| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245 |
- #!/usr/bin/env python3
- import os
- import sys
- import torch
- import numpy as np
- from pathlib import Path
- def get_model_name_from_env_path(env_path_name):
- model_path = os.getenv(env_path_name)
- if not model_path:
- print(f"Error: {env_path_name} environment variable not set")
- sys.exit(1)
- if not os.path.exists(model_path):
- print(f"Error: Model file not found: {model_path}")
- sys.exit(1)
- name = os.path.basename(os.path.normpath(model_path))
- if name.endswith(".gguf"):
- name = name[:-5]
- return name
- def summarize(tensor: torch.Tensor, name: str, max_seq: int = 3, max_vals: int = 3):
- """
- Print a tensor in llama.cpp debug style.
- Supports:
- - 2D tensors (seq, hidden)
- - 3D tensors (batch, seq, hidden)
- - 4D tensors (batch, seq, heads, dim_per_head) via flattening heads × dim_per_head
- Shows first and last max_vals of each vector per sequence position.
- """
- t = tensor.detach().to(torch.float32).cpu()
- # Determine dimensions
- if t.ndim == 3:
- _, s, _ = t.shape
- elif t.ndim == 2:
- _, s = 1, t.shape[0]
- t = t.unsqueeze(0)
- elif t.ndim == 4:
- _, s, _, _ = t.shape
- else:
- print(f"Skipping tensor due to unsupported dimensions: {t.ndim}")
- return
- ten_shape = t.shape
- print(f"ggml_debug: {name} = (f32) ... = {{{ten_shape}}}")
- print(" [")
- print(" [")
- # Determine indices for first and last sequences
- first_indices = list(range(min(s, max_seq)))
- last_indices = list(range(max(0, s - max_seq), s))
- # Check if there's an overlap between first and last indices or if we're at the edge case of s = 2 * max_seq
- has_overlap = bool(set(first_indices) & set(last_indices)) or (max_seq * 2 == s)
- # Combine indices
- if has_overlap:
- # If there's overlap, just use the combined unique indices
- indices = sorted(list(set(first_indices + last_indices)))
- separator_index = None
- else:
- # If no overlap, we'll add a separator between first and last sequences
- indices = first_indices + last_indices
- separator_index = len(first_indices)
- for i, si in enumerate(indices):
- # Add separator if needed
- if separator_index is not None and i == separator_index:
- print(" ...")
- # Extract appropriate slice
- vec = t[0, si]
- if vec.ndim == 2: # 4D case: flatten heads × dim_per_head
- flat = vec.flatten().tolist()
- else: # 2D or 3D case
- flat = vec.tolist()
- # First and last slices
- first = flat[:max_vals]
- last = flat[-max_vals:] if len(flat) >= max_vals else flat
- first_str = ", ".join(f"{v:12.4f}" for v in first)
- last_str = ", ".join(f"{v:12.4f}" for v in last)
- print(f" [{first_str}, ..., {last_str}]")
- print(" ],")
- print(" ]")
- print(f" sum = {t.sum().item():.6f}\n")
- def debug_hook(name):
- def fn(_m, input, output):
- if isinstance(input, torch.Tensor):
- summarize(input, name + "_in")
- elif isinstance(input, (tuple, list)) and len(input) > 0 and isinstance(input[0], torch.Tensor):
- summarize(input[0], name + "_in")
- if isinstance(output, torch.Tensor):
- summarize(output, name + "_out")
- elif isinstance(output, (tuple, list)) and len(output) > 0 and isinstance(output[0], torch.Tensor):
- summarize(output[0], name + "_out")
- return fn
- def setup_rope_debug(model_module_path: str, function_name: str = "apply_rotary_pos_emb"):
- """
- Apply monkey patch to dump RoPE activations for debugging.
