llama-model.cpp 579 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418
  1. #include "llama-model.h"
  2. #include "llama-impl.h"
  3. #include "llama-mmap.h"
  4. #include "llama-batch.h"
  5. #include "llama-cparams.h"
  6. #include "llama-model-loader.h"
  7. #include "llama-kv-cache.h"
  8. #include "ggml-cpp.h"
  9. #include <algorithm>
  10. #include <cassert>
  11. #include <cmath>
  12. #include <cfloat>
  13. #include <cstring>
  14. #include <cmath>
  15. #include <functional>
  16. #include <map>
  17. #include <regex>
  18. #include <sstream>
  19. #include <stdexcept>
  20. const char * llm_type_name(llm_type type) {
  21. switch (type) {
  22. case LLM_TYPE_14M: return "14M";
  23. case LLM_TYPE_17M: return "17M";
  24. case LLM_TYPE_22M: return "22M";
  25. case LLM_TYPE_33M: return "33M";
  26. case LLM_TYPE_60M: return "60M";
  27. case LLM_TYPE_70M: return "70M";
  28. case LLM_TYPE_80M: return "80M";
  29. case LLM_TYPE_109M: return "109M";
  30. case LLM_TYPE_137M: return "137M";
  31. case LLM_TYPE_160M: return "160M";
  32. case LLM_TYPE_190M: return "190M";
  33. case LLM_TYPE_220M: return "220M";
  34. case LLM_TYPE_250M: return "250M";
  35. case LLM_TYPE_270M: return "270M";
  36. case LLM_TYPE_335M: return "335M";
  37. case LLM_TYPE_410M: return "410M";
  38. case LLM_TYPE_450M: return "450M";
  39. case LLM_TYPE_475M: return "475M";
  40. case LLM_TYPE_770M: return "770M";
  41. case LLM_TYPE_780M: return "780M";
  42. case LLM_TYPE_0_5B: return "0.5B";
  43. case LLM_TYPE_0_6B: return "0.6B";
  44. case LLM_TYPE_1B: return "1B";
  45. case LLM_TYPE_1_3B: return "1.3B";
  46. case LLM_TYPE_1_4B: return "1.4B";
  47. case LLM_TYPE_1_5B: return "1.5B";
  48. case LLM_TYPE_1_6B: return "1.6B";
  49. case LLM_TYPE_1_7B: return "1.7B";
  50. case LLM_TYPE_1_8B: return "1.8B";
  51. case LLM_TYPE_2B: return "2B";
  52. case LLM_TYPE_2_8B: return "2.8B";
  53. case LLM_TYPE_2_9B: return "2.9B";
  54. case LLM_TYPE_3B: return "3B";
  55. case LLM_TYPE_4B: return "4B";
  56. case LLM_TYPE_6B: return "6B";
  57. case LLM_TYPE_6_9B: return "6.9B";
  58. case LLM_TYPE_7B: return "7B";
  59. case LLM_TYPE_8B: return "8B";
  60. case LLM_TYPE_9B: return "9B";
  61. case LLM_TYPE_11B: return "11B";
  62. case LLM_TYPE_12B: return "12B";
  63. case LLM_TYPE_13B: return "13B";
  64. case LLM_TYPE_14B: return "14B";
  65. case LLM_TYPE_15B: return "15B";
  66. case LLM_TYPE_16B: return "16B";
  67. case LLM_TYPE_20B: return "20B";
  68. case LLM_TYPE_27B: return "27B";
  69. case LLM_TYPE_30B: return "30B";
  70. case LLM_TYPE_32B: return "32B";
  71. case LLM_TYPE_34B: return "34B";
  72. case LLM_TYPE_35B: return "35B";
  73. case LLM_TYPE_40B: return "40B";
  74. case LLM_TYPE_65B: return "65B";
  75. case LLM_TYPE_70B: return "70B";
  76. case LLM_TYPE_236B: return "236B";
  77. case LLM_TYPE_290B: return "290B";
  78. case LLM_TYPE_314B: return "314B";
  79. case LLM_TYPE_405B: return "405B";
  80. case LLM_TYPE_671B: return "671B";
  81. case LLM_TYPE_SMALL: return "0.1B";
  82. case LLM_TYPE_MEDIUM: return "0.4B";
  83. case LLM_TYPE_LARGE: return "0.8B";
  84. case LLM_TYPE_XL: return "1.5B";
  85. case LLM_TYPE_A1_7B: return "A1.7B";
  86. case LLM_TYPE_A2_7B: return "A2.7B";
  87. case LLM_TYPE_8x7B: return "8x7B";
  88. case LLM_TYPE_8x22B: return "8x22B";
  89. case LLM_TYPE_16x12B: return "16x12B";
  90. case LLM_TYPE_16x3_8B: return "16x3.8B";
  91. case LLM_TYPE_10B_128x3_66B: return "10B+128x3.66B";
  92. case LLM_TYPE_57B_A14B: return "57B.A14B";
  93. case LLM_TYPE_17B_16E: return "17Bx16E (Scout)";
  94. case LLM_TYPE_17B_128E: return "17Bx128E (Maverick)";
  95. case LLM_TYPE_30B_A3B: return "30B.A3B";
  96. case LLM_TYPE_235B_A22B: return "235B.A22B";
  97. default: return "?B";
  98. }
  99. }
  100. static const char * llama_expert_gating_func_name(llama_expert_gating_func_type type) {
  101. switch (type) {
  102. case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX: return "softmax";
  103. case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID: return "sigmoid";
  104. default: return "unknown";
  105. }
  106. }
  107. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  108. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  109. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  110. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  111. { LLAMA_ROPE_SCALING_TYPE_LONGROPE, "longrope" },
  112. };
  113. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  114. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  115. if (kv.second == name) {
  116. return (llama_rope_scaling_type) kv.first;
  117. }
  118. }
  119. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  120. }
  121. // checks if the weight tensor can be used with the specified buffer type and device
  122. static bool weight_buft_supported(const llama_hparams & hparams, ggml_tensor * w, ggml_op op, ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev) {
  123. GGML_ASSERT(w != nullptr);
  124. if (op == GGML_OP_NONE) {
  125. return true;
  126. }
  127. ggml_init_params params = {
  128. /*.mem_size =*/ ggml_tensor_overhead()*8,
  129. /*.mem_buffer =*/ NULL,
  130. /*.no_alloc =*/ true,
  131. };
  132. ggml_context_ptr ctx_ptr { ggml_init(params) };
  133. if (!ctx_ptr) {
  134. throw std::runtime_error(format("failed to create ggml context"));
  135. }
  136. ggml_context * ctx = ctx_ptr.get();
  137. ggml_tensor * op_tensor = nullptr;
  138. switch (op) {
  139. case GGML_OP_GET_ROWS:
  140. {
  141. ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512);
  142. op_tensor = ggml_get_rows(ctx, w, b);
  143. } break;
  144. case GGML_OP_MUL_MAT:
  145. {
  146. ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], 512, w->ne[2], w->ne[3]);
  147. op_tensor = ggml_mul_mat(ctx, w, b);
  148. } break;
  149. case GGML_OP_MUL_MAT_ID:
  150. {
  151. int n_expert_used = hparams.n_expert_used;
  152. ggml_tensor * b = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0], n_expert_used, 512);
  153. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_expert_used, 512);
  154. op_tensor = ggml_mul_mat_id(ctx, w, b, ids);
  155. } break;
  156. case GGML_OP_ADD:
  157. {
  158. ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
  159. op_tensor = ggml_add(ctx, a, w);
  160. } break;
  161. case GGML_OP_MUL:
  162. {
  163. ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
  164. op_tensor = ggml_mul(ctx, a, w);
  165. } break;
  166. case GGML_OP_DIV:
  167. {
  168. ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, w->ne[0]);
  169. op_tensor = ggml_div(ctx, a, w);
  170. } break;
  171. case GGML_OP_ROPE:
  172. {
  173. int n_embd_head = hparams.n_embd_head_v;
  174. int n_head = hparams.n_head();
  175. ggml_tensor * a = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd_head, n_head, 512);
  176. ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512);
  177. op_tensor = ggml_rope_ext(
  178. ctx, a, b, w,
  179. 0, 0, 0, 0, 0,
  180. 0, 0, 0, 0
  181. );
  182. } break;
  183. case GGML_OP_SSM_CONV:
  184. {
  185. // FIXME
  186. ggml_tensor * conv_x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, 12345, w->ne[1], 6789);
  187. op_tensor = ggml_ssm_conv(ctx, conv_x, w);
  188. } break;
  189. case GGML_OP_SSM_SCAN:
  190. {
  191. // FIXME
  192. const int64_t d_state = w->ne[0];
  193. const int64_t d_inner = w->ne[1];
  194. const int64_t n_seq_tokens = 512;
  195. const int64_t n_seqs = 1;
  196. ggml_tensor * s = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, d_inner, n_seqs);
  197. ggml_tensor * x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_seq_tokens, n_seqs);
  198. ggml_tensor * dt = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_seq_tokens, n_seqs);
  199. ggml_tensor * B = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, n_seq_tokens, n_seqs);
  200. ggml_tensor * C = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, n_seq_tokens, n_seqs);
  201. op_tensor = ggml_ssm_scan(ctx, s, x, dt, w, B, C);
  202. } break;
  203. case GGML_OP_RWKV_WKV6:
  204. {
  205. // FIXME
  206. const int64_t S = 123;
  207. const int64_t H = 123;
  208. const int64_t n_tokens = 123;
  209. const int64_t n_seqs = 123;
  210. ggml_tensor * k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  211. ggml_tensor * v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  212. ggml_tensor * r = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  213. ggml_tensor * tf = w;
  214. ggml_tensor * td = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  215. ggml_tensor * state = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, S, n_seqs, S, H);
  216. op_tensor = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, state);
  217. } break;
  218. case GGML_OP_IM2COL:
  219. {
  220. const int n_embd = hparams.n_embd;
  221. ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, n_embd, w->ne[1], 1, 1);
  222. op_tensor = ggml_im2col(ctx, w, b, 1, 0, 0, 0, 1, 0, false, GGML_TYPE_F16);
  223. } break;
  224. default:
  225. GGML_ABORT("%s: missing test for op %s for tensor %s", __func__, ggml_op_name(op), w->name);
  226. }
  227. // create a temporary dummy buffer for the weight so that supports_op can check the buffer type
  228. GGML_ASSERT(w->buffer == nullptr);
  229. w->buffer = ggml_backend_buft_alloc_buffer(buft, 0);
  230. bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
  231. ggml_backend_buffer_free(w->buffer);
  232. w->buffer = nullptr;
  233. return op_supported;
  234. }
  235. // lists of buffer types used for each layer
  236. using buft_list_t = std::vector<std::pair<ggml_backend_dev_t, ggml_backend_buffer_type_t>>;
  237. // find the first buffer type in the list that can use the tensor
  238. static ggml_backend_buffer_type_t select_weight_buft(const llama_hparams & hparams, ggml_tensor * tensor, ggml_op op, const buft_list_t & buft_list) {
  239. GGML_ASSERT(!buft_list.empty());
  240. for (const auto & cur : buft_list) {
  241. ggml_backend_dev_t cur_dev = cur.first;
  242. ggml_backend_buffer_type_t cur_buft = cur.second;
  243. if (weight_buft_supported(hparams, tensor, op, cur_buft, cur_dev)) {
  244. return cur_buft;
  245. }
  246. }
  247. return nullptr;
  248. }
  249. // CPU: ACCEL -> GPU host -> CPU extra -> CPU
  250. static buft_list_t make_cpu_buft_list(const std::vector<ggml_backend_dev_t> & devices) {
  251. buft_list_t buft_list;
  252. // add ACCEL buffer types
  253. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  254. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  255. if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_ACCEL) {
  256. auto * buft = ggml_backend_dev_buffer_type(dev);
  257. // skip
  258. if (buft != ggml_backend_cpu_buffer_type()) {
  259. buft_list.emplace_back(dev, buft);
  260. }
  261. }
  262. }
  263. // add a host buffer type
  264. // storing the tensors in a host buffer is useful when the processing of large batches
  265. // is offloaded to a GPU device, since it reduces the time spent on data transfers
  266. // generally, this will be done using the first device in the list
  267. // a better approach would be to handle this on a weight-by-weight basis using the offload_op
  268. // function of the device to determine if it would benefit from being stored in a host buffer
  269. for (auto * dev : devices) {
  270. ggml_backend_buffer_type_t buft = ggml_backend_dev_host_buffer_type(dev);
  271. if (buft) {
  272. buft_list.emplace_back(dev, buft);
  273. break;
  274. }
  275. }
  276. // add extra buffer types, only if no GPU device is present
  277. // ref: https://github.com/ggml-org/llama.cpp/issues/12481#issuecomment-2743136094
  278. auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  279. auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
  280. auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
  281. ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_dev_get_extra_bufts");
  282. if (ggml_backend_dev_get_extra_bufts_fn) {
  283. ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(cpu_dev);
  284. while (extra_bufts && *extra_bufts) {
  285. buft_list.emplace_back(cpu_dev, *extra_bufts);
  286. ++extra_bufts;
  287. }
  288. }
  289. // add the CPU buffer type
  290. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  291. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  292. if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU) {
  293. buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev));
  294. }
  295. }
  296. return buft_list;
  297. }
  298. // GPU: split if LLAMA_SPLIT_MODE_ROW -> GPU
  299. static buft_list_t make_gpu_buft_list(ggml_backend_dev_t dev, llama_split_mode split_mode, const float * tensor_split) {
  300. buft_list_t buft_list;
  301. // add the device split buffer type if requested and available
  302. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  303. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  304. auto ggml_backend_split_buffer_type_fn = (ggml_backend_split_buffer_type_t)
  305. ggml_backend_reg_get_proc_address(reg, "ggml_backend_split_buffer_type");
  306. if (ggml_backend_split_buffer_type_fn) {
  307. size_t dev_index = [&]() {
  308. auto * reg = ggml_backend_dev_backend_reg(dev);
  309. for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); ++i) {
  310. if (ggml_backend_reg_dev_get(reg, i) == dev) {
  311. return i;
  312. }
  313. }
  314. throw std::runtime_error(format("device %s not found in its backend reg", ggml_backend_dev_name(dev)));
  315. }();
  316. auto * buft = ggml_backend_split_buffer_type_fn(dev_index, tensor_split);
  317. if (buft != nullptr) {
  318. buft_list.emplace_back(dev, buft);
  319. }
  320. }
  321. }
  322. // add the device default buffer type
  323. buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev));
  324. return buft_list;
  325. }
  326. struct llama_model::impl {
  327. impl() {}
  328. ~impl() {}
  329. uint64_t n_elements = 0;
  330. size_t n_bytes = 0;
  331. std::string desc_str;
  332. // model memory mapped files
  333. llama_mmaps mappings;
  334. // objects representing data potentially being locked in memory
  335. llama_mlocks mlock_bufs;
  336. llama_mlocks mlock_mmaps;
  337. // contexts where the model tensors metadata is stored
  338. std::vector<ggml_context_ptr> ctxs;
  339. // the model memory buffers for the tensor data
  340. std::vector<ggml_backend_buffer_ptr> bufs;
  341. buft_list_t cpu_buft_list;
  342. std::map<ggml_backend_dev_t, buft_list_t> gpu_buft_list;
  343. struct layer_dev {
  344. ggml_backend_dev_t dev;
  345. buft_list_t * buft_list;
  346. };
  347. layer_dev dev_input = {};
  348. layer_dev dev_output = {};
  349. std::vector<layer_dev> dev_layer;
  350. bool has_tensor_overrides;
  351. };
  352. llama_model::llama_model(const llama_model_params & params) : params(params), pimpl(std::make_unique<impl>()) {
  353. pimpl->has_tensor_overrides = params.tensor_buft_overrides && params.tensor_buft_overrides[0].pattern;
  354. }
  355. llama_model::~llama_model() {}
  356. void llama_model::load_stats(llama_model_loader & ml) {
  357. pimpl->n_elements = ml.n_elements;
  358. pimpl->n_bytes = ml.n_bytes;
  359. }
  360. void llama_model::load_arch(llama_model_loader & ml) {
  361. arch = ml.get_arch();
  362. if (arch == LLM_ARCH_UNKNOWN) {
  363. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  364. }
  365. }
  366. void llama_model::load_hparams(llama_model_loader & ml) {
  367. const gguf_context * ctx = ml.meta.get();
  368. // get metadata as string
  369. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  370. gguf_type type = gguf_get_kv_type(ctx, i);
  371. if (type == GGUF_TYPE_ARRAY) {
  372. continue;
  373. }
  374. const char * name = gguf_get_key(ctx, i);
  375. const std::string value = gguf_kv_to_str(ctx, i);
  376. gguf_kv.emplace(name, value);
  377. }
  378. // get general kv
  379. ml.get_key(LLM_KV_GENERAL_NAME, name, false);
  380. // everything past this point is not vocab-related
  381. if (hparams.vocab_only) {
  382. return;
  383. }
  384. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  385. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  386. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  387. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  388. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  389. if (arch == LLM_ARCH_WAVTOKENIZER_DEC) {
  390. ml.get_key(LLM_KV_FEATURES_LENGTH, hparams.n_embd_features);
  391. ml.get_key(LLM_KV_POSNET_EMBEDDING_LENGTH, hparams.posnet.n_embd);
  392. ml.get_key(LLM_KV_POSNET_BLOCK_COUNT, hparams.posnet.n_layer);
  393. ml.get_key(LLM_KV_CONVNEXT_EMBEDDING_LENGTH, hparams.convnext.n_embd);
  394. ml.get_key(LLM_KV_CONVNEXT_BLOCK_COUNT, hparams.convnext.n_layer);
  395. }
  396. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  397. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  398. if (hparams.n_expert > 0) {
  399. GGML_ASSERT(hparams.n_expert_used > 0);
  400. } else {
  401. GGML_ASSERT(hparams.n_expert_used == 0);
  402. }
  403. // zero-out the array hparams
  404. std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
  405. std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
  406. std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
  407. ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer, false);
  408. ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer, false);
  409. // n_head_kv is optional, default to n_head
  410. hparams.n_head_kv_arr = hparams.n_head_arr;
  411. ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv_arr, hparams.n_layer, false);
  412. bool rope_finetuned = false;
  413. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  414. hparams.rope_finetuned = rope_finetuned;
  415. hparams.n_ctx_orig_yarn = hparams.n_ctx_train;
  416. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn, false);
  417. // rope_freq_base (optional)
  418. hparams.rope_freq_base_train = 10000.0f;
  419. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  420. std::string rope_scaling("linear");
  421. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  422. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  423. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  424. // rope_freq_scale (inverse of the kv) is optional
  425. float ropescale = 0.0f;
  426. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  427. // try the old key name
  428. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  429. }
  430. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  431. // by default assume that the sliding-window layers use the same scaling type as the non-sliding-window layers
  432. hparams.rope_freq_base_train_swa = hparams.rope_freq_base_train;
  433. hparams.rope_freq_scale_train_swa = hparams.rope_freq_scale_train;
  434. ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);
  435. // non-transformer models do not have attention heads
  436. if (hparams.n_head() > 0) {
  437. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  438. // gpt-j n_rot = rotary_dim
  439. hparams.n_embd_head_k = hparams.n_embd / hparams.n_head();
  440. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  441. hparams.n_embd_head_v = hparams.n_embd / hparams.n_head();
  442. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  443. // sanity check for n_rot (optional)
  444. hparams.n_rot = hparams.n_embd_head_k;
  445. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  446. if (arch == LLM_ARCH_LLAMA || arch == LLM_ARCH_DECI || arch == LLM_ARCH_FALCON) {
  447. if (hparams.n_rot != hparams.n_embd_head_k) {
  448. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
  449. }
  450. }
  451. } else {
  452. hparams.n_rot = 0;
  453. hparams.n_embd_head_k = 0;
  454. hparams.n_embd_head_v = 0;
  455. }
  456. // for differentiating model types
  457. uint32_t n_vocab = 0;
  458. ml.get_key(LLM_KV_VOCAB_SIZE, n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, n_vocab, false);
  459. // arch-specific KVs
  460. switch (arch) {
  461. case LLM_ARCH_LLAMA:
  462. {
  463. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  464. if (hparams.n_expert == 8) {
  465. switch (hparams.n_layer) {
  466. case 32: type = LLM_TYPE_8x7B; break;
  467. case 56: type = LLM_TYPE_8x22B; break;
  468. default: type = LLM_TYPE_UNKNOWN;
  469. }
  470. } else {
  471. switch (hparams.n_layer) {
  472. case 16: type = LLM_TYPE_1B; break; // Llama 3.2 1B
  473. case 22: type = LLM_TYPE_1B; break;
  474. case 26: type = LLM_TYPE_3B; break;
  475. case 28: type = LLM_TYPE_3B; break; // Llama 3.2 3B
  476. // granite uses a vocab with len 49152
  477. case 32: type = n_vocab == 49152 ? LLM_TYPE_3B : (n_vocab < 40000 ? LLM_TYPE_7B : LLM_TYPE_8B); break;
  478. case 36: type = LLM_TYPE_8B; break; // granite
  479. case 40: type = LLM_TYPE_13B; break;
  480. case 48: type = LLM_TYPE_34B; break;
  481. case 60: type = LLM_TYPE_30B; break;
  482. case 80: type = hparams.n_head() == hparams.n_head_kv() ? LLM_TYPE_65B : LLM_TYPE_70B; break;
  483. default: type = LLM_TYPE_UNKNOWN;
  484. }
  485. }
  486. } break;
  487. case LLM_ARCH_LLAMA4:
  488. {
  489. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  490. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  491. ml.get_key(LLM_KV_INTERLEAVE_MOE_LAYER_STEP, hparams.n_moe_layer_step);
  492. hparams.n_swa_pattern = 4; // pattern: 3 chunked - 1 full
  493. hparams.n_attn_chunk = 8192; // should this be a gguf kv? currently it's the same for Scout and Maverick
  494. hparams.n_swa = 1; // TODO @ngxson : this is added to trigger the SWA branch (we store the chunked attn mask in the SWA tensor), will need to clean this up later
  495. switch (hparams.n_expert) {
  496. case 16: type = LLM_TYPE_17B_16E; break;
  497. case 128: type = LLM_TYPE_17B_128E; break;
  498. default: type = LLM_TYPE_UNKNOWN;
  499. }
  500. if (type == LLM_TYPE_17B_128E) {
  501. hparams.use_kq_norm = false;
  502. }
  503. } break;
  504. case LLM_ARCH_DECI:
  505. {
  506. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  507. switch (hparams.n_layer) {
  508. case 32: type = LLM_TYPE_7B; break;
  509. case 80: type = LLM_TYPE_70B; break;
  510. case 162: type = LLM_TYPE_405B; break;
  511. default: type = LLM_TYPE_UNKNOWN;
  512. }
  513. } break;
  514. case LLM_ARCH_MINICPM:
  515. {
  516. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  517. ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
  518. ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
  519. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  520. switch (hparams.n_layer) {
  521. case 52: type = LLM_TYPE_1B; break;
  522. case 40: type = LLM_TYPE_2B; break;
  523. default: type = LLM_TYPE_UNKNOWN;
  524. }
  525. } break;
  526. case LLM_ARCH_MINICPM3:
  527. {
  528. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  529. ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
  530. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  531. switch (hparams.n_layer) {
  532. case 62: type = LLM_TYPE_4B; break;
  533. default: type = LLM_TYPE_UNKNOWN;
  534. }
  535. } break;
  536. case LLM_ARCH_GROK:
  537. {
  538. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  539. switch (hparams.n_layer) {
  540. case 64: type = LLM_TYPE_314B; break;
  541. default: type = LLM_TYPE_UNKNOWN;
  542. }
  543. } break;
  544. case LLM_ARCH_FALCON:
  545. {
  546. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  547. switch (hparams.n_layer) {
  548. case 32: type = LLM_TYPE_7B; break;
  549. case 60: type = LLM_TYPE_40B; break;
  550. default: type = LLM_TYPE_UNKNOWN;
  551. }
  552. } break;
  553. case LLM_ARCH_BAICHUAN:
  554. {
  555. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  556. switch (hparams.n_layer) {
  557. case 32: type = LLM_TYPE_7B; break;
  558. case 40: type = LLM_TYPE_13B; break;
  559. default: type = LLM_TYPE_UNKNOWN;
  560. }
  561. if (type == LLM_TYPE_13B) {
  562. // TODO: become GGUF KV parameter
  563. hparams.f_max_alibi_bias = 8.0f;
  564. }
  565. } break;
  566. case LLM_ARCH_STARCODER:
  567. {
  568. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  569. switch (hparams.n_layer) {
  570. case 24: type = LLM_TYPE_1B; break;
  571. case 36: type = LLM_TYPE_3B; break;
  572. case 42: type = LLM_TYPE_7B; break;
  573. case 40: type = LLM_TYPE_15B; break;
  574. default: type = LLM_TYPE_UNKNOWN;
  575. }
  576. } break;
  577. case LLM_ARCH_REFACT:
  578. {
  579. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  580. switch (hparams.n_layer) {
  581. case 32: type = LLM_TYPE_1B; break;
  582. default: type = LLM_TYPE_UNKNOWN;
  583. }
  584. // TODO: become GGUF KV parameter
  585. hparams.f_max_alibi_bias = 8.0f;
  586. } break;
  587. case LLM_ARCH_BERT:
  588. {
  589. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  590. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  591. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  592. switch (hparams.n_layer) {
  593. case 3:
  594. type = LLM_TYPE_17M; break; // bge-micro
  595. case 6:
  596. type = LLM_TYPE_22M; break; // MiniLM-L6
  597. case 12:
  598. switch (hparams.n_embd) {
  599. case 384: type = LLM_TYPE_33M; break; // MiniLM-L12, bge-small
  600. case 768: type = LLM_TYPE_109M; break; // bge-base
  601. default: type = LLM_TYPE_UNKNOWN;
  602. } break;
  603. case 24:
  604. type = LLM_TYPE_335M; break; // bge-large
  605. default: type = LLM_TYPE_UNKNOWN;
  606. }
  607. } break;
  608. case LLM_ARCH_JINA_BERT_V2:
  609. {
  610. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  611. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  612. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  613. hparams.f_max_alibi_bias = 8.0f;
  614. switch (hparams.n_layer) {
  615. case 4: type = LLM_TYPE_33M; break; // jina-embeddings-small
  616. case 12: type = LLM_TYPE_137M; break; // jina-embeddings-base
  617. default: type = LLM_TYPE_UNKNOWN;
  618. }
  619. } break;
  620. case LLM_ARCH_NOMIC_BERT:
  621. case LLM_ARCH_NOMIC_BERT_MOE:
  622. {
  623. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  624. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  625. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  626. ml.get_key(LLM_KV_MOE_EVERY_N_LAYERS, hparams.moe_every_n_layers, 0);
  627. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  628. if (arch == LLM_ARCH_NOMIC_BERT) {
  629. type = LLM_TYPE_137M;
  630. } else if (arch == LLM_ARCH_NOMIC_BERT_MOE && hparams.moe_every_n_layers == 2) {
  631. type = LLM_TYPE_475M;
  632. }
  633. }
  634. } break;
  635. case LLM_ARCH_BLOOM:
  636. {
  637. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  638. switch (hparams.n_layer) {
  639. case 24: type = LLM_TYPE_1B; break;
  640. case 30:
  641. switch (hparams.n_embd) {
  642. case 2560: type = LLM_TYPE_3B; break;
  643. case 4096: type = LLM_TYPE_7B; break;
  644. default: type = LLM_TYPE_UNKNOWN;
  645. } break;
  646. default: type = LLM_TYPE_UNKNOWN;
  647. }
  648. // TODO: become GGUF KV parameter
  649. hparams.f_max_alibi_bias = 8.0f;
  650. } break;
  651. case LLM_ARCH_MPT:
  652. {
  653. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  654. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  655. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  656. switch (hparams.n_layer) {
  657. case 32: type = LLM_TYPE_7B; break;
  658. case 48: type = LLM_TYPE_30B; break;
  659. default: type = LLM_TYPE_UNKNOWN;
  660. }
  661. } break;
  662. case LLM_ARCH_STABLELM:
  663. {
  664. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  665. switch (hparams.n_layer) {
  666. case 24: type = LLM_TYPE_1B; break;
  667. case 32: type = LLM_TYPE_3B; break;
  668. case 40: type = LLM_TYPE_12B; break;
  669. default: type = LLM_TYPE_UNKNOWN;
  670. }
  671. } break;
  672. case LLM_ARCH_QWEN:
  673. {
  674. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  675. switch (hparams.n_layer) {
  676. case 32: type = LLM_TYPE_7B; break;
  677. case 40: type = LLM_TYPE_13B; break;
  678. default: type = LLM_TYPE_UNKNOWN;
  679. }
  680. } break;
  681. case LLM_ARCH_QWEN2VL:
  682. {
  683. ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, true);
  684. }
  685. // fall through
  686. case LLM_ARCH_QWEN2:
  687. {
  688. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  689. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  690. switch (hparams.n_layer) {
  691. case 24: type = hparams.n_embd == 1024 ? LLM_TYPE_0_5B : LLM_TYPE_1B; break;
  692. case 28: type = hparams.n_embd == 1536 ? LLM_TYPE_1_5B : LLM_TYPE_7B; break;
  693. case 32: type = LLM_TYPE_7B; break;
  694. case 36: type = LLM_TYPE_3B; break;
  695. case 40: type = hparams.n_head() == 20 ? LLM_TYPE_4B : LLM_TYPE_13B; break;
  696. case 48: type = LLM_TYPE_14B; break;
  697. case 64: type = LLM_TYPE_32B; break;
  698. case 80: type = LLM_TYPE_70B; break;
  699. default: type = LLM_TYPE_UNKNOWN;
  700. }
  701. } break;
  702. case LLM_ARCH_QWEN2MOE:
  703. {
  704. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  705. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
  706. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  707. switch (hparams.n_layer) {
  708. case 24: type = LLM_TYPE_A2_7B; break;
  709. case 28: type = LLM_TYPE_57B_A14B; break;
  710. default: type = LLM_TYPE_UNKNOWN;
  711. }
  712. } break;
  713. case LLM_ARCH_QWEN3:
  714. {
  715. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  716. switch (hparams.n_layer) {
  717. case 28: type = hparams.n_embd == 1024 ? LLM_TYPE_0_6B : LLM_TYPE_1_7B; break;
  718. case 36: type = hparams.n_embd == 2560 ? LLM_TYPE_4B : LLM_TYPE_8B; break;
  719. case 40: type = LLM_TYPE_14B; break;
  720. case 64: type = LLM_TYPE_32B; break;
  721. default: type = LLM_TYPE_UNKNOWN;
  722. }
  723. } break;
  724. case LLM_ARCH_QWEN3MOE:
  725. {
  726. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  727. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  728. switch (hparams.n_layer) {
  729. case 48: type = LLM_TYPE_30B_A3B; break;
  730. case 94: type = LLM_TYPE_235B_A22B; break;
  731. default: type = LLM_TYPE_UNKNOWN;
  732. }
  733. } break;
  734. case LLM_ARCH_PHI2:
  735. {
  736. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  737. switch (hparams.n_layer) {
  738. case 24: type = LLM_TYPE_1B; break;
  739. case 32: type = LLM_TYPE_3B; break;
  740. default: type = LLM_TYPE_UNKNOWN;
  741. }
  742. } break;
  743. case LLM_ARCH_PHI3:
  744. {
  745. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  746. switch (hparams.n_layer) {
  747. case 24: type = LLM_TYPE_1B; break;
  748. case 32: type = LLM_TYPE_3B; break;
  749. case 40: type = LLM_TYPE_14B; break;
  750. default: type = LLM_TYPE_UNKNOWN;
  751. }
  752. // for backward compatibility ; see: https://github.com/ggerganov/llama.cpp/pull/8931
  753. if ((hparams.n_layer == 32 || hparams.n_layer == 40) && hparams.n_ctx_train == 4096) {
  754. // default value for Phi-3-mini-4k-instruct and Phi-3-medium-4k-instruct
  755. hparams.n_swa = 2047;
  756. } else if (hparams.n_layer == 32 && hparams.n_head_kv(0) == 32 && hparams.n_ctx_train == 131072) {
  757. // default value for Phi-3-mini-128k-instruct
  758. // note: this seems incorrect because the window is bigger than the train context?
  759. hparams.n_swa = 262144;
  760. } else if (hparams.n_layer == 40 && hparams.n_ctx_train == 131072) {
  761. // default value for Phi-3-medium-128k-instruct
  762. // note: this seems incorrect because the window is equal to the train context?
