOG("Data saved to %s\n", filepath.c_str());
- }
- // Save prompt and tokens to text file.
- {
- std::filesystem::path filepath{base_path.string() + "-prompt.txt"};
- std::ofstream file{filepath};
- if (!file) {
- throw std::runtime_error("failed to open prompt output file: " + filepath.string());
- }
- file << "prompt: " << output.prompt << '\n';
- file << "n_tokens: " << output.tokens.size() << '\n';
- file << "token ids: ";
- for (size_t i = 0; i < output.tokens.size(); i++) {
- file << output.tokens[i];
- if (i + 1 < output.tokens.size()) {
- file << ", ";
- }
- }
- file << '\n';
- LOG("Prompt saved to %s\n", filepath.c_str());
- }
- // Save token ids to binary file.
- {
- std::filesystem::path filepath{base_path.string() + "-tokens.bin"};
- std::ofstream file{filepath, std::ios::binary};
- if (!file) {
- throw std::runtime_error("failed to open tokens binary file: " + filepath.string());
- }
- file.write(reinterpret_cast<const char*>(output.tokens.data()), output.tokens.size() * sizeof(llama_token));
- LOG("Tokens saved to %s\n", filepath.c_str());
- }
- }
- static void print_tokenized_prompt(llama_context * ctx, const std::vector<llama_token> & tokens, const std::string & prompt) {
- const llama_model * model = llama_get_model(ctx);
- const llama_vocab * vocab = llama_model_get_vocab(model);
- LOG("Model add_bos: %s\n", llama_vocab_get_add_bos(vocab) ? "true" : "false");
- LOG("Input prompt: \"%s\"\n", prompt.c_str());
- LOG("Token ids (%zu):\n", tokens.size());
- for (auto id : tokens) {
- std::string piece(128, '\0');
- int n = llama_token_to_piece(vocab, id, piece.data(), piece.size(), 0, true);
- if (n < 0) {
- LOG_ERR("failed to convert token %d to piece\n", id);
- continue;
- }
- piece.resize(n);
- LOG("%s(%d) ", piece.c_str(), id);
- }
- LOG("\n");
- }
- static bool run(llama_context * ctx, const common_params & params) {
- const llama_model * model = llama_get_model(ctx);
- const llama_vocab * vocab = llama_model_get_vocab(model);
- const bool add_bos = llama_vocab_get_add_bos(vocab);
- std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, add_bos);
- if (tokens.empty()) {
- LOG_ERR("%s : there are not input tokens to process - (try to provide a prompt with '-p')\n", __func__);
- return false;
- }
- if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size()))) {
- LOG_ERR("%s : failed to eval\n", __func__);
- return false;
- }
- print_tokenized_prompt(ctx, tokens, params.prompt);
- if (params.save_logits) {
- output_data output {ctx, model, params};
- std::filesystem::path model_path{params.model.path};
- std::string model_name{model_path.stem().string()};
- save_output_data(output, model_name, params.logits_output_dir);
- }
- return true;
- }
- int main(int argc, char ** argv) {
- common_params params;
- if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_DEBUG, print_usage)) {
- return 1;
- }
- common_init();
- llama_backend_init();
- llama_numa_init(params.numa);
- callback_data cb_data(params, params.tensor_filter);
- auto llama_init = common_init_from_params(params);
- auto * model = llama_init->model();
- auto * ctx = llama_init->context();
- if (model == nullptr || ctx == nullptr) {
- LOG_ERR("%s : failed to init\n", __func__);
- return 1;
- }
- {
- LOG_INF("\n");
- LOG_INF("%s\n", common_params_get_system_info(params).c_str());
- LOG_INF("\n");
- }
- if (!run(ctx, params)) {
- return 1;
- }
- LOG("\n");
- llama_perf_context_print(ctx);
- llama_backend_free();
- return 0;
- }
|