- Args:
- model_module_path: Path to the model module (e.g., "transformers.models.apertus.modeling_apertus")
- function_name: Name of the RoPE function to patch (default: "apply_rotary_pos_emb")
- Example:
- from utils.common import setup_rope_debug
- setup_rope_debug("transformers.models.apertus.modeling_apertus")
- """
- import importlib
- # Import the module and get the original function
- module = importlib.import_module(model_module_path)
- orig_rope = getattr(module, function_name)
- # Set torch print options for better debugging
- torch.set_printoptions(threshold=float('inf'))
- torch.set_printoptions(precision=6, sci_mode=False)
- def debug_rope(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
- # log inputs
- summarize(q, "RoPE.q_in")
- summarize(k, "RoPE.k_in")
- # call original
- q_out, k_out = orig_rope(q, k, cos, sin, position_ids, unsqueeze_dim)
- # log outputs
- summarize(q_out, "RoPE.q_out")
- summarize(k_out, "RoPE.k_out")
- return q_out, k_out
- # Patch it
- setattr(module, function_name, debug_rope)
- print(f"RoPE debug patching applied to {model_module_path}.{function_name}")
- def save_output_data(data, tokens, prompt, model_name, type_suffix="", output_dir="data"):
- """
- Save output data (logits/embeddings), tokens, and prompt to files.
- Args:
- data: numpy array of floats (logits or embeddings)
- tokens: list or array of token IDs
- prompt: string containing the input prompt
- model_name: name of the model
- type_suffix: optional suffix like "-embeddings" (default: "")
- output_dir: directory to save files (default: "data")
- Creates the following files in output_dir:
- - pytorch-{model_name}{type_suffix}.bin
- - pytorch-{model_name}{type_suffix}.txt
- - pytorch-{model_name}{type_suffix}-prompt.txt
- - pytorch-{model_name}{type_suffix}-tokens.bin
- """
- data_dir = Path(output_dir)
- data_dir.mkdir(exist_ok=True)
- base_path = data_dir / f"pytorch-{model_name}{type_suffix}"
- # Convert and flatten logits/embeddings
- data = data.cpu().numpy() if isinstance(data, torch.Tensor) else np.asarray(data)
- data = data.flatten() if data.ndim > 1 else data
- # Save logits/embedding files
- data.astype(np.float32).tofile(f"{base_path}.bin")
- print(f"Data saved to {base_path}.bin")
- with open(f"{base_path}.txt", "w") as f:
- f.writelines(f"{i}: {value:.6f}\n" for i, value in enumerate(data))
- print(f"Data saved to {base_path}.txt")
- # Convert and flatten tokens
- tokens = tokens.cpu().numpy() if isinstance(tokens, torch.Tensor) else np.asarray(tokens)
- tokens = tokens.flatten() if tokens.ndim > 1 else tokens
- # Save token binary file
- tokens.astype(np.int32).tofile(f"{base_path}-tokens.bin")
- print(f"Tokens saved to {base_path}-tokens.bin")
- # Save prompt file
- with open(f"{base_path}-prompt.txt", "w") as f:
- f.write(f"prompt: {prompt}\n")
- f.write(f"n_tokens: {len(tokens)}\n")
- f.write(f"token ids: {', '.join(str(int(tid)) for tid in tokens)}\n")
- print(f"Prompt saved to {base_path}-prompt.txt")
- def compare_tokens(original, converted, type_suffix="", output_dir="data"):
- data_dir = Path(output_dir)
- # Read tokens from both models
- tokens1_file = data_dir / f"{original}{type_suffix}-tokens.bin"
- tokens2_file = data_dir / f"{converted}{type_suffix}-tokens.bin"
- if not tokens1_file.exists():
- print(f"Error: Token file not found: {tokens1_file}")
- return False
- if not tokens2_file.exists():
- print(f"Error: Token file not found: {tokens2_file}")
- return False
- tokens1 = np.fromfile(tokens1_file, dtype=np.int32)
- tokens2 = np.fromfile(tokens2_file, dtype=np.int32)
- print(f"\nComparing tokens between:")
- print(f" Original : {original} ({len(tokens1)} tokens)")
- print(f" Converted: {converted} ({len(tokens2)} tokens)")
- if len(tokens1) != len(tokens2):
- print(f"\n❌ Token count mismatch: {len(tokens1)} vs {len(tokens2)}")
- return False
- if np.array_equal(tokens1, tokens2):
- print(f"\n✅ All {len(tokens1)} tokens match!")
- return True
- mismatches = np.where(tokens1 != tokens2)[0]
- print(f"\n❌ Found {len(mismatches)} mismatched tokens:")
- num_to_show = min(len(mismatches), 10)
- for idx in mismatches[:num_to_show]:
- print(f" Position {idx}: {tokens1[idx]} vs {tokens2[idx]}")
- if len(mismatches) > num_to_show:
- print(f" ... and {len(mismatches) - num_to_show} more mismatches")
- return False
|