  763. hparams.n_swa = 131072;
  764. }
  765. bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  766. if (!found_swa && hparams.n_swa == 0) {
  767. throw std::runtime_error("invalid value for sliding_window");
  768. }
  769. } break;
  770. case LLM_ARCH_PHIMOE:
  771. {
  772. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  773. switch (hparams.n_layer) {
  774. case 32: type = LLM_TYPE_16x3_8B; break;
  775. default: type = LLM_TYPE_UNKNOWN;
  776. }
  777. } break;
  778. case LLM_ARCH_PLAMO:
  779. {
  780. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  781. switch (hparams.n_layer) {
  782. case 40: type = LLM_TYPE_13B; break;
  783. default: type = LLM_TYPE_UNKNOWN;
  784. }
  785. } break;
  786. case LLM_ARCH_GPT2:
  787. {
  788. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  789. switch (hparams.n_layer) {
  790. case 12: type = LLM_TYPE_SMALL; break;
  791. case 24: type = LLM_TYPE_MEDIUM; break;
  792. case 36: type = LLM_TYPE_LARGE; break;
  793. case 48: type = LLM_TYPE_XL; break;
  794. default: type = LLM_TYPE_UNKNOWN;
  795. }
  796. } break;
  797. case LLM_ARCH_CODESHELL:
  798. {
  799. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  800. switch (hparams.n_layer) {
  801. case 42: type = LLM_TYPE_7B; break;
  802. default: type = LLM_TYPE_UNKNOWN;
  803. }
  804. } break;
  805. case LLM_ARCH_ORION:
  806. {
  807. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  808. switch (hparams.n_layer) {
  809. case 40: type = LLM_TYPE_14B; break;
  810. default: type = LLM_TYPE_UNKNOWN;
  811. }
  812. } break;
  813. case LLM_ARCH_INTERNLM2:
  814. {
  815. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  816. switch (hparams.n_layer) {
  817. case 32: type = LLM_TYPE_7B; break;
  818. case 48: type = LLM_TYPE_20B; break;
  819. default: type = LLM_TYPE_UNKNOWN;
  820. }
  821. } break;
  822. case LLM_ARCH_GEMMA:
  823. {
  824. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  825. switch (hparams.n_layer) {
  826. case 18: type = LLM_TYPE_2B; break;
  827. case 28: type = LLM_TYPE_7B; break;
  828. default: type = LLM_TYPE_UNKNOWN;
  829. }
  830. } break;
  831. case LLM_ARCH_GEMMA2:
  832. {
  833. hparams.n_swa = 4096; // default value of gemma 2
  834. hparams.n_swa_pattern = 2;
  835. hparams.attn_soft_cap = true;
  836. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  837. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  838. ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false);
  839. ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false);
  840. switch (hparams.n_layer) {
  841. case 26: type = LLM_TYPE_2B; break;
  842. case 42: type = LLM_TYPE_9B; break;
  843. case 46: type = LLM_TYPE_27B; break;
  844. default: type = LLM_TYPE_UNKNOWN;
  845. }
  846. } break;
  847. case LLM_ARCH_GEMMA3:
  848. {
  849. hparams.n_swa_pattern = 6;
  850. hparams.rope_freq_base_train_swa = 10000.0f;
  851. hparams.rope_freq_scale_train_swa = 1.0f;
  852. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
  853. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  854. switch (hparams.n_layer) {
  855. case 26: type = LLM_TYPE_1B; break;
  856. case 34: type = LLM_TYPE_4B; break;
  857. case 48: type = LLM_TYPE_12B; break;
  858. case 62: type = LLM_TYPE_27B; break;
  859. default: type = LLM_TYPE_UNKNOWN;
  860. }
  861. hparams.f_attention_scale = type == LLM_TYPE_27B
  862. ? 1.0f / std::sqrt(float(hparams.n_embd / hparams.n_head(0)))
  863. : 1.0f / std::sqrt(float(hparams.n_embd_head_k));
  864. } break;
  865. case LLM_ARCH_STARCODER2:
  866. {
  867. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  868. switch (hparams.n_layer) {
  869. case 30: type = LLM_TYPE_3B; break;
  870. case 32: type = LLM_TYPE_7B; break;
  871. case 40: type = LLM_TYPE_15B; break;
  872. case 52: type = LLM_TYPE_20B; break; // granite
  873. case 88: type = LLM_TYPE_34B; break; // granite
  874. default: type = LLM_TYPE_UNKNOWN;
  875. }
  876. } break;
  877. case LLM_ARCH_MAMBA:
  878. {
  879. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  880. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  881. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  882. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  883. ml.get_key(LLM_KV_SSM_DT_B_C_RMS, hparams.ssm_dt_b_c_rms, false);
  884. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  885. switch (hparams.n_layer) {
  886. case 24:
  887. switch (hparams.n_embd) {
  888. case 768: type = LLM_TYPE_SMALL; break;
  889. default: type = LLM_TYPE_UNKNOWN;
  890. } break;
  891. case 48:
  892. switch (hparams.n_embd) {
  893. case 1024: type = LLM_TYPE_MEDIUM; break;
  894. case 1536: type = LLM_TYPE_LARGE; break;
  895. case 2048: type = LLM_TYPE_XL; break;
  896. default: type = LLM_TYPE_UNKNOWN;
  897. } break;
  898. case 64:
  899. switch (hparams.n_embd) {
  900. case 2560: type = LLM_TYPE_3B; break;
  901. default: type = LLM_TYPE_UNKNOWN;
  902. } break;
  903. default: type = LLM_TYPE_UNKNOWN;
  904. }
  905. } break;
  906. case LLM_ARCH_XVERSE:
  907. {
  908. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  909. switch (hparams.n_layer) {
  910. case 32: type = LLM_TYPE_7B; break;
  911. case 40: type = LLM_TYPE_13B; break;
  912. case 80: type = LLM_TYPE_65B; break;
  913. default: type = LLM_TYPE_UNKNOWN;
  914. }
  915. } break;
  916. case LLM_ARCH_COMMAND_R:
  917. {
  918. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  919. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  920. switch (hparams.n_layer) {
  921. case 40: type = LLM_TYPE_35B; break;
  922. default: type = LLM_TYPE_UNKNOWN;
  923. }
  924. } break;
  925. case LLM_ARCH_COHERE2:
  926. {
  927. hparams.n_swa_pattern = 4;
  928. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
  929. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  930. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  931. switch (hparams.n_layer) {
  932. case 32: type = LLM_TYPE_8B; break;
  933. default: type = LLM_TYPE_UNKNOWN;
  934. }
  935. } break;
  936. case LLM_ARCH_DBRX:
  937. {
  938. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  939. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
  940. switch (hparams.n_layer) {
  941. case 40: type = LLM_TYPE_16x12B; break;
  942. default: type = LLM_TYPE_UNKNOWN;
  943. }
  944. } break;
  945. case LLM_ARCH_OLMO:
  946. {
  947. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  948. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  949. switch (hparams.n_layer) {
  950. case 22: type = LLM_TYPE_1B; break;
  951. case 32: type = LLM_TYPE_7B; break;
  952. case 80: type = LLM_TYPE_70B; break;
  953. default: type = LLM_TYPE_UNKNOWN;
  954. }
  955. } break;
  956. case LLM_ARCH_OLMO2:
  957. {
  958. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  959. switch (hparams.n_layer) {
  960. case 16: type = LLM_TYPE_1B; break;
  961. case 32: type = LLM_TYPE_7B; break;
  962. case 40: type = LLM_TYPE_13B; break;
  963. case 64: type = LLM_TYPE_32B; break;
  964. default: type = LLM_TYPE_UNKNOWN;
  965. }
  966. } break;
  967. case LLM_ARCH_OLMOE:
  968. {
  969. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  970. switch (hparams.n_layer) {
  971. case 16: type = LLM_TYPE_A1_7B; break;
  972. default: type = LLM_TYPE_UNKNOWN;
  973. }
  974. } break;
  975. case LLM_ARCH_OPENELM:
  976. {
  977. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  978. switch (hparams.n_layer) {
  979. case 16: type = LLM_TYPE_270M; break;
  980. case 20: type = LLM_TYPE_450M; break;
  981. case 28: type = LLM_TYPE_1B; break;
  982. case 36: type = LLM_TYPE_3B; break;
  983. default: type = LLM_TYPE_UNKNOWN;
  984. }
  985. } break;
  986. case LLM_ARCH_GPTNEOX:
  987. {
  988. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  989. ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
  990. switch (hparams.n_layer) {
  991. case 6:
  992. switch (hparams.n_ff()) {
  993. case 512: type = LLM_TYPE_14M; break;
  994. case 2048: type = LLM_TYPE_70M; break;
  995. default: type = LLM_TYPE_UNKNOWN;
  996. } break;
  997. case 12:
  998. switch (hparams.n_ff()) {
  999. case 3072: type = LLM_TYPE_160M; break;
  1000. default: type = LLM_TYPE_UNKNOWN;
  1001. } break;
  1002. case 16:
  1003. switch (hparams.n_ff()) {
  1004. case 8192: type = LLM_TYPE_1B; break;
  1005. default: type = LLM_TYPE_UNKNOWN;
  1006. } break;
  1007. case 24:
  1008. switch (hparams.n_ff()) {
  1009. case 4096: type = LLM_TYPE_410M; break;
  1010. case 8192: type = LLM_TYPE_1_4B; break;
  1011. default: type = LLM_TYPE_UNKNOWN;
  1012. } break;
  1013. case 32:
  1014. switch (hparams.n_ff()) {
  1015. case 10240: type = LLM_TYPE_2_8B; break;
  1016. case 16384: type = LLM_TYPE_6_9B; break;
  1017. default: type = LLM_TYPE_UNKNOWN;
  1018. } break;
  1019. case 36:
  1020. switch (hparams.n_ff()) {
  1021. case 20480: type = LLM_TYPE_12B; break;
  1022. default: type = LLM_TYPE_UNKNOWN;
  1023. } break;
  1024. case 44:
  1025. switch (hparams.n_ff()) {
  1026. case 24576: type = LLM_TYPE_20B; break;
  1027. default: type = LLM_TYPE_UNKNOWN;
  1028. } break;
  1029. default: type = LLM_TYPE_UNKNOWN;
  1030. }
  1031. } break;
  1032. case LLM_ARCH_ARCTIC:
  1033. {
  1034. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1035. if (hparams.n_expert == 128) {
  1036. switch (hparams.n_layer) {
  1037. case 35: type = LLM_TYPE_10B_128x3_66B; break;
  1038. default: type = LLM_TYPE_UNKNOWN;
  1039. }
  1040. } else {
  1041. type = LLM_TYPE_UNKNOWN;
  1042. }
  1043. } break;
  1044. case LLM_ARCH_DEEPSEEK:
  1045. {
  1046. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1047. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1048. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1049. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1050. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1051. switch (hparams.n_layer) {
  1052. case 28: type = LLM_TYPE_20B; break;
  1053. default: type = LLM_TYPE_UNKNOWN;
  1054. }
  1055. } break;
  1056. case LLM_ARCH_DEEPSEEK2:
  1057. {
  1058. bool is_lite = (hparams.n_layer == 27);
  1059. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1060. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1061. if (!is_lite) {
  1062. ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
  1063. }
  1064. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  1065. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH_MLA, hparams.n_embd_head_k_mla, false);
  1066. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH_MLA, hparams.n_embd_head_v_mla, false);
  1067. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1068. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1069. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1070. ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
  1071. ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
  1072. if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
  1073. // for compatibility with existing DeepSeek V2 and V2.5 GGUFs
  1074. // that have no expert_gating_func model parameter set
  1075. hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX;
  1076. }
  1077. ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul);
  1078. switch (hparams.n_layer) {
  1079. case 27: type = LLM_TYPE_16B; break;
  1080. case 60: type = LLM_TYPE_236B; break;
  1081. case 61: type = LLM_TYPE_671B; break;
  1082. default: type = LLM_TYPE_UNKNOWN;
  1083. }
  1084. } break;
  1085. case LLM_ARCH_PLM:
  1086. {
  1087. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1088. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  1089. switch (hparams.n_layer) {
  1090. case 32: type = LLM_TYPE_1_8B; break;
  1091. default: type = LLM_TYPE_UNKNOWN;
  1092. }
  1093. } break;
  1094. case LLM_ARCH_CHATGLM:
  1095. {
  1096. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1097. switch (hparams.n_layer) {
  1098. case 28: {
  1099. if (hparams.n_head(0) == 16) {
  1100. type = LLM_TYPE_1_5B;
  1101. } else {
  1102. type = LLM_TYPE_6B;
  1103. }
  1104. } break;
  1105. case 40: {
  1106. if (hparams.n_head(0) == 24) {
  1107. type = LLM_TYPE_4B;
  1108. } else {
  1109. type = LLM_TYPE_9B;
  1110. }
  1111. } break;
  1112. default: type = LLM_TYPE_UNKNOWN;
  1113. }
  1114. } break;
  1115. case LLM_ARCH_GLM4:
  1116. {
  1117. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1118. switch (hparams.n_layer) {
  1119. case 40: type = LLM_TYPE_9B; break;
  1120. case 61: type = LLM_TYPE_32B; break;
  1121. default: type = LLM_TYPE_UNKNOWN;
  1122. }
  1123. } break;
  1124. case LLM_ARCH_BITNET:
  1125. {
  1126. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1127. switch (hparams.n_layer) {
  1128. case 26: type = LLM_TYPE_3B; break;
  1129. default: type = LLM_TYPE_UNKNOWN;
  1130. }
  1131. } break;
  1132. case LLM_ARCH_T5:
  1133. {
  1134. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1135. ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
  1136. uint32_t dec_start_token_id;
  1137. if (ml.get_key(LLM_KV_DECODER_START_TOKEN_ID, dec_start_token_id, false)) {
  1138. hparams.dec_start_token_id = dec_start_token_id;
  1139. }
  1140. switch (hparams.n_layer) {
  1141. case 6: type = LLM_TYPE_60M; break; // t5-small
  1142. case 8: type = LLM_TYPE_80M; break; // flan-t5-small
  1143. case 12:
  1144. switch (hparams.n_ff()) {
  1145. case 3072: type = LLM_TYPE_220M; break; // t5-base
  1146. case 2048: type = LLM_TYPE_250M; break; // flan-t5-base
  1147. default: type = LLM_TYPE_UNKNOWN;
  1148. } break;
  1149. case 24:
  1150. switch (hparams.n_ff()) {
  1151. case 4096: type = LLM_TYPE_770M; break; // t5-large
  1152. case 2816: type = LLM_TYPE_780M; break; // flan-t5-large
  1153. case 16384: type = LLM_TYPE_3B; break; // t5-3b
  1154. case 5120: type = LLM_TYPE_3B; break; // flan-t5-xl
  1155. case 65536: type = LLM_TYPE_11B; break; // t5-11b
  1156. case 10240: type = LLM_TYPE_11B; break; // flan-t5-xxl
  1157. default: type = LLM_TYPE_UNKNOWN;
  1158. } break;
  1159. default: type = LLM_TYPE_UNKNOWN;
  1160. }
  1161. } break;
  1162. case LLM_ARCH_T5ENCODER:
  1163. {
  1164. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1165. ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
  1166. type = LLM_TYPE_UNKNOWN;
  1167. } break;
  1168. case LLM_ARCH_JAIS:
  1169. {
  1170. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1171. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  1172. switch (hparams.n_layer) {
  1173. case 24: type = LLM_TYPE_1_3B; break;
  1174. case 40: type = LLM_TYPE_13B; break;
  1175. /* TODO: add variants */
  1176. default: type = LLM_TYPE_UNKNOWN;
  1177. }
  1178. } break;
  1179. case LLM_ARCH_NEMOTRON:
  1180. {
  1181. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1182. switch (hparams.n_layer) {
  1183. case 32: type = LLM_TYPE_4B; break;
  1184. default: type = LLM_TYPE_UNKNOWN;
  1185. }
  1186. } break;
  1187. case LLM_ARCH_EXAONE:
  1188. {
  1189. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1190. switch (hparams.n_layer) {
  1191. case 32: type = LLM_TYPE_8B; break;
  1192. default: type = LLM_TYPE_UNKNOWN;
  1193. }
  1194. } break;
  1195. case LLM_ARCH_RWKV6:
  1196. case LLM_ARCH_RWKV6QWEN2:
  1197. {
  1198. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps, false);
  1199. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps, false);
  1200. ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
  1201. ml.get_key(LLM_KV_TIME_MIX_EXTRA_DIM, hparams.time_mix_extra_dim);
  1202. ml.get_key(LLM_KV_TIME_DECAY_EXTRA_DIM, hparams.time_decay_extra_dim);
  1203. ml.get_key(LLM_KV_RESCALE_EVERY_N_LAYERS, hparams.rescale_every_n_layers, false);
  1204. ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT, hparams.token_shift_count, false);
  1205. switch (hparams.n_layer) {
  1206. case 24: type = LLM_TYPE_1_6B; break;
  1207. case 32:
  1208. switch (hparams.n_embd) {
  1209. case 2560: type = LLM_TYPE_3B; break;
  1210. case 4096: type = LLM_TYPE_7B; break;
  1211. default: type = LLM_TYPE_UNKNOWN;
  1212. } break;
  1213. case 61: type = LLM_TYPE_14B; break;
  1214. case 64: type = LLM_TYPE_32B; break;
  1215. default: type = LLM_TYPE_UNKNOWN;
  1216. }
  1217. } break;
  1218. case LLM_ARCH_RWKV7:
  1219. case LLM_ARCH_ARWKV7:
  1220. {
  1221. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps, false);
  1222. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps, false);
  1223. ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
  1224. ml.get_key(LLM_KV_ATTENTION_DECAY_LORA_RANK, hparams.n_lora_decay);
  1225. ml.get_key(LLM_KV_ATTENTION_ICLR_LORA_RANK, hparams.n_lora_iclr);
  1226. ml.get_key(LLM_KV_ATTENTION_VALUE_RESIDUAL_MIX_LORA_RANK, hparams.n_lora_value_res_mix);
  1227. ml.get_key(LLM_KV_ATTENTION_GATE_LORA_RANK, hparams.n_lora_gate, false);
  1228. ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT, hparams.token_shift_count, false);
  1229. switch (hparams.n_layer) {
  1230. case 12: type = LLM_TYPE_190M; break;
  1231. case 24:
  1232. switch (hparams.n_embd) {
  1233. case 1024: type = LLM_TYPE_450M; break;
  1234. case 2048: type = LLM_TYPE_1_5B; break;
  1235. default: type = LLM_TYPE_UNKNOWN;
  1236. } break;
  1237. case 28:
  1238. switch (hparams.n_embd) {
  1239. case 1536: type = LLM_TYPE_1_5B; break;
  1240. case 3584: type = LLM_TYPE_7B; break;
  1241. default: type = LLM_TYPE_UNKNOWN;
  1242. } break;
  1243. case 32: type = LLM_TYPE_2_9B; break; // RWKV-7-World
  1244. default: type = LLM_TYPE_UNKNOWN;
  1245. }
  1246. } break;
  1247. case LLM_ARCH_GRANITE:
  1248. case LLM_ARCH_GRANITE_MOE:
  1249. {
  1250. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1251. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  1252. ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
  1253. ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
  1254. ml.get_key(LLM_KV_ATTENTION_SCALE, hparams.f_attention_scale);
  1255. switch (hparams.n_layer) {
  1256. case 32: type = LLM_TYPE_3B; break;
  1257. case 40: type = LLM_TYPE_3B; break;
  1258. // Add additional layer/vocab/etc checks here for other model sizes
  1259. default: type = LLM_TYPE_UNKNOWN;
  1260. }
  1261. } break;
  1262. case LLM_ARCH_CHAMELEON:
  1263. {
  1264. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1265. hparams.f_norm_eps = 1e-5; // eps for qk-norm, torch default
  1266. ml.get_key(LLM_KV_SWIN_NORM, hparams.swin_norm);
  1267. switch (hparams.n_layer) {
  1268. case 32: type = LLM_TYPE_7B; break;
  1269. case 48: type = LLM_TYPE_34B; break;
  1270. default: type = LLM_TYPE_UNKNOWN;
  1271. }
  1272. } break;
  1273. case LLM_ARCH_WAVTOKENIZER_DEC:
  1274. {
  1275. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1276. ml.get_key(LLM_KV_ATTENTION_GROUPNORM_EPS, hparams.f_norm_group_eps);
  1277. ml.get_key(LLM_KV_ATTENTION_GROUPNORM_GROUPS, hparams.n_norm_groups);
  1278. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  1279. } break;
  1280. case LLM_ARCH_BAILINGMOE:
  1281. {
  1282. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1283. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1284. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1285. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1286. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1287. ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
  1288. switch (hparams.n_layer) {
  1289. case 28: type = LLM_TYPE_16B; break;
  1290. case 88: type = LLM_TYPE_290B; break;
  1291. default: type = LLM_TYPE_UNKNOWN;
  1292. }
  1293. } break;
  1294. default: throw std::runtime_error("unsupported model architecture");
  1295. }
  1296. pimpl->n_bytes = ml.n_bytes;
  1297. pimpl->desc_str = arch_name() + " " + type_name() + " " + ml.ftype_name();
  1298. if (hparams.f_max_alibi_bias > 0.0f) {
  1299. hparams.use_alibi = true;
  1300. }
  1301. hparams.rope_type = llama_model_rope_type(this);
  1302. }
  1303. void llama_model::load_vocab(llama_model_loader & ml) {
  1304. const auto kv = LLM_KV(arch);
  1305. vocab.load(ml, kv);
  1306. }
  1307. bool llama_model::load_tensors(llama_model_loader & ml) {
  1308. const auto & split_mode = params.split_mode;
  1309. const auto & n_gpu_layers = params.n_gpu_layers;
  1310. const auto & use_mlock = params.use_mlock;
  1311. const auto & tensor_split = params.tensor_split;
  1312. const int n_layer = hparams.n_layer;
  1313. const bool use_mmap_buffer = true;
  1314. LLAMA_LOG_INFO("%s: loading model tensors, this can take a while... (mmap = %s)\n", __func__, ml.use_mmap ? "true" : "false");
  1315. // build a list of buffer types for the CPU and GPU devices
  1316. pimpl->cpu_buft_list = make_cpu_buft_list(devices);
  1317. for (auto * dev : devices) {
  1318. buft_list_t buft_list = make_gpu_buft_list(dev, split_mode, tensor_split);
  1319. // add CPU buffer types as a fallback
  1320. buft_list.insert(buft_list.end(), pimpl->cpu_buft_list.begin(), pimpl->cpu_buft_list.end());
  1321. pimpl->gpu_buft_list.emplace(dev, std::move(buft_list));
  1322. }
  1323. // calculate the split points
  1324. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + n_devices(), [](float x) { return x == 0.0f; });
  1325. std::vector<float> splits(n_devices());
  1326. if (all_zero) {
  1327. // default split, by free memory
  1328. for (size_t i = 0; i < n_devices(); ++i) {
  1329. ggml_backend_dev_t dev = devices[i];
  1330. size_t total;
  1331. size_t free;
  1332. ggml_backend_dev_memory(dev, &free, &total);
  1333. splits[i] = free;
  1334. }
  1335. } else {
  1336. std::copy(tensor_split, tensor_split + n_devices(), splits.begin());
  1337. }
  1338. // sum and normalize the splits to get the split points
  1339. float split_sum = 0.0f;
  1340. for (size_t i = 0; i < n_devices(); ++i) {
  1341. split_sum += splits[i];
  1342. splits[i] = split_sum;
  1343. }
  1344. for (size_t i = 0; i < n_devices(); ++i) {
  1345. splits[i] /= split_sum;
  1346. }
  1347. ggml_backend_dev_t cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  1348. const int i_gpu_start = std::max((int) hparams.n_layer - n_gpu_layers, (int) 0);
  1349. const int act_gpu_layers = devices.empty() ? 0 : std::min(n_gpu_layers, (int)n_layer + 1);
  1350. auto get_layer_buft_list = [&](int il) -> llama_model::impl::layer_dev {
  1351. const bool is_swa = il < (int) hparams.n_layer && hparams.is_swa(il);
  1352. if (il < i_gpu_start || (il - i_gpu_start) >= act_gpu_layers) {
  1353. LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s, is_swa = %d\n", il, ggml_backend_dev_name(cpu_dev), is_swa);
  1354. return {cpu_dev, &pimpl->cpu_buft_list};
  1355. }
  1356. const int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + n_devices(), float(il - i_gpu_start)/act_gpu_layers) - splits.begin();
  1357. auto * dev = devices.at(layer_gpu);
  1358. LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s, is_swa = %d\n", il, ggml_backend_dev_name(dev), is_swa);
  1359. return {dev, &pimpl->gpu_buft_list.at(dev)};
  1360. };
  1361. // assign the input layer
  1362. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  1363. pimpl->dev_input = { cpu_dev, &pimpl->cpu_buft_list };
  1364. // assign the repeating layers to the devices according to the splits
  1365. pimpl->dev_layer.resize(n_layer);
  1366. for (int il = 0; il < n_layer; ++il) {
  1367. pimpl->dev_layer[il] = get_layer_buft_list(il);
  1368. }
  1369. // assign the output layer
  1370. pimpl->dev_output = get_layer_buft_list(n_layer);
  1371. // one ggml context per buffer type
  1372. int max_n_tensors = ml.n_tensors;
  1373. max_n_tensors += 1; // duplicated output tensor
  1374. max_n_tensors += n_layer*2; // duplicated rope freq tensors
  1375. const size_t ctx_size = ggml_tensor_overhead()*max_n_tensors;
  1376. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  1377. auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
  1378. auto it = ctx_map.find(buft);
  1379. if (it == ctx_map.end()) {
  1380. ggml_init_params params = {
  1381. /*.mem_size =*/ ctx_size,
  1382. /*.mem_buffer =*/ NULL,
  1383. /*.no_alloc =*/ true,
  1384. };
  1385. ggml_context * ctx = ggml_init(params);
  1386. if (!ctx) {
  1387. throw std::runtime_error(format("failed to create ggml context"));
  1388. }
  1389. ctx_map[buft] = ctx;
  1390. pimpl->ctxs.emplace_back(ctx);
  1391. return ctx;
  1392. }
  1393. return it->second;
  1394. };
  1395. const auto TENSOR_DUPLICATED = llama_model_loader::TENSOR_DUPLICATED;
  1396. const auto TENSOR_NOT_REQUIRED = llama_model_loader::TENSOR_NOT_REQUIRED;
  1397. // create tensors for the weights
  1398. {
  1399. // note: cast to int64_t since we will use these for the tensor dimensions
  1400. const int64_t n_head = hparams.n_head();
  1401. const int64_t n_head_kv = hparams.n_head_kv();
  1402. const int64_t n_embd = hparams.n_embd;
  1403. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  1404. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  1405. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  1406. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  1407. const int64_t n_ff = hparams.n_ff();
  1408. const int64_t n_embd_gqa = n_embd_v_gqa;
  1409. const int64_t n_vocab = vocab.n_tokens();
  1410. const int64_t n_token_types = vocab.n_token_types();
  1411. const int64_t n_rot = hparams.n_rot;
  1412. const int64_t n_expert = hparams.n_expert;
  1413. const int64_t n_expert_used = hparams.n_expert_used;
  1414. const int64_t n_ctx_train = hparams.n_ctx_train;
  1415. if (n_expert > 0 && hparams.n_expert_used == 0) {
  1416. throw std::runtime_error("model has expert layers but no expert layers are used");
  1417. }
  1418. int n_moved_tensors = 0;
  1419. ggml_tensor * first_moved_tensor = nullptr;
  1420. ggml_backend_buffer_type_t first_moved_from_buft = nullptr;
  1421. ggml_backend_buffer_type_t first_moved_to_buft = nullptr;
  1422. auto create_tensor = [&](const LLM_TN_IMPL & tn, const std::initializer_list<int64_t> & ne, int flags) -> ggml_tensor * {
  1423. ggml_tensor * t_meta = ml.get_tensor_meta(tn.str().c_str());
  1424. if (!t_meta) {
  1425. if (flags & TENSOR_NOT_REQUIRED) {
  1426. return nullptr;
  1427. }
  1428. throw std::runtime_error(format("missing tensor '%s'", tn.str().c_str()));
  1429. }
  1430. // some models use the token embedding tensor as the output, but since these are used in different layers and with different ops
  1431. // the tensor is duplicated
  1432. // to handle this, we check if the tensor is duplicated, and if so, we assume that it is being loaded as the output tensor
  1433. llm_tensor tn_tensor = tn.tensor;
  1434. if (tn.tensor == LLM_TENSOR_TOKEN_EMBD && flags & TENSOR_DUPLICATED) {
  1435. tn_tensor = LLM_TENSOR_OUTPUT;
  1436. }
  1437. llm_tensor_info info;
  1438. try {
  1439. info = llm_tensor_info_for(tn_tensor);
  1440. } catch (const std::out_of_range & e) {
  1441. throw std::runtime_error(format("missing tensor info mapping for %s", tn.str().c_str()));
  1442. }
  1443. // skip unused tensors
  1444. if (info.op == GGML_OP_NONE) {
  1445. const size_t nbytes = ggml_nbytes(t_meta);
  1446. LLAMA_LOG_WARN("model has unused tensor %s (size = %zu bytes) -- ignoring\n", tn.str().c_str(), nbytes);
  1447. ml.size_data -= nbytes;
  1448. ml.n_created++;
  1449. return nullptr;
  1450. }
  1451. // tensors with "bias" suffix are always used with GGML_OP_ADD
  1452. ggml_op op;
  1453. bool bias = tn.suffix != nullptr && strcmp(tn.suffix, "bias") == 0;
  1454. if (bias) {
  1455. op = GGML_OP_ADD;
  1456. } else {
  1457. op = info.op;
  1458. }
  1459. // sanity checks
  1460. if (info.layer == LLM_TENSOR_LAYER_INPUT || info.layer == LLM_TENSOR_LAYER_OUTPUT) {
  1461. if (tn.bid != -1) {
  1462. GGML_ABORT("input/output layer tensor %s used with a layer number", tn.str().c_str());
  1463. }
  1464. } else {
  1465. if (tn.bid == -1) {
  1466. GGML_ABORT("repeating layer tensor %s used without a layer number", tn.str().c_str());
  1467. }
  1468. }
  1469. // select the buffer type for this tensor
  1470. buft_list_t * buft_list;
  1471. switch (info.layer) {
  1472. case LLM_TENSOR_LAYER_INPUT:
  1473. buft_list = pimpl->dev_input.buft_list;
  1474. break;
  1475. case LLM_TENSOR_LAYER_OUTPUT:
  1476. buft_list = pimpl->dev_output.buft_list;
  1477. break;
  1478. case LLM_TENSOR_LAYER_REPEATING:
  1479. buft_list = pimpl->dev_layer.at(tn.bid).buft_list;
  1480. break;
  1481. default:
  1482. GGML_ABORT("invalid layer %d for tensor %s", info.layer, tn.str().c_str());
  1483. }
  1484. ggml_backend_buffer_type_t buft = nullptr;
  1485. // check overrides
  1486. if (ml.tensor_buft_overrides) {
  1487. std::string tensor_name = tn.str();
  1488. for (const auto * overrides = ml.tensor_buft_overrides; overrides->pattern != nullptr; ++overrides) {
  1489. std::regex pattern(overrides->pattern);
  1490. if (std::regex_search(tensor_name, pattern)) {
  1491. LLAMA_LOG_DEBUG("tensor %s buffer type overriden to %s\n", tensor_name.c_str(), ggml_backend_buft_name(overrides->buft));
  1492. buft = overrides->buft;
  1493. break;
  1494. }
  1495. }
  1496. }
  1497. if (!buft) {
  1498. buft = select_weight_buft(hparams, t_meta, op, *buft_list);
  1499. if (!buft) {
  1500. throw std::runtime_error(format("failed to find a compatible buffer type for tensor %s", tn.str().c_str()));
  1501. }
  1502. }
  1503. // avoid using a host buffer when using mmap
  1504. auto * buft_dev = ggml_backend_buft_get_device(buft);
  1505. if (ml.use_mmap && buft_dev && buft == ggml_backend_dev_host_buffer_type(buft_dev)) {
  1506. auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  1507. buft = ggml_backend_dev_buffer_type(cpu_dev);
  1508. }
  1509. if (buft != buft_list->front().second) {
  1510. n_moved_tensors++;
  1511. if (!first_moved_tensor) {
  1512. first_moved_tensor = t_meta;
  1513. first_moved_from_buft = buft_list->front().second;
  1514. first_moved_to_buft = buft;
  1515. }
  1516. }
  1517. ggml_context * ctx = ctx_for_buft(buft);
  1518. // if duplicated, check if the original tensor was allocated in the same buffer type context and avoid creating a new one
  1519. if (flags & TENSOR_DUPLICATED) {
  1520. ggml_tensor * t = ggml_get_tensor(ctx, tn.str().c_str());
  1521. if (t) {
  1522. return t;
  1523. }
  1524. }
  1525. return ml.create_tensor(ctx, tn, ne, flags);
  1526. };
  1527. layers.resize(n_layer);
  1528. // TODO: move to a separate function
  1529. const auto tn = LLM_TN(arch);
  1530. switch (arch) {
  1531. case LLM_ARCH_LLAMA:
  1532. case LLM_ARCH_REFACT:
  1533. case LLM_ARCH_MINICPM:
  1534. case LLM_ARCH_GRANITE:
  1535. case LLM_ARCH_GRANITE_MOE:
  1536. {
  1537. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1538. // output
  1539. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1540. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1541. // if output is NULL, init from the input tok embed
  1542. if (output == NULL) {
  1543. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1544. }
  1545. for (int i = 0; i < n_layer; ++i) {
  1546. auto & layer = layers[i];
  1547. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1548. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  1549. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  1550. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  1551. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  1552. // optional bias tensors
  1553. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1554. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1555. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1556. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1557. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1558. if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
  1559. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1560. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1561. }
  1562. else {
  1563. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1564. }
  1565. if (n_expert == 0) {
  1566. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1567. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1568. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1569. // optional MLP bias
  1570. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1571. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1572. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1573. } else {
  1574. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1575. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED);
  1576. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  1577. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1578. }
  1579. }
  1580. } break;
  1581. case LLM_ARCH_LLAMA4:
  1582. {
  1583. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1584. // output
  1585. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1586. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1587. // if output is NULL, init from the input tok embed
  1588. if (output == NULL) {
  1589. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1590. }
  1591. GGML_ASSERT(hparams.n_moe_layer_step > 0 && "Llama 4 requires n_moe_layer_step > 0");
  1592. for (int i = 0; i < n_layer; ++i) {
  1593. bool is_moe_layer = (i + 1) % hparams.n_moe_layer_step == 0;
  1594. auto & layer = layers[i];
  1595. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1596. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  1597. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  1598. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  1599. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  1600. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1601. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1602. if (is_moe_layer) {
  1603. int n_ff_exp = hparams.n_ff_exp;
  1604. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1605. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
  1606. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert}, 0);
  1607. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
  1608. // Shared expert
  1609. const int64_t n_ff_shexp = n_ff_exp;
  1610. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  1611. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd }, 0);
  1612. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  1613. } else {
  1614. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1615. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1616. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1617. }
  1618. }
  1619. } break;
  1620. case LLM_ARCH_DECI:
  1621. {
  1622. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1623. // output
  1624. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1625. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1626. // if output is NULL, init from the input tok embed
  1627. if (output == NULL) {
  1628. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1629. }
  1630. for (int i = 0; i < n_layer; ++i) {
  1631. auto & layer = layers[i];
  1632. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(i);
  1633. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(i);
  1634. const int64_t n_embd_gqa = hparams.n_embd_v_gqa(i);
  1635. const int64_t n_ff = hparams.n_ff(i);
  1636. const int64_t n_head = hparams.n_head(i);
  1637. const int64_t n_head_kv = hparams.n_head_kv(i);
  1638. if (n_head_kv == 0 && n_head > 0) {
  1639. // linear attention for DeciLMCausalModel
  1640. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1641. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1642. }
  1643. else if (n_head_kv > 0) {
  1644. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1645. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  1646. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  1647. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  1648. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  1649. }
  1650. // optional bias tensors
  1651. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1652. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1653. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1654. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1655. if (n_ff > 0) {
  1656. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1657. }
  1658. if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
  1659. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1660. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1661. }
  1662. else {
  1663. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1664. }
  1665. if (n_ff > 0) {
  1666. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1667. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1668. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1669. }
  1670. // optional MLP bias
  1671. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1672. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1673. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1674. }
  1675. } break;
  1676. case LLM_ARCH_MINICPM3:
  1677. {
  1678. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  1679. const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  1680. const int64_t q_lora_rank = hparams.n_lora_q;
  1681. const int64_t kv_lora_rank = hparams.n_lora_kv;
  1682. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1683. // output
  1684. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1685. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1686. // if output is NULL, init from the input tok embed
  1687. if (output == NULL) {
  1688. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1689. }
  1690. for (int i = 0; i < n_layer; ++i) {
  1691. auto & layer = layers[i];
  1692. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1693. layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0);
  1694. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  1695. layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
  1696. layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k}, 0);
  1697. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
  1698. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
  1699. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0);
  1700. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1701. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1702. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1703. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1704. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1705. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1706. }
  1707. } break;
  1708. case LLM_ARCH_GROK:
  1709. {
  1710. if (n_expert == 0) {
  1711. throw std::runtime_error("Grok model cannot have zero experts");
  1712. }
  1713. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1714. // output
  1715. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1716. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1717. // if output is NULL, init from the input tok embed
  1718. if (output == NULL) {
  1719. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1720. }
  1721. for (int i = 0; i < n_layer; ++i) {
  1722. auto & layer = layers[i];
  1723. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1724. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1725. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1726. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1727. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1728. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  1729. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1730. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1731. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED);
  1732. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  1733. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1734. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
  1735. }
  1736. } break;
  1737. case LLM_ARCH_DBRX:
  1738. {
  1739. if (n_expert == 0) {
  1740. throw std::runtime_error("DBRX model cannot have zero experts");
  1741. }
  1742. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1743. // output
  1744. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1745. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1746. for (int i = 0; i < n_layer; ++i) {
  1747. auto & layer = layers[i];
  1748. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1749. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1750. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1751. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  1752. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1753. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1754. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  1755. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1756. }
  1757. } break;
  1758. case LLM_ARCH_BAICHUAN:
  1759. {
  1760. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1761. {
  1762. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1763. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1764. }
  1765. for (int i = 0; i < n_layer; ++i) {
  1766. auto & layer = layers[i];
  1767. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1768. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1769. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1770. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1771. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1772. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1773. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1774. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1775. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1776. }
  1777. } break;
  1778. case LLM_ARCH_FALCON:
  1779. {
  1780. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1781. // output
  1782. {
  1783. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1784. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1785. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1786. if (!output) {
  1787. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU
  1788. }
  1789. }
  1790. for (int i = 0; i < n_layer; ++i) {
  1791. auto & layer = layers[i];
  1792. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1793. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1794. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1795. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1796. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1797. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1798. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1799. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1800. }
  1801. } break;
  1802. case LLM_ARCH_STARCODER:
  1803. {
  1804. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1805. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  1806. // output
  1807. {
  1808. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1809. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1810. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1811. if (!output) {
  1812. // needs to be on GPU
  1813. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1814. }
  1815. }
  1816. for (int i = 0; i < n_layer; ++i) {
  1817. auto & layer = layers[i];
  1818. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1819. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1820. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1821. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  1822. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1823. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1824. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1825. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  1826. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1827. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1828. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1829. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  1830. }
  1831. } break;
  1832. case LLM_ARCH_BERT:
  1833. case LLM_ARCH_NOMIC_BERT:
  1834. case LLM_ARCH_NOMIC_BERT_MOE:
  1835. {
  1836. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1837. type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, 0);
  1838. if (arch == LLM_ARCH_BERT) {
  1839. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  1840. cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, TENSOR_NOT_REQUIRED);
  1841. cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  1842. cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, 1}, TENSOR_NOT_REQUIRED);
  1843. cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"), {1}, TENSOR_NOT_REQUIRED);
  1844. }
  1845. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  1846. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  1847. for (int i = 0; i < n_layer; ++i) {
  1848. auto & layer = layers[i];
  1849. if (arch == LLM_ARCH_BERT) {
  1850. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1851. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  1852. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1853. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  1854. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1855. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  1856. } else {
  1857. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1858. }
  1859. if (arch == LLM_ARCH_NOMIC_BERT_MOE) {
  1860. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  1861. }
  1862. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1863. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  1864. layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0);
  1865. if (hparams.moe_every_n_layers > 0 && i % hparams.moe_every_n_layers == 1) {
  1866. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1867. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff, n_expert}, 0);
  1868. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  1869. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1870. } else {
  1871. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1872. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1873. if (arch == LLM_ARCH_BERT || arch == LLM_ARCH_NOMIC_BERT_MOE) {
  1874. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1875. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  1876. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1877. } else {
  1878. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1879. }
  1880. }
  1881. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
  1882. layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
  1883. }
  1884. } break;
  1885. case LLM_ARCH_JINA_BERT_V2:
  1886. {
  1887. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // word_embeddings
  1888. type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, 0); // token_type_embeddings
  1889. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0); // LayerNorm
  1890. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0); //LayerNorm bias
  1891. cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, 1}, TENSOR_NOT_REQUIRED);
  1892. cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {1}, TENSOR_NOT_REQUIRED);
  1893. for (int i = 0; i < n_layer; ++i) {
  1894. auto & layer = layers[i]; // JinaBertLayer
  1895. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1896. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  1897. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1898. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1899. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1900. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  1901. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1902. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1903. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1904. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  1905. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); //output_dens
  1906. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); //output_dens
  1907. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0); //output_norm
  1908. layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0);
  1909. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1910. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1911. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1912. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1913. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1914. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1915. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
  1916. layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
  1917. }
  1918. } break;
  1919. case LLM_ARCH_BLOOM:
  1920. {
  1921. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1922. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  1923. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  1924. // output
  1925. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1926. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1927. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1928. // if output is NULL, init from the input tok embed
  1929. if (output == NULL) {
  1930. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1931. }
  1932. for (int i = 0; i < n_layer; ++i) {
  1933. auto & layer = layers[i];
  1934. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1935. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1936. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1937. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  1938. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1939. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1940. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1941. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  1942. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1943. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1944. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1945. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  1946. }
  1947. } break;
  1948. case LLM_ARCH_MPT:
  1949. {
  1950. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1951. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, TENSOR_NOT_REQUIRED);
  1952. // output
  1953. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1954. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  1955. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1956. if (!output) {
  1957. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU
  1958. }
  1959. for (int i = 0; i < n_layer; ++i) {
  1960. auto & layer = layers[i];
  1961. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1962. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1963. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1964. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1965. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1966. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1967. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1968. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1969. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1970. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1971. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1972. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1973. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1974. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1975. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1976. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1977. // AWQ ScaleActivation layer
  1978. layer.ffn_act = create_tensor(tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1979. }
  1980. } break;
  1981. case LLM_ARCH_STABLELM:
  1982. {
  1983. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1984. // output
  1985. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1986. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1987. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1988. for (int i = 0; i < n_layer; ++i) {
  1989. auto & layer = layers[i];
  1990. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1991. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1992. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1993. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1994. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1995. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1996. // optional bias tensors, present in Stable LM 2 1.6B
  1997. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1998. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1999. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2000. // optional q and k layernorms, present in StableLM 2 12B
  2001. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED);
  2002. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED);
  2003. // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
  2004. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2005. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2006. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2007. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2008. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2009. }
  2010. } break;
  2011. case LLM_ARCH_QWEN:
  2012. {
  2013. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2014. // output
  2015. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2016. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2017. for (int i = 0; i < n_layer; ++i) {
  2018. auto & layer = layers[i];
  2019. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2020. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3}, 0);
  2021. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3}, 0);
  2022. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2023. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2024. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2}, 0);
  2025. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd}, 0);
  2026. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2}, 0);
  2027. }
  2028. } break;
  2029. case LLM_ARCH_QWEN2:
  2030. case LLM_ARCH_QWEN2VL:
  2031. {
  2032. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2033. // output
  2034. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2035. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2036. // if output is NULL, init from the input tok embed
  2037. if (output == NULL) {
  2038. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2039. }
  2040. for (int i = 0; i < n_layer; ++i) {
  2041. auto & layer = layers[i];
  2042. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2043. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2044. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2045. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2046. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2047. // optional bias tensors
  2048. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2049. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2050. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2051. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2052. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2053. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2054. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2055. }
  2056. } break;
  2057. case LLM_ARCH_QWEN2MOE:
  2058. {
  2059. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2060. // output
  2061. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2062. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2063. for (int i = 0; i < n_layer; ++i) {
  2064. auto & layer = layers[i];
  2065. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2066. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2067. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2068. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2069. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2070. // optional bias tensors
  2071. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2072. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2073. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2074. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2075. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2076. if (n_expert == 0) {
  2077. throw std::runtime_error("n_expert must be > 0 for QWEN2MOE");
  2078. }
  2079. if (n_expert_used == 0) {
  2080. throw std::runtime_error("n_expert_used must be > 0 for QWEN2MOE");
  2081. }
  2082. // MoE branch
  2083. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
  2084. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2085. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2086. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2087. // Shared expert branch
  2088. const int64_t n_ff_shexp = hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff;
  2089. layer.ffn_gate_inp_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd}, 0);
  2090. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  2091. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, 0);
  2092. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  2093. }
  2094. } break;
  2095. case LLM_ARCH_QWEN3:
  2096. {
  2097. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2098. // output
  2099. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2100. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2101. // if output is NULL, init from the input tok embed
  2102. if (output == NULL) {
  2103. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2104. }
  2105. for (int i = 0; i < n_layer; ++i) {
  2106. auto & layer = layers[i];
  2107. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2108. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2109. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2110. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2111. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2112. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2113. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2114. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2115. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2116. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2117. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2118. }
  2119. } break;
  2120. case LLM_ARCH_QWEN3MOE:
  2121. {
  2122. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2123. // output
  2124. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2125. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2126. for (int i = 0; i < n_layer; ++i) {
  2127. auto & layer = layers[i];
  2128. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2129. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2130. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2131. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2132. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2133. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2134. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2135. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2136. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2137. if (n_expert == 0) {
  2138. throw std::runtime_error("n_expert must be > 0 for QWEN3MOE");
  2139. }
  2140. if (n_expert_used == 0) {
  2141. throw std::runtime_error("n_expert_used must be > 0 for QWEN3MOE");
  2142. }
  2143. // MoE branch
  2144. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
  2145. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2146. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2147. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2148. }
  2149. } break;
  2150. case LLM_ARCH_PHI2:
  2151. {
  2152. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2153. // output
  2154. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2155. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2156. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2157. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab}, 0);
  2158. for (int i = 0; i < n_layer; ++i) {
  2159. auto & layer = layers[i];
  2160. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2161. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2162. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2163. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2164. if (layer.wqkv == nullptr) {
  2165. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2166. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2167. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2168. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2169. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2170. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2171. }
  2172. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2173. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2174. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2175. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2176. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2177. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2178. }
  2179. } break;
  2180. case LLM_ARCH_PHI3:
  2181. {
  2182. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  2183. // output
  2184. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  2185. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2186. // if output is NULL, init from the input tok embed
  2187. if (output == NULL) {
  2188. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2189. }
  2190. for (int i = 0; i < n_layer; ++i) {
  2191. auto & layer = layers[i];
  2192. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  2193. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED);
  2194. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  2195. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
  2196. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
  2197. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff }, 0);
  2198. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2199. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2200. }
  2201. } break;
  2202. case LLM_ARCH_PHIMOE:
  2203. {
  2204. const int64_t n_embd_head = n_embd / n_head;
  2205. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  2206. // output
  2207. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  2208. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2209. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, 0);
  2210. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), { n_vocab }, 0);
  2211. for (int i = 0; i < n_layer; ++i) {
  2212. auto & layer = layers[i];
  2213. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  2214. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), { n_embd }, 0);
  2215. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED);
  2216. if (layer.wqkv == nullptr) {
  2217. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2218. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2219. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2220. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2221. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2222. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2223. }
  2224. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  2225. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, 0);
  2226. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
  2227. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), { n_embd }, 0);
  2228. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2229. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2230. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  2231. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2232. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2233. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2234. }
  2235. } break;
  2236. case LLM_ARCH_PLAMO:
  2237. {
  2238. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2239. // output
  2240. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2241. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2242. for (int i = 0; i < n_layer; ++i) {
  2243. auto & layer = layers[i];
  2244. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2245. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2246. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2247. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2248. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2249. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2250. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2251. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2252. }
  2253. } break;
  2254. case LLM_ARCH_GPT2:
  2255. {
  2256. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2257. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  2258. // output
  2259. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2260. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2261. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2262. // if output is NULL, init from the input tok embed
  2263. if (output == NULL) {
  2264. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2265. }
  2266. for (int i = 0; i < n_layer; ++i) {
  2267. auto & layer = layers[i];
  2268. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2269. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2270. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2271. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2272. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2273. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2274. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2275. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2276. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2277. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2278. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2279. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2280. }
  2281. } break;
  2282. case LLM_ARCH_CODESHELL:
  2283. {
  2284. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2285. // if tok embd is NULL, init from output
  2286. if (tok_embd == NULL) {
  2287. tok_embd = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2288. }
  2289. // output
  2290. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2291. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2292. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2293. for (int i = 0; i < n_layer; ++i) {
  2294. auto & layer = layers[i];
  2295. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2296. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2297. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2298. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2299. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2300. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2301. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2302. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2303. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2304. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2305. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2306. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2307. }
  2308. } break;
  2309. case LLM_ARCH_ORION:
  2310. {
  2311. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2312. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2313. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2314. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2315. for (int i = 0; i < n_layer; ++i) {
  2316. auto & layer = layers[i];
  2317. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2318. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2319. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2320. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2321. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2322. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2323. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2324. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2325. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2326. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2327. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2328. }
  2329. } break;
  2330. case LLM_ARCH_INTERNLM2:
  2331. {
  2332. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2333. // output
  2334. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2335. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2336. for (int i = 0; i < n_layer; ++i) {
  2337. auto & layer = layers[i];
  2338. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2339. // layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2340. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2341. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2342. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2343. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2344. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2345. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2346. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2347. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2348. }
  2349. } break;
  2350. case LLM_ARCH_GEMMA:
  2351. {
  2352. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2353. // output
  2354. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2355. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  2356. for (int i = 0; i < n_layer; ++i) {
  2357. auto & layer = layers[i];
  2358. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2359. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2360. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2361. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2362. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2363. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2364. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2365. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2366. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2367. }
  2368. } break;
  2369. case LLM_ARCH_GEMMA2:
  2370. {
  2371. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2372. // output
  2373. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2374. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  2375. for (int i = 0; i < n_layer; ++i) {
  2376. auto & layer = layers[i];
  2377. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2378. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2379. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2380. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2381. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2382. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  2383. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2384. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2385. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2386. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2387. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  2388. }
  2389. } break;
  2390. case LLM_ARCH_GEMMA3:
  2391. {
  2392. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2393. // output
  2394. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2395. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2396. // if output is NULL, init from the input tok embed
  2397. if (output == NULL) {
  2398. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2399. }
  2400. for (int i = 0; i < n_layer; ++i) {
  2401. auto & layer = layers[i];
  2402. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2403. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2404. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2405. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2406. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2407. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  2408. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2409. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2410. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2411. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2412. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2413. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2414. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  2415. }
  2416. } break;
  2417. case LLM_ARCH_STARCODER2:
  2418. {
  2419. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2420. // output
  2421. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2422. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2423. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2424. // if output is NULL, init from the input tok embed
  2425. if (output == NULL) {
  2426. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2427. }
  2428. for (int i = 0; i < n_layer; ++i) {
  2429. auto & layer = layers[i];
  2430. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2431. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2432. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2433. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2434. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2435. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2436. // optional bias tensors
  2437. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2438. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2439. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2440. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2441. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2442. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2443. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2444. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2445. // optional bias tensors
  2446. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2447. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff}, 0);
  2448. }
  2449. } break;
  2450. case LLM_ARCH_MAMBA:
  2451. {
  2452. const int64_t d_conv = hparams.ssm_d_conv;
  2453. const int64_t d_inner = hparams.ssm_d_inner;
  2454. const int64_t d_state = hparams.ssm_d_state;
  2455. const int64_t dt_rank = hparams.ssm_dt_rank;
  2456. // only an expansion factor of 2 is supported for now
  2457. if (2 * n_embd != d_inner) {
  2458. throw std::runtime_error("only an expansion factor of 2 is supported for now");
  2459. }
  2460. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2461. // output
  2462. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2463. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2464. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  2465. if (output == NULL) {
  2466. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2467. }
  2468. for (int i = 0; i < n_layer; ++i) {
  2469. auto & layer = layers[i];
  2470. // norm
  2471. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2472. layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner}, 0);
  2473. layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner}, 0);
  2474. layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner}, 0);
  2475. layer.ssm_x = create_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state}, 0);
  2476. layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner}, 0);
  2477. layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner}, 0);
  2478. // no "weight" suffix for these
  2479. layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner}, 0);
  2480. layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {d_inner}, 0);
  2481. // out_proj
  2482. layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
  2483. }
  2484. } break;
  2485. case LLM_ARCH_XVERSE:
  2486. {
  2487. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2488. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2489. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2490. for (int i = 0; i < n_layer; ++i) {
  2491. auto & layer = layers[i];
  2492. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2493. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2494. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2495. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2496. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2497. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2498. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2499. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2500. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2501. }
  2502. } break;
  2503. case LLM_ARCH_COMMAND_R:
  2504. {
  2505. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2506. // output
  2507. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2508. // init output from the input tok embed
  2509. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2510. for (int i = 0; i < n_layer; ++i) {
  2511. auto & layer = layers[i];
  2512. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2513. if (n_layer >= 64){
  2514. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0);
  2515. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0);
  2516. }
  2517. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2518. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2519. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2520. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2521. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2522. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2523. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2524. }
  2525. } break;
  2526. case LLM_ARCH_COHERE2:
  2527. {
  2528. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  2529. // output
  2530. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  2531. // init output from the input tok embed
  2532. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab },
  2533. TENSOR_DUPLICATED);
  2534. for (int i = 0; i < n_layer; ++i) {
  2535. auto & layer = layers[i];
  2536. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  2537. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd }, 0);
  2538. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
  2539. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
  2540. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  2541. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0);
  2542. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
  2543. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);
  2544. }
  2545. }
  2546. break;
  2547. case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
  2548. {
  2549. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2550. // output
  2551. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2552. // if output is NULL, init from the input tok embed
  2553. if (output == NULL) {
  2554. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2555. }
  2556. for (int i = 0; i < n_layer; ++i) {
  2557. auto & layer = layers[i];
  2558. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2559. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2560. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2561. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2562. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2563. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2564. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2565. }
  2566. } break;
  2567. case LLM_ARCH_OLMO2:
  2568. {
  2569. const int64_t n_embd_head = n_embd / n_head;
  2570. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2571. // output
  2572. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2573. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2574. for (int i = 0; i < n_layer; ++i) {
  2575. auto & layer = layers[i];
  2576. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2577. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2578. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2579. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2580. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
  2581. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_head_kv * n_embd_head}, 0);
  2582. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  2583. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2584. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2585. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2586. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  2587. }
  2588. } break;
  2589. case LLM_ARCH_OLMOE:
  2590. {
  2591. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2592. // output
  2593. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2594. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2595. for (int i = 0; i < n_layer; ++i) {
  2596. auto & layer = layers[i];
  2597. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2598. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2599. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2600. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2601. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2602. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
  2603. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, 0);
  2604. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2605. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2606. if (n_expert == 0) {
  2607. throw std::runtime_error("n_expert must be > 0");
  2608. }
  2609. if (n_expert_used == 0) {
  2610. throw std::runtime_error("n_expert_used must be > 0");
  2611. }
  2612. // MoE branch
  2613. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2614. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  2615. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2616. }
  2617. } break;
  2618. case LLM_ARCH_OPENELM:
  2619. {
  2620. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2621. // output
  2622. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2623. // init output from the input tok embed
  2624. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2625. for (int i = 0; i < n_layer; ++i) {
  2626. const int64_t n_head = hparams.n_head(i);
  2627. const int64_t n_head_qkv = 2*hparams.n_head_kv(i) + n_head;
  2628. const int64_t n_ff = hparams.n_ff(i);
  2629. auto & layer = layers[i];
  2630. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2631. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_head_qkv*n_embd_head_k}, 0);
  2632. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2633. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2634. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head*n_embd_head_k, n_embd}, 0);
  2635. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2636. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2637. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2638. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2639. }
  2640. } break;
  2641. case LLM_ARCH_GPTNEOX:
  2642. {
  2643. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2644. // output
  2645. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2646. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2647. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2648. for (int i = 0; i < n_layer; ++i) {
  2649. auto & layer = layers[i];
  2650. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2651. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2652. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2653. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2654. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2655. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2656. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2657. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2658. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2659. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2660. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2661. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2662. }
  2663. } break;
  2664. case LLM_ARCH_ARCTIC:
  2665. {
  2666. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2667. // output
  2668. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2669. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2670. // if output is NULL, init from the input tok embed
  2671. if (output == NULL) {
  2672. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2673. }
  2674. for (int i = 0; i < n_layer; ++i) {
  2675. auto & layer = layers[i];
  2676. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2677. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2678. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2679. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2680. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2681. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2682. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd}, 0);
  2683. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd}, 0);
  2684. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_embd}, 0);
  2685. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2686. layer.ffn_norm_exps = create_tensor(tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd}, 0);
  2687. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  2688. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  2689. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2690. }
  2691. } break;
  2692. case LLM_ARCH_DEEPSEEK:
  2693. {
  2694. const int64_t n_ff_exp = hparams.n_ff_exp;
  2695. const int64_t n_expert_shared = hparams.n_expert_shared;
  2696. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2697. // output
  2698. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2699. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2700. for (int i = 0; i < n_layer; ++i) {
  2701. auto & layer = layers[i];
  2702. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2703. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2704. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2705. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2706. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2707. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2708. if (i < (int) hparams.n_layer_dense_lead) {
  2709. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2710. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2711. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2712. } else {
  2713. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2714. if (n_expert == 0) {
  2715. throw std::runtime_error("n_expert must be > 0");
  2716. }
  2717. if (n_expert_used == 0) {
  2718. throw std::runtime_error("n_expert_used must be > 0");
  2719. }
  2720. // MoE branch
  2721. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2722. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2723. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2724. // Shared expert branch
  2725. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2726. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  2727. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2728. }
  2729. }
  2730. } break;
  2731. case LLM_ARCH_DEEPSEEK2:
  2732. {
  2733. const bool is_lite = (hparams.n_layer == 27);
  2734. const bool is_mla = (hparams.n_embd_head_k_mla != 0 && hparams.n_embd_head_v_mla != 0);
  2735. // note: these are the actual head sizes you get when treating as MHA or after "decompression" using wv_b for MLA
  2736. const int64_t n_embd_head_k_mla = is_mla ? hparams.n_embd_head_k_mla : hparams.n_embd_head_k;
  2737. const int64_t n_embd_head_v_mla = is_mla ? hparams.n_embd_head_v_mla : hparams.n_embd_head_v;
  2738. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  2739. const int64_t n_embd_head_qk_nope = n_embd_head_k_mla - n_embd_head_qk_rope;
  2740. const int64_t q_lora_rank = hparams.n_lora_q;
  2741. const int64_t kv_lora_rank = hparams.n_lora_kv;
  2742. const int64_t n_ff_exp = hparams.n_ff_exp;
  2743. const int64_t n_expert_shared = hparams.n_expert_shared;
  2744. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2745. // output
  2746. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2747. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2748. for (int i = 0; i < n_layer; ++i) {
  2749. auto & layer = layers[i];
  2750. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2751. if (!is_lite) {
  2752. layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0);
  2753. }
  2754. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  2755. if (!is_lite) {
  2756. layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
  2757. layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k_mla}, 0);
  2758. } else {
  2759. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_embd_head_k_mla}, 0);
  2760. }
  2761. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + n_embd_head_qk_rope}, 0);
  2762. // note: only old legacy GGUF files will have the unsplit wkv_b tensor in
  2763. if (is_mla) {
  2764. layer.wk_b = create_tensor(tn(LLM_TENSOR_ATTN_K_B, "weight", i), {n_embd_head_qk_nope, kv_lora_rank, n_head}, 0);
  2765. layer.wv_b = create_tensor(tn(LLM_TENSOR_ATTN_V_B, "weight", i), {kv_lora_rank, n_embd_head_v_mla, n_head}, 0);
  2766. } else {
  2767. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v_mla)}, 0);
  2768. }
  2769. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_embd_head_v_mla, n_embd}, 0);
  2770. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2771. if (i < (int) hparams.n_layer_dense_lead) {
  2772. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2773. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2774. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2775. } else {
  2776. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2777. layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
  2778. if (n_expert == 0) {
  2779. throw std::runtime_error("n_expert must be > 0");
  2780. }
  2781. if (n_expert_used == 0) {
  2782. throw std::runtime_error("n_expert_used must be > 0");
  2783. }
  2784. // MoE branch
  2785. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2786. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2787. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2788. // Shared expert branch
  2789. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2790. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  2791. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2792. }
  2793. }
  2794. } break;
  2795. case LLM_ARCH_PLM:
  2796. {
  2797. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  2798. const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  2799. const int64_t kv_lora_rank = hparams.n_lora_kv;
  2800. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2801. // output
  2802. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2803. // output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2804. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2805. for (int i = 0; i < n_layer; ++i) {
  2806. auto & layer = layers[i];
  2807. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2808. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2809. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
  2810. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  2811. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
  2812. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0);
  2813. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2814. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2815. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2816. }
  2817. } break;
  2818. case LLM_ARCH_BITNET:
  2819. {
  2820. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2821. // output
  2822. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2823. for (int i = 0; i < n_layer; ++i) {
  2824. auto & layer = layers[i];
  2825. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2826. layer.attn_sub_norm = create_tensor(tn(LLM_TENSOR_ATTN_SUB_NORM, "weight", i), {n_embd}, 0);
  2827. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2828. layer.wq_scale = create_tensor(tn(LLM_TENSOR_ATTN_Q, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2829. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2830. layer.wk_scale = create_tensor(tn(LLM_TENSOR_ATTN_K, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2831. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2832. layer.wv_scale = create_tensor(tn(LLM_TENSOR_ATTN_V, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2833. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2834. layer.wo_scale = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2835. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2836. layer.ffn_sub_norm = create_tensor(tn(LLM_TENSOR_FFN_SUB_NORM, "weight", i), {n_ff}, 0);
  2837. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2838. layer.ffn_gate_scale = create_tensor(tn(LLM_TENSOR_FFN_GATE, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2839. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2840. layer.ffn_down_scale = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2841. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2842. layer.ffn_up_scale = create_tensor(tn(LLM_TENSOR_FFN_UP, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2843. }
  2844. } break;
  2845. case LLM_ARCH_T5:
  2846. {
  2847. const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
  2848. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2849. // output
  2850. output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2851. output_norm = create_tensor(tn(LLM_TENSOR_DEC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2852. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2853. // if output is NULL, init from the input tok embed
  2854. if (output == NULL) {
  2855. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2856. }
  2857. for (int i = 0; i < n_layer; ++i) {
  2858. auto & layer = layers[i];
  2859. layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0);
  2860. layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2861. layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2862. layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2863. layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2864. layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2865. layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0);
  2866. layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2867. layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2868. layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2869. layer.attn_norm = create_tensor(tn(LLM_TENSOR_DEC_ATTN_NORM, "weight", i), {n_embd}, 0);
  2870. layer.attn_rel_b = create_tensor(tn(LLM_TENSOR_DEC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2871. layer.wq = create_tensor(tn(LLM_TENSOR_DEC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2872. layer.wk = create_tensor(tn(LLM_TENSOR_DEC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2873. layer.wv = create_tensor(tn(LLM_TENSOR_DEC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2874. layer.wo = create_tensor(tn(LLM_TENSOR_DEC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2875. layer.attn_norm_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_NORM, "weight", i), {n_embd}, 0);
  2876. // this tensor seems to be unused in HF transformers implementation
  2877. layer.attn_rel_b_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2878. layer.wq_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2879. layer.wk_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2880. layer.wv_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2881. layer.wo_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2882. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_DEC_FFN_NORM, "weight", i), {n_embd}, 0);
  2883. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_DEC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2884. layer.ffn_down = create_tensor(tn(LLM_TENSOR_DEC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2885. layer.ffn_up = create_tensor(tn(LLM_TENSOR_DEC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2886. }
  2887. } break;
  2888. case LLM_ARCH_T5ENCODER:
  2889. {
  2890. const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
  2891. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2892. // output
  2893. output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2894. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2895. // if output is NULL, init from the input tok embed
  2896. if (output == NULL) {
  2897. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2898. }
  2899. for (int i = 0; i < n_layer; ++i) {
  2900. auto & layer = layers[i];
  2901. layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0);
  2902. layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2903. layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2904. layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2905. layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2906. layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2907. layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0);
  2908. layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2909. layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2910. layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2911. }
  2912. } break;
  2913. case LLM_ARCH_JAIS:
  2914. {
  2915. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2916. // output
  2917. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2918. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2919. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2920. for (int i = 0; i < n_layer; ++i) {
  2921. auto & layer = layers[i];
  2922. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2923. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2924. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2925. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2926. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2927. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2928. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2929. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2930. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2931. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2932. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2933. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, 0);
  2934. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2935. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2936. }
  2937. } break;
  2938. case LLM_ARCH_CHATGLM:
  2939. {
  2940. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2941. // output
  2942. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2943. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2944. for (int i = 0; i < n_layer; ++i) {
  2945. auto & layer = layers[i];
  2946. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2947. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2948. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2949. if (layer.wqkv == nullptr) {
  2950. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2951. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2952. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2953. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2954. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2955. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2956. }
  2957. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2958. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2959. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0);
  2960. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2961. }
  2962. } break;
  2963. case LLM_ARCH_GLM4:
  2964. {
  2965. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2966. // output
  2967. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2968. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2969. // if output is NULL, init from the input tok embed
  2970. if (output == NULL) {
  2971. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2972. }
  2973. for (int i = 0; i < n_layer; ++i) {
  2974. auto & layer = layers[i];
  2975. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2976. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2977. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2978. if (layer.wqkv == nullptr) {
  2979. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2980. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2981. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2982. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2983. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2984. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2985. }
  2986. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2987. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  2988. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2989. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2990. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0);
  2991. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  2992. }
  2993. } break;
  2994. case LLM_ARCH_NEMOTRON:
  2995. {
  2996. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2997. // output
  2998. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2999. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3000. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3001. for (int i = 0; i < n_layer; ++i) {
  3002. auto & layer = layers[i];
  3003. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3004. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  3005. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3006. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3007. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3008. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3009. // optional bias tensors
  3010. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3011. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  3012. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  3013. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3014. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3015. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  3016. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3017. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3018. // optional MLP bias
  3019. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3020. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  3021. }
  3022. } break;
  3023. case LLM_ARCH_EXAONE:
  3024. {
  3025. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3026. // output
  3027. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3028. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3029. // if output is NULL, init from the input tok embed
  3030. if (output == NULL) {
  3031. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3032. }
  3033. for (int i = 0; i < n_layer; ++i) {
  3034. auto & layer = layers[i];
  3035. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3036. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  3037. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  3038. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  3039. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  3040. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3041. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  3042. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3043. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3044. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3045. }
  3046. } break;
  3047. case LLM_ARCH_RWKV6:
  3048. {
  3049. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3050. // Block 0, LN0
  3051. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  3052. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  3053. // output
  3054. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3055. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3056. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3057. const int time_mix_extra_dim = hparams.time_mix_extra_dim;
  3058. const int time_decay_extra_dim = hparams.time_decay_extra_dim;
  3059. const int head_size = hparams.wkv_head_size;
  3060. const int attn_hidden_size = n_embd;
  3061. const int ffn_size = hparams.n_ff_arr[0];
  3062. for (int i = 0; i < n_layer; ++i) {
  3063. auto & layer = layers[i];
  3064. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3065. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  3066. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0);
  3067. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, 0);
  3068. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0);
  3069. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);
  3070. layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
  3071. layer.time_mix_lerp_w = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_W, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  3072. layer.time_mix_lerp_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  3073. layer.time_mix_lerp_v = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_V, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  3074. layer.time_mix_lerp_r = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  3075. layer.time_mix_lerp_g = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_G, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  3076. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, TENSOR_NOT_REQUIRED);
  3077. GGML_ASSERT(!(layer.time_mix_lerp_fused == NULL && layer.time_mix_lerp_w == NULL));
  3078. layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, 0);
  3079. layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
  3080. layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
  3081. layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
  3082. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  3083. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3084. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3085. layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3086. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0);
  3087. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0);
  3088. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  3089. layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0);
  3090. layer.channel_mix_lerp_r = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, 0);
  3091. layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0);
  3092. layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0);
  3093. layer.channel_mix_receptance = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "weight", i), {n_embd, n_embd}, 0);
  3094. }
  3095. } break;
  3096. case LLM_ARCH_RWKV6QWEN2:
  3097. {
  3098. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3099. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3100. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  3101. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3102. const int time_mix_extra_dim = hparams.time_mix_extra_dim;
  3103. const int time_decay_extra_dim = hparams.time_decay_extra_dim;
  3104. const int head_size = hparams.wkv_head_size;
  3105. const int attn_hidden_size = n_embd;
  3106. const int n_head_kv = hparams.n_head_kv();
  3107. int attn_key_value_size;
  3108. if (n_head_kv == 0 || attn_hidden_size / head_size == n_head_kv) {
  3109. attn_key_value_size = attn_hidden_size;
  3110. } else {
  3111. attn_key_value_size = n_head_kv * head_size;
  3112. }
  3113. for (int i = 0; i < n_layer; ++i) {
  3114. auto & layer = layers[i];
  3115. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3116. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0);
  3117. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);
  3118. layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
  3119. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0);
  3120. layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, TENSOR_NOT_REQUIRED);
  3121. layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
  3122. layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
  3123. layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
  3124. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {n_embd, attn_key_value_size}, 0);
  3125. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {n_embd, attn_key_value_size}, 0);
  3126. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3127. layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3128. // optional bias tensors
  3129. layer.time_mix_key_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED);
  3130. layer.time_mix_value_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED);
  3131. layer.time_mix_receptance_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "bias", i), {attn_hidden_size}, TENSOR_NOT_REQUIRED);
  3132. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  3133. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3134. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3135. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3136. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3137. }
  3138. } break;
  3139. case LLM_ARCH_RWKV7:
  3140. {
  3141. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3142. // Block 0, LN0
  3143. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  3144. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  3145. // output
  3146. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3147. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3148. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3149. const int n_lora_decay = hparams.n_lora_decay;
  3150. const int n_lora_iclr = hparams.n_lora_iclr;
  3151. const int n_lora_value_res_mix = hparams.n_lora_value_res_mix;
  3152. const int n_lora_gate = hparams.n_lora_gate;
  3153. const int attn_hidden_size = n_embd;
  3154. const int ffn_size = hparams.n_ff_arr[0];
  3155. for (int i = 0; i < n_layer; ++i) {
  3156. auto & layer = layers[i];
  3157. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3158. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  3159. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0);
  3160. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, 0);
  3161. layer.time_mix_w0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W0, "weight", i), {n_embd}, 0);
  3162. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, n_lora_decay}, 0);
  3163. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {n_lora_decay, n_embd}, 0);
  3164. layer.time_mix_a0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A0, "weight", i), {n_embd}, 0);
  3165. layer.time_mix_a1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A1, "weight", i), {n_embd, n_lora_iclr}, 0);
  3166. layer.time_mix_a2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A2, "weight", i), {n_lora_iclr, n_embd}, 0);
  3167. if (i == 0) {
  3168. // actually not used
  3169. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  3170. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_iclr}, 0);
  3171. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_iclr, n_embd}, 0);
  3172. } else {
  3173. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  3174. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_value_res_mix}, 0);
  3175. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_value_res_mix, n_embd}, 0);
  3176. }
  3177. layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, 0);
  3178. layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, 0);
  3179. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 6}, 0);
  3180. layer.time_mix_k_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_K, "weight", i), {attn_hidden_size}, 0);
  3181. layer.time_mix_k_a = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_A, "weight", i), {attn_hidden_size}, 0);
  3182. layer.time_mix_r_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_R_K, "weight", i), {attn_hidden_size}, 0);
  3183. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  3184. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3185. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3186. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0);
  3187. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0);
  3188. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  3189. layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0);
  3190. layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0);
  3191. layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0);
  3192. }
  3193. } break;
  3194. case LLM_ARCH_ARWKV7:
  3195. {
  3196. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3197. // output
  3198. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3199. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3200. const int n_lora_decay = hparams.n_lora_decay;
  3201. const int n_lora_iclr = hparams.n_lora_iclr;
  3202. const int n_lora_value_res_mix = hparams.n_lora_value_res_mix;
  3203. const int n_lora_gate = hparams.n_lora_gate;
  3204. const int attn_hidden_size = n_embd;
  3205. for (int i = 0; i < n_layer; ++i) {
  3206. auto & layer = layers[i];
  3207. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3208. layer.time_mix_w0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W0, "weight", i), {n_embd}, 0);
  3209. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, n_lora_decay}, 0);
  3210. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {n_lora_decay, n_embd}, 0);
  3211. layer.time_mix_a0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A0, "weight", i), {n_embd}, 0);
  3212. layer.time_mix_a1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A1, "weight", i), {n_embd, n_lora_iclr}, 0);
  3213. layer.time_mix_a2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A2, "weight", i), {n_lora_iclr, n_embd}, 0);
  3214. if (i == 0) {
  3215. // actually not used
  3216. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  3217. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_iclr}, 0);
  3218. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_iclr, n_embd}, 0);
  3219. } else {
  3220. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  3221. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_value_res_mix}, 0);
  3222. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_value_res_mix, n_embd}, 0);
  3223. }
  3224. layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, TENSOR_NOT_REQUIRED);
  3225. layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, TENSOR_NOT_REQUIRED);
  3226. try {
  3227. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 6}, 0);
  3228. } catch(std::runtime_error & e) {
  3229. // ARWKV models may not have gate tensors
  3230. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0);
  3231. }
  3232. layer.time_mix_k_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_K, "weight", i), {attn_hidden_size}, 0);
  3233. layer.time_mix_k_a = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_A, "weight", i), {attn_hidden_size}, 0);
  3234. layer.time_mix_r_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_R_K, "weight", i), {attn_hidden_size}, 0);
  3235. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  3236. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3237. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3238. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3239. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3240. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  3241. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3242. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3243. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3244. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3245. }
  3246. } break;
  3247. case LLM_ARCH_CHAMELEON:
  3248. {
  3249. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3250. // output
  3251. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3252. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3253. // if output is NULL, init from the input tok embed
  3254. if (output == NULL) {
  3255. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3256. }
  3257. for (int i = 0; i < n_layer; ++i) {
  3258. auto & layer = layers[i];
  3259. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3260. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0);
  3261. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0);
  3262. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED);
  3263. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED);
  3264. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3265. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3266. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3267. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3268. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3269. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3270. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3271. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3272. }
  3273. } break;
  3274. case LLM_ARCH_WAVTOKENIZER_DEC:
  3275. {
  3276. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hparams.n_embd_features, n_vocab}, 0);
  3277. conv1d = create_tensor(tn(LLM_TENSOR_CONV1D, "weight"), {7, hparams.n_embd_features, hparams.posnet.n_embd}, 0);
  3278. conv1d_b = create_tensor(tn(LLM_TENSOR_CONV1D, "bias"), {1, hparams.posnet.n_embd}, 0);
  3279. // posnet
  3280. {
  3281. const int64_t n_embd = hparams.posnet.n_embd;
  3282. for (uint32_t i = 0; i < hparams.posnet.n_layer; ++i) {
  3283. auto & layer = layers[i].posnet;
  3284. // posnet:
  3285. //
  3286. // - resnet
  3287. // - resnet
  3288. // - attn
  3289. // - resnet
  3290. // - resnet
  3291. // - norm
  3292. //
  3293. switch (i) {
  3294. case 0:
  3295. case 1:
  3296. case 3:
  3297. case 4:
  3298. {
  3299. layer.norm1 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "weight", i), {1, n_embd}, 0);
  3300. layer.norm1_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "bias", i), {1, n_embd}, 0);
  3301. layer.conv1 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "weight", i), {3, n_embd, n_embd}, 0);
  3302. layer.conv1_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "bias", i), {1, n_embd}, 0);
  3303. layer.norm2 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "weight", i), {1, n_embd}, 0);
  3304. layer.norm2_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "bias", i), {1, n_embd}, 0);
  3305. layer.conv2 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "weight", i), {3, n_embd, n_embd}, 0);
  3306. layer.conv2_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "bias", i), {1, n_embd}, 0);
  3307. } break;
  3308. case 2:
  3309. {
  3310. layer.attn_norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0);
  3311. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0);
  3312. layer.attn_q = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "weight", i), {1, n_embd, n_embd}, 0);
  3313. layer.attn_q_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "bias", i), {1, n_embd}, 0);
  3314. layer.attn_k = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "weight", i), {1, n_embd, n_embd}, 0);
  3315. layer.attn_k_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "bias", i), {1, n_embd}, 0);
  3316. layer.attn_v = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "weight", i), {1, n_embd, n_embd}, 0);
  3317. layer.attn_v_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "bias", i), {1, n_embd}, 0);
  3318. layer.attn_o = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "weight", i), {1, n_embd, n_embd}, 0);
  3319. layer.attn_o_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "bias", i), {1, n_embd}, 0);
  3320. } break;
  3321. case 5:
  3322. {
  3323. layer.norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0);
  3324. layer.norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0);
  3325. } break;
  3326. default: GGML_ABORT("unknown posnet layer");
  3327. };
  3328. }
  3329. }
  3330. GGML_ASSERT(hparams.posnet.n_embd == hparams.convnext.n_embd);
  3331. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {hparams.posnet.n_embd}, 0);
  3332. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {hparams.posnet.n_embd}, 0);
  3333. // convnext
  3334. {
  3335. const int64_t n_embd = hparams.convnext.n_embd;
  3336. for (uint32_t i = 0; i < hparams.convnext.n_layer; ++i) {
  3337. auto & layer = layers[i].convnext;
  3338. layer.dw = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "weight", i), {7, 1, n_embd}, 0);
  3339. layer.dw_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "bias", i), {1, n_embd}, 0);
  3340. layer.norm = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "weight", i), {n_embd}, 0);
  3341. layer.norm_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "bias", i), {n_embd}, 0);
  3342. layer.pw1 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "weight", i), {n_embd, n_ff}, 0);
  3343. layer.pw1_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "bias", i), {n_ff}, 0);
  3344. layer.pw2 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "weight", i), {n_ff, n_embd}, 0);
  3345. layer.pw2_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "bias", i), {n_embd}, 0);
  3346. layer.gamma = create_tensor(tn(LLM_TENSOR_CONVNEXT_GAMMA, "weight", i), {n_embd}, 0);
  3347. }
  3348. // output
  3349. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3350. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3351. }
  3352. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hparams.convnext.n_embd, n_embd}, 0);
  3353. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_embd}, 0);
  3354. } break;
  3355. case LLM_ARCH_BAILINGMOE:
  3356. {
  3357. const int64_t n_ff_exp = hparams.n_ff_exp;
  3358. const int64_t n_expert_shared = hparams.n_expert_shared;
  3359. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3360. // output
  3361. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3362. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3363. for (int i = 0; i < n_layer; ++i) {
  3364. auto & layer = layers[i];
  3365. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3366. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_rot}, 0);
  3367. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
  3368. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
  3369. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_rot, n_embd}, 0);
  3370. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3371. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  3372. if (n_expert == 0) {
  3373. throw std::runtime_error("n_expert must be > 0");
  3374. }
  3375. if (n_expert_used == 0) {
  3376. throw std::runtime_error("n_expert_used must be > 0");
  3377. }
  3378. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  3379. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  3380. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  3381. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  3382. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  3383. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  3384. }
  3385. } break;
  3386. default:
  3387. throw std::runtime_error("unknown architecture");
  3388. }
  3389. if (n_moved_tensors > 0) {
  3390. LLAMA_LOG_DEBUG("%s: tensor '%s' (%s) (and %d others) cannot be used with preferred buffer type %s, using %s instead\n",
  3391. __func__, first_moved_tensor->name, ggml_type_name(first_moved_tensor->type), n_moved_tensors - 1,
  3392. ggml_backend_buft_name(first_moved_from_buft), ggml_backend_buft_name(first_moved_to_buft));
  3393. }
  3394. }
  3395. ml.done_getting_tensors();
  3396. ml.init_mappings(true, use_mlock ? &pimpl->mlock_mmaps : nullptr);
  3397. pimpl->mappings.reserve(ml.mappings.size());
  3398. // create the backend buffers
  3399. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
  3400. ctx_bufs.reserve(ctx_map.size());
  3401. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  3402. const size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  3403. pimpl->bufs.reserve(n_max_backend_buffer);
  3404. for (auto & it : ctx_map) {
  3405. ggml_backend_buffer_type_t buft = it.first;
  3406. ggml_context * ctx = it.second;
  3407. // skip contexts without tensors
  3408. if (ggml_get_first_tensor(ctx) == nullptr) {
  3409. continue;
  3410. }
  3411. llama_buf_map buf_map;
  3412. buf_map.reserve(n_max_backend_buffer);
  3413. // check if it is possible to use buffer_from_host_ptr with this buffer type
  3414. ggml_backend_dev_t dev = ggml_backend_buft_get_device(buft);
  3415. if (!dev) {
  3416. // FIXME: workaround for CPU backend buft having a NULL device
  3417. dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  3418. }
  3419. ggml_backend_dev_props props;
  3420. ggml_backend_dev_get_props(dev, &props);
  3421. bool buffer_from_host_ptr_supported = props.caps.buffer_from_host_ptr;
  3422. bool is_default_buft = buft == ggml_backend_dev_buffer_type(dev);
  3423. if (ml.use_mmap && use_mmap_buffer && buffer_from_host_ptr_supported && is_default_buft) {
  3424. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  3425. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  3426. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  3427. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  3428. void * addr = nullptr;
  3429. size_t first, last; // NOLINT
  3430. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  3431. if (first >= last) {
  3432. continue;
  3433. }
  3434. const size_t max_size = ggml_get_max_tensor_size(ctx);
  3435. ggml_backend_buffer_t buf = ggml_backend_dev_buffer_from_host_ptr(dev, (char *) addr + first, last - first, max_size);
  3436. if (buf == nullptr) {
  3437. throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
  3438. }
  3439. pimpl->bufs.emplace_back(buf);
  3440. buf_map.emplace(idx, buf);
  3441. }
  3442. }
  3443. else {
  3444. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  3445. if (buf == nullptr) {
  3446. throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
  3447. }
  3448. pimpl->bufs.emplace_back(buf);
  3449. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  3450. pimpl->mlock_bufs.emplace_back(new llama_mlock);
  3451. auto & mlock_buf = pimpl->mlock_bufs.back();
  3452. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  3453. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  3454. }
  3455. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  3456. buf_map.emplace(idx, buf);
  3457. }
  3458. }
  3459. if (pimpl->bufs.empty()) {
  3460. throw std::runtime_error("failed to allocate buffer");
  3461. }
  3462. for (auto & buf : buf_map) {
  3463. // indicate that this buffer contains weights
  3464. // this is used by ggml_backend_sched to improve op scheduling: ops that use a weight are preferably scheduled to the backend that contains the weight
  3465. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  3466. }
  3467. ctx_bufs.emplace_back(ctx, buf_map);
  3468. }
  3469. if (llama_supports_gpu_offload()) {
  3470. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  3471. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  3472. if (n_gpu_layers > (int) hparams.n_layer) {
  3473. LLAMA_LOG_INFO("%s: offloading output layer to GPU\n", __func__);
  3474. }
  3475. const int max_backend_supported_layers = hparams.n_layer + 1;
  3476. const int max_offloadable_layers = hparams.n_layer + 1;
  3477. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  3478. }
  3479. // print memory requirements per buffer type
  3480. for (auto & buf : pimpl->bufs) {
  3481. LLAMA_LOG_INFO("%s: %12s model buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf.get()), ggml_backend_buffer_get_size(buf.get()) / 1024.0 / 1024.0);
  3482. }
  3483. // populate tensors_by_name
  3484. for (auto & ctx : pimpl->ctxs) {
  3485. for (auto * cur = ggml_get_first_tensor(ctx.get()); cur != NULL; cur = ggml_get_next_tensor(ctx.get(), cur)) {
  3486. tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  3487. }
  3488. }
  3489. // load tensor data
  3490. for (auto & it : ctx_bufs) {
  3491. ggml_context * ctx = it.first;
  3492. auto & bufs = it.second;
  3493. if (!ml.load_all_data(ctx, bufs, use_mlock ? &pimpl->mlock_mmaps : NULL, params.progress_callback, params.progress_callback_user_data)) {
  3494. return false;
  3495. }
  3496. }
  3497. if (use_mmap_buffer) {
  3498. for (auto & mapping : ml.mappings) {
  3499. pimpl->mappings.emplace_back(std::move(mapping));
  3500. }
  3501. }
  3502. return true;
  3503. }
  3504. std::string llama_model::arch_name() const {
  3505. return llm_arch_name(arch);
  3506. }
  3507. std::string llama_model::type_name() const {
  3508. return llm_type_name(type);
  3509. }
  3510. std::string llama_model::desc() const {
  3511. return pimpl->desc_str;
  3512. }
  3513. size_t llama_model::size() const {
  3514. return pimpl->n_bytes;
  3515. }
  3516. size_t llama_model::n_tensors() const {
  3517. return tensors_by_name.size();
  3518. }
  3519. size_t llama_model::n_devices() const {
  3520. return devices.size();
  3521. }
  3522. uint64_t llama_model::n_elements() const {
  3523. return pimpl->n_elements;
  3524. }
  3525. void llama_model::print_info() const {
  3526. const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
  3527. auto print_f = [](const std::function<uint32_t(uint32_t)> & f, uint32_t n) {
  3528. bool is_var = false;
  3529. std::vector<uint32_t> v;
  3530. for (uint32_t i = 0; i < n; ++i) {
  3531. v.push_back(f(i));
  3532. if (v[i] != v[0]) {
  3533. is_var = true;
  3534. }
  3535. }
  3536. std::stringstream ss;
  3537. if (is_var) {
  3538. ss << "[";
  3539. for (uint32_t i = 0; i < n; ++i) {
  3540. ss << v[i];
  3541. if (i < n - 1) {
  3542. ss << ", ";
  3543. }
  3544. }
  3545. ss << "]";
  3546. } else {
  3547. ss << v[0];
  3548. }
  3549. return ss.str();
  3550. };
  3551. // hparams
  3552. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, arch_name().c_str());
  3553. LLAMA_LOG_INFO("%s: vocab_only = %d\n", __func__, hparams.vocab_only);
  3554. if (!hparams.vocab_only) {
  3555. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  3556. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  3557. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  3558. LLAMA_LOG_INFO("%s: n_head = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head(il); }, hparams.n_layer).c_str());
  3559. LLAMA_LOG_INFO("%s: n_head_kv = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head_kv(il); }, hparams.n_layer).c_str());
  3560. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  3561. LLAMA_LOG_INFO("%s: n_swa = %u\n", __func__, hparams.n_swa);
  3562. LLAMA_LOG_INFO("%s: n_swa_pattern = %u\n", __func__, hparams.n_swa_pattern);
  3563. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  3564. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  3565. LLAMA_LOG_INFO("%s: n_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_gqa(il); }, hparams.n_layer).c_str());
  3566. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_k_gqa(il); }, hparams.n_layer).c_str());
  3567. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_v_gqa(il); }, hparams.n_layer).c_str());
  3568. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  3569. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  3570. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  3571. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  3572. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  3573. LLAMA_LOG_INFO("%s: f_attn_scale = %.1e\n", __func__, hparams.f_attention_scale);
  3574. LLAMA_LOG_INFO("%s: n_ff = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_ff(il); }, hparams.n_layer).c_str());
  3575. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  3576. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  3577. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  3578. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  3579. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  3580. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
  3581. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  3582. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  3583. LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
  3584. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  3585. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  3586. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  3587. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  3588. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  3589. LLAMA_LOG_INFO("%s: ssm_dt_b_c_rms = %d\n", __func__, hparams.ssm_dt_b_c_rms);
  3590. }
  3591. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, type_name().c_str());
  3592. if (pimpl->n_elements >= 1e12) {
  3593. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, pimpl->n_elements*1e-12);
  3594. } else if (pimpl->n_elements >= 1e9) {
  3595. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, pimpl->n_elements*1e-9);
  3596. } else if (pimpl->n_elements >= 1e6) {
  3597. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, pimpl->n_elements*1e-6);
  3598. } else {
  3599. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, pimpl->n_elements*1e-3);
  3600. }
  3601. // general kv
  3602. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, name.c_str());
  3603. if (arch == LLM_ARCH_DEEPSEEK) {
  3604. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  3605. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3606. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  3607. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  3608. }
  3609. if (arch == LLM_ARCH_DEEPSEEK2) {
  3610. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  3611. LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q);
  3612. LLAMA_LOG_INFO("%s: n_lora_kv = %d\n", __func__, hparams.n_lora_kv);
  3613. LLAMA_LOG_INFO("%s: n_embd_head_k_mla = %d\n", __func__, hparams.n_embd_head_k_mla);
  3614. LLAMA_LOG_INFO("%s: n_embd_head_v_mla = %d\n", __func__, hparams.n_embd_head_v_mla);
  3615. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3616. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  3617. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  3618. LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
  3619. LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
  3620. LLAMA_LOG_INFO("%s: rope_yarn_log_mul = %.4f\n", __func__, hparams.rope_yarn_log_mul);
  3621. }
  3622. if (arch == LLM_ARCH_QWEN2MOE) {
  3623. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3624. LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
  3625. }
  3626. if (arch == LLM_ARCH_QWEN3MOE) {
  3627. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3628. }
  3629. if (arch == LLM_ARCH_MINICPM || arch == LLM_ARCH_GRANITE || arch == LLM_ARCH_GRANITE_MOE) {
  3630. LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale);
  3631. LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale);
  3632. LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
  3633. }
  3634. if (arch == LLM_ARCH_BAILINGMOE) {
  3635. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  3636. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3637. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  3638. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  3639. LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
  3640. }
  3641. vocab.print_info();
  3642. }
  3643. ggml_backend_dev_t llama_model::dev_layer(int il) const {
  3644. return pimpl->dev_layer.at(il).dev;
  3645. }
  3646. ggml_backend_dev_t llama_model::dev_output() const {
  3647. return pimpl->dev_output.dev;
  3648. }
  3649. template<typename F>
  3650. static bool buft_supported(ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev, F & fn) {
  3651. ggml_init_params params = {
  3652. /*.mem_size =*/ ggml_tensor_overhead()*8,
  3653. /*.mem_buffer =*/ NULL,
  3654. /*.no_alloc =*/ true,
  3655. };
  3656. ggml_context_ptr ctx { ggml_init(params) };
  3657. if (!ctx) {
  3658. throw std::runtime_error(format("failed to create ggml context"));
  3659. }
  3660. ggml_backend_buffer_ptr buf { ggml_backend_buft_alloc_buffer(buft, 0) };
  3661. ggml_tensor * op_tensor = fn(ctx.get());
  3662. for (int i = 0; i < GGML_MAX_SRC; i++) {
  3663. if (op_tensor->src[i] != nullptr) {
  3664. assert(op_tensor->src[i]->buffer == nullptr);
  3665. op_tensor->src[i]->buffer = buf.get();
  3666. }
  3667. }
  3668. bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
  3669. return op_supported;
  3670. }
  3671. template<typename F>
  3672. static ggml_backend_buffer_type_t select_buft(const buft_list_t & buft_list, const F & fn) {
  3673. for (const auto & cur : buft_list) {
  3674. ggml_backend_dev_t cur_dev = cur.first;
  3675. ggml_backend_buffer_type_t cur_buft = cur.second;
  3676. if (buft_supported(cur_buft, cur_dev, fn)) {
  3677. return cur_buft;
  3678. }
  3679. }
  3680. throw std::runtime_error(format("no suitable buffer type found"));
  3681. }
  3682. ggml_backend_buffer_type_t llama_model::select_buft(int il) const {
  3683. return ::select_buft(
  3684. *pimpl->dev_layer.at(il).buft_list,
  3685. [&](ggml_context * ctx) {
  3686. ggml_tensor * cur = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
  3687. ggml_tensor * layer_dir = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
  3688. return ggml_add(ctx, cur, layer_dir);
  3689. });
  3690. }
  3691. bool llama_model::has_tensor_overrides() const {
  3692. return pimpl->has_tensor_overrides;
  3693. }
  3694. const ggml_tensor * llama_model::get_tensor(const char * name) const {
  3695. auto it = std::find_if(tensors_by_name.begin(), tensors_by_name.end(),
  3696. [name](const std::pair<std::string, ggml_tensor *> & it) {
  3697. return it.first == name;
  3698. });
  3699. if (it == tensors_by_name.end()) {
  3700. return nullptr;
  3701. }
  3702. return it->second;
  3703. }
  3704. ggml_tensor * llama_model::get_rope_factors(uint32_t n_ctx_per_seq, int il) const {
  3705. // choose long/short freq factors based on the context size
  3706. if (layers[il].rope_freqs != nullptr) {
  3707. return layers[il].rope_freqs;
  3708. }
  3709. if (n_ctx_per_seq > hparams.n_ctx_orig_yarn) {
  3710. return layers[il].rope_long;
  3711. }
  3712. return layers[il].rope_short;
  3713. }
  3714. struct llm_build_llama : public llm_graph_context {
  3715. llm_build_llama(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  3716. const int64_t n_embd_head = hparams.n_embd_head_v;
  3717. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  3718. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3719. ggml_tensor * cur;
  3720. ggml_tensor * inpL;
  3721. inpL = build_inp_embd(model.tok_embd);
  3722. // inp_pos - contains the positions
  3723. ggml_tensor * inp_pos = build_inp_pos();
  3724. // temperature tuning
  3725. ggml_tensor * inp_attn_scale = nullptr;
  3726. if (arch == LLM_ARCH_LLAMA4) {
  3727. inp_attn_scale = build_inp_attn_scale();
  3728. }
  3729. auto * inp_attn = build_attn_inp_kv_unified();
  3730. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  3731. for (int il = 0; il < n_layer; ++il) {
  3732. ggml_tensor * inpSA = inpL;
  3733. bool use_rope = arch == LLM_ARCH_LLAMA4
  3734. ? (il + 1) % hparams.n_no_rope_layer_step != 0
  3735. : true;
  3736. // norm
  3737. cur = build_norm(inpL,
  3738. model.layers[il].attn_norm, NULL,
  3739. LLM_NORM_RMS, il);
  3740. cb(cur, "attn_norm", il);
  3741. // self-attention
  3742. {
  3743. // rope freq factors for llama3; may return nullptr for llama2 and other models
  3744. ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
  3745. // compute Q and K and RoPE them
  3746. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  3747. cb(Qcur, "Qcur", il);
  3748. if (model.layers[il].bq) {
  3749. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  3750. cb(Qcur, "Qcur", il);
  3751. }
  3752. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  3753. cb(Kcur, "Kcur", il);
  3754. if (model.layers[il].bk) {
  3755. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  3756. cb(Kcur, "Kcur", il);
  3757. }
  3758. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  3759. cb(Vcur, "Vcur", il);
  3760. if (model.layers[il].bv) {
  3761. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  3762. cb(Vcur, "Vcur", il);
  3763. }
  3764. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3765. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  3766. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  3767. if (use_rope) {
  3768. Qcur = ggml_rope_ext(
  3769. ctx0, Qcur, inp_pos, rope_factors,
  3770. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3771. ext_factor, attn_factor, beta_fast, beta_slow
  3772. );
  3773. Kcur = ggml_rope_ext(
  3774. ctx0, Kcur, inp_pos, rope_factors,
  3775. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3776. ext_factor, attn_factor, beta_fast, beta_slow
  3777. );
  3778. } else if (inp_attn_scale) {
  3779. Qcur = ggml_mul(ctx0, Qcur, inp_attn_scale);
  3780. }
  3781. cb(Qcur, "Qcur", il);
  3782. cb(Kcur, "Kcur", il);
  3783. cb(Vcur, "Vcur", il);
  3784. if (arch == LLM_ARCH_LLAMA4 && use_rope && hparams.use_kq_norm) {
  3785. // Llama4TextL2Norm
  3786. Qcur = ggml_rms_norm(ctx0, Qcur, hparams.f_norm_rms_eps);
  3787. Kcur = ggml_rms_norm(ctx0, Kcur, hparams.f_norm_rms_eps);
  3788. cb(Qcur, "Qcur_normed", il);
  3789. cb(Kcur, "Kcur_normed", il);
  3790. }
  3791. cur = build_attn(inp_attn, gf,
  3792. model.layers[il].wo, model.layers[il].bo,
  3793. Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
  3794. cb(cur, "attn_out", il);
  3795. }
  3796. if (il == n_layer - 1) {
  3797. // skip computing output for unused tokens
  3798. ggml_tensor * inp_out_ids = build_inp_out_ids();
  3799. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  3800. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  3801. }
  3802. // For Granite architecture
  3803. if (hparams.f_residual_scale) {
  3804. cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
  3805. }
  3806. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  3807. cb(ffn_inp, "ffn_inp", il);
  3808. // feed-forward network (non-MoE)
  3809. if (model.layers[il].ffn_gate_inp == nullptr) {
  3810. cur = build_norm(ffn_inp,
  3811. model.layers[il].ffn_norm, NULL,
  3812. LLM_NORM_RMS, il);
  3813. cb(cur, "ffn_norm", il);
  3814. cur = build_ffn(cur,
  3815. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  3816. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  3817. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  3818. NULL,
  3819. LLM_FFN_SILU, LLM_FFN_PAR, il);
  3820. cb(cur, "ffn_out", il);
  3821. } else if (arch == LLM_ARCH_LLAMA4) {
  3822. // llama4 MoE
  3823. ggml_tensor * ffn_inp_normed = build_norm(ffn_inp,
  3824. model.layers[il].ffn_norm, NULL,
  3825. LLM_NORM_RMS, il);
  3826. cb(cur, "ffn_norm", il);
  3827. ggml_tensor * moe_out = build_moe_ffn(ffn_inp_normed,
  3828. model.layers[il].ffn_gate_inp,
  3829. model.layers[il].ffn_up_exps,
  3830. model.layers[il].ffn_gate_exps,
  3831. model.layers[il].ffn_down_exps,
  3832. nullptr,
  3833. n_expert, n_expert_used,
  3834. LLM_FFN_SILU, false,
  3835. false, 0.0,
  3836. LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID,
  3837. il);
  3838. // Shared experts
  3839. ggml_tensor * shexp_out = build_ffn(ffn_inp_normed,
  3840. model.layers[il].ffn_up_shexp, NULL, NULL,
  3841. model.layers[il].ffn_gate_shexp, NULL, NULL,
  3842. model.layers[il].ffn_down_shexp, NULL, NULL,
  3843. NULL,
  3844. LLM_FFN_SILU, LLM_FFN_PAR, il);
  3845. cb(shexp_out, "ffn_moe_shexp", il);
  3846. cur = ggml_add(ctx0, moe_out, shexp_out);
  3847. cb(cur, "ffn_moe_out_merged", il);
  3848. } else {
  3849. // MoE branch
  3850. cur = build_norm(ffn_inp,
  3851. model.layers[il].ffn_norm, NULL,
  3852. LLM_NORM_RMS, il);
  3853. cb(cur, "ffn_norm", il);
  3854. cur = build_moe_ffn(cur,
  3855. model.layers[il].ffn_gate_inp,
  3856. model.layers[il].ffn_up_exps,
  3857. model.layers[il].ffn_gate_exps,
  3858. model.layers[il].ffn_down_exps,
  3859. nullptr,
  3860. n_expert, n_expert_used,
  3861. LLM_FFN_SILU, true,
  3862. false, 0.0,
  3863. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  3864. il);
  3865. cb(cur, "ffn_moe_out", il);
  3866. }
  3867. // For Granite architecture
  3868. if (hparams.f_residual_scale) {
  3869. cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
  3870. }
  3871. cur = ggml_add(ctx0, cur, ffn_inp);
  3872. cb(cur, "ffn_out", il);
  3873. cur = build_cvec(cur, il);
  3874. cb(cur, "l_out", il);
  3875. // input for next layer
  3876. inpL = cur;
  3877. }
  3878. cur = inpL;
  3879. cur = build_norm(cur,
  3880. model.output_norm, NULL,
  3881. LLM_NORM_RMS, -1);
  3882. cb(cur, "result_norm", -1);
  3883. res->t_embd = cur;
  3884. // lm_head
  3885. cur = build_lora_mm(model.output, cur);
  3886. // For Granite architecture
  3887. if (hparams.f_logit_scale) {
  3888. cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
  3889. }
  3890. cb(cur, "result_output", -1);
  3891. res->t_logits = cur;
  3892. ggml_build_forward_expand(gf, cur);
  3893. }
  3894. };
  3895. struct llm_build_deci : public llm_graph_context {
  3896. llm_build_deci(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  3897. const int64_t n_embd_head = hparams.n_embd_head_v;
  3898. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  3899. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3900. ggml_tensor * cur;
  3901. ggml_tensor * inpL;
  3902. inpL = build_inp_embd(model.tok_embd);
  3903. // inp_pos - contains the positions
  3904. ggml_tensor * inp_pos = build_inp_pos();
  3905. auto * inp_attn = build_attn_inp_kv_unified();
  3906. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  3907. for (int il = 0; il < n_layer; ++il) {
  3908. ggml_tensor * inpSA = inpL;
  3909. const int64_t n_head_kv = hparams.n_head_kv(il);
  3910. const int64_t n_head = hparams.n_head(il);
  3911. const int64_t n_ff = hparams.n_ff(il);
  3912. if (n_head == 0) {
  3913. // attention-free layer of Llama-3_1-Nemotron-51B
  3914. cur = inpL;
  3915. } else {
  3916. // norm
  3917. cur = build_norm(inpL,
  3918. model.layers[il].attn_norm, NULL,
  3919. LLM_NORM_RMS, il);
  3920. cb(cur, "attn_norm", il);
  3921. }
  3922. if (n_head > 0 && n_head_kv == 0) {
  3923. // "linear attention" of Llama-3_1-Nemotron-51B
  3924. cur = build_lora_mm(model.layers[il].wo, cur);
  3925. cb(cur, "wo", il);
  3926. } else if (n_head > 0) {
  3927. // self-attention
  3928. // rope freq factors for llama3; may return nullptr for llama2 and other models
  3929. ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
  3930. // compute Q and K and RoPE them
  3931. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  3932. cb(Qcur, "Qcur", il);
  3933. if (model.layers[il].bq) {
  3934. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  3935. cb(Qcur, "Qcur", il);
  3936. }
  3937. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  3938. cb(Kcur, "Kcur", il);
  3939. if (model.layers[il].bk) {
  3940. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  3941. cb(Kcur, "Kcur", il);
  3942. }
  3943. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  3944. cb(Vcur, "Vcur", il);
  3945. if (model.layers[il].bv) {
  3946. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  3947. cb(Vcur, "Vcur", il);
  3948. }
  3949. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3950. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  3951. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  3952. Qcur = ggml_rope_ext(
  3953. ctx0, Qcur, inp_pos, rope_factors,
  3954. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3955. ext_factor, attn_factor, beta_fast, beta_slow
  3956. );
  3957. Kcur = ggml_rope_ext(
  3958. ctx0, Kcur, inp_pos, rope_factors,
  3959. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3960. ext_factor, attn_factor, beta_fast, beta_slow
  3961. );
  3962. cb(Qcur, "Qcur", il);
  3963. cb(Kcur, "Kcur", il);
  3964. cb(Vcur, "Vcur", il);
  3965. cur = build_attn(inp_attn, gf,
  3966. model.layers[il].wo, model.layers[il].bo,
  3967. Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
  3968. }
  3969. if (il == n_layer - 1) {
  3970. // skip computing output for unused tokens
  3971. ggml_tensor * inp_out_ids = build_inp_out_ids();
  3972. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  3973. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  3974. }
  3975. // FFN-free layer of Llama-3_1-Nemotron-Ultra-253B
  3976. if (n_head == 0 && n_ff == 0) {
  3977. continue;
  3978. }
  3979. // For Granite architecture
  3980. if (hparams.f_residual_scale) {
  3981. cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
  3982. }
  3983. // modified to support attention-free layer of Llama-3_1-Nemotron-51B
  3984. ggml_tensor * ffn_inp = cur;
  3985. if (n_head > 0) {
  3986. ffn_inp = ggml_add(ctx0, cur, inpSA);
  3987. cb(ffn_inp, "ffn_inp", il);
  3988. }
  3989. // feed-forward network
  3990. if (model.layers[il].ffn_gate_inp == nullptr) {
  3991. cur = build_norm(ffn_inp,
  3992. model.layers[il].ffn_norm, NULL,
  3993. LLM_NORM_RMS, il);
  3994. cb(cur, "ffn_norm", il);
  3995. cur = build_ffn(cur,
  3996. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  3997. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  3998. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  3999. NULL,
  4000. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4001. cb(cur, "ffn_out", il);
  4002. }
  4003. // For Granite architecture
  4004. if (hparams.f_residual_scale) {
  4005. cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
  4006. }
  4007. cur = ggml_add(ctx0, cur, ffn_inp);
  4008. cb(cur, "ffn_out", il);
  4009. cur = build_cvec(cur, il);
  4010. cb(cur, "l_out", il);
  4011. // input for next layer
  4012. inpL = cur;
  4013. }
  4014. cur = inpL;
  4015. cur = build_norm(cur,
  4016. model.output_norm, NULL,
  4017. LLM_NORM_RMS, -1);
  4018. cb(cur, "result_norm", -1);
  4019. res->t_embd = cur;
  4020. // lm_head
  4021. cur = build_lora_mm(model.output, cur);
  4022. // For Granite architecture
  4023. if (hparams.f_logit_scale) {
  4024. cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
  4025. }
  4026. cb(cur, "result_output", -1);
  4027. res->t_logits = cur;
  4028. ggml_build_forward_expand(gf, cur);
  4029. }
  4030. };
  4031. struct llm_build_baichuan : public llm_graph_context {
  4032. llm_build_baichuan(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4033. const int64_t n_embd_head = hparams.n_embd_head_v;
  4034. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4035. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4036. ggml_tensor * cur;
  4037. ggml_tensor * inpL;
  4038. inpL = build_inp_embd(model.tok_embd);
  4039. // inp_pos - contains the positions
  4040. ggml_tensor * inp_pos = model.type == LLM_TYPE_7B ? build_inp_pos() : nullptr;
  4041. auto * inp_attn = build_attn_inp_kv_unified();
  4042. for (int il = 0; il < n_layer; ++il) {
  4043. ggml_tensor * inpSA = inpL;
  4044. cur = build_norm(inpL,
  4045. model.layers[il].attn_norm, NULL,
  4046. LLM_NORM_RMS, il);
  4047. cb(cur, "attn_norm", il);
  4048. // self-attention
  4049. {
  4050. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4051. cb(Qcur, "Qcur", il);
  4052. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4053. cb(Kcur, "Kcur", il);
  4054. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4055. cb(Vcur, "Vcur", il);
  4056. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4057. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4058. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4059. switch (model.type) {
  4060. case LLM_TYPE_7B:
  4061. Qcur = ggml_rope_ext(
  4062. ctx0, Qcur, inp_pos, nullptr,
  4063. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4064. ext_factor, attn_factor, beta_fast, beta_slow
  4065. );
  4066. Kcur = ggml_rope_ext(
  4067. ctx0, Kcur, inp_pos, nullptr,
  4068. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4069. ext_factor, attn_factor, beta_fast, beta_slow
  4070. );
  4071. break;
  4072. case LLM_TYPE_13B:
  4073. break;
  4074. default:
  4075. GGML_ABORT("fatal error");
  4076. }
  4077. cb(Qcur, "Qcur", il);
  4078. cb(Kcur, "Kcur", il);
  4079. cb(Vcur, "Vcur", il);
  4080. cur = build_attn(inp_attn, gf,
  4081. model.layers[il].wo, NULL,
  4082. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4083. }
  4084. if (il == n_layer - 1) {
  4085. // skip computing output for unused tokens
  4086. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4087. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4088. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4089. }
  4090. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4091. cb(ffn_inp, "ffn_inp", il);
  4092. // feed-forward network
  4093. {
  4094. cur = build_norm(ffn_inp,
  4095. model.layers[il].ffn_norm, NULL,
  4096. LLM_NORM_RMS, il);
  4097. cb(cur, "ffn_norm", il);
  4098. cur = build_ffn(cur,
  4099. model.layers[il].ffn_up, NULL, NULL,
  4100. model.layers[il].ffn_gate, NULL, NULL,
  4101. model.layers[il].ffn_down, NULL, NULL,
  4102. NULL,
  4103. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4104. cb(cur, "ffn_out", il);
  4105. }
  4106. cur = ggml_add(ctx0, cur, ffn_inp);
  4107. cur = build_cvec(cur, il);
  4108. cb(cur, "l_out", il);
  4109. // input for next layer
  4110. inpL = cur;
  4111. }
  4112. cur = inpL;
  4113. cur = build_norm(cur,
  4114. model.output_norm, NULL,
  4115. LLM_NORM_RMS, -1);
  4116. cb(cur, "result_norm", -1);
  4117. res->t_embd = cur;
  4118. // lm_head
  4119. cur = build_lora_mm(model.output, cur);
  4120. cb(cur, "result_output", -1);
  4121. res->t_logits = cur;
  4122. ggml_build_forward_expand(gf, cur);
  4123. }
  4124. };
  4125. struct llm_build_xverse : public llm_graph_context {
  4126. llm_build_xverse(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4127. const int64_t n_embd_head = hparams.n_embd_head_v;
  4128. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4129. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4130. ggml_tensor * cur;
  4131. ggml_tensor * inpL;
  4132. inpL = build_inp_embd(model.tok_embd);
  4133. // inp_pos - contains the positions
  4134. ggml_tensor * inp_pos = build_inp_pos();
  4135. auto * inp_attn = build_attn_inp_kv_unified();
  4136. for (int il = 0; il < n_layer; ++il) {
  4137. ggml_tensor * inpSA = inpL;
  4138. cur = build_norm(inpL,
  4139. model.layers[il].attn_norm, NULL,
  4140. LLM_NORM_RMS, il);
  4141. cb(cur, "attn_norm", il);
  4142. // self-attention
  4143. {
  4144. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4145. cb(Qcur, "Qcur", il);
  4146. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4147. cb(Kcur, "Kcur", il);
  4148. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4149. cb(Vcur, "Vcur", il);
  4150. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4151. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4152. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4153. Qcur = ggml_rope_ext(
  4154. ctx0, Qcur, inp_pos, nullptr,
  4155. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4156. ext_factor, attn_factor, beta_fast, beta_slow
  4157. );
  4158. Kcur = ggml_rope_ext(
  4159. ctx0, Kcur, inp_pos, nullptr,
  4160. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4161. ext_factor, attn_factor, beta_fast, beta_slow
  4162. );
  4163. cb(Qcur, "Qcur", il);
  4164. cb(Kcur, "Kcur", il);
  4165. cb(Vcur, "Vcur", il);
  4166. cur = build_attn(inp_attn, gf,
  4167. model.layers[il].wo, NULL,
  4168. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4169. }
  4170. if (il == n_layer - 1) {
  4171. // skip computing output for unused tokens
  4172. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4173. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4174. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4175. }
  4176. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4177. cb(ffn_inp, "ffn_inp", il);
  4178. // feed-forward network
  4179. {
  4180. cur = build_norm(ffn_inp,
  4181. model.layers[il].ffn_norm, NULL,
  4182. LLM_NORM_RMS, il);
  4183. cb(cur, "ffn_norm", il);
  4184. cur = build_ffn(cur,
  4185. model.layers[il].ffn_up, NULL, NULL,
  4186. model.layers[il].ffn_gate, NULL, NULL,
  4187. model.layers[il].ffn_down, NULL, NULL,
  4188. NULL,
  4189. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4190. cb(cur, "ffn_out", il);
  4191. }
  4192. cur = ggml_add(ctx0, cur, ffn_inp);
  4193. cur = build_cvec(cur, il);
  4194. cb(cur, "l_out", il);
  4195. // input for next layer
  4196. inpL = cur;
  4197. }
  4198. cur = inpL;
  4199. cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
  4200. cb(cur, "result_norm", -1);
  4201. res->t_embd = cur;
  4202. // lm_head
  4203. cur = build_lora_mm(model.output, cur);
  4204. cb(cur, "result_output", -1);
  4205. res->t_logits = cur;
  4206. ggml_build_forward_expand(gf, cur);
  4207. }
  4208. };
  4209. struct llm_build_falcon : public llm_graph_context {
  4210. llm_build_falcon(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4211. const int64_t n_embd_head = hparams.n_embd_head_v;
  4212. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4213. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4214. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4215. ggml_tensor * cur;
  4216. ggml_tensor * inpL;
  4217. inpL = build_inp_embd(model.tok_embd);
  4218. // inp_pos - contains the positions
  4219. ggml_tensor * inp_pos = build_inp_pos();
  4220. auto * inp_attn = build_attn_inp_kv_unified();
  4221. for (int il = 0; il < n_layer; ++il) {
  4222. ggml_tensor * attn_norm;
  4223. attn_norm = build_norm(inpL,
  4224. model.layers[il].attn_norm,
  4225. model.layers[il].attn_norm_b,
  4226. LLM_NORM, il);
  4227. cb(attn_norm, "attn_norm", il);
  4228. // self-attention
  4229. {
  4230. if (model.layers[il].attn_norm_2) {
  4231. // Falcon-40B
  4232. cur = build_norm(inpL,
  4233. model.layers[il].attn_norm_2,
  4234. model.layers[il].attn_norm_2_b,
  4235. LLM_NORM, il);
  4236. cb(cur, "attn_norm_2", il);
  4237. } else {
  4238. cur = attn_norm;
  4239. }
  4240. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4241. cb(cur, "wqkv", il);
  4242. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4243. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4244. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4245. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4246. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4247. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4248. // using mode = 2 for neox mode
  4249. Qcur = ggml_rope_ext(
  4250. ctx0, Qcur, inp_pos, nullptr,
  4251. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4252. ext_factor, attn_factor, beta_fast, beta_slow
  4253. );
  4254. Kcur = ggml_rope_ext(
  4255. ctx0, Kcur, inp_pos, nullptr,
  4256. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4257. ext_factor, attn_factor, beta_fast, beta_slow
  4258. );
  4259. cb(Qcur, "Qcur", il);
  4260. cb(Kcur, "Kcur", il);
  4261. cb(Vcur, "Vcur", il);
  4262. cur = build_attn(inp_attn, gf,
  4263. model.layers[il].wo, NULL,
  4264. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4265. }
  4266. if (il == n_layer - 1) {
  4267. // skip computing output for unused tokens
  4268. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4269. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4270. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4271. attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
  4272. }
  4273. ggml_tensor * ffn_inp = cur;
  4274. // feed forward
  4275. {
  4276. cur = build_ffn(attn_norm, // !! use the attn norm, not the result
  4277. model.layers[il].ffn_up, NULL, NULL,
  4278. NULL, NULL, NULL,
  4279. model.layers[il].ffn_down, NULL, NULL,
  4280. NULL,
  4281. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4282. cb(cur, "ffn_out", il);
  4283. }
  4284. cur = ggml_add(ctx0, cur, ffn_inp);
  4285. cur = ggml_add(ctx0, cur, inpL);
  4286. cur = build_cvec(cur, il);
  4287. cb(cur, "l_out", il);
  4288. // input for next layer
  4289. inpL = cur;
  4290. }
  4291. cur = inpL;
  4292. // norm
  4293. cur = build_norm(cur,
  4294. model.output_norm,
  4295. model.output_norm_b,
  4296. LLM_NORM, -1);
  4297. cb(cur, "result_norm", -1);
  4298. res->t_embd = cur;
  4299. cur = build_lora_mm(model.output, cur);
  4300. cb(cur, "result_output", -1);
  4301. res->t_logits = cur;
  4302. ggml_build_forward_expand(gf, cur);
  4303. }
  4304. };
  4305. struct llm_build_grok : public llm_graph_context {
  4306. llm_build_grok(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4307. const int64_t n_embd_head = hparams.n_embd_head_v;
  4308. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4309. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4310. ggml_tensor * cur;
  4311. ggml_tensor * inpL;
  4312. inpL = build_inp_embd(model.tok_embd);
  4313. // multiply by embedding_multiplier_scale of 78.38367176906169
  4314. inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
  4315. // inp_pos - contains the positions
  4316. ggml_tensor * inp_pos = build_inp_pos();
  4317. auto * inp_attn = build_attn_inp_kv_unified();
  4318. for (int il = 0; il < n_layer; ++il) {
  4319. ggml_tensor * inpSA = inpL;
  4320. // norm
  4321. cur = build_norm(inpL,
  4322. model.layers[il].attn_norm, NULL,
  4323. LLM_NORM_RMS, il);
  4324. cb(cur, "attn_norm", il);
  4325. // self-attention
  4326. {
  4327. // compute Q and K and RoPE them
  4328. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4329. cb(Qcur, "Qcur", il);
  4330. if (model.layers[il].bq) {
  4331. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  4332. cb(Qcur, "Qcur", il);
  4333. }
  4334. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4335. cb(Kcur, "Kcur", il);
  4336. if (model.layers[il].bk) {
  4337. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  4338. cb(Kcur, "Kcur", il);
  4339. }
  4340. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4341. cb(Vcur, "Vcur", il);
  4342. if (model.layers[il].bv) {
  4343. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  4344. cb(Vcur, "Vcur", il);
  4345. }
  4346. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4347. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4348. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4349. Qcur = ggml_rope_ext(
  4350. ctx0, Qcur, inp_pos, nullptr,
  4351. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4352. ext_factor, attn_factor, beta_fast, beta_slow
  4353. );
  4354. Kcur = ggml_rope_ext(
  4355. ctx0, Kcur, inp_pos, nullptr,
  4356. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4357. ext_factor, attn_factor, beta_fast, beta_slow
  4358. );
  4359. cb(Qcur, "Qcur", il);
  4360. cb(Kcur, "Kcur", il);
  4361. cb(Vcur, "Vcur", il);
  4362. cur = build_attn(inp_attn, gf,
  4363. model.layers[il].wo, model.layers[il].bo,
  4364. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  4365. }
  4366. if (il == n_layer - 1) {
  4367. // skip computing output for unused tokens
  4368. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4369. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4370. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4371. }
  4372. // Grok
  4373. // if attn_out_norm is present then apply it before adding the input
  4374. if (model.layers[il].attn_out_norm) {
  4375. cur = build_norm(cur,
  4376. model.layers[il].attn_out_norm, NULL,
  4377. LLM_NORM_RMS, il);
  4378. cb(cur, "attn_out_norm", il);
  4379. }
  4380. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4381. cb(ffn_inp, "ffn_inp", il);
  4382. // feed-forward network
  4383. // MoE branch
  4384. cur = build_norm(ffn_inp,
  4385. model.layers[il].ffn_norm, NULL,
  4386. LLM_NORM_RMS, il);
  4387. cb(cur, "ffn_norm", il);
  4388. cur = build_moe_ffn(cur,
  4389. model.layers[il].ffn_gate_inp,
  4390. model.layers[il].ffn_up_exps,
  4391. model.layers[il].ffn_gate_exps,
  4392. model.layers[il].ffn_down_exps,
  4393. nullptr,
  4394. n_expert, n_expert_used,
  4395. LLM_FFN_GELU, true,
  4396. false, 0.0,
  4397. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  4398. il);
  4399. cb(cur, "ffn_moe_out", il);
  4400. // Grok
  4401. // if layer_out_norm is present then apply it before adding the input
  4402. // Idea: maybe ffn_out_norm is a better name
  4403. if (model.layers[il].layer_out_norm) {
  4404. cur = build_norm(cur,
  4405. model.layers[il].layer_out_norm, NULL,
  4406. LLM_NORM_RMS, il);
  4407. cb(cur, "layer_out_norm", il);
  4408. }
  4409. cur = ggml_add(ctx0, cur, ffn_inp);
  4410. cb(cur, "ffn_out", il);
  4411. cur = build_cvec(cur, il);
  4412. cb(cur, "l_out", il);
  4413. // input for next layer
  4414. inpL = cur;
  4415. }
  4416. cur = inpL;
  4417. cur = build_norm(cur,
  4418. model.output_norm, NULL,
  4419. LLM_NORM_RMS, -1);
  4420. cb(cur, "result_norm", -1);
  4421. res->t_embd = cur;
  4422. // lm_head
  4423. cur = build_lora_mm(model.output, cur);
  4424. // Grok
  4425. // multiply logits by output_multiplier_scale of 0.5773502691896257
  4426. cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
  4427. cb(cur, "result_output", -1);
  4428. res->t_logits = cur;
  4429. ggml_build_forward_expand(gf, cur);
  4430. }
  4431. };
  4432. struct llm_build_dbrx : public llm_graph_context {
  4433. llm_build_dbrx(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4434. const int64_t n_embd_head = hparams.n_embd_head_v;
  4435. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4436. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4437. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4438. ggml_tensor * cur;
  4439. ggml_tensor * inpL;
  4440. inpL = build_inp_embd(model.tok_embd);
  4441. // inp_pos - contains the positions
  4442. ggml_tensor * inp_pos = build_inp_pos();
  4443. auto * inp_attn = build_attn_inp_kv_unified();
  4444. for (int il = 0; il < n_layer; ++il) {
  4445. ggml_tensor * inpSA = inpL;
  4446. // norm
  4447. cur = build_norm(inpL,
  4448. model.layers[il].attn_norm, NULL,
  4449. LLM_NORM, il);
  4450. cb(cur, "attn_norm", il);
  4451. // self-attention
  4452. {
  4453. ggml_tensor * Qcur = nullptr;
  4454. ggml_tensor * Kcur = nullptr;
  4455. ggml_tensor * Vcur = nullptr;
  4456. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4457. cb(cur, "wqkv", il);
  4458. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  4459. cb(cur, "wqkv_clamped", il);
  4460. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4461. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4462. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4463. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4464. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4465. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4466. Qcur = ggml_rope_ext(
  4467. ctx0, Qcur, inp_pos, nullptr,
  4468. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4469. ext_factor, attn_factor, beta_fast, beta_slow
  4470. );
  4471. Kcur = ggml_rope_ext(
  4472. ctx0, Kcur, inp_pos, nullptr,
  4473. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4474. ext_factor, attn_factor, beta_fast, beta_slow
  4475. );
  4476. cb(Qcur, "Qcur", il);
  4477. cb(Kcur, "Kcur", il);
  4478. cb(Vcur, "Vcur", il);
  4479. cur = build_attn(inp_attn, gf,
  4480. model.layers[il].wo, NULL,
  4481. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4482. }
  4483. if (il == n_layer - 1) {
  4484. // skip computing output for unused tokens
  4485. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4486. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4487. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4488. }
  4489. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4490. cb(ffn_inp, "ffn_inp", il);
  4491. // feed-forward network
  4492. // MoE branch
  4493. cur = build_norm(ffn_inp,
  4494. model.layers[il].attn_out_norm, NULL,
  4495. LLM_NORM, il);
  4496. cb(cur, "attn_out_norm", il);
  4497. cur = build_moe_ffn(cur,
  4498. model.layers[il].ffn_gate_inp,
  4499. model.layers[il].ffn_up_exps,
  4500. model.layers[il].ffn_gate_exps,
  4501. model.layers[il].ffn_down_exps,
  4502. nullptr,
  4503. n_expert, n_expert_used,
  4504. LLM_FFN_SILU, true,
  4505. false, 0.0,
  4506. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  4507. il);
  4508. cb(cur, "ffn_moe_out", il);
  4509. cur = ggml_add(ctx0, cur, ffn_inp);
  4510. cb(cur, "ffn_out", il);
  4511. cur = build_cvec(cur, il);
  4512. cb(cur, "l_out", il);
  4513. // input for next layer
  4514. inpL = cur;
  4515. }
  4516. cur = inpL;
  4517. cur = build_norm(cur,
  4518. model.output_norm, NULL,
  4519. LLM_NORM, -1);
  4520. cb(cur, "result_norm", -1);
  4521. res->t_embd = cur;
  4522. // lm_head
  4523. cur = build_lora_mm(model.output, cur);
  4524. cb(cur, "result_output", -1);
  4525. res->t_logits = cur;
  4526. ggml_build_forward_expand(gf, cur);
  4527. }
  4528. };
  4529. struct llm_build_starcoder : public llm_graph_context {
  4530. llm_build_starcoder(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4531. const int64_t n_embd_head = hparams.n_embd_head_v;
  4532. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4533. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4534. ggml_tensor * cur;
  4535. ggml_tensor * inpL;
  4536. inpL = build_inp_embd(model.tok_embd);
  4537. // inp_pos - contains the positions
  4538. ggml_tensor * inp_pos = build_inp_pos();
  4539. auto * inp_attn = build_attn_inp_kv_unified();
  4540. ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  4541. cb(pos, "pos_embd", -1);
  4542. inpL = ggml_add(ctx0, inpL, pos);
  4543. cb(inpL, "inpL", -1);
  4544. for (int il = 0; il < n_layer; ++il) {
  4545. cur = build_norm(inpL,
  4546. model.layers[il].attn_norm,
  4547. model.layers[il].attn_norm_b,
  4548. LLM_NORM, il);
  4549. cb(cur, "attn_norm", il);
  4550. // self-attention
  4551. {
  4552. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4553. cb(cur, "wqkv", il);
  4554. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4555. cb(cur, "bqkv", il);
  4556. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4557. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4558. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4559. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4560. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4561. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4562. cb(Qcur, "Qcur", il);
  4563. cb(Kcur, "Kcur", il);
  4564. cb(Vcur, "Vcur", il);
  4565. cur = build_attn(inp_attn, gf,
  4566. model.layers[il].wo, model.layers[il].bo,
  4567. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4568. }
  4569. if (il == n_layer - 1) {
  4570. // skip computing output for unused tokens
  4571. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4572. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4573. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4574. }
  4575. // add the input
  4576. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  4577. cb(ffn_inp, "ffn_inp", il);
  4578. // FF
  4579. {
  4580. cur = build_norm(ffn_inp,
  4581. model.layers[il].ffn_norm,
  4582. model.layers[il].ffn_norm_b,
  4583. LLM_NORM, il);
  4584. cb(cur, "ffn_norm", il);
  4585. cur = build_ffn(cur,
  4586. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  4587. NULL, NULL, NULL,
  4588. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4589. NULL,
  4590. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4591. cb(cur, "ffn_out", il);
  4592. }
  4593. cur = ggml_add(ctx0, cur, ffn_inp);
  4594. cur = build_cvec(cur, il);
  4595. cb(cur, "l_out", il);
  4596. // input for next layer
  4597. inpL = cur;
  4598. }
  4599. cur = build_norm(inpL,
  4600. model.output_norm,
  4601. model.output_norm_b,
  4602. LLM_NORM, -1);
  4603. cb(cur, "result_norm", -1);
  4604. res->t_embd = cur;
  4605. cur = build_lora_mm(model.output, cur);
  4606. cb(cur, "result_output", -1);
  4607. res->t_logits = cur;
  4608. ggml_build_forward_expand(gf, cur);
  4609. }
  4610. };
  4611. struct llm_build_refact : public llm_graph_context {
  4612. llm_build_refact(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4613. const int64_t n_embd_head = hparams.n_embd_head_v;
  4614. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4615. ggml_tensor * cur;
  4616. ggml_tensor * inpL;
  4617. inpL = build_inp_embd(model.tok_embd);
  4618. auto * inp_attn = build_attn_inp_kv_unified();
  4619. for (int il = 0; il < n_layer; ++il) {
  4620. ggml_tensor * inpSA = inpL;
  4621. cur = build_norm(inpL,
  4622. model.layers[il].attn_norm, NULL,
  4623. LLM_NORM_RMS, il);
  4624. cb(cur, "attn_norm", il);
  4625. // self-attention
  4626. {
  4627. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4628. cb(Qcur, "Qcur", il);
  4629. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4630. cb(Kcur, "Kcur", il);
  4631. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4632. cb(Vcur, "Vcur", il);
  4633. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4634. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4635. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4636. cb(Qcur, "Qcur", il);
  4637. cb(Kcur, "Kcur", il);
  4638. cb(Vcur, "Vcur", il);
  4639. cur = build_attn(inp_attn, gf,
  4640. model.layers[il].wo, NULL,
  4641. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4642. }
  4643. if (il == n_layer - 1) {
  4644. // skip computing output for unused tokens
  4645. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4646. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4647. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4648. }
  4649. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4650. cb(ffn_inp, "ffn_inp", il);
  4651. // feed-forward network
  4652. {
  4653. cur = build_norm(ffn_inp,
  4654. model.layers[il].ffn_norm, NULL,
  4655. LLM_NORM_RMS, il);
  4656. cb(cur, "ffn_norm", il);
  4657. cur = build_ffn(cur,
  4658. model.layers[il].ffn_up, NULL, NULL,
  4659. model.layers[il].ffn_gate, NULL, NULL,
  4660. model.layers[il].ffn_down, NULL, NULL,
  4661. NULL,
  4662. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4663. cb(cur, "ffn_out", il);
  4664. }
  4665. cur = ggml_add(ctx0, cur, ffn_inp);
  4666. cur = build_cvec(cur, il);
  4667. cb(cur, "l_out", il);
  4668. // input for next layer
  4669. inpL = cur;
  4670. }
  4671. cur = inpL;
  4672. cur = build_norm(cur,
  4673. model.output_norm, NULL,
  4674. LLM_NORM_RMS, -1);
  4675. cb(cur, "result_norm", -1);
  4676. res->t_embd = cur;
  4677. // lm_head
  4678. cur = build_lora_mm(model.output, cur);
  4679. cb(cur, "result_output", -1);
  4680. res->t_logits = cur;
  4681. ggml_build_forward_expand(gf, cur);
  4682. }
  4683. };
  4684. struct llm_build_bert : public llm_graph_context {
  4685. llm_build_bert(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4686. const int64_t n_embd_head = hparams.n_embd_head_v;
  4687. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4688. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4689. ggml_tensor * cur;
  4690. ggml_tensor * inpL;
  4691. ggml_tensor * inp_pos = nullptr;
  4692. if (model.arch != LLM_ARCH_JINA_BERT_V2) {
  4693. inp_pos = build_inp_pos();
  4694. }
  4695. // construct input embeddings (token, type, position)
  4696. inpL = build_inp_embd(model.tok_embd);
  4697. // token types are hardcoded to zero ("Sentence A")
  4698. ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  4699. inpL = ggml_add(ctx0, inpL, type_row0);
  4700. if (model.arch == LLM_ARCH_BERT) {
  4701. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  4702. }
  4703. cb(inpL, "inp_embd", -1);
  4704. // embed layer norm
  4705. inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
  4706. cb(inpL, "inp_norm", -1);
  4707. auto * inp_attn = build_attn_inp_no_cache();
  4708. // iterate layers
  4709. for (int il = 0; il < n_layer; ++il) {
  4710. ggml_tensor * cur = inpL;
  4711. ggml_tensor * Qcur;
  4712. ggml_tensor * Kcur;
  4713. ggml_tensor * Vcur;
  4714. // self-attention
  4715. if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) {
  4716. Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, cur), model.layers[il].bq);
  4717. if (model.layers[il].attn_q_norm) {
  4718. Qcur = build_norm(Qcur,
  4719. model.layers[il].attn_q_norm,
  4720. model.layers[il].attn_q_norm_b,
  4721. LLM_NORM, il);
  4722. }
  4723. Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, cur), model.layers[il].bk);
  4724. if (model.layers[il].attn_k_norm) {
  4725. Kcur = build_norm(Kcur,
  4726. model.layers[il].attn_k_norm,
  4727. model.layers[il].attn_k_norm_b,
  4728. LLM_NORM, il);
  4729. }
  4730. Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, cur), model.layers[il].bv);
  4731. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4732. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4733. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4734. } else {
  4735. // compute Q and K and RoPE them
  4736. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4737. cb(cur, "wqkv", il);
  4738. if (model.arch == LLM_ARCH_NOMIC_BERT_MOE) {
  4739. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4740. cb(cur, "bqkv", il);
  4741. }
  4742. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4743. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4744. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4745. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4746. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4747. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4748. Qcur = ggml_rope_ext(
  4749. ctx0, Qcur, inp_pos, nullptr,
  4750. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4751. ext_factor, attn_factor, beta_fast, beta_slow
  4752. );
  4753. Kcur = ggml_rope_ext(
  4754. ctx0, Kcur, inp_pos, nullptr,
  4755. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4756. ext_factor, attn_factor, beta_fast, beta_slow
  4757. );
  4758. }
  4759. cb(Qcur, "Qcur", il);
  4760. cb(Kcur, "Kcur", il);
  4761. cb(Vcur, "Vcur", il);
  4762. cur = build_attn(inp_attn, gf,
  4763. model.layers[il].wo, model.layers[il].bo,
  4764. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4765. cb(cur, "kqv_out", il);
  4766. if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
  4767. // skip computing output for unused tokens
  4768. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4769. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4770. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4771. }
  4772. // re-add the layer input
  4773. cur = ggml_add(ctx0, cur, inpL);
  4774. // attention layer norm
  4775. cur = build_norm(cur, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, il);
  4776. if (model.layers[il].attn_norm_2 != nullptr) {
  4777. cur = ggml_add(ctx0, cur, inpL); // re-add the layer input
  4778. cur = build_norm(cur, model.layers[il].attn_norm_2, model.layers[il].attn_norm_2_b, LLM_NORM, il);
  4779. }
  4780. ggml_tensor * ffn_inp = cur;
  4781. cb(ffn_inp, "ffn_inp", il);
  4782. // feed-forward network
  4783. if (hparams.moe_every_n_layers > 0 && il % hparams.moe_every_n_layers == 1) {
  4784. // MoE branch
  4785. cur = build_moe_ffn(cur,
  4786. model.layers[il].ffn_gate_inp,
  4787. model.layers[il].ffn_up_exps,
  4788. nullptr,
  4789. model.layers[il].ffn_down_exps,
  4790. nullptr,
  4791. hparams.n_expert,
  4792. hparams.n_expert_used,
  4793. LLM_FFN_GELU,
  4794. false, false,
  4795. 0.0f,
  4796. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, il);
  4797. cb(cur, "ffn_moe_out", il);
  4798. } else if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_NOMIC_BERT_MOE) {
  4799. cur = build_ffn(cur,
  4800. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  4801. NULL, NULL, NULL,
  4802. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4803. NULL,
  4804. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4805. cb(cur, "ffn_out", il);
  4806. } else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
  4807. cur = build_ffn(cur,
  4808. model.layers[il].ffn_up, NULL, NULL,
  4809. model.layers[il].ffn_gate, NULL, NULL,
  4810. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4811. NULL,
  4812. LLM_FFN_GELU, LLM_FFN_PAR, il);
  4813. cb(cur, "ffn_out", il);
  4814. } else {
  4815. cur = build_ffn(cur,
  4816. model.layers[il].ffn_up, NULL, NULL,
  4817. model.layers[il].ffn_gate, NULL, NULL,
  4818. model.layers[il].ffn_down, NULL, NULL,
  4819. NULL,
  4820. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4821. cb(cur, "ffn_out", il);
  4822. }
  4823. // attentions bypass the intermediate layer
  4824. cur = ggml_add(ctx0, cur, ffn_inp);
  4825. // output layer norm
  4826. cur = build_norm(cur, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, il);
  4827. // input for next layer
  4828. inpL = cur;
  4829. }
  4830. cur = inpL;
  4831. cb(cur, "result_embd", -1);
  4832. res->t_embd = cur;
  4833. ggml_build_forward_expand(gf, cur);
  4834. }
  4835. };
  4836. struct llm_build_bloom : public llm_graph_context {
  4837. llm_build_bloom(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4838. const int64_t n_embd_head = hparams.n_embd_head_v;
  4839. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4840. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4841. ggml_tensor * cur;
  4842. ggml_tensor * inpL;
  4843. inpL = build_inp_embd(model.tok_embd);
  4844. auto * inp_attn = build_attn_inp_kv_unified();
  4845. inpL = build_norm(inpL,
  4846. model.tok_norm,
  4847. model.tok_norm_b,
  4848. LLM_NORM, -1);
  4849. cb(inpL, "inp_norm", -1);
  4850. for (int il = 0; il < n_layer; ++il) {
  4851. cur = build_norm(inpL,
  4852. model.layers[il].attn_norm,
  4853. model.layers[il].attn_norm_b,
  4854. LLM_NORM, il);
  4855. cb(cur, "attn_norm", il);
  4856. // self-attention
  4857. {
  4858. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4859. cb(cur, "wqkv", il);
  4860. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4861. cb(cur, "bqkv", il);
  4862. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4863. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4864. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4865. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4866. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4867. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4868. cb(Qcur, "Qcur", il);
  4869. cb(Kcur, "Kcur", il);
  4870. cb(Vcur, "Vcur", il);
  4871. cur = build_attn(inp_attn, gf,
  4872. model.layers[il].wo, model.layers[il].bo,
  4873. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4874. }
  4875. if (il == n_layer - 1) {
  4876. // skip computing output for unused tokens
  4877. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4878. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4879. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4880. }
  4881. // Add the input
  4882. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  4883. cb(ffn_inp, "ffn_inp", il);
  4884. // FF
  4885. {
  4886. cur = build_norm(ffn_inp,
  4887. model.layers[il].ffn_norm,
  4888. model.layers[il].ffn_norm_b,
  4889. LLM_NORM, il);
  4890. cb(cur, "ffn_norm", il);
  4891. cur = build_ffn(cur,
  4892. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  4893. NULL, NULL, NULL,
  4894. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4895. NULL,
  4896. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4897. cb(cur, "ffn_out", il);
  4898. }
  4899. cur = ggml_add(ctx0, cur, ffn_inp);
  4900. cur = build_cvec(cur, il);
  4901. cb(cur, "l_out", il);
  4902. // input for next layer
  4903. inpL = cur;
  4904. }
  4905. cur = build_norm(inpL,
  4906. model.output_norm,
  4907. model.output_norm_b,
  4908. LLM_NORM, -1);
  4909. cb(cur, "result_norm", -1);
  4910. res->t_embd = cur;
  4911. cur = build_lora_mm(model.output, cur);
  4912. cb(cur, "result_output", -1);
  4913. res->t_logits = cur;
  4914. ggml_build_forward_expand(gf, cur);
  4915. }
  4916. };
  4917. struct llm_build_mpt : public llm_graph_context {
  4918. llm_build_mpt(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4919. const int64_t n_embd_head = hparams.n_embd_head_v;
  4920. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4921. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4922. ggml_tensor * cur;
  4923. ggml_tensor * pos;
  4924. ggml_tensor * inpL;
  4925. inpL = build_inp_embd(model.tok_embd);
  4926. auto * inp_attn = build_attn_inp_kv_unified();
  4927. if (model.pos_embd) {
  4928. // inp_pos - contains the positions
  4929. ggml_tensor * inp_pos = build_inp_pos();
  4930. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  4931. cb(pos, "pos_embd", -1);
  4932. inpL = ggml_add(ctx0, inpL, pos);
  4933. cb(inpL, "inpL", -1);
  4934. }
  4935. for (int il = 0; il < n_layer; ++il) {
  4936. ggml_tensor * attn_norm;
  4937. attn_norm = build_norm(inpL,
  4938. model.layers[il].attn_norm,
  4939. model.layers[il].attn_norm_b,
  4940. LLM_NORM, il);
  4941. cb(attn_norm, "attn_norm", il);
  4942. // self-attention
  4943. {
  4944. cur = attn_norm;
  4945. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4946. cb(cur, "wqkv", il);
  4947. if (model.layers[il].bqkv){
  4948. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4949. cb(cur, "bqkv", il);
  4950. }
  4951. if (hparams.f_clamp_kqv > 0.0f) {
  4952. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  4953. cb(cur, "wqkv_clamped", il);
  4954. }
  4955. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4956. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4957. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4958. cb(Qcur, "Qcur", il);
  4959. cb(Kcur, "Kcur", il);
  4960. cb(Vcur, "Vcur", il);
  4961. // Q/K Layernorm
  4962. if (model.layers[il].attn_q_norm) {
  4963. Qcur = build_norm(Qcur,
  4964. model.layers[il].attn_q_norm,
  4965. model.layers[il].attn_q_norm_b,
  4966. LLM_NORM, il);
  4967. cb(Qcur, "Qcur", il);
  4968. Kcur = build_norm(Kcur,
  4969. model.layers[il].attn_k_norm,
  4970. model.layers[il].attn_k_norm_b,
  4971. LLM_NORM, il);
  4972. cb(Kcur, "Kcur", il);
  4973. }
  4974. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4975. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4976. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4977. cb(Qcur, "Qcur", il);
  4978. cb(Kcur, "Kcur", il);
  4979. cb(Vcur, "Vcur", il);
  4980. cur = build_attn(inp_attn, gf,
  4981. model.layers[il].wo, model.layers[il].bo,
  4982. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4983. }
  4984. if (il == n_layer - 1) {
  4985. // skip computing output for unused tokens
  4986. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4987. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4988. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4989. }
  4990. // Add the input
  4991. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  4992. cb(ffn_inp, "ffn_inp", il);
  4993. // feed forward
  4994. {
  4995. cur = build_norm(ffn_inp,
  4996. model.layers[il].ffn_norm,
  4997. model.layers[il].ffn_norm_b,
  4998. LLM_NORM, il);
  4999. cb(cur, "ffn_norm", il);
  5000. cur = build_ffn(cur,
  5001. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  5002. NULL, NULL, NULL,
  5003. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  5004. model.layers[il].ffn_act,
  5005. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  5006. cb(cur, "ffn_out", il);
  5007. }
  5008. cur = ggml_add(ctx0, cur, ffn_inp);
  5009. cur = build_cvec(cur, il);
  5010. cb(cur, "l_out", il);
  5011. // input for next layer
  5012. inpL = cur;
  5013. }
  5014. cur = inpL;
  5015. cur = build_norm(cur,
  5016. model.output_norm,
  5017. model.output_norm_b,
  5018. LLM_NORM, -1);
  5019. cb(cur, "result_norm", -1);
  5020. res->t_embd = cur;
  5021. cur = build_lora_mm(model.output, cur);
  5022. cb(cur, "result_output", -1);
  5023. res->t_logits = cur;
  5024. ggml_build_forward_expand(gf, cur);
  5025. }
  5026. };
  5027. struct llm_build_stablelm : public llm_graph_context {
  5028. llm_build_stablelm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5029. const int64_t n_embd_head = hparams.n_embd_head_v;
  5030. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5031. ggml_tensor * cur;
  5032. ggml_tensor * inpL;
  5033. inpL = build_inp_embd(model.tok_embd);
  5034. // inp_pos - contains the positions
  5035. ggml_tensor * inp_pos = build_inp_pos();
  5036. auto * inp_attn = build_attn_inp_kv_unified();
  5037. for (int il = 0; il < n_layer; ++il) {
  5038. // norm
  5039. cur = build_norm(inpL,
  5040. model.layers[il].attn_norm,
  5041. model.layers[il].attn_norm_b,
  5042. LLM_NORM, il);
  5043. cb(cur, "attn_norm", il);
  5044. ggml_tensor * inpSA = cur;
  5045. // self-attention
  5046. {
  5047. // compute Q and K and RoPE them
  5048. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5049. cb(Qcur, "Qcur", il);
  5050. if (model.layers[il].bq) {
  5051. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5052. cb(Qcur, "Qcur", il);
  5053. }
  5054. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5055. cb(Kcur, "Kcur", il);
  5056. if (model.layers[il].bk) {
  5057. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5058. cb(Kcur, "Kcur", il);
  5059. }
  5060. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5061. cb(Vcur, "Vcur", il);
  5062. if (model.layers[il].bv) {
  5063. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5064. cb(Vcur, "Vcur", il);
  5065. }
  5066. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5067. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5068. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5069. if (model.layers[il].attn_q_norm) {
  5070. Qcur = build_norm(Qcur,
  5071. model.layers[il].attn_q_norm,
  5072. NULL,
  5073. LLM_NORM, il);
  5074. cb(Qcur, "Qcur", il);
  5075. }
  5076. if (model.layers[il].attn_k_norm) {
  5077. Kcur = build_norm(Kcur,
  5078. model.layers[il].attn_k_norm,
  5079. NULL,
  5080. LLM_NORM, il);
  5081. cb(Kcur, "Kcur", il);
  5082. }
  5083. Qcur = ggml_rope_ext(
  5084. ctx0, Qcur, inp_pos, nullptr,
  5085. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5086. ext_factor, attn_factor, beta_fast, beta_slow
  5087. );
  5088. Kcur = ggml_rope_ext(
  5089. ctx0, Kcur, inp_pos, nullptr,
  5090. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5091. ext_factor, attn_factor, beta_fast, beta_slow
  5092. );
  5093. cb(Qcur, "Qcur", il);
  5094. cb(Kcur, "Kcur", il);
  5095. cb(Vcur, "Vcur", il);
  5096. cur = build_attn(inp_attn, gf,
  5097. model.layers[il].wo, NULL,
  5098. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5099. }
  5100. if (il == n_layer - 1) {
  5101. // skip computing output for unused tokens
  5102. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5103. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5104. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  5105. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5106. }
  5107. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  5108. cb(ffn_inp, "ffn_inp", il);
  5109. // feed-forward network
  5110. {
  5111. if (model.layers[il].ffn_norm) {
  5112. cur = build_norm(ffn_inp,
  5113. model.layers[il].ffn_norm,
  5114. model.layers[il].ffn_norm_b,
  5115. LLM_NORM, il);
  5116. cb(cur, "ffn_norm", il);
  5117. } else {
  5118. // parallel residual
  5119. cur = inpSA;
  5120. }
  5121. cur = build_ffn(cur,
  5122. model.layers[il].ffn_up, NULL, NULL,
  5123. model.layers[il].ffn_gate, NULL, NULL,
  5124. model.layers[il].ffn_down, NULL, NULL,
  5125. NULL,
  5126. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5127. cb(cur, "ffn_out", il);
  5128. }
  5129. cur = ggml_add(ctx0, cur, ffn_inp);
  5130. cur = build_cvec(cur, il);
  5131. cb(cur, "l_out", il);
  5132. // input for next layer
  5133. inpL = cur;
  5134. }
  5135. cur = inpL;
  5136. cur = build_norm(cur,
  5137. model.output_norm,
  5138. model.output_norm_b,
  5139. LLM_NORM, -1);
  5140. cb(cur, "result_norm", -1);
  5141. res->t_embd = cur;
  5142. // lm_head
  5143. cur = build_lora_mm(model.output, cur);
  5144. cb(cur, "result_output", -1);
  5145. res->t_logits = cur;
  5146. ggml_build_forward_expand(gf, cur);
  5147. }
  5148. };
  5149. struct llm_build_qwen : public llm_graph_context {
  5150. llm_build_qwen(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5151. const int64_t n_embd_head = hparams.n_embd_head_v;
  5152. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5153. ggml_tensor * cur;
  5154. ggml_tensor * inpL;
  5155. inpL = build_inp_embd(model.tok_embd);
  5156. // inp_pos - contains the positions
  5157. ggml_tensor * inp_pos = build_inp_pos();
  5158. auto * inp_attn = build_attn_inp_kv_unified();
  5159. for (int il = 0; il < n_layer; ++il) {
  5160. ggml_tensor * inpSA = inpL;
  5161. cur = build_norm(inpL,
  5162. model.layers[il].attn_norm, NULL,
  5163. LLM_NORM_RMS, il);
  5164. cb(cur, "attn_norm", il);
  5165. // self-attention
  5166. {
  5167. cur = build_lora_mm(model.layers[il].wqkv, cur);
  5168. cb(cur, "wqkv", il);
  5169. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  5170. cb(cur, "bqkv", il);
  5171. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5172. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5173. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
  5174. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5175. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5176. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5177. // using mode = 2 for neox mode
  5178. Qcur = ggml_rope_ext(
  5179. ctx0, Qcur, inp_pos, nullptr,
  5180. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5181. ext_factor, attn_factor, beta_fast, beta_slow
  5182. );
  5183. Kcur = ggml_rope_ext(
  5184. ctx0, Kcur, inp_pos, nullptr,
  5185. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5186. ext_factor, attn_factor, beta_fast, beta_slow
  5187. );
  5188. cb(Qcur, "Qcur", il);
  5189. cb(Kcur, "Kcur", il);
  5190. cb(Vcur, "Vcur", il);
  5191. cur = build_attn(inp_attn, gf,
  5192. model.layers[il].wo, NULL,
  5193. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5194. }
  5195. if (il == n_layer - 1) {
  5196. // skip computing output for unused tokens
  5197. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5198. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5199. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5200. }
  5201. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5202. cb(ffn_inp, "ffn_inp", il);
  5203. // feed-forward forward
  5204. {
  5205. cur = build_norm(ffn_inp,
  5206. model.layers[il].ffn_norm, NULL,
  5207. LLM_NORM_RMS, il);
  5208. cb(cur, "ffn_norm", il);
  5209. cur = build_ffn(cur,
  5210. model.layers[il].ffn_up, NULL, NULL,
  5211. model.layers[il].ffn_gate, NULL, NULL,
  5212. model.layers[il].ffn_down, NULL, NULL,
  5213. NULL,
  5214. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5215. cb(cur, "ffn_out", il);
  5216. }
  5217. cur = ggml_add(ctx0, cur, ffn_inp);
  5218. cur = build_cvec(cur, il);
  5219. cb(cur, "l_out", il);
  5220. // input for next layer
  5221. inpL = cur;
  5222. }
  5223. cur = inpL;
  5224. cur = build_norm(cur,
  5225. model.output_norm, NULL,
  5226. LLM_NORM_RMS, -1);
  5227. cb(cur, "result_norm", -1);
  5228. res->t_embd = cur;
  5229. // lm_head
  5230. cur = build_lora_mm(model.output, cur);
  5231. cb(cur, "result_output", -1);
  5232. res->t_logits = cur;
  5233. ggml_build_forward_expand(gf, cur);
  5234. }
  5235. };
  5236. struct llm_build_qwen2 : public llm_graph_context {
  5237. llm_build_qwen2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5238. const int64_t n_embd_head = hparams.n_embd_head_v;
  5239. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5240. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5241. ggml_tensor * cur;
  5242. ggml_tensor * inpL;
  5243. inpL = build_inp_embd(model.tok_embd);
  5244. // inp_pos - contains the positions
  5245. ggml_tensor * inp_pos = build_inp_pos();
  5246. auto * inp_attn = build_attn_inp_kv_unified();
  5247. for (int il = 0; il < n_layer; ++il) {
  5248. ggml_tensor * inpSA = inpL;
  5249. // norm
  5250. cur = build_norm(inpL,
  5251. model.layers[il].attn_norm, NULL,
  5252. LLM_NORM_RMS, il);
  5253. cb(cur, "attn_norm", il);
  5254. // self-attention
  5255. {
  5256. // compute Q and K and RoPE them
  5257. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5258. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5259. cb(Qcur, "Qcur", il);
  5260. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5261. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5262. cb(Kcur, "Kcur", il);
  5263. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5264. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5265. cb(Vcur, "Vcur", il);
  5266. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5267. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5268. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5269. Qcur = ggml_rope_ext(
  5270. ctx0, Qcur, inp_pos, nullptr,
  5271. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5272. ext_factor, attn_factor, beta_fast, beta_slow
  5273. );
  5274. Kcur = ggml_rope_ext(
  5275. ctx0, Kcur, inp_pos, nullptr,
  5276. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5277. ext_factor, attn_factor, beta_fast, beta_slow
  5278. );
  5279. cb(Qcur, "Qcur", il);
  5280. cb(Kcur, "Kcur", il);
  5281. cb(Vcur, "Vcur", il);
  5282. cur = build_attn(inp_attn, gf,
  5283. model.layers[il].wo, model.layers[il].bo,
  5284. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5285. }
  5286. if (il == n_layer - 1) {
  5287. // skip computing output for unused tokens
  5288. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5289. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5290. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5291. }
  5292. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5293. cb(ffn_inp, "ffn_inp", il);
  5294. // feed-forward network
  5295. cur = build_norm(ffn_inp,
  5296. model.layers[il].ffn_norm, NULL,
  5297. LLM_NORM_RMS, il);
  5298. cb(cur, "ffn_norm", il);
  5299. cur = build_ffn(cur,
  5300. model.layers[il].ffn_up, NULL, NULL,
  5301. model.layers[il].ffn_gate, NULL, NULL,
  5302. model.layers[il].ffn_down, NULL, NULL,
  5303. NULL,
  5304. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5305. cb(cur, "ffn_out", il);
  5306. cur = ggml_add(ctx0, cur, ffn_inp);
  5307. cur = build_cvec(cur, il);
  5308. cb(cur, "l_out", il);
  5309. // input for next layer
  5310. inpL = cur;
  5311. }
  5312. cur = inpL;
  5313. cur = build_norm(cur,
  5314. model.output_norm, NULL,
  5315. LLM_NORM_RMS, -1);
  5316. cb(cur, "result_norm", -1);
  5317. res->t_embd = cur;
  5318. // lm_head
  5319. cur = build_lora_mm(model.output, cur);
  5320. cb(cur, "result_output", -1);
  5321. res->t_logits = cur;
  5322. ggml_build_forward_expand(gf, cur);
  5323. }
  5324. };
  5325. struct llm_build_qwen2vl : public llm_graph_context {
  5326. llm_build_qwen2vl(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5327. const int64_t n_embd_head = hparams.n_embd_head_v;
  5328. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5329. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5330. ggml_tensor * cur;
  5331. ggml_tensor * inpL;
  5332. inpL = build_inp_embd(model.tok_embd);
  5333. // inp_pos - contains the positions
  5334. ggml_tensor * inp_pos = build_inp_pos();
  5335. auto * inp_attn = build_attn_inp_kv_unified();
  5336. int sections[4];
  5337. std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections);
  5338. for (int il = 0; il < n_layer; ++il) {
  5339. ggml_tensor * inpSA = inpL;
  5340. // norm
  5341. cur = build_norm(inpL,
  5342. model.layers[il].attn_norm, NULL,
  5343. LLM_NORM_RMS, il);
  5344. cb(cur, "attn_norm", il);
  5345. // self-attention
  5346. {
  5347. // compute Q and K and RoPE them
  5348. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5349. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5350. cb(Qcur, "Qcur", il);
  5351. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5352. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5353. cb(Kcur, "Kcur", il);
  5354. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5355. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5356. cb(Vcur, "Vcur", il);
  5357. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5358. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5359. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5360. Qcur = ggml_rope_multi(
  5361. ctx0, Qcur, inp_pos, nullptr,
  5362. n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
  5363. ext_factor, attn_factor, beta_fast, beta_slow
  5364. );
  5365. Kcur = ggml_rope_multi(
  5366. ctx0, Kcur, inp_pos, nullptr,
  5367. n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
  5368. ext_factor, attn_factor, beta_fast, beta_slow
  5369. );
  5370. cb(Qcur, "Qcur", il);
  5371. cb(Kcur, "Kcur", il);
  5372. cb(Vcur, "Vcur", il);
  5373. cur = build_attn(inp_attn, gf,
  5374. model.layers[il].wo, model.layers[il].bo,
  5375. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5376. }
  5377. if (il == n_layer - 1) {
  5378. // skip computing output for unused tokens
  5379. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5380. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5381. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5382. }
  5383. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5384. cb(ffn_inp, "ffn_inp", il);
  5385. // feed-forward network
  5386. cur = build_norm(ffn_inp,
  5387. model.layers[il].ffn_norm, NULL,
  5388. LLM_NORM_RMS, il);
  5389. cb(cur, "ffn_norm", il);
  5390. cur = build_ffn(cur,
  5391. model.layers[il].ffn_up, NULL, NULL,
  5392. model.layers[il].ffn_gate, NULL, NULL,
  5393. model.layers[il].ffn_down, NULL, NULL,
  5394. NULL,
  5395. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5396. cb(cur, "ffn_out", il);
  5397. cur = ggml_add(ctx0, cur, ffn_inp);
  5398. cur = build_cvec(cur, il);
  5399. cb(cur, "l_out", il);
  5400. // input for next layer
  5401. inpL = cur;
  5402. }
  5403. cur = inpL;
  5404. cur = build_norm(cur,
  5405. model.output_norm, NULL,
  5406. LLM_NORM_RMS, -1);
  5407. cb(cur, "result_norm", -1);
  5408. res->t_embd = cur;
  5409. // lm_head
  5410. cur = build_lora_mm(model.output, cur);
  5411. cb(cur, "result_output", -1);
  5412. res->t_logits = cur;
  5413. ggml_build_forward_expand(gf, cur);
  5414. }
  5415. };
  5416. struct llm_build_qwen2moe : public llm_graph_context {
  5417. llm_build_qwen2moe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5418. const int64_t n_embd_head = hparams.n_embd_head_v;
  5419. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5420. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5421. ggml_tensor * cur;
  5422. ggml_tensor * inpL;
  5423. inpL = build_inp_embd(model.tok_embd);
  5424. // inp_pos - contains the positions
  5425. ggml_tensor * inp_pos = build_inp_pos();
  5426. auto * inp_attn = build_attn_inp_kv_unified();
  5427. for (int il = 0; il < n_layer; ++il) {
  5428. ggml_tensor * inpSA = inpL;
  5429. // norm
  5430. cur = build_norm(inpL,
  5431. model.layers[il].attn_norm, NULL,
  5432. LLM_NORM_RMS, il);
  5433. cb(cur, "attn_norm", il);
  5434. // self_attention
  5435. {
  5436. // compute Q and K and RoPE them
  5437. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5438. cb(Qcur, "Qcur", il);
  5439. if (model.layers[il].bq) {
  5440. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5441. cb(Qcur, "Qcur", il);
  5442. }
  5443. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5444. cb(Kcur, "Kcur", il);
  5445. if (model.layers[il].bk) {
  5446. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5447. cb(Kcur, "Kcur", il);
  5448. }
  5449. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5450. cb(Vcur, "Vcur", il);
  5451. if (model.layers[il].bv) {
  5452. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5453. cb(Vcur, "Vcur", il);
  5454. }
  5455. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5456. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5457. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5458. Qcur = ggml_rope_ext(
  5459. ctx0, Qcur, inp_pos, nullptr,
  5460. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5461. ext_factor, attn_factor, beta_fast, beta_slow
  5462. );
  5463. Kcur = ggml_rope_ext(
  5464. ctx0, Kcur, inp_pos, nullptr,
  5465. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5466. ext_factor, attn_factor, beta_fast, beta_slow
  5467. );
  5468. cb(Qcur, "Qcur", il);
  5469. cb(Kcur, "Kcur", il);
  5470. cb(Vcur, "Vcur", il);
  5471. cur = build_attn(inp_attn, gf,
  5472. model.layers[il].wo, model.layers[il].bo,
  5473. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5474. }
  5475. if (il == n_layer - 1) {
  5476. // skip computing output for unused tokens
  5477. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5478. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5479. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5480. }
  5481. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5482. cb(ffn_inp, "ffn_inp", il);
  5483. // MoE branch
  5484. cur = build_norm(ffn_inp,
  5485. model.layers[il].ffn_norm, NULL,
  5486. LLM_NORM_RMS, il);
  5487. cb(cur, "ffn_norm", il);
  5488. ggml_tensor * moe_out =
  5489. build_moe_ffn(cur,
  5490. model.layers[il].ffn_gate_inp,
  5491. model.layers[il].ffn_up_exps,
  5492. model.layers[il].ffn_gate_exps,
  5493. model.layers[il].ffn_down_exps,
  5494. nullptr,
  5495. n_expert, n_expert_used,
  5496. LLM_FFN_SILU, false,
  5497. false, 0.0,
  5498. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  5499. il);
  5500. cb(moe_out, "ffn_moe_out", il);
  5501. // FFN shared expert
  5502. {
  5503. ggml_tensor * cur_gate_inp = build_lora_mm(model.layers[il].ffn_gate_inp_shexp, cur);
  5504. cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
  5505. // sigmoid
  5506. ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
  5507. cb(cur_gate, "ffn_shexp_gate", il);
  5508. ggml_tensor * cur_ffn = build_ffn(cur,
  5509. model.layers[il].ffn_up_shexp, NULL, NULL,
  5510. model.layers[il].ffn_gate_shexp, NULL, NULL,
  5511. model.layers[il].ffn_down_shexp, NULL, NULL,
  5512. NULL,
  5513. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5514. cb(cur_ffn, "ffn_shexp", il);
  5515. ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
  5516. cb(ffn_shexp_out, "ffn_shexp_out", il);
  5517. moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
  5518. cb(moe_out, "ffn_out", il);
  5519. cur = moe_out;
  5520. }
  5521. cur = ggml_add(ctx0, cur, ffn_inp);
  5522. cur = build_cvec(cur, il);
  5523. cb(cur, "l_out", il);
  5524. // input for next layer
  5525. inpL = cur;
  5526. }
  5527. cur = inpL;
  5528. cur = build_norm(cur,
  5529. model.output_norm, NULL,
  5530. LLM_NORM_RMS, -1);
  5531. cb(cur, "result_norm", -1);
  5532. res->t_embd = cur;
  5533. // lm_head
  5534. cur = build_lora_mm(model.output, cur);
  5535. cb(cur, "result_output", -1);
  5536. res->t_logits = cur;
  5537. ggml_build_forward_expand(gf, cur);
  5538. }
  5539. };
  5540. struct llm_build_qwen3 : public llm_graph_context {
  5541. llm_build_qwen3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5542. const int64_t n_embd_head = hparams.n_embd_head_v;
  5543. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5544. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5545. ggml_tensor * cur;
  5546. ggml_tensor * inpL;
  5547. inpL = build_inp_embd(model.tok_embd);
  5548. // inp_pos - contains the positions
  5549. ggml_tensor * inp_pos = build_inp_pos();
  5550. auto * inp_attn = build_attn_inp_kv_unified();
  5551. for (int il = 0; il < n_layer; ++il) {
  5552. ggml_tensor * inpSA = inpL;
  5553. // norm
  5554. cur = build_norm(inpL,
  5555. model.layers[il].attn_norm, NULL,
  5556. LLM_NORM_RMS, il);
  5557. cb(cur, "attn_norm", il);
  5558. // self-attention
  5559. {
  5560. // compute Q and K and RoPE them
  5561. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5562. cb(Qcur, "Qcur", il);
  5563. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5564. cb(Kcur, "Kcur", il);
  5565. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5566. cb(Vcur, "Vcur", il);
  5567. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5568. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5569. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5570. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  5571. cb(Qcur, "Qcur_normed", il);
  5572. Qcur = ggml_rope_ext(
  5573. ctx0, Qcur, inp_pos, nullptr,
  5574. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5575. ext_factor, attn_factor, beta_fast, beta_slow
  5576. );
  5577. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  5578. cb(Kcur, "Kcur_normed", il);
  5579. Kcur = ggml_rope_ext(
  5580. ctx0, Kcur, inp_pos, nullptr,
  5581. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5582. ext_factor, attn_factor, beta_fast, beta_slow
  5583. );
  5584. cb(Qcur, "Qcur", il);
  5585. cb(Kcur, "Kcur", il);
  5586. cb(Vcur, "Vcur", il);
  5587. cur = build_attn(inp_attn, gf,
  5588. model.layers[il].wo, model.layers[il].bo,
  5589. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5590. }
  5591. if (il == n_layer - 1) {
  5592. // skip computing output for unused tokens
  5593. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5594. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5595. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5596. }
  5597. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5598. cb(ffn_inp, "ffn_inp", il);
  5599. // feed-forward network
  5600. cur = build_norm(ffn_inp,
  5601. model.layers[il].ffn_norm, NULL,
  5602. LLM_NORM_RMS, il);
  5603. cb(cur, "ffn_norm", il);
  5604. cur = build_ffn(cur,
  5605. model.layers[il].ffn_up, NULL, NULL,
  5606. model.layers[il].ffn_gate, NULL, NULL,
  5607. model.layers[il].ffn_down, NULL, NULL,
  5608. NULL,
  5609. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5610. cb(cur, "ffn_out", il);
  5611. cur = ggml_add(ctx0, cur, ffn_inp);
  5612. cur = build_cvec(cur, il);
  5613. cb(cur, "l_out", il);
  5614. // input for next layer
  5615. inpL = cur;
  5616. }
  5617. cur = inpL;
  5618. cur = build_norm(cur,
  5619. model.output_norm, NULL,
  5620. LLM_NORM_RMS, -1);
  5621. cb(cur, "result_norm", -1);
  5622. res->t_embd = cur;
  5623. // lm_head
  5624. cur = build_lora_mm(model.output, cur);
  5625. cb(cur, "result_output", -1);
  5626. res->t_logits = cur;
  5627. ggml_build_forward_expand(gf, cur);
  5628. }
  5629. };
  5630. struct llm_build_qwen3moe : public llm_graph_context {
  5631. llm_build_qwen3moe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5632. const int64_t n_embd_head = hparams.n_embd_head_v;
  5633. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5634. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5635. ggml_tensor * cur;
  5636. ggml_tensor * inpL;
  5637. inpL = build_inp_embd(model.tok_embd);
  5638. // inp_pos - contains the positions
  5639. ggml_tensor * inp_pos = build_inp_pos();
  5640. auto * inp_attn = build_attn_inp_kv_unified();
  5641. for (int il = 0; il < n_layer; ++il) {
  5642. ggml_tensor * inpSA = inpL;
  5643. // norm
  5644. cur = build_norm(inpL,
  5645. model.layers[il].attn_norm, NULL,
  5646. LLM_NORM_RMS, il);
  5647. cb(cur, "attn_norm", il);
  5648. // self_attention
  5649. {
  5650. // compute Q and K and RoPE them
  5651. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5652. cb(Qcur, "Qcur", il);
  5653. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5654. cb(Kcur, "Kcur", il);
  5655. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5656. cb(Vcur, "Vcur", il);
  5657. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5658. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5659. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5660. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  5661. cb(Qcur, "Qcur_normed", il);
  5662. Qcur = ggml_rope_ext(
  5663. ctx0, Qcur, inp_pos, nullptr,
  5664. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5665. ext_factor, attn_factor, beta_fast, beta_slow
  5666. );
  5667. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  5668. cb(Kcur, "Kcur_normed", il);
  5669. Kcur = ggml_rope_ext(
  5670. ctx0, Kcur, inp_pos, nullptr,
  5671. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5672. ext_factor, attn_factor, beta_fast, beta_slow
  5673. );
  5674. cb(Qcur, "Qcur", il);
  5675. cb(Kcur, "Kcur", il);
  5676. cb(Vcur, "Vcur", il);
  5677. cur = build_attn(inp_attn, gf,
  5678. model.layers[il].wo, model.layers[il].bo,
  5679. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5680. }
  5681. if (il == n_layer - 1) {
  5682. // skip computing output for unused tokens
  5683. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5684. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5685. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5686. }
  5687. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5688. cb(ffn_inp, "ffn_inp", il);
  5689. // MoE branch
  5690. cur = build_norm(ffn_inp,
  5691. model.layers[il].ffn_norm, NULL,
  5692. LLM_NORM_RMS, il);
  5693. cb(cur, "ffn_norm", il);
  5694. ggml_tensor * moe_out =
  5695. build_moe_ffn(cur,
  5696. model.layers[il].ffn_gate_inp,
  5697. model.layers[il].ffn_up_exps,
  5698. model.layers[il].ffn_gate_exps,
  5699. model.layers[il].ffn_down_exps,
  5700. nullptr,
  5701. n_expert, n_expert_used,
  5702. LLM_FFN_SILU, true,
  5703. false, 0.0,
  5704. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  5705. il);
  5706. cb(moe_out, "ffn_moe_out", il);
  5707. cur = moe_out;
  5708. cur = ggml_add(ctx0, cur, ffn_inp);
  5709. cur = build_cvec(cur, il);
  5710. cb(cur, "l_out", il);
  5711. // input for next layer
  5712. inpL = cur;
  5713. }
  5714. cur = inpL;
  5715. cur = build_norm(cur,
  5716. model.output_norm, NULL,
  5717. LLM_NORM_RMS, -1);
  5718. cb(cur, "result_norm", -1);
  5719. res->t_embd = cur;
  5720. // lm_head
  5721. cur = build_lora_mm(model.output, cur);
  5722. cb(cur, "result_output", -1);
  5723. res->t_logits = cur;
  5724. ggml_build_forward_expand(gf, cur);
  5725. }
  5726. };
  5727. struct llm_build_phi2 : public llm_graph_context {
  5728. llm_build_phi2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5729. const int64_t n_embd_head = hparams.n_embd_head_v;
  5730. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5731. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5732. ggml_tensor * cur;
  5733. ggml_tensor * attn_norm_output;
  5734. ggml_tensor * ffn_output;
  5735. ggml_tensor * inpL;
  5736. inpL = build_inp_embd(model.tok_embd);
  5737. // inp_pos - contains the positions
  5738. ggml_tensor * inp_pos = build_inp_pos();
  5739. auto * inp_attn = build_attn_inp_kv_unified();
  5740. for (int il = 0; il < n_layer; ++il) {
  5741. attn_norm_output = build_norm(inpL,
  5742. model.layers[il].attn_norm,
  5743. model.layers[il].attn_norm_b,
  5744. LLM_NORM, il);
  5745. cb(attn_norm_output, "attn_norm", il);
  5746. // self-attention
  5747. {
  5748. ggml_tensor * Qcur = nullptr;
  5749. ggml_tensor * Kcur = nullptr;
  5750. ggml_tensor * Vcur = nullptr;
  5751. if (model.layers[il].wqkv) {
  5752. cur = build_lora_mm(model.layers[il].wqkv, attn_norm_output);
  5753. cb(cur, "wqkv", il);
  5754. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  5755. cb(cur, "bqkv", il);
  5756. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5757. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5758. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  5759. } else {
  5760. Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  5761. Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  5762. Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  5763. }
  5764. cb(Qcur, "Qcur", il);
  5765. cb(Kcur, "Kcur", il);
  5766. cb(Vcur, "Vcur", il);
  5767. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5768. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5769. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5770. Qcur = ggml_rope_ext(
  5771. ctx0, Qcur, inp_pos, nullptr,
  5772. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5773. ext_factor, attn_factor, beta_fast, beta_slow
  5774. );
  5775. Kcur = ggml_rope_ext(
  5776. ctx0, Kcur, inp_pos, nullptr,
  5777. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5778. ext_factor, attn_factor, beta_fast, beta_slow
  5779. );
  5780. cb(Qcur, "Qcur", il);
  5781. cb(Kcur, "Kcur", il);
  5782. cb(Vcur, "Vcur", il);
  5783. // with phi2, we scale the Q to avoid precision issues
  5784. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  5785. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  5786. cur = build_attn(inp_attn, gf,
  5787. model.layers[il].wo, model.layers[il].bo,
  5788. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  5789. }
  5790. if (il == n_layer - 1) {
  5791. // skip computing output for unused tokens
  5792. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5793. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5794. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  5795. attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
  5796. }
  5797. // FF
  5798. {
  5799. ffn_output = build_ffn(attn_norm_output,
  5800. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  5801. NULL, NULL, NULL,
  5802. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  5803. NULL,
  5804. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  5805. cb(ffn_output, "ffn_out", il);
  5806. }
  5807. cur = ggml_add(ctx0, cur, ffn_output);
  5808. cur = ggml_add(ctx0, cur, inpL);
  5809. cur = build_cvec(cur, il);
  5810. cb(cur, "l_out", il);
  5811. // input for next layer
  5812. inpL = cur;
  5813. }
  5814. cur = build_norm(inpL,
  5815. model.output_norm,
  5816. model.output_norm_b,
  5817. LLM_NORM, -1);
  5818. cb(cur, "result_norm", -1);
  5819. res->t_embd = cur;
  5820. cur = build_lora_mm(model.output, cur);
  5821. cb(cur, "result_output_no_bias", -1);
  5822. cur = ggml_add(ctx0, cur, model.output_b);
  5823. cb(cur, "result_output", -1);
  5824. res->t_logits = cur;
  5825. ggml_build_forward_expand(gf, cur);
  5826. }
  5827. };
  5828. struct llm_build_phi3 : public llm_graph_context {
  5829. llm_build_phi3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5830. const int64_t n_embd_head = hparams.n_embd_head_v;
  5831. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5832. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5833. ggml_tensor * cur;
  5834. ggml_tensor * inpL;
  5835. inpL = build_inp_embd(model.tok_embd);
  5836. // inp_pos - contains the positions
  5837. ggml_tensor * inp_pos = build_inp_pos();
  5838. auto * inp_attn = build_attn_inp_kv_unified();
  5839. for (int il = 0; il < n_layer; ++il) {
  5840. auto * residual = inpL;
  5841. // self-attention
  5842. {
  5843. // rope freq factors for 128k context
  5844. ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
  5845. ggml_tensor* attn_norm_output = build_norm(inpL,
  5846. model.layers[il].attn_norm,
  5847. model.layers[il].attn_norm_b,
  5848. LLM_NORM_RMS, il);
  5849. cb(attn_norm_output, "attn_norm", il);
  5850. ggml_tensor * Qcur = nullptr;
  5851. ggml_tensor * Kcur = nullptr;
  5852. ggml_tensor * Vcur = nullptr;
  5853. if (model.layers[il].wqkv) {
  5854. cur = build_lora_mm(model.layers[il].wqkv, attn_norm_output);
  5855. cb(cur, "wqkv", il);
  5856. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
  5857. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
  5858. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
  5859. } else {
  5860. Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  5861. Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  5862. Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  5863. }
  5864. cb(Qcur, "Qcur", il);
  5865. cb(Kcur, "Kcur", il);
  5866. cb(Vcur, "Vcur", il);
  5867. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5868. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5869. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5870. Qcur = ggml_rope_ext(
  5871. ctx0, Qcur, inp_pos, rope_factors,
  5872. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5873. ext_factor, attn_factor, beta_fast, beta_slow
  5874. );
  5875. Kcur = ggml_rope_ext(
  5876. ctx0, Kcur, inp_pos, rope_factors,
  5877. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5878. ext_factor, attn_factor, beta_fast, beta_slow
  5879. );
  5880. cb(Qcur, "Qcur", il);
  5881. cb(Kcur, "Kcur", il);
  5882. cb(Vcur, "Vcur", il);
  5883. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  5884. cb(Qcur, "Qcur", il);
  5885. cur = build_attn(inp_attn, gf,
  5886. model.layers[il].wo, model.layers[il].bo,
  5887. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  5888. }
  5889. if (il == n_layer - 1) {
  5890. // skip computing output for unused tokens
  5891. ggml_tensor* inp_out_ids = build_inp_out_ids();
  5892. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5893. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  5894. }
  5895. cur = ggml_add(ctx0, cur, residual);
  5896. residual = cur;
  5897. cur = build_norm(cur,
  5898. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  5899. LLM_NORM_RMS, il);
  5900. cb(cur, "ffn_norm", il);
  5901. // feed-forward network
  5902. if (model.layers[il].ffn_gate_inp == nullptr) {
  5903. cur = build_ffn(cur,
  5904. model.layers[il].ffn_up, NULL, NULL,
  5905. NULL, NULL, NULL,
  5906. model.layers[il].ffn_down, NULL, NULL,
  5907. NULL,
  5908. LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
  5909. cb(cur, "ffn_out", il);
  5910. } else {
  5911. // MoE branch
  5912. cur = build_moe_ffn(cur,
  5913. model.layers[il].ffn_gate_inp,
  5914. model.layers[il].ffn_up_exps,
  5915. model.layers[il].ffn_gate_exps,
  5916. model.layers[il].ffn_down_exps,
  5917. nullptr,
  5918. n_expert, n_expert_used,
  5919. LLM_FFN_SILU, true,
  5920. false, 0.0,
  5921. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  5922. il);
  5923. cb(cur, "ffn_moe_out", il);
  5924. }
  5925. cur = ggml_add(ctx0, residual, cur);
  5926. cur = build_cvec(cur, il);
  5927. cb(cur, "l_out", il);
  5928. // input for next layer
  5929. inpL = cur;
  5930. }
  5931. cur = build_norm(inpL,
  5932. model.output_norm,
  5933. model.output_norm_b,
  5934. LLM_NORM_RMS, -1);
  5935. cb(cur, "result_norm", -1);
  5936. res->t_embd = cur;
  5937. cur = build_lora_mm(model.output, cur);
  5938. if (model.output_b != nullptr) {
  5939. cb(cur, "result_output_no_bias", -1);
  5940. cur = ggml_add(ctx0, cur, model.output_b);
  5941. }
  5942. cb(cur, "result_output", -1);
  5943. res->t_logits = cur;
  5944. ggml_build_forward_expand(gf, cur);
  5945. }
  5946. };
  5947. struct llm_build_plamo : public llm_graph_context {
  5948. llm_build_plamo(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5949. const int64_t n_embd_head = hparams.n_embd_head_v;
  5950. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5951. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5952. ggml_tensor * cur;
  5953. ggml_tensor * inpL;
  5954. inpL = build_inp_embd(model.tok_embd);
  5955. // inp_pos - contains the positions
  5956. ggml_tensor * inp_pos = build_inp_pos();
  5957. auto * inp_attn = build_attn_inp_kv_unified();
  5958. for (int il = 0; il < n_layer; ++il) {
  5959. // norm
  5960. cur = build_norm(inpL,
  5961. model.layers[il].attn_norm, NULL,
  5962. LLM_NORM_RMS, il);
  5963. cb(cur, "attn_norm", il);
  5964. ggml_tensor * attention_norm = cur;
  5965. // self-attention
  5966. {
  5967. // compute Q and K and RoPE them
  5968. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5969. cb(Qcur, "Qcur", il);
  5970. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5971. cb(Kcur, "Kcur", il);
  5972. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5973. cb(Vcur, "Vcur", il);
  5974. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5975. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5976. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5977. Qcur = ggml_rope_ext(
  5978. ctx0, Qcur, inp_pos, nullptr,
  5979. n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
  5980. ext_factor, attn_factor, beta_fast, beta_slow
  5981. );
  5982. Kcur = ggml_rope_ext(
  5983. ctx0, Kcur, inp_pos, nullptr,
  5984. n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
  5985. ext_factor, attn_factor, beta_fast, beta_slow
  5986. );
  5987. cb(Qcur, "Qcur", il);
  5988. cb(Kcur, "Kcur", il);
  5989. cb(Vcur, "Vcur", il);
  5990. cur = build_attn(inp_attn, gf,
  5991. model.layers[il].wo, NULL,
  5992. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5993. }
  5994. ggml_tensor * sa_out = cur;
  5995. cur = attention_norm;
  5996. if (il == n_layer - 1) {
  5997. // skip computing output for unused tokens
  5998. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5999. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6000. sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
  6001. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6002. }
  6003. // feed-forward network
  6004. {
  6005. cur = build_ffn(cur,
  6006. model.layers[il].ffn_up, NULL, NULL,
  6007. model.layers[il].ffn_gate, NULL, NULL,
  6008. model.layers[il].ffn_down, NULL, NULL,
  6009. NULL,
  6010. LLM_FFN_SILU, LLM_FFN_PAR, il);
  6011. cb(cur, "ffn_out", il);
  6012. }
  6013. cur = ggml_add(ctx0, cur, sa_out);
  6014. cur = ggml_add(ctx0, cur, inpL);
  6015. cur = build_cvec(cur, il);
  6016. cb(cur, "l_out", il);
  6017. // input for next layer
  6018. inpL = cur;
  6019. }
  6020. cur = inpL;
  6021. cur = build_norm(cur,
  6022. model.output_norm, NULL,
  6023. LLM_NORM_RMS, -1);
  6024. cb(cur, "result_norm", -1);
  6025. res->t_embd = cur;
  6026. // lm_head
  6027. cur = build_lora_mm(model.output, cur);
  6028. cb(cur, "result_output", -1);
  6029. res->t_logits = cur;
  6030. ggml_build_forward_expand(gf, cur);
  6031. }
  6032. };
  6033. struct llm_build_gpt2 : public llm_graph_context {
  6034. llm_build_gpt2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6035. const int64_t n_embd_head = hparams.n_embd_head_v;
  6036. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6037. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6038. ggml_tensor * cur;
  6039. ggml_tensor * pos;
  6040. ggml_tensor * inpL;
  6041. inpL = build_inp_embd(model.tok_embd);
  6042. // inp_pos - contains the positions
  6043. ggml_tensor * inp_pos = build_inp_pos();
  6044. auto * inp_attn = build_attn_inp_kv_unified();
  6045. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  6046. cb(pos, "pos_embd", -1);
  6047. inpL = ggml_add(ctx0, inpL, pos);
  6048. cb(inpL, "inpL", -1);
  6049. for (int il = 0; il < n_layer; ++il) {
  6050. cur = build_norm(inpL,
  6051. model.layers[il].attn_norm,
  6052. model.layers[il].attn_norm_b,
  6053. LLM_NORM, il);
  6054. cb(cur, "attn_norm", il);
  6055. // self-attention
  6056. {
  6057. cur = build_lora_mm(model.layers[il].wqkv, cur);
  6058. cb(cur, "wqkv", il);
  6059. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6060. cb(cur, "bqkv", il);
  6061. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6062. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6063. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6064. cb(Qcur, "Qcur", il);
  6065. cb(Kcur, "Kcur", il);
  6066. cb(Vcur, "Vcur", il);
  6067. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6068. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6069. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6070. cur = build_attn(inp_attn, gf,
  6071. model.layers[il].wo, model.layers[il].bo,
  6072. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6073. }
  6074. if (il == n_layer - 1) {
  6075. // skip computing output for unused tokens
  6076. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6077. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6078. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6079. }
  6080. // add the input
  6081. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6082. cb(ffn_inp, "ffn_inp", il);
  6083. // FF
  6084. {
  6085. cur = build_norm(ffn_inp,
  6086. model.layers[il].ffn_norm,
  6087. model.layers[il].ffn_norm_b,
  6088. LLM_NORM, il);
  6089. cb(cur, "ffn_norm", il);
  6090. cur = build_ffn(cur,
  6091. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  6092. NULL, NULL, NULL,
  6093. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  6094. NULL,
  6095. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  6096. cb(cur, "ffn_out", il);
  6097. }
  6098. cur = ggml_add(ctx0, cur, ffn_inp);
  6099. cur = build_cvec(cur, il);
  6100. cb(cur, "l_out", il);
  6101. // input for next layer
  6102. inpL = cur;
  6103. }
  6104. cur = build_norm(inpL,
  6105. model.output_norm,
  6106. model.output_norm_b,
  6107. LLM_NORM, -1);
  6108. cb(cur, "result_norm", -1);
  6109. res->t_embd = cur;
  6110. cur = build_lora_mm(model.output, cur);
  6111. cb(cur, "result_output", -1);
  6112. res->t_logits = cur;
  6113. ggml_build_forward_expand(gf, cur);
  6114. }
  6115. };
  6116. struct llm_build_codeshell : public llm_graph_context {
  6117. llm_build_codeshell(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6118. const int64_t n_embd_head = hparams.n_embd_head_v;
  6119. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6120. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6121. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6122. ggml_tensor * cur;
  6123. ggml_tensor * inpL;
  6124. inpL = build_inp_embd(model.tok_embd);
  6125. // inp_pos - contains the positions
  6126. ggml_tensor * inp_pos = build_inp_pos();
  6127. auto * inp_attn = build_attn_inp_kv_unified();
  6128. for (int il = 0; il < n_layer; ++il) {
  6129. cur = build_norm(inpL,
  6130. model.layers[il].attn_norm,
  6131. model.layers[il].attn_norm_b,
  6132. LLM_NORM, il);
  6133. cb(cur, "attn_norm", il);
  6134. // self-attention
  6135. {
  6136. cur = build_lora_mm(model.layers[il].wqkv, cur);
  6137. cb(cur, "wqkv", il);
  6138. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6139. cb(cur, "bqkv", il);
  6140. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6141. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6142. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6143. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6144. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6145. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6146. Qcur = ggml_rope_ext(
  6147. ctx0, Qcur, inp_pos, nullptr,
  6148. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6149. ext_factor, attn_factor, beta_fast, beta_slow
  6150. );
  6151. Kcur = ggml_rope_ext(
  6152. ctx0, Kcur, inp_pos, nullptr,
  6153. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6154. ext_factor, attn_factor, beta_fast, beta_slow
  6155. );
  6156. cb(Qcur, "Qcur", il);
  6157. cb(Kcur, "Kcur", il);
  6158. cb(Vcur, "Vcur", il);
  6159. cur = build_attn(inp_attn, gf,
  6160. model.layers[il].wo, model.layers[il].bo,
  6161. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6162. }
  6163. if (il == n_layer - 1) {
  6164. // skip computing output for unused tokens
  6165. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6166. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6167. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6168. }
  6169. // add the input
  6170. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6171. cb(ffn_inp, "ffn_inp", il);
  6172. // FF
  6173. {
  6174. cur = build_norm(ffn_inp,
  6175. model.layers[il].ffn_norm,
  6176. model.layers[il].ffn_norm_b,
  6177. LLM_NORM, il);
  6178. cb(cur, "ffn_norm", il);
  6179. cur = build_ffn(cur,
  6180. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  6181. NULL, NULL, NULL,
  6182. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  6183. NULL,
  6184. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  6185. cb(cur, "ffn_out", il);
  6186. }
  6187. cur = ggml_add(ctx0, cur, ffn_inp);
  6188. cur = build_cvec(cur, il);
  6189. cb(cur, "l_out", il);
  6190. // input for next layer
  6191. inpL = cur;
  6192. }
  6193. cur = build_norm(inpL,
  6194. model.output_norm,
  6195. model.output_norm_b,
  6196. LLM_NORM, -1);
  6197. cb(cur, "result_norm", -1);
  6198. res->t_embd = cur;
  6199. cur = build_lora_mm(model.output, cur);
  6200. cb(cur, "result_output", -1);
  6201. res->t_logits = cur;
  6202. ggml_build_forward_expand(gf, cur);
  6203. }
  6204. };
  6205. struct llm_build_orion : public llm_graph_context {
  6206. llm_build_orion(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6207. const int64_t n_embd_head = hparams.n_embd_head_v;
  6208. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6209. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6210. ggml_tensor * cur;
  6211. ggml_tensor * inpL;
  6212. inpL = build_inp_embd(model.tok_embd);
  6213. // inp_pos - contains the positions
  6214. ggml_tensor * inp_pos = build_inp_pos();
  6215. auto * inp_attn = build_attn_inp_kv_unified();
  6216. for (int il = 0; il < n_layer; ++il) {
  6217. ggml_tensor * inpSA = inpL;
  6218. // norm
  6219. cur = build_norm(inpL,
  6220. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  6221. LLM_NORM, il);
  6222. cb(cur, "attn_norm", il);
  6223. // self-attention
  6224. {
  6225. // compute Q and K and RoPE them
  6226. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6227. cb(Qcur, "Qcur", il);
  6228. // if (model.layers[il].bq) {
  6229. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6230. // cb(Qcur, "Qcur", il);
  6231. // }
  6232. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6233. cb(Kcur, "Kcur", il);
  6234. // if (model.layers[il].bk) {
  6235. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6236. // cb(Kcur, "Kcur", il);
  6237. // }
  6238. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6239. cb(Vcur, "Vcur", il);
  6240. // if (model.layers[il].bv) {
  6241. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6242. // cb(Vcur, "Vcur", il);
  6243. // }
  6244. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6245. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6246. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6247. Qcur = ggml_rope_ext(
  6248. ctx0, Qcur, inp_pos, nullptr,
  6249. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6250. ext_factor, attn_factor, beta_fast, beta_slow
  6251. );
  6252. Kcur = ggml_rope_ext(
  6253. ctx0, Kcur, inp_pos, nullptr,
  6254. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6255. ext_factor, attn_factor, beta_fast, beta_slow
  6256. );
  6257. cb(Qcur, "Qcur", il);
  6258. cb(Kcur, "Kcur", il);
  6259. cb(Vcur, "Vcur", il);
  6260. cur = build_attn(inp_attn, gf,
  6261. model.layers[il].wo, NULL,
  6262. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6263. }
  6264. if (il == n_layer - 1) {
  6265. // skip computing output for unused tokens
  6266. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6267. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6268. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6269. }
  6270. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6271. cb(ffn_inp, "ffn_inp", il);
  6272. // feed-forward network
  6273. cur = build_norm(ffn_inp,
  6274. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  6275. LLM_NORM, il);
  6276. cb(cur, "ffn_norm", il);
  6277. cur = build_ffn(cur,
  6278. model.layers[il].ffn_up, NULL, NULL,
  6279. model.layers[il].ffn_gate, NULL, NULL,
  6280. model.layers[il].ffn_down, NULL, NULL,
  6281. NULL,
  6282. LLM_FFN_SILU, LLM_FFN_PAR, il);
  6283. cb(cur, "ffn_out", il);
  6284. cur = ggml_add(ctx0, cur, ffn_inp);
  6285. cur = build_cvec(cur, il);
  6286. cb(cur, "l_out", il);
  6287. // input for next layer
  6288. inpL = cur;
  6289. }
  6290. cur = inpL;
  6291. cur = build_norm(cur,
  6292. model.output_norm, model.output_norm_b,
  6293. LLM_NORM, -1);
  6294. cb(cur, "result_norm", -1);
  6295. res->t_embd = cur;
  6296. // lm_head
  6297. cur = build_lora_mm(model.output, cur);
  6298. cb(cur, "result_output", -1);
  6299. res->t_logits = cur;
  6300. ggml_build_forward_expand(gf, cur);
  6301. }
  6302. };
  6303. struct llm_build_internlm2 : public llm_graph_context {
  6304. llm_build_internlm2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6305. const int64_t n_embd_head = hparams.n_embd_head_v;
  6306. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6307. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6308. ggml_tensor * cur;
  6309. ggml_tensor * inpL;
  6310. inpL = build_inp_embd(model.tok_embd);
  6311. // inp_pos - contains the positions
  6312. ggml_tensor * inp_pos = build_inp_pos();
  6313. auto * inp_attn = build_attn_inp_kv_unified();
  6314. for (int il = 0; il < n_layer; ++il) {
  6315. ggml_tensor * inpSA = inpL;
  6316. // norm
  6317. cur = build_norm(inpL,
  6318. model.layers[il].attn_norm, NULL,
  6319. LLM_NORM_RMS, il);
  6320. cb(cur, "attn_norm", il);
  6321. // self-attention
  6322. {
  6323. // compute Q and K and RoPE them
  6324. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6325. cb(Qcur, "Qcur", il);
  6326. if (model.layers[il].bq) {
  6327. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6328. cb(Qcur, "Qcur", il);
  6329. }
  6330. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6331. cb(Kcur, "Kcur", il);
  6332. if (model.layers[il].bk) {
  6333. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6334. cb(Kcur, "Kcur", il);
  6335. }
  6336. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6337. cb(Vcur, "Vcur", il);
  6338. if (model.layers[il].bv) {
  6339. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6340. cb(Vcur, "Vcur", il);
  6341. }
  6342. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6343. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6344. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6345. Qcur = ggml_rope_ext(
  6346. ctx0, Qcur, inp_pos, nullptr,
  6347. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6348. ext_factor, attn_factor, beta_fast, beta_slow
  6349. );
  6350. Kcur = ggml_rope_ext(
  6351. ctx0, Kcur, inp_pos, nullptr,
  6352. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6353. ext_factor, attn_factor, beta_fast, beta_slow
  6354. );
  6355. cb(Qcur, "Qcur", il);
  6356. cb(Kcur, "Kcur", il);
  6357. cb(Vcur, "Vcur", il);
  6358. cur = build_attn(inp_attn, gf,
  6359. model.layers[il].wo, model.layers[il].bo,
  6360. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6361. }
  6362. if (il == n_layer - 1) {
  6363. // skip computing output for unused tokens
  6364. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6365. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6366. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6367. }
  6368. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6369. cb(ffn_inp, "ffn_inp", il);
  6370. // feed-forward network
  6371. cur = build_norm(ffn_inp,
  6372. model.layers[il].ffn_norm, NULL,
  6373. LLM_NORM_RMS, il);
  6374. cb(cur, "ffn_norm", il);
  6375. cur = build_ffn(cur,
  6376. model.layers[il].ffn_up, NULL, NULL,
  6377. model.layers[il].ffn_gate, NULL, NULL,
  6378. model.layers[il].ffn_down, NULL, NULL,
  6379. NULL,
  6380. LLM_FFN_SILU, LLM_FFN_PAR, il);
  6381. cb(cur, "ffn_out", il);
  6382. cur = ggml_add(ctx0, cur, ffn_inp);
  6383. cur = build_cvec(cur, il);
  6384. cb(cur, "l_out", il);
  6385. // input for next layer
  6386. inpL = cur;
  6387. }
  6388. cur = inpL;
  6389. cur = build_norm(cur,
  6390. model.output_norm, NULL,
  6391. LLM_NORM_RMS, -1);
  6392. cb(cur, "result_norm", -1);
  6393. res->t_embd = cur;
  6394. // lm_head
  6395. cur = build_lora_mm(model.output, cur);
  6396. cb(cur, "result_output", -1);
  6397. res->t_logits = cur;
  6398. ggml_build_forward_expand(gf, cur);
  6399. }
  6400. };
  6401. struct llm_build_minicpm3 : public llm_graph_context {
  6402. llm_build_minicpm3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6403. //TODO: if the model varies, these parameters need to be read from the model
  6404. const int64_t n_embd_base = 256;
  6405. const float scale_embd = 12.0f;
  6406. const float scale_depth = 1.4f;
  6407. const float kq_scale = 1.0f / sqrtf(float(hparams.n_embd_head_k));
  6408. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  6409. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  6410. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  6411. ggml_tensor * cur;
  6412. ggml_tensor * inpL;
  6413. inpL = build_inp_embd(model.tok_embd);
  6414. // scale the input embeddings
  6415. inpL = ggml_scale(ctx0, inpL, scale_embd);
  6416. cb(inpL, "inp_scaled", -1);
  6417. // inp_pos - contains the positions
  6418. ggml_tensor * inp_pos = build_inp_pos();
  6419. auto * inp_attn = build_attn_inp_kv_unified();
  6420. for (int il = 0; il < n_layer; ++il) {
  6421. ggml_tensor * inpSA = inpL;
  6422. ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
  6423. // norm
  6424. cur = build_norm(inpL,
  6425. model.layers[il].attn_norm, NULL,
  6426. LLM_NORM_RMS, il);
  6427. cb(cur, "attn_norm", il);
  6428. // self_attention
  6429. {
  6430. ggml_tensor * q = NULL;
  6431. // {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens}
  6432. q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
  6433. cb(q, "q", il);
  6434. q = build_norm(q,
  6435. model.layers[il].attn_q_a_norm, NULL,
  6436. LLM_NORM_RMS, il);
  6437. cb(q, "q", il);
  6438. // {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens}
  6439. q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
  6440. cb(q, "q", il);
  6441. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  6442. ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
  6443. ggml_row_size(q->type, hparams.n_embd_head_k),
  6444. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  6445. 0);
  6446. cb(q_nope, "q_nope", il);
  6447. // and {n_head * n_embd_head_qk_rope, n_tokens}
  6448. ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
  6449. ggml_row_size(q->type, hparams.n_embd_head_k),
  6450. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  6451. ggml_row_size(q->type, n_embd_head_qk_nope));
  6452. cb(q_pe, "q_pe", il);
  6453. // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
  6454. ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  6455. cb(kv_pe_compresseed, "kv_pe_compresseed", il);
  6456. // split into {kv_lora_rank, n_tokens}
  6457. ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
  6458. kv_pe_compresseed->nb[1],
  6459. 0);
  6460. cb(kv_compressed, "kv_compressed", il);
  6461. // and {n_embd_head_qk_rope, n_tokens}
  6462. ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
  6463. kv_pe_compresseed->nb[1],
  6464. kv_pe_compresseed->nb[1],
  6465. ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
  6466. cb(k_pe, "k_pe", il);
  6467. // TODO: the CUDA backend used to not support non-cont. (RMS) norm, investigate removing ggml_cont
  6468. kv_compressed = ggml_cont(ctx0, kv_compressed);
  6469. kv_compressed = build_norm(kv_compressed,
  6470. model.layers[il].attn_kv_a_norm, NULL,
  6471. LLM_NORM_RMS, il);
  6472. cb(kv_compressed, "kv_compressed", il);
  6473. // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
  6474. ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
  6475. cb(kv, "kv", il);
  6476. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  6477. ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
  6478. ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
  6479. ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  6480. 0);
  6481. cb(k_nope, "k_nope", il);
  6482. // and {n_head * n_embd_head_v, n_tokens}
  6483. ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
  6484. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  6485. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
  6486. ggml_row_size(kv->type, (n_embd_head_qk_nope)));
  6487. cb(v_states, "v_states", il);
  6488. v_states = ggml_cont(ctx0, v_states);
  6489. cb(v_states, "v_states", il);
  6490. v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
  6491. ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
  6492. 0);
  6493. cb(v_states, "v_states", il);
  6494. q_pe = ggml_cont(ctx0, q_pe); // TODO: the CUDA backend used to not support non-cont. RoPE, investigate removing this
  6495. q_pe = ggml_rope_ext(
  6496. ctx0, q_pe, inp_pos, rope_factors,
  6497. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6498. ext_factor, attn_factor, beta_fast, beta_slow
  6499. );
  6500. cb(q_pe, "q_pe", il);
  6501. // shared RoPE key
  6502. k_pe = ggml_cont(ctx0, k_pe); // TODO: the CUDA backend used to not support non-cont. RoPE, investigate removing this
  6503. k_pe = ggml_rope_ext(
  6504. ctx0, k_pe, inp_pos, rope_factors,
  6505. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6506. ext_factor, attn_factor, beta_fast, beta_slow
  6507. );
  6508. cb(k_pe, "k_pe", il);
  6509. ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
  6510. cb(q_states, "q_states", il);
  6511. ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
  6512. cb(k_states, "k_states", il);
  6513. cur = build_attn(inp_attn, gf,
  6514. model.layers[il].wo, NULL,
  6515. q_states, k_states, v_states, nullptr, nullptr, kq_scale, il);
  6516. }
  6517. if (il == n_layer - 1) {
  6518. // skip computing output for unused tokens
  6519. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6520. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6521. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6522. }
  6523. // scale_res - scale the hidden states for residual connection
  6524. const float scale_res = scale_depth/sqrtf(float(n_layer));
  6525. cur = ggml_scale(ctx0, cur, scale_res);
  6526. cb(cur, "hidden_scaled", il);
  6527. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6528. cb(ffn_inp, "ffn_inp", il);
  6529. // feed-forward network
  6530. {
  6531. cur = build_norm(ffn_inp,
  6532. model.layers[il].ffn_norm, NULL,
  6533. LLM_NORM_RMS, il);
  6534. cb(cur, "ffn_norm", il);
  6535. cur = build_ffn(cur,
  6536. model.layers[il].ffn_up, NULL, NULL,
  6537. model.layers[il].ffn_gate, NULL, NULL,
  6538. model.layers[il].ffn_down, NULL, NULL,
  6539. NULL,
  6540. LLM_FFN_SILU, LLM_FFN_PAR, il);
  6541. cb(cur, "ffn_out", il);
  6542. }
  6543. // scale the hidden states for residual connection
  6544. cur = ggml_scale(ctx0, cur, scale_res);
  6545. cb(cur, "hidden_scaled_ffn", il);
  6546. cur = ggml_add(ctx0, cur, ffn_inp);
  6547. cur = build_cvec(cur, il);
  6548. cb(cur, "l_out", il);
  6549. // input for next layer
  6550. inpL = cur;
  6551. }
  6552. cur = inpL;
  6553. cur = build_norm(cur,
  6554. model.output_norm, NULL,
  6555. LLM_NORM_RMS, -1);
  6556. cb(cur, "result_norm", -1);
  6557. res->t_embd = cur;
  6558. // lm_head scaling
  6559. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  6560. cur = ggml_scale(ctx0, cur, scale_lmhead);
  6561. cb(cur, "lmhead_scaling", -1);
  6562. // lm_head
  6563. cur = build_lora_mm(model.output, cur);
  6564. cb(cur, "result_output", -1);
  6565. res->t_logits = cur;
  6566. ggml_build_forward_expand(gf, cur);
  6567. }
  6568. };
  6569. struct llm_build_gemma : public llm_graph_context {
  6570. llm_build_gemma(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6571. const int64_t n_embd_head = hparams.n_embd_head_v;
  6572. ggml_tensor * cur;
  6573. ggml_tensor * inpL;
  6574. inpL = build_inp_embd(model.tok_embd);
  6575. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  6576. cb(inpL, "inp_scaled", -1);
  6577. // inp_pos - contains the positions
  6578. ggml_tensor * inp_pos = build_inp_pos();
  6579. auto * inp_attn = build_attn_inp_kv_unified();
  6580. for (int il = 0; il < n_layer; ++il) {
  6581. // norm
  6582. cur = build_norm(inpL,
  6583. model.layers[il].attn_norm, NULL,
  6584. LLM_NORM_RMS, il);
  6585. cb(cur, "attn_norm", il);
  6586. // self-attention
  6587. {
  6588. // compute Q and K and RoPE them
  6589. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6590. cb(Qcur, "Qcur", il);
  6591. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6592. cb(Kcur, "Kcur", il);
  6593. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6594. cb(Vcur, "Vcur", il);
  6595. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6596. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6597. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6598. Qcur = ggml_rope_ext(
  6599. ctx0, Qcur, inp_pos, nullptr,
  6600. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6601. ext_factor, attn_factor, beta_fast, beta_slow);
  6602. Kcur = ggml_rope_ext(
  6603. ctx0, Kcur, inp_pos, nullptr,
  6604. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6605. ext_factor, attn_factor, beta_fast, beta_slow);
  6606. cb(Qcur, "Qcur", il);
  6607. cb(Kcur, "Kcur", il);
  6608. cb(Vcur, "Vcur", il);
  6609. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  6610. cb(Qcur, "Qcur_scaled", il);
  6611. cur = build_attn(inp_attn, gf,
  6612. model.layers[il].wo, NULL,
  6613. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  6614. }
  6615. if (il == n_layer - 1) {
  6616. // skip computing output for unused tokens
  6617. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6618. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6619. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6620. }
  6621. ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  6622. cb(sa_out, "sa_out", il);
  6623. cur = build_norm(sa_out,
  6624. model.layers[il].ffn_norm, NULL,
  6625. LLM_NORM_RMS, il);
  6626. cb(cur, "ffn_norm", il);
  6627. // feed-forward network
  6628. {
  6629. cur = build_ffn(cur,
  6630. model.layers[il].ffn_up, NULL, NULL,
  6631. model.layers[il].ffn_gate, NULL, NULL,
  6632. model.layers[il].ffn_down, NULL, NULL,
  6633. NULL,
  6634. LLM_FFN_GELU, LLM_FFN_PAR, il);
  6635. cb(cur, "ffn_out", il);
  6636. }
  6637. cur = ggml_add(ctx0, cur, sa_out);
  6638. cur = build_cvec(cur, il);
  6639. cb(cur, "l_out", il);
  6640. // input for next layer
  6641. inpL = cur;
  6642. }
  6643. cur = inpL;
  6644. cur = build_norm(cur,
  6645. model.output_norm, NULL,
  6646. LLM_NORM_RMS, -1);
  6647. cb(cur, "result_norm", -1);
  6648. res->t_embd = cur;
  6649. // lm_head
  6650. cur = build_lora_mm(model.output, cur);
  6651. cb(cur, "result_output", -1);
  6652. res->t_logits = cur;
  6653. ggml_build_forward_expand(gf, cur);
  6654. }
  6655. };
  6656. struct llm_build_gemma2 : public llm_graph_context {
  6657. llm_build_gemma2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6658. const int64_t n_embd_head = hparams.n_embd_head_k;
  6659. ggml_tensor * cur;
  6660. ggml_tensor * inpL;
  6661. inpL = build_inp_embd(model.tok_embd);
  6662. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  6663. cb(inpL, "inp_scaled", -1);
  6664. // inp_pos - contains the positions
  6665. ggml_tensor * inp_pos = build_inp_pos();
  6666. auto * inp_attn = build_attn_inp_kv_unified();
  6667. for (int il = 0; il < n_layer; ++il) {
  6668. // norm
  6669. cur = build_norm(inpL,
  6670. model.layers[il].attn_norm, NULL,
  6671. LLM_NORM_RMS, il);
  6672. cb(cur, "attn_norm", il);
  6673. // self-attention
  6674. {
  6675. // compute Q and K and RoPE them
  6676. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6677. cb(Qcur, "Qcur", il);
  6678. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6679. cb(Kcur, "Kcur", il);
  6680. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6681. cb(Vcur, "Vcur", il);
  6682. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6683. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6684. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6685. Qcur = ggml_rope_ext(
  6686. ctx0, Qcur, inp_pos, nullptr,
  6687. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6688. ext_factor, attn_factor, beta_fast, beta_slow);
  6689. Kcur = ggml_rope_ext(
  6690. ctx0, Kcur, inp_pos, nullptr,
  6691. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6692. ext_factor, attn_factor, beta_fast, beta_slow);
  6693. cb(Qcur, "Qcur", il);
  6694. cb(Kcur, "Kcur", il);
  6695. cb(Vcur, "Vcur", il);
  6696. // ref: https://github.com/google/gemma_pytorch/commit/03e657582d17cb5a8617ebf333c1c16f3694670e
  6697. switch (model.type) {
  6698. case LLM_TYPE_2B:
  6699. case LLM_TYPE_9B:
  6700. case LLM_TYPE_27B: Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head))); break;
  6701. default: GGML_ABORT("fatal error");
  6702. };
  6703. cb(Qcur, "Qcur_scaled", il);
  6704. cur = build_attn(inp_attn, gf,
  6705. model.layers[il].wo, NULL,
  6706. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  6707. }
  6708. cur = build_norm(cur,
  6709. model.layers[il].attn_post_norm, NULL,
  6710. LLM_NORM_RMS, il);
  6711. cb(cur, "attn_post_norm", il);
  6712. if (il == n_layer - 1) {
  6713. // skip computing output for unused tokens
  6714. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6715. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6716. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6717. }
  6718. ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  6719. cb(sa_out, "sa_out", il);
  6720. cur = build_norm(sa_out,
  6721. model.layers[il].ffn_norm, NULL,
  6722. LLM_NORM_RMS, il);
  6723. cb(cur, "ffn_norm", il);
  6724. // feed-forward network
  6725. {
  6726. cur = build_ffn(cur,
  6727. model.layers[il].ffn_up, NULL, NULL,
  6728. model.layers[il].ffn_gate, NULL, NULL,
  6729. model.layers[il].ffn_down, NULL, NULL,
  6730. NULL,
  6731. LLM_FFN_GELU, LLM_FFN_PAR, il);
  6732. cb(cur, "ffn_out", il);
  6733. }
  6734. cur = build_norm(cur,
  6735. model.layers[il].ffn_post_norm, NULL,
  6736. LLM_NORM_RMS, -1);
  6737. cb(cur, "ffn_post_norm", -1);
  6738. cur = ggml_add(ctx0, cur, sa_out);
  6739. cur = build_cvec(cur, il);
  6740. cb(cur, "l_out", il);
  6741. // input for next layer
  6742. inpL = cur;
  6743. }
  6744. cur = inpL;
  6745. cur = build_norm(cur,
  6746. model.output_norm, NULL,
  6747. LLM_NORM_RMS, -1);
  6748. cb(cur, "result_norm", -1);
  6749. res->t_embd = cur;
  6750. // lm_head
  6751. cur = build_lora_mm(model.output, cur);
  6752. // final logit soft-capping
  6753. cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
  6754. cur = ggml_tanh(ctx0, cur);
  6755. cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);
  6756. cb(cur, "result_output", -1);
  6757. res->t_logits = cur;
  6758. ggml_build_forward_expand(gf, cur);
  6759. }
  6760. };
  6761. struct llm_build_gemma3 : public llm_graph_context {
  6762. llm_build_gemma3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6763. const int64_t n_embd_head = hparams.n_embd_head_k;
  6764. ggml_tensor * cur;
  6765. ggml_tensor * inpL;
  6766. inpL = build_inp_embd(model.tok_embd);
  6767. // important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
  6768. if (ubatch.token) {
  6769. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  6770. cb(inpL, "inp_scaled", -1);
  6771. }
  6772. // inp_pos - contains the positions
  6773. ggml_tensor * inp_pos = build_inp_pos();
  6774. // TODO: is causal == true correct? might need some changes
  6775. auto * inp_attn = build_attn_inp_kv_unified();
  6776. for (int il = 0; il < n_layer; ++il) {
  6777. const bool is_swa = hparams.is_swa(il);
  6778. const float freq_base_l = is_swa ? hparams.rope_freq_base_train_swa : cparams.rope_freq_base;
  6779. const float freq_scale_l = is_swa ? hparams.rope_freq_scale_train_swa : cparams.rope_freq_scale;
  6780. // norm
  6781. cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
  6782. cb(cur, "attn_norm", il);
  6783. // self-attention
  6784. {
  6785. // compute Q and K and RoPE them
  6786. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6787. cb(Qcur, "Qcur", il);
  6788. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6789. cb(Kcur, "Kcur", il);
  6790. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6791. cb(Vcur, "Vcur", il);
  6792. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6793. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6794. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6795. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  6796. cb(Qcur, "Qcur_normed", il);
  6797. Qcur = ggml_rope_ext(
  6798. ctx0, Qcur, inp_pos, nullptr,
  6799. n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
  6800. ext_factor, attn_factor, beta_fast, beta_slow);
  6801. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  6802. cb(Kcur, "Kcur_normed", il);
  6803. Kcur = ggml_rope_ext(
  6804. ctx0, Kcur, inp_pos, nullptr,
  6805. n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
  6806. ext_factor, attn_factor, beta_fast, beta_slow);
  6807. cb(Qcur, "Qcur", il);
  6808. cb(Kcur, "Kcur", il);
  6809. cb(Vcur, "Vcur", il);
  6810. cur = build_attn(inp_attn, gf,
  6811. model.layers[il].wo, NULL,
  6812. Qcur, Kcur, Vcur, nullptr, nullptr, hparams.f_attention_scale, il);
  6813. }
  6814. cur = build_norm(cur,
  6815. model.layers[il].attn_post_norm, NULL,
  6816. LLM_NORM_RMS, il);
  6817. cb(cur, "attn_post_norm", il);
  6818. if (il == n_layer - 1) {
  6819. // skip computing output for unused tokens
  6820. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6821. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6822. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6823. }
  6824. ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  6825. cb(sa_out, "sa_out", il);
  6826. cur = build_norm(sa_out,
  6827. model.layers[il].ffn_norm, NULL,
  6828. LLM_NORM_RMS, il);
  6829. cb(cur, "ffn_norm", il);
  6830. // feed-forward network
  6831. {
  6832. cur = build_ffn(cur,
  6833. model.layers[il].ffn_up, NULL, NULL,
  6834. model.layers[il].ffn_gate, NULL, NULL,
  6835. model.layers[il].ffn_down, NULL, NULL,
  6836. NULL,
  6837. LLM_FFN_GELU, LLM_FFN_PAR, il);
  6838. cb(cur, "ffn_out", il);
  6839. }
  6840. cur = build_norm(cur,
  6841. model.layers[il].ffn_post_norm, NULL,
  6842. LLM_NORM_RMS, -1);
  6843. cb(cur, "ffn_post_norm", -1);
  6844. cur = ggml_add(ctx0, cur, sa_out);
  6845. cur = build_cvec(cur, il);
  6846. cb(cur, "l_out", il);
  6847. // input for next layer
  6848. inpL = cur;
  6849. }
  6850. cur = inpL;
  6851. cur = build_norm(cur,
  6852. model.output_norm, NULL,
  6853. LLM_NORM_RMS, -1);
  6854. cb(cur, "result_norm", -1);
  6855. res->t_embd = cur;
  6856. // lm_head
  6857. cur = build_lora_mm(model.output, cur);
  6858. cb(cur, "result_output", -1);
  6859. res->t_logits = cur;
  6860. ggml_build_forward_expand(gf, cur);
  6861. }
  6862. };
  6863. // TODO: move up next to build_starcoder
  6864. struct llm_build_starcoder2 : public llm_graph_context {
  6865. llm_build_starcoder2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6866. const int64_t n_embd_head = hparams.n_embd_head_v;
  6867. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6868. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6869. ggml_tensor * cur;
  6870. ggml_tensor * inpL;
  6871. inpL = build_inp_embd(model.tok_embd);
  6872. // inp_pos - contains the positions
  6873. ggml_tensor * inp_pos = build_inp_pos();
  6874. auto * inp_attn = build_attn_inp_kv_unified();
  6875. for (int il = 0; il < n_layer; ++il) {
  6876. ggml_tensor * inpSA = inpL;
  6877. // norm
  6878. cur = build_norm(inpL,
  6879. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  6880. LLM_NORM, il);
  6881. cb(cur, "attn_norm", il);
  6882. // self-attention
  6883. {
  6884. // compute Q and K and RoPE them
  6885. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6886. cb(Qcur, "Qcur", il);
  6887. if (model.layers[il].bq) {
  6888. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6889. cb(Qcur, "Qcur", il);
  6890. }
  6891. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6892. cb(Kcur, "Kcur", il);
  6893. if (model.layers[il].bk) {
  6894. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6895. cb(Kcur, "Kcur", il);
  6896. }
  6897. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6898. cb(Vcur, "Vcur", il);
  6899. if (model.layers[il].bv) {
  6900. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6901. cb(Vcur, "Vcur", il);
  6902. }
  6903. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6904. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6905. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6906. Qcur = ggml_rope_ext(
  6907. ctx0, Qcur, inp_pos, nullptr,
  6908. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6909. ext_factor, attn_factor, beta_fast, beta_slow
  6910. );
  6911. Kcur = ggml_rope_ext(
  6912. ctx0, Kcur, inp_pos, nullptr,
  6913. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6914. ext_factor, attn_factor, beta_fast, beta_slow
  6915. );
  6916. cb(Qcur, "Qcur", il);
  6917. cb(Kcur, "Kcur", il);
  6918. cb(Vcur, "Vcur", il);
  6919. cur = build_attn(inp_attn, gf,
  6920. model.layers[il].wo, model.layers[il].bo,
  6921. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6922. }
  6923. if (il == n_layer - 1) {
  6924. // skip computing output for unused tokens
  6925. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6926. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6927. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6928. }
  6929. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6930. cb(ffn_inp, "ffn_inp", il);
  6931. // feed-forward network
  6932. cur = build_norm(ffn_inp,
  6933. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  6934. LLM_NORM, il);
  6935. cb(cur, "ffn_norm", il);
  6936. cur = build_ffn(cur,
  6937. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  6938. NULL, NULL, NULL,
  6939. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  6940. NULL,
  6941. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  6942. cb(cur, "ffn_out", il);
  6943. cur = ggml_add(ctx0, cur, ffn_inp);
  6944. cur = build_cvec(cur, il);
  6945. cb(cur, "l_out", il);
  6946. // input for next layer
  6947. inpL = cur;
  6948. }
  6949. cur = inpL;
  6950. cur = build_norm(cur,
  6951. model.output_norm, model.output_norm_b,
  6952. LLM_NORM, -1);
  6953. cb(cur, "result_norm", -1);
  6954. res->t_embd = cur;
  6955. // lm_head
  6956. cur = build_lora_mm(model.output, cur);
  6957. cb(cur, "result_output", -1);
  6958. res->t_logits = cur;
  6959. ggml_build_forward_expand(gf, cur);
  6960. }
  6961. };
  6962. struct llm_build_mamba : public llm_graph_context {
  6963. const llama_model & model;
  6964. llm_build_mamba(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params), model(model) {
  6965. ggml_tensor * cur;
  6966. ggml_tensor * inpL;
  6967. // {n_embd, n_tokens}
  6968. inpL = build_inp_embd(model.tok_embd);
  6969. ggml_tensor * state_copy = build_inp_s_copy();
  6970. ggml_tensor * state_mask = build_inp_s_mask();
  6971. for (int il = 0; il < n_layer; ++il) {
  6972. // norm
  6973. cur = build_norm(inpL,
  6974. model.layers[il].attn_norm, NULL,
  6975. LLM_NORM_RMS, il);
  6976. cb(cur, "attn_norm", il);
  6977. //cur = build_mamba_layer(gf, cur, state_copy, state_mask, il);
  6978. cur = build_mamba_layer(gf, cur, state_copy, state_mask, ubatch, il);
  6979. if (il == n_layer - 1) {
  6980. // skip computing output for unused tokens
  6981. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6982. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6983. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6984. }
  6985. // residual
  6986. cur = ggml_add(ctx0, cur, inpL);
  6987. cur = build_cvec(cur, il);
  6988. cb(cur, "l_out", il);
  6989. // input for next layer
  6990. inpL = cur;
  6991. }
  6992. // final rmsnorm
  6993. cur = build_norm(inpL,
  6994. model.output_norm, NULL,
  6995. LLM_NORM_RMS, -1);
  6996. cb(cur, "result_norm", -1);
  6997. res->t_embd = cur;
  6998. // lm_head
  6999. cur = build_lora_mm(model.output, cur);
  7000. cb(cur, "result_output", -1);
  7001. res->t_logits = cur;
  7002. ggml_build_forward_expand(gf, cur);
  7003. }
  7004. // TODO: split
  7005. ggml_tensor * build_mamba_layer(
  7006. ggml_cgraph * gf,
  7007. ggml_tensor * cur,
  7008. ggml_tensor * state_copy,
  7009. ggml_tensor * state_mask,
  7010. const llama_ubatch & ubatch,
  7011. int il) const {
  7012. const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
  7013. const auto kv_head = kv_self->head;
  7014. const int64_t d_conv = hparams.ssm_d_conv;
  7015. const int64_t d_inner = hparams.ssm_d_inner;
  7016. const int64_t d_state = hparams.ssm_d_state;
  7017. const int64_t dt_rank = hparams.ssm_dt_rank;
  7018. const int64_t n_seqs = ubatch.n_seqs;
  7019. // Some variants of Mamba arch (e.g. FalconMamba do apply layer norm on B and Dt layers)
  7020. const bool ssm_dt_b_c_rms = hparams.ssm_dt_b_c_rms;
  7021. // Use the same RMS norm as the final layer norm
  7022. const float norm_rms_eps = hparams.f_norm_rms_eps;
  7023. const int64_t n_seq_tokens = ubatch.n_seq_tokens;
  7024. GGML_ASSERT(n_seqs != 0);
  7025. GGML_ASSERT(ubatch.equal_seqs);
  7026. GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
  7027. ggml_tensor * conv_states_all = kv_self->k_l[il];
  7028. ggml_tensor * ssm_states_all = kv_self->v_l[il];
  7029. // (ab)using the KV cache to store the states
  7030. ggml_tensor * conv = build_copy_mask_state(
  7031. gf, conv_states_all, state_copy, state_mask,
  7032. hparams.n_embd_k_s(), n_seqs);
  7033. conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner, n_seqs);
  7034. ggml_tensor * ssm = build_copy_mask_state(
  7035. gf, ssm_states_all, state_copy, state_mask,
  7036. hparams.n_embd_v_s(), n_seqs);
  7037. ssm = ggml_reshape_3d(ctx0, ssm, d_state, d_inner, n_seqs);
  7038. // {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
  7039. cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
  7040. // {n_embd, 2*d_inner} @ {n_embd, n_seq_tokens, n_seqs} => {2*d_inner, n_seq_tokens, n_seqs}
  7041. ggml_tensor * xz = build_lora_mm(model.layers[il].ssm_in, cur);
  7042. // split the above in two
  7043. // => {d_inner, n_seq_tokens, n_seqs}
  7044. ggml_tensor * x = ggml_view_3d(ctx0, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], 0);
  7045. ggml_tensor * z = ggml_view_3d(ctx0, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], d_inner*ggml_element_size(xz));
  7046. // conv
  7047. {
  7048. // => {d_conv - 1 + n_seq_tokens, d_inner, n_seqs}
  7049. ggml_tensor * conv_x = ggml_concat(ctx0, conv, ggml_transpose(ctx0, x), 0);
  7050. // copy last (d_conv - 1) columns back into the state cache
  7051. ggml_tensor * last_conv = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner, n_seqs, conv_x->nb[1], conv_x->nb[2], n_seq_tokens*(conv_x->nb[0]));
  7052. ggml_build_forward_expand(gf,
  7053. ggml_cpy(ctx0, last_conv,
  7054. ggml_view_1d(ctx0, conv_states_all,
  7055. (d_conv - 1)*(d_inner)*(n_seqs),
  7056. kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(conv_states_all))));
  7057. // 1D convolution
  7058. // The equivalent is to make a self-overlapping view of conv_x
  7059. // over d_conv columns at each stride in the 3rd dimension,
  7060. // then element-wise multiply that with the conv1d weight,
  7061. // then sum the elements of each row,
  7062. // (the last two steps are a dot product over rows (also doable with mul_mat))
  7063. // then permute away the ne[0] dimension,
  7064. // and then you're left with the resulting x tensor.
  7065. // For simultaneous sequences, all sequences need to have the same length.
  7066. x = ggml_ssm_conv(ctx0, conv_x, model.layers[il].ssm_conv1d);
  7067. // bias
  7068. x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
  7069. x = ggml_silu(ctx0, x);
  7070. }
  7071. // ssm
  7072. {
  7073. // {d_inner, dt_rank + 2*d_state} @ {d_inner, n_seq_tokens, n_seqs} => {dt_rank + 2*d_state, n_seq_tokens, n_seqs}
  7074. ggml_tensor * x_db = build_lora_mm(model.layers[il].ssm_x, x);
  7075. // split
  7076. ggml_tensor * dt = ggml_view_3d(ctx0, x_db, dt_rank, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], 0);
  7077. ggml_tensor * B = ggml_view_3d(ctx0, x_db, d_state, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*dt_rank);
  7078. ggml_tensor * C = ggml_view_3d(ctx0, x_db, d_state, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*(dt_rank+d_state));
  7079. // Some Mamba variants (e.g. FalconMamba) apply RMS norm in B, C & Dt layers
  7080. if (ssm_dt_b_c_rms) {
  7081. dt = ggml_rms_norm(ctx0, dt, norm_rms_eps);
  7082. B = ggml_rms_norm(ctx0, B, norm_rms_eps);
  7083. C = ggml_rms_norm(ctx0, C, norm_rms_eps);
  7084. }
  7085. // {dt_rank, d_inner} @ {dt_rank, n_seq_tokens, n_seqs} => {d_inner, n_seq_tokens, n_seqs}
  7086. dt = build_lora_mm(model.layers[il].ssm_dt, dt);
  7087. dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
  7088. // Custom operator to optimize the parallel associative scan
  7089. // as described in the Annex D of the Mamba paper.
  7090. // => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs}
  7091. ggml_tensor * y_ssm = ggml_ssm_scan(ctx0, ssm, x, dt, model.layers[il].ssm_a, B, C);
  7092. // store last states
  7093. ggml_build_forward_expand(gf,
  7094. ggml_cpy(ctx0,
  7095. ggml_view_1d(ctx0, y_ssm, d_state*d_inner*n_seqs, x->nb[3]),
  7096. ggml_view_1d(ctx0, ssm_states_all, d_state*d_inner*n_seqs, kv_head*d_state*d_inner*ggml_element_size(ssm_states_all))));
  7097. ggml_tensor * y = ggml_view_3d(ctx0, y_ssm, d_inner, n_seq_tokens, n_seqs, x->nb[1], x->nb[2], 0);
  7098. // TODO: skip computing output earlier for unused tokens
  7099. // {d_inner, n_seq_tokens, n_seqs} * {d_inner} => {d_inner, n_seq_tokens, n_seqs}
  7100. y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
  7101. y = ggml_mul(ctx0, y, ggml_silu(ctx0, ggml_cont(ctx0, z)));
  7102. // {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
  7103. cur = build_lora_mm(model.layers[il].ssm_out, y);
  7104. }
  7105. // {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
  7106. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
  7107. //cb(cur, "mamba_out", il);
  7108. return cur;
  7109. }
  7110. };
  7111. struct llm_build_command_r : public llm_graph_context {
  7112. llm_build_command_r(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7113. const int64_t n_embd_head = hparams.n_embd_head_v;
  7114. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7115. const float f_logit_scale = hparams.f_logit_scale;
  7116. ggml_tensor * cur;
  7117. ggml_tensor * inpL;
  7118. inpL = build_inp_embd(model.tok_embd);
  7119. // inp_pos - contains the positions
  7120. ggml_tensor * inp_pos = build_inp_pos();
  7121. auto * inp_attn = build_attn_inp_kv_unified();
  7122. for (int il = 0; il < n_layer; ++il) {
  7123. // norm
  7124. cur = build_norm(inpL,
  7125. model.layers[il].attn_norm, NULL,
  7126. LLM_NORM, il);
  7127. cb(cur, "attn_norm", il);
  7128. ggml_tensor * ffn_inp = cur;
  7129. // self-attention
  7130. {
  7131. // compute Q and K and RoPE them
  7132. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7133. cb(Qcur, "Qcur", il);
  7134. if (model.layers[il].bq) {
  7135. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7136. cb(Qcur, "Qcur", il);
  7137. }
  7138. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7139. cb(Kcur, "Kcur", il);
  7140. if (model.layers[il].bk) {
  7141. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7142. cb(Kcur, "Kcur", il);
  7143. }
  7144. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7145. cb(Vcur, "Vcur", il);
  7146. if (model.layers[il].bv) {
  7147. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7148. cb(Vcur, "Vcur", il);
  7149. }
  7150. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7151. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7152. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7153. if (model.layers[il].attn_q_norm) {
  7154. Qcur = build_norm(Qcur,
  7155. model.layers[il].attn_q_norm,
  7156. NULL,
  7157. LLM_NORM, il);
  7158. cb(Qcur, "Qcur", il);
  7159. }
  7160. Qcur = ggml_rope_ext(
  7161. ctx0, Qcur, inp_pos, nullptr,
  7162. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7163. ext_factor, attn_factor, beta_fast, beta_slow
  7164. );
  7165. if (model.layers[il].attn_k_norm) {
  7166. Kcur = build_norm(Kcur,
  7167. model.layers[il].attn_k_norm,
  7168. NULL,
  7169. LLM_NORM, il);
  7170. cb(Kcur, "Kcur", il);
  7171. }
  7172. Kcur = ggml_rope_ext(
  7173. ctx0, Kcur, inp_pos, nullptr,
  7174. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7175. ext_factor, attn_factor, beta_fast, beta_slow
  7176. );
  7177. cb(Qcur, "Qcur", il);
  7178. cb(Kcur, "Kcur", il);
  7179. cb(Vcur, "Vcur", il);
  7180. cur = build_attn(inp_attn, gf,
  7181. model.layers[il].wo, model.layers[il].bo,
  7182. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7183. }
  7184. if (il == n_layer - 1) {
  7185. // skip computing output for unused tokens
  7186. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7187. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7188. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7189. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  7190. }
  7191. ggml_tensor * attn_out = cur;
  7192. // feed-forward network
  7193. {
  7194. cur = build_ffn(ffn_inp,
  7195. model.layers[il].ffn_up, NULL, NULL,
  7196. model.layers[il].ffn_gate, NULL, NULL,
  7197. model.layers[il].ffn_down, NULL, NULL,
  7198. NULL,
  7199. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7200. cb(cur, "ffn_out", il);
  7201. }
  7202. // add together residual + FFN + self-attention
  7203. cur = ggml_add(ctx0, cur, inpL);
  7204. cur = ggml_add(ctx0, cur, attn_out);
  7205. cur = build_cvec(cur, il);
  7206. cb(cur, "l_out", il);
  7207. // input for next layer
  7208. inpL = cur;
  7209. }
  7210. cur = inpL;
  7211. cur = build_norm(cur,
  7212. model.output_norm, NULL,
  7213. LLM_NORM, -1);
  7214. cb(cur, "result_norm", -1);
  7215. res->t_embd = cur;
  7216. // lm_head
  7217. cur = build_lora_mm(model.output, cur);
  7218. if (f_logit_scale) {
  7219. cur = ggml_scale(ctx0, cur, f_logit_scale);
  7220. }
  7221. cb(cur, "result_output", -1);
  7222. res->t_logits = cur;
  7223. ggml_build_forward_expand(gf, cur);
  7224. }
  7225. };
  7226. struct llm_build_cohere2 : public llm_graph_context {
  7227. llm_build_cohere2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7228. const int64_t n_embd_head = hparams.n_embd_head_v;
  7229. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7230. const float f_logit_scale = hparams.f_logit_scale;
  7231. ggml_tensor * cur;
  7232. ggml_tensor * inpL;
  7233. inpL = build_inp_embd(model.tok_embd);
  7234. // inp_pos - contains the positions
  7235. ggml_tensor * inp_pos = build_inp_pos();
  7236. auto * inp_attn = build_attn_inp_kv_unified();
  7237. for (int il = 0; il < n_layer; ++il) {
  7238. const bool is_swa = hparams.is_swa(il);
  7239. // norm
  7240. cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM, il);
  7241. cb(cur, "attn_norm", il);
  7242. ggml_tensor * ffn_inp = cur;
  7243. // self-attention
  7244. {
  7245. // rope freq factors for 128k context
  7246. ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
  7247. // compute Q and K and RoPE them
  7248. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7249. cb(Qcur, "Qcur", il);
  7250. if (model.layers[il].bq) {
  7251. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7252. cb(Qcur, "Qcur", il);
  7253. }
  7254. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7255. cb(Kcur, "Kcur", il);
  7256. if (model.layers[il].bk) {
  7257. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7258. cb(Kcur, "Kcur", il);
  7259. }
  7260. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7261. cb(Vcur, "Vcur", il);
  7262. if (model.layers[il].bv) {
  7263. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7264. cb(Vcur, "Vcur", il);
  7265. }
  7266. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7267. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7268. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7269. if (is_swa) {
  7270. Qcur = ggml_rope_ext(
  7271. ctx0, Qcur, inp_pos, rope_factors,
  7272. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7273. ext_factor, attn_factor, beta_fast, beta_slow
  7274. );
  7275. Kcur = ggml_rope_ext(
  7276. ctx0, Kcur, inp_pos, rope_factors,
  7277. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7278. ext_factor, attn_factor, beta_fast, beta_slow
  7279. );
  7280. }
  7281. cb(Qcur, "Qcur", il);
  7282. cb(Kcur, "Kcur", il);
  7283. cb(Vcur, "Vcur", il);
  7284. cur = build_attn(inp_attn, gf,
  7285. model.layers[il].wo, model.layers[il].bo,
  7286. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7287. }
  7288. if (il == n_layer - 1) {
  7289. // skip computing output for unused tokens
  7290. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7291. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7292. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7293. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  7294. }
  7295. ggml_tensor * attn_out = cur;
  7296. // feed-forward network
  7297. {
  7298. cur = build_ffn(ffn_inp, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate,
  7299. NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR,
  7300. il);
  7301. cb(cur, "ffn_out", il);
  7302. }
  7303. // add together residual + FFN + self-attention
  7304. cur = ggml_add(ctx0, cur, inpL);
  7305. cur = ggml_add(ctx0, cur, attn_out);
  7306. cur = build_cvec(cur, il);
  7307. cb(cur, "l_out", il);
  7308. // input for next layer
  7309. inpL = cur;
  7310. }
  7311. cur = inpL;
  7312. cur = build_norm(cur, model.output_norm, NULL, LLM_NORM, -1);
  7313. cb(cur, "result_norm", -1);
  7314. res->t_embd = cur;
  7315. // lm_head
  7316. cur = build_lora_mm(model.output, cur);
  7317. if (f_logit_scale) {
  7318. cur = ggml_scale(ctx0, cur, f_logit_scale);
  7319. }
  7320. cb(cur, "result_output", -1);
  7321. res->t_logits = cur;
  7322. ggml_build_forward_expand(gf, cur);
  7323. }
  7324. };
  7325. // ref: https://allenai.org/olmo
  7326. // based on the original build_llama() function, changes:
  7327. // * non-parametric layer norm
  7328. // * clamp qkv
  7329. // * removed bias
  7330. // * removed MoE
  7331. struct llm_build_olmo : public llm_graph_context {
  7332. llm_build_olmo(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7333. const int64_t n_embd_head = hparams.n_embd_head_v;
  7334. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7335. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7336. ggml_tensor * cur;
  7337. ggml_tensor * inpL;
  7338. inpL = build_inp_embd(model.tok_embd);
  7339. // inp_pos - contains the positions
  7340. ggml_tensor * inp_pos = build_inp_pos();
  7341. auto * inp_attn = build_attn_inp_kv_unified();
  7342. for (int il = 0; il < n_layer; ++il) {
  7343. ggml_tensor * inpSA = inpL;
  7344. // norm
  7345. cur = build_norm(inpL,
  7346. NULL, NULL,
  7347. LLM_NORM, il);
  7348. cb(cur, "attn_norm", il);
  7349. // self-attention
  7350. {
  7351. // compute Q and K and RoPE them
  7352. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7353. cb(Qcur, "Qcur", il);
  7354. if (hparams.f_clamp_kqv > 0.0f) {
  7355. Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7356. cb(Qcur, "Qcur", il);
  7357. }
  7358. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7359. cb(Kcur, "Kcur", il);
  7360. if (hparams.f_clamp_kqv > 0.0f) {
  7361. Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7362. cb(Kcur, "Kcur", il);
  7363. }
  7364. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7365. cb(Vcur, "Vcur", il);
  7366. if (hparams.f_clamp_kqv > 0.0f) {
  7367. Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7368. cb(Vcur, "Vcur", il);
  7369. }
  7370. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7371. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7372. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7373. Qcur = ggml_rope_ext(
  7374. ctx0, Qcur, inp_pos, nullptr,
  7375. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7376. ext_factor, attn_factor, beta_fast, beta_slow
  7377. );
  7378. Kcur = ggml_rope_ext(
  7379. ctx0, Kcur, inp_pos, nullptr,
  7380. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7381. ext_factor, attn_factor, beta_fast, beta_slow
  7382. );
  7383. cb(Qcur, "Qcur", il);
  7384. cb(Kcur, "Kcur", il);
  7385. cb(Vcur, "Vcur", il);
  7386. cur = build_attn(inp_attn, gf,
  7387. model.layers[il].wo, nullptr,
  7388. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7389. }
  7390. if (il == n_layer - 1) {
  7391. // skip computing output for unused tokens
  7392. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7393. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7394. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7395. }
  7396. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7397. cb(ffn_inp, "ffn_inp", il);
  7398. // feed-forward network
  7399. cur = build_norm(ffn_inp,
  7400. NULL, NULL,
  7401. LLM_NORM, il);
  7402. cb(cur, "ffn_norm", il);
  7403. cur = build_ffn(cur,
  7404. model.layers[il].ffn_up, NULL, NULL,
  7405. model.layers[il].ffn_gate, NULL, NULL,
  7406. model.layers[il].ffn_down, NULL, NULL,
  7407. NULL,
  7408. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7409. cb(cur, "ffn_out", il);
  7410. cur = ggml_add(ctx0, cur, ffn_inp);
  7411. cb(cur, "ffn_out", il);
  7412. cur = build_cvec(cur, il);
  7413. cb(cur, "l_out", il);
  7414. // input for next layer
  7415. inpL = cur;
  7416. }
  7417. cur = inpL;
  7418. cur = build_norm(cur,
  7419. NULL, NULL,
  7420. LLM_NORM, -1);
  7421. cb(cur, "result_norm", -1);
  7422. res->t_embd = cur;
  7423. // lm_head
  7424. cur = build_lora_mm(model.output, cur);
  7425. cb(cur, "result_output", -1);
  7426. res->t_logits = cur;
  7427. ggml_build_forward_expand(gf, cur);
  7428. }
  7429. };
  7430. struct llm_build_olmo2 : public llm_graph_context {
  7431. llm_build_olmo2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7432. const int64_t n_embd_head = hparams.n_embd_head_v;
  7433. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7434. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7435. ggml_tensor * cur;
  7436. ggml_tensor * inpL;
  7437. inpL = build_inp_embd(model.tok_embd);
  7438. // inp_pos - contains the positions
  7439. ggml_tensor * inp_pos = build_inp_pos();
  7440. auto * inp_attn = build_attn_inp_kv_unified();
  7441. for (int il = 0; il < n_layer; ++il) {
  7442. ggml_tensor * inpSA = inpL;
  7443. cur = inpL;
  7444. // self_attention
  7445. {
  7446. // compute Q and K and RoPE them
  7447. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7448. cb(Qcur, "Qcur", il);
  7449. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7450. cb(Kcur, "Kcur", il);
  7451. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7452. cb(Vcur, "Vcur", il);
  7453. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL,
  7454. LLM_NORM_RMS, il);
  7455. cb(Qcur, "Qcur_normed", il);
  7456. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL,
  7457. LLM_NORM_RMS, il);
  7458. cb(Kcur, "Kcur_normed", il);
  7459. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7460. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7461. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7462. Qcur = ggml_rope_ext(
  7463. ctx0, Qcur, inp_pos, nullptr,
  7464. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7465. ext_factor, attn_factor, beta_fast, beta_slow
  7466. );
  7467. Kcur = ggml_rope_ext(
  7468. ctx0, Kcur, inp_pos, nullptr,
  7469. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7470. ext_factor, attn_factor, beta_fast, beta_slow
  7471. );
  7472. cb(Qcur, "Qcur", il);
  7473. cb(Kcur, "Kcur", il);
  7474. cb(Vcur, "Vcur", il);
  7475. cur = build_attn(inp_attn, gf,
  7476. model.layers[il].wo, NULL,
  7477. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7478. }
  7479. cur = build_norm(cur,
  7480. model.layers[il].attn_post_norm, NULL,
  7481. LLM_NORM_RMS, il);
  7482. cb(cur, "attn_post_norm", il);
  7483. if (il == n_layer - 1) {
  7484. // skip computing output for unused tokens
  7485. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7486. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7487. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7488. }
  7489. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7490. cb(ffn_inp, "ffn_inp", il);
  7491. // feed-forward network
  7492. cur = build_ffn(ffn_inp,
  7493. model.layers[il].ffn_up, NULL, NULL,
  7494. model.layers[il].ffn_gate, NULL, NULL,
  7495. model.layers[il].ffn_down, NULL, NULL,
  7496. NULL,
  7497. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7498. cb(cur, "ffn_out", il);
  7499. cur = build_norm(cur,
  7500. model.layers[il].ffn_post_norm, NULL,
  7501. LLM_NORM_RMS, -1);
  7502. cb(cur, "ffn_post_norm", -1);
  7503. cur = ggml_add(ctx0, cur, ffn_inp);
  7504. cb(cur, "ffn_out", il);
  7505. cur = build_cvec(cur, il);
  7506. cb(cur, "l_out", il);
  7507. // input for next layer
  7508. inpL = cur;
  7509. }
  7510. cur = inpL;
  7511. cur = build_norm(cur,
  7512. model.output_norm, NULL,
  7513. LLM_NORM_RMS, -1);
  7514. cb(cur, "result_norm", -1);
  7515. res->t_embd = cur;
  7516. // lm_head
  7517. cur = build_lora_mm(model.output, cur);
  7518. cb(cur, "result_output", -1);
  7519. res->t_logits = cur;
  7520. ggml_build_forward_expand(gf, cur);
  7521. }
  7522. };
  7523. // based on the build_qwen2moe() function, changes:
  7524. // * removed shared experts
  7525. // * removed bias
  7526. // * added q, k norm
  7527. struct llm_build_olmoe : public llm_graph_context {
  7528. llm_build_olmoe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7529. const int64_t n_embd_head = hparams.n_embd_head_v;
  7530. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7531. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7532. ggml_tensor * cur;
  7533. ggml_tensor * inpL;
  7534. inpL = build_inp_embd(model.tok_embd);
  7535. // inp_pos - contains the positions
  7536. ggml_tensor * inp_pos = build_inp_pos();
  7537. auto * inp_attn = build_attn_inp_kv_unified();
  7538. for (int il = 0; il < n_layer; ++il) {
  7539. ggml_tensor * inpSA = inpL;
  7540. // norm
  7541. cur = build_norm(inpL,
  7542. model.layers[il].attn_norm, NULL,
  7543. LLM_NORM_RMS, il);
  7544. cb(cur, "attn_norm", il);
  7545. // self_attention
  7546. {
  7547. // compute Q and K and RoPE them
  7548. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7549. cb(Qcur, "Qcur", il);
  7550. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7551. cb(Kcur, "Kcur", il);
  7552. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7553. cb(Vcur, "Vcur", il);
  7554. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL,
  7555. LLM_NORM_RMS, il);
  7556. cb(Qcur, "Qcur_normed", il);
  7557. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL,
  7558. LLM_NORM_RMS, il);
  7559. cb(Kcur, "Kcur_normed", il);
  7560. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7561. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7562. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7563. Qcur = ggml_rope_ext(
  7564. ctx0, Qcur, inp_pos, nullptr,
  7565. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7566. ext_factor, attn_factor, beta_fast, beta_slow
  7567. );
  7568. Kcur = ggml_rope_ext(
  7569. ctx0, Kcur, inp_pos, nullptr,
  7570. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7571. ext_factor, attn_factor, beta_fast, beta_slow
  7572. );
  7573. cb(Qcur, "Qcur", il);
  7574. cb(Kcur, "Kcur", il);
  7575. cb(Vcur, "Vcur", il);
  7576. cur = build_attn(inp_attn, gf,
  7577. model.layers[il].wo, NULL,
  7578. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7579. }
  7580. if (il == n_layer - 1) {
  7581. // skip computing output for unused tokens
  7582. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7583. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7584. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7585. }
  7586. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7587. cb(ffn_inp, "ffn_inp", il);
  7588. // MoE branch
  7589. cur = build_norm(ffn_inp,
  7590. model.layers[il].ffn_norm, NULL,
  7591. LLM_NORM_RMS, il);
  7592. cb(cur, "ffn_norm", il);
  7593. cur = build_moe_ffn(cur,
  7594. model.layers[il].ffn_gate_inp,
  7595. model.layers[il].ffn_up_exps,
  7596. model.layers[il].ffn_gate_exps,
  7597. model.layers[il].ffn_down_exps,
  7598. nullptr,
  7599. n_expert, n_expert_used,
  7600. LLM_FFN_SILU, false,
  7601. false, 0.0,
  7602. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  7603. il);
  7604. cb(cur, "ffn_moe_out", il);
  7605. cur = ggml_add(ctx0, cur, ffn_inp);
  7606. cur = build_cvec(cur, il);
  7607. cb(cur, "l_out", il);
  7608. // input for next layer
  7609. inpL = cur;
  7610. }
  7611. cur = inpL;
  7612. cur = build_norm(cur,
  7613. model.output_norm, NULL,
  7614. LLM_NORM_RMS, -1);
  7615. cb(cur, "result_norm", -1);
  7616. res->t_embd = cur;
  7617. // lm_head
  7618. cur = build_lora_mm(model.output, cur);
  7619. cb(cur, "result_output", -1);
  7620. res->t_logits = cur;
  7621. ggml_build_forward_expand(gf, cur);
  7622. }
  7623. };
  7624. struct llm_build_openelm : public llm_graph_context {
  7625. llm_build_openelm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7626. const int64_t n_embd_head = hparams.n_embd_head_v;
  7627. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7628. ggml_tensor * cur;
  7629. ggml_tensor * inpL;
  7630. inpL = build_inp_embd(model.tok_embd);
  7631. // inp_pos - contains the positions
  7632. ggml_tensor * inp_pos = build_inp_pos();
  7633. auto * inp_attn = build_attn_inp_kv_unified();
  7634. for (int il = 0; il < n_layer; ++il) {
  7635. const int64_t n_head = hparams.n_head(il);
  7636. const int64_t n_head_kv = hparams.n_head_kv(il);
  7637. const int64_t n_head_qkv = 2*n_head_kv + n_head;
  7638. cur = inpL;
  7639. ggml_tensor * residual = cur;
  7640. // norm
  7641. cur = build_norm(inpL,
  7642. model.layers[il].attn_norm, NULL,
  7643. LLM_NORM_RMS, il);
  7644. cb(cur, "attn_norm", il);
  7645. // self-attention
  7646. {
  7647. cur = build_lora_mm(model.layers[il].wqkv, cur);
  7648. cb(cur, "wqkv", il);
  7649. cur = ggml_reshape_3d(ctx0, cur, n_embd_head_k, n_head_qkv, n_tokens);
  7650. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, cur->nb[1], cur->nb[2], 0));
  7651. cb(Qcur, "Qcur", il);
  7652. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*n_head));
  7653. cb(Kcur, "Kcur", il);
  7654. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*(n_head+n_head_kv)));
  7655. cb(Vcur, "Vcur", il);
  7656. Qcur = build_norm(Qcur,
  7657. model.layers[il].attn_q_norm, NULL,
  7658. LLM_NORM_RMS, il);
  7659. cb(Qcur, "Qcur", il);
  7660. Kcur = build_norm(Kcur,
  7661. model.layers[il].attn_k_norm, NULL,
  7662. LLM_NORM_RMS, il);
  7663. cb(Kcur, "Kcur", il);
  7664. Qcur = ggml_rope_ext(
  7665. ctx0, Qcur, inp_pos, NULL,
  7666. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7667. ext_factor, attn_factor, beta_fast, beta_slow
  7668. );
  7669. Kcur = ggml_rope_ext(
  7670. ctx0, Kcur, inp_pos, NULL,
  7671. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7672. ext_factor, attn_factor, beta_fast, beta_slow
  7673. );
  7674. cb(Qcur, "Qcur", il);
  7675. cb(Kcur, "Kcur", il);
  7676. cb(Qcur, "Vcur", il);
  7677. cur = build_attn(inp_attn, gf,
  7678. model.layers[il].wo, NULL,
  7679. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7680. }
  7681. if (il == n_layer - 1) {
  7682. // skip computing output for unused tokens
  7683. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7684. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  7685. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7686. }
  7687. ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
  7688. cb(ffn_inp, "ffn_inp", il);
  7689. // feed-forward network
  7690. {
  7691. cur = build_norm(ffn_inp,
  7692. model.layers[il].ffn_norm, NULL,
  7693. LLM_NORM_RMS, il);
  7694. cb(cur, "ffn_norm", il);
  7695. cur = build_ffn(cur,
  7696. model.layers[il].ffn_up, NULL, NULL,
  7697. model.layers[il].ffn_gate, NULL, NULL,
  7698. model.layers[il].ffn_down, NULL, NULL,
  7699. NULL,
  7700. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7701. cb(cur, "ffn_out", il);
  7702. }
  7703. cur = ggml_add(ctx0, cur, ffn_inp);
  7704. cur = build_cvec(cur, il);
  7705. cb(cur, "l_out", il);
  7706. inpL = cur;
  7707. }
  7708. cur = inpL;
  7709. // norm
  7710. cur = build_norm(cur,
  7711. model.output_norm, NULL,
  7712. LLM_NORM_RMS, -1);
  7713. cb(cur, "result_norm", -1);
  7714. res->t_embd = cur;
  7715. cur = build_lora_mm(model.output, cur);
  7716. cb(cur, "result_output", -1);
  7717. res->t_logits = cur;
  7718. ggml_build_forward_expand(gf, cur);
  7719. }
  7720. };
  7721. struct llm_build_gptneox : public llm_graph_context {
  7722. llm_build_gptneox(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7723. const int64_t n_embd_head = hparams.n_embd_head_v;
  7724. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7725. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7726. ggml_tensor * cur;
  7727. ggml_tensor * inpL;
  7728. inpL = build_inp_embd(model.tok_embd);
  7729. // inp_pos - contains the positions
  7730. ggml_tensor * inp_pos = build_inp_pos();
  7731. auto * inp_attn = build_attn_inp_kv_unified();
  7732. for (int il = 0; il < n_layer; ++il) {
  7733. cur = build_norm(inpL,
  7734. model.layers[il].attn_norm,
  7735. model.layers[il].attn_norm_b,
  7736. LLM_NORM, il);
  7737. cb(cur, "attn_norm", il);
  7738. // self-attention
  7739. {
  7740. cur = build_lora_mm(model.layers[il].wqkv, cur);
  7741. cb(cur, "wqkv", il);
  7742. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7743. cb(cur, "bqkv", il);
  7744. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7745. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7746. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7747. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7748. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7749. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7750. Qcur = ggml_rope_ext(
  7751. ctx0, Qcur, inp_pos, nullptr,
  7752. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7753. ext_factor, attn_factor, beta_fast, beta_slow
  7754. );
  7755. Kcur = ggml_rope_ext(
  7756. ctx0, Kcur, inp_pos, nullptr,
  7757. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7758. ext_factor, attn_factor, beta_fast, beta_slow
  7759. );
  7760. cb(Qcur, "Qcur", il);
  7761. cb(Kcur, "Kcur", il);
  7762. cb(Vcur, "Vcur", il);
  7763. cur = build_attn(inp_attn, gf,
  7764. model.layers[il].wo, model.layers[il].bo,
  7765. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7766. }
  7767. if (il == n_layer - 1) {
  7768. // skip computing output for unused tokens
  7769. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7770. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7771. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7772. }
  7773. // ffn
  7774. if (hparams.use_par_res) {
  7775. // attention and ffn are computed in parallel
  7776. // x = x + attn(ln1(x)) + ffn(ln2(x))
  7777. ggml_tensor * attn_out = cur;
  7778. cur = build_norm(inpL,
  7779. model.layers[il].ffn_norm,
  7780. model.layers[il].ffn_norm_b,
  7781. LLM_NORM, il);
  7782. cb(cur, "ffn_norm", il);
  7783. cur = build_ffn(cur,
  7784. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  7785. NULL, NULL, NULL,
  7786. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  7787. NULL,
  7788. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  7789. cb(cur, "ffn_out", il);
  7790. cur = ggml_add(ctx0, cur, inpL);
  7791. cb(cur, "ffn_out", il);
  7792. cur = ggml_add(ctx0, cur, attn_out);
  7793. cur = build_cvec(cur, il);
  7794. cb(cur, "l_out", il);
  7795. // input for next layer
  7796. inpL = cur;
  7797. } else {
  7798. // attention and ffn are computed sequentially
  7799. // x = x + attn(ln1(x))
  7800. // x = x + ffn(ln2(x))
  7801. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7802. cb(ffn_inp, "ffn_inp", il);
  7803. cur = build_norm(ffn_inp,
  7804. model.layers[il].ffn_norm,
  7805. model.layers[il].ffn_norm_b,
  7806. LLM_NORM, il);
  7807. cb(cur, "ffn_norm", il);
  7808. cur = build_ffn(cur,
  7809. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  7810. NULL, NULL, NULL,
  7811. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  7812. NULL,
  7813. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  7814. cb(cur, "ffn_out", il);
  7815. cur = ggml_add(ctx0, cur, ffn_inp);
  7816. cur = build_cvec(cur, il);
  7817. cb(cur, "l_out", il);
  7818. // input for next layer
  7819. inpL = cur;
  7820. }
  7821. }
  7822. cur = build_norm(inpL,
  7823. model.output_norm,
  7824. model.output_norm_b,
  7825. LLM_NORM, -1);
  7826. cb(cur, "result_norm", -1);
  7827. res->t_embd = cur;
  7828. cur = build_lora_mm(model.output, cur);
  7829. cb(cur, "result_output", -1);
  7830. res->t_logits = cur;
  7831. ggml_build_forward_expand(gf, cur);
  7832. }
  7833. };
  7834. struct llm_build_arctic : public llm_graph_context {
  7835. llm_build_arctic(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7836. const int64_t n_embd_head = hparams.n_embd_head_v;
  7837. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7838. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7839. ggml_tensor * cur;
  7840. ggml_tensor * inpL;
  7841. inpL = build_inp_embd(model.tok_embd);
  7842. // inp_pos - contains the positions
  7843. ggml_tensor * inp_pos = build_inp_pos();
  7844. auto * inp_attn = build_attn_inp_kv_unified();
  7845. for (int il = 0; il < n_layer; ++il) {
  7846. ggml_tensor * inpSA = inpL;
  7847. // norm
  7848. cur = build_norm(inpL,
  7849. model.layers[il].attn_norm, NULL,
  7850. LLM_NORM_RMS, il);
  7851. cb(cur, "attn_norm", il);
  7852. // self-attention
  7853. {
  7854. // compute Q and K and RoPE them
  7855. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7856. cb(Qcur, "Qcur", il);
  7857. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7858. cb(Kcur, "Kcur", il);
  7859. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7860. cb(Vcur, "Vcur", il);
  7861. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7862. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7863. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7864. Qcur = ggml_rope_ext(
  7865. ctx0, Qcur, inp_pos, nullptr,
  7866. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7867. ext_factor, attn_factor, beta_fast, beta_slow
  7868. );
  7869. Kcur = ggml_rope_ext(
  7870. ctx0, Kcur, inp_pos, nullptr,
  7871. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7872. ext_factor, attn_factor, beta_fast, beta_slow
  7873. );
  7874. cb(Qcur, "Qcur", il);
  7875. cb(Kcur, "Kcur", il);
  7876. cb(Vcur, "Vcur", il);
  7877. cur = build_attn(inp_attn, gf,
  7878. model.layers[il].wo, NULL,
  7879. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7880. }
  7881. if (il == n_layer - 1) {
  7882. // skip computing output for unused tokens
  7883. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7884. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7885. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7886. }
  7887. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7888. cb(ffn_inp, "ffn_inp", il);
  7889. // feed-forward network
  7890. cur = build_norm(ffn_inp,
  7891. model.layers[il].ffn_norm, NULL,
  7892. LLM_NORM_RMS, il);
  7893. cb(cur, "ffn_norm", il);
  7894. cur = build_ffn(cur,
  7895. model.layers[il].ffn_up, NULL, NULL,
  7896. model.layers[il].ffn_gate, NULL, NULL,
  7897. model.layers[il].ffn_down, NULL, NULL,
  7898. NULL,
  7899. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7900. cb(cur, "ffn_out", il);
  7901. ggml_tensor * ffn_out = ggml_add(ctx0, cur, ffn_inp);
  7902. cb(ffn_out, "ffn_out", il);
  7903. // MoE
  7904. cur = build_norm(inpSA,
  7905. model.layers[il].ffn_norm_exps, NULL,
  7906. LLM_NORM_RMS, il);
  7907. cb(cur, "ffn_norm_exps", il);
  7908. cur = build_moe_ffn(cur,
  7909. model.layers[il].ffn_gate_inp,
  7910. model.layers[il].ffn_up_exps,
  7911. model.layers[il].ffn_gate_exps,
  7912. model.layers[il].ffn_down_exps,
  7913. nullptr,
  7914. n_expert, n_expert_used,
  7915. LLM_FFN_SILU, true,
  7916. false, 0.0,
  7917. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  7918. il);
  7919. cb(cur, "ffn_moe_out", il);
  7920. cur = ggml_add(ctx0, cur, ffn_out);
  7921. cb(cur, "ffn_out", il);
  7922. cur = build_cvec(cur, il);
  7923. cb(cur, "l_out", il);
  7924. // input for next layer
  7925. inpL = cur;
  7926. }
  7927. cur = inpL;
  7928. cur = build_norm(cur,
  7929. model.output_norm, NULL,
  7930. LLM_NORM_RMS, -1);
  7931. cb(cur, "result_norm", -1);
  7932. res->t_embd = cur;
  7933. // lm_head
  7934. cur = build_lora_mm(model.output, cur);
  7935. cb(cur, "result_output", -1);
  7936. res->t_logits = cur;
  7937. ggml_build_forward_expand(gf, cur);
  7938. }
  7939. };
  7940. struct llm_build_deepseek : public llm_graph_context {
  7941. llm_build_deepseek(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7942. const int64_t n_embd_head = hparams.n_embd_head_v;
  7943. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7944. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7945. ggml_tensor * cur;
  7946. ggml_tensor * inpL;
  7947. inpL = build_inp_embd(model.tok_embd);
  7948. // inp_pos - contains the positions
  7949. ggml_tensor * inp_pos = build_inp_pos();
  7950. auto * inp_attn = build_attn_inp_kv_unified();
  7951. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  7952. for (int il = 0; il < n_layer; ++il) {
  7953. ggml_tensor * inpSA = inpL;
  7954. // norm
  7955. cur = build_norm(inpL,
  7956. model.layers[il].attn_norm, NULL,
  7957. LLM_NORM_RMS, il);
  7958. cb(cur, "attn_norm", il);
  7959. // self-attention
  7960. {
  7961. // rope freq factors for llama3; may return nullptr for llama2 and other models
  7962. ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
  7963. // compute Q and K and RoPE them
  7964. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7965. cb(Qcur, "Qcur", il);
  7966. if (model.layers[il].bq) {
  7967. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7968. cb(Qcur, "Qcur", il);
  7969. }
  7970. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7971. cb(Kcur, "Kcur", il);
  7972. if (model.layers[il].bk) {
  7973. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7974. cb(Kcur, "Kcur", il);
  7975. }
  7976. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7977. cb(Vcur, "Vcur", il);
  7978. if (model.layers[il].bv) {
  7979. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7980. cb(Vcur, "Vcur", il);
  7981. }
  7982. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7983. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7984. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7985. Qcur = ggml_rope_ext(
  7986. ctx0, Qcur, inp_pos, rope_factors,
  7987. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7988. ext_factor, attn_factor, beta_fast, beta_slow
  7989. );
  7990. Kcur = ggml_rope_ext(
  7991. ctx0, Kcur, inp_pos, rope_factors,
  7992. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7993. ext_factor, attn_factor, beta_fast, beta_slow
  7994. );
  7995. cb(Qcur, "Qcur", il);
  7996. cb(Kcur, "Kcur", il);
  7997. cb(Vcur, "Vcur", il);
  7998. cur = build_attn(inp_attn, gf,
  7999. model.layers[il].wo, model.layers[il].bo,
  8000. Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
  8001. }
  8002. if (il == n_layer - 1) {
  8003. // skip computing output for unused tokens
  8004. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8005. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8006. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8007. }
  8008. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8009. cb(ffn_inp, "ffn_inp", il);
  8010. cur = build_norm(ffn_inp,
  8011. model.layers[il].ffn_norm, NULL,
  8012. LLM_NORM_RMS, il);
  8013. cb(cur, "ffn_norm", il);
  8014. if ((uint32_t) il < hparams.n_layer_dense_lead) {
  8015. cur = build_ffn(cur,
  8016. model.layers[il].ffn_up, NULL, NULL,
  8017. model.layers[il].ffn_gate, NULL, NULL,
  8018. model.layers[il].ffn_down, NULL, NULL,
  8019. NULL,
  8020. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8021. cb(cur, "ffn_out", il);
  8022. } else {
  8023. // MoE branch
  8024. ggml_tensor * moe_out =
  8025. build_moe_ffn(cur,
  8026. model.layers[il].ffn_gate_inp,
  8027. model.layers[il].ffn_up_exps,
  8028. model.layers[il].ffn_gate_exps,
  8029. model.layers[il].ffn_down_exps,
  8030. nullptr,
  8031. n_expert, n_expert_used,
  8032. LLM_FFN_SILU, false,
  8033. false, hparams.expert_weights_scale,
  8034. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  8035. il);
  8036. cb(moe_out, "ffn_moe_out", il);
  8037. // FFN shared expert
  8038. {
  8039. ggml_tensor * ffn_shexp = build_ffn(cur,
  8040. model.layers[il].ffn_up_shexp, NULL, NULL,
  8041. model.layers[il].ffn_gate_shexp, NULL, NULL,
  8042. model.layers[il].ffn_down_shexp, NULL, NULL,
  8043. NULL,
  8044. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8045. cb(ffn_shexp, "ffn_shexp", il);
  8046. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  8047. cb(cur, "ffn_out", il);
  8048. }
  8049. }
  8050. cur = ggml_add(ctx0, cur, ffn_inp);
  8051. cur = build_cvec(cur, il);
  8052. cb(cur, "l_out", il);
  8053. // input for next layer
  8054. inpL = cur;
  8055. }
  8056. cur = inpL;
  8057. cur = build_norm(cur,
  8058. model.output_norm, NULL,
  8059. LLM_NORM_RMS, -1);
  8060. cb(cur, "result_norm", -1);
  8061. res->t_embd = cur;
  8062. // lm_head
  8063. cur = build_lora_mm(model.output, cur);
  8064. cb(cur, "result_output", -1);
  8065. res->t_logits = cur;
  8066. ggml_build_forward_expand(gf, cur);
  8067. }
  8068. };
  8069. struct llm_build_deepseek2 : public llm_graph_context {
  8070. llm_build_deepseek2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8071. bool is_lite = (hparams.n_layer == 27);
  8072. const bool is_mla = (hparams.n_embd_head_k_mla != 0 && hparams.n_embd_head_v_mla != 0);
  8073. // note: these are the actual head sizes you get when treating as MHA or after "decompression" using wv_b for MLA
  8074. const int64_t n_embd_head_k = is_mla ? hparams.n_embd_head_k_mla : hparams.n_embd_head_k;
  8075. const int64_t n_embd_head_v = is_mla ? hparams.n_embd_head_v_mla : hparams.n_embd_head_v;
  8076. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  8077. const int64_t n_embd_head_qk_nope = n_embd_head_k - n_embd_head_qk_rope;
  8078. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  8079. // We have to pre-scale kq_scale and attn_factor to make the YaRN RoPE work correctly.
  8080. // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
  8081. const float mscale = attn_factor * (1.0f + hparams.rope_yarn_log_mul * logf(1.0f / freq_scale));
  8082. const float kq_scale = 1.0f*mscale*mscale/sqrtf(float(n_embd_head_k));
  8083. const float attn_factor = 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale));
  8084. ggml_tensor * cur;
  8085. ggml_tensor * inpL;
  8086. // {n_embd, n_tokens}
  8087. inpL = build_inp_embd(model.tok_embd);
  8088. // inp_pos - contains the positions
  8089. ggml_tensor * inp_pos = build_inp_pos();
  8090. auto * inp_attn = build_attn_inp_kv_unified();
  8091. for (int il = 0; il < n_layer; ++il) {
  8092. ggml_tensor * inpSA = inpL;
  8093. // norm
  8094. cur = build_norm(inpL,
  8095. model.layers[il].attn_norm, NULL,
  8096. LLM_NORM_RMS, il);
  8097. cb(cur, "attn_norm", il);
  8098. // self_attention
  8099. {
  8100. ggml_tensor * q = NULL;
  8101. if (!is_lite) {
  8102. q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
  8103. cb(q, "q", il);
  8104. q = build_norm(q,
  8105. model.layers[il].attn_q_a_norm, nullptr,
  8106. LLM_NORM_RMS, il);
  8107. cb(q, "q", il);
  8108. q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
  8109. cb(q, "q", il);
  8110. } else {
  8111. q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8112. cb(q, "q", il);
  8113. }
  8114. // split into {n_embd_head_qk_nope, n_head, n_tokens}
  8115. ggml_tensor * q_nope = ggml_view_3d(ctx0, q,
  8116. n_embd_head_qk_nope, n_head, n_tokens,
  8117. ggml_row_size(q->type, n_embd_head_k),
  8118. ggml_row_size(q->type, n_embd_head_k) * n_head,
  8119. 0);
  8120. cb(q_nope, "q_nope", il);
  8121. // and {n_embd_head_qk_rope, n_head, n_tokens}
  8122. ggml_tensor * q_pe = ggml_view_3d(ctx0, q,
  8123. n_embd_head_qk_rope, n_head, n_tokens,
  8124. ggml_row_size(q->type, n_embd_head_k),
  8125. ggml_row_size(q->type, n_embd_head_k) * n_head,
  8126. ggml_row_size(q->type, n_embd_head_qk_nope));
  8127. cb(q_pe, "q_pe", il);
  8128. ggml_tensor * kv_cmpr_pe = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  8129. cb(kv_cmpr_pe, "kv_cmpr_pe", il);
  8130. // split into {kv_lora_rank, n_tokens}
  8131. ggml_tensor * kv_cmpr = ggml_view_2d(ctx0, kv_cmpr_pe,
  8132. kv_lora_rank, n_tokens,
  8133. ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
  8134. 0);
  8135. cb(kv_cmpr, "kv_cmpr", il);
  8136. // and {n_embd_head_qk_rope, 1, n_tokens}
  8137. ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_cmpr_pe,
  8138. n_embd_head_qk_rope, 1, n_tokens,
  8139. ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
  8140. ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
  8141. ggml_row_size(kv_cmpr_pe->type, kv_lora_rank));
  8142. cb(k_pe, "k_pe", il);
  8143. q_pe = ggml_rope_ext(ctx0, q_pe, inp_pos, nullptr,
  8144. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8145. ext_factor, attn_factor, beta_fast, beta_slow
  8146. );
  8147. cb(q_pe, "q_pe", il);
  8148. k_pe = ggml_rope_ext(ctx0, k_pe, inp_pos, nullptr,
  8149. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8150. ext_factor, attn_factor, beta_fast, beta_slow
  8151. );
  8152. cb(k_pe, "k_pe", il);
  8153. kv_cmpr = build_norm(kv_cmpr,
  8154. model.layers[il].attn_kv_a_norm, nullptr,
  8155. LLM_NORM_RMS, il);
  8156. cb(kv_cmpr, "kv_cmpr", il);
  8157. if (is_mla) {
  8158. // {n_embd_head_qk_nope, n_tokens, n_head}
  8159. q_nope = ggml_permute(ctx0, q_nope, 0, 2, 1, 3);
  8160. cb(q_nope, "q_nope_perm", il);
  8161. // {n_embd_head_qk_nope, kv_lora_rank, n_head} x {n_embd_head_qk_nope, n_tokens, n_head}
  8162. ggml_tensor * q_nope_absorbed = ggml_mul_mat(ctx0, model.layers[il].wk_b, q_nope);
  8163. cb(q_nope_absorbed, "q_nope_absorbed", il);
  8164. // {kv_lora_rank, n_head, n_tokens}
  8165. q_nope_absorbed = ggml_permute(ctx0, q_nope_absorbed, 0, 2, 1, 3);
  8166. cb(q_nope_absorbed, "q_nope_absorbed_perm", il);
  8167. // {n_embd_head_qk_rope + kv_lora_rank, n_head, n_tokens}
  8168. // note: rope must go first for in-place context shifting in build_rope_shift()
  8169. ggml_tensor * Qcur = ggml_concat(ctx0, q_pe, q_nope_absorbed, 0);
  8170. cb(Qcur, "Qcur", il);
  8171. kv_cmpr = ggml_reshape_3d(ctx0, kv_cmpr, kv_lora_rank, 1, n_tokens);
  8172. cb(kv_cmpr, "kv_cmpr_reshape", il);
  8173. // {n_embd_head_qk_rope + kv_lora_rank, 1, n_tokens}
  8174. ggml_tensor * Kcur = ggml_concat(ctx0, k_pe, kv_cmpr, 0);
  8175. cb(Kcur, "Kcur", il);
  8176. // {kv_lora_rank, 1, n_tokens}
  8177. ggml_tensor * Vcur = kv_cmpr;
  8178. cb(Vcur, "Vcur", il);
  8179. // note: MLA with the absorption optimzation converts into MQA (ie: GQA with 1 group)
  8180. cur = build_attn(inp_attn, gf,
  8181. model.layers[il].wo, NULL,
  8182. Qcur, Kcur, Vcur, nullptr, model.layers[il].wv_b, kq_scale, il);
  8183. } else {
  8184. ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_cmpr);
  8185. cb(kv, "kv", il);
  8186. // split into {n_embd_head_qk_nope, n_head, n_tokens}
  8187. ggml_tensor * k_nope = ggml_view_3d(ctx0, kv,
  8188. n_embd_head_qk_nope, n_head, n_tokens,
  8189. ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v),
  8190. ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v) * n_head,
  8191. 0);
  8192. cb(k_nope, "k_nope_view", il);
  8193. // and {n_embd_head_v, n_head, n_tokens}
  8194. ggml_tensor * Vcur = ggml_view_3d(ctx0, kv,
  8195. n_embd_head_v, n_head, n_tokens,
  8196. ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v),
  8197. ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v) * n_head,
  8198. ggml_row_size(kv->type, n_embd_head_qk_nope));
  8199. cb(Vcur, "Vcur_view", il);
  8200. Vcur = ggml_cont(ctx0, Vcur);
  8201. cb(Vcur, "Vcur_cont", il);
  8202. // note: rope must go first for in-place context shifting in build_rope_shift()
  8203. ggml_tensor * Qcur = ggml_concat(ctx0, q_pe, q_nope, 0);
  8204. cb(Qcur, "Qcur", il);
  8205. ggml_tensor * Kcur = ggml_concat(ctx0, ggml_repeat(ctx0, k_pe, q_pe), k_nope, 0);
  8206. cb(Kcur, "Kcur", il);
  8207. // note: MLA without the absorption optimization converts into MHA (ie: GQA with full n_head groups)
  8208. cur = build_attn(inp_attn, gf,
  8209. model.layers[il].wo, NULL,
  8210. Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
  8211. }
  8212. }
  8213. if (il == n_layer - 1) {
  8214. // skip computing output for unused tokens
  8215. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8216. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8217. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8218. }
  8219. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8220. cb(ffn_inp, "ffn_inp", il);
  8221. cur = build_norm(ffn_inp,
  8222. model.layers[il].ffn_norm, NULL,
  8223. LLM_NORM_RMS, il);
  8224. cb(cur, "ffn_norm", il);
  8225. if ((uint32_t) il < hparams.n_layer_dense_lead) {
  8226. cur = build_ffn(cur,
  8227. model.layers[il].ffn_up, NULL, NULL,
  8228. model.layers[il].ffn_gate, NULL, NULL,
  8229. model.layers[il].ffn_down, NULL, NULL,
  8230. NULL,
  8231. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8232. cb(cur, "ffn_out", il);
  8233. } else {
  8234. // MoE branch
  8235. ggml_tensor * moe_out =
  8236. build_moe_ffn(cur,
  8237. model.layers[il].ffn_gate_inp,
  8238. model.layers[il].ffn_up_exps,
  8239. model.layers[il].ffn_gate_exps,
  8240. model.layers[il].ffn_down_exps,
  8241. model.layers[il].ffn_exp_probs_b,
  8242. n_expert, n_expert_used,
  8243. LLM_FFN_SILU, hparams.expert_weights_norm,
  8244. true, hparams.expert_weights_scale,
  8245. (llama_expert_gating_func_type) hparams.expert_gating_func,
  8246. il);
  8247. cb(moe_out, "ffn_moe_out", il);
  8248. // FFN shared expert
  8249. {
  8250. ggml_tensor * ffn_shexp = build_ffn(cur,
  8251. model.layers[il].ffn_up_shexp, NULL, NULL,
  8252. model.layers[il].ffn_gate_shexp, NULL, NULL,
  8253. model.layers[il].ffn_down_shexp, NULL, NULL,
  8254. NULL,
  8255. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8256. cb(ffn_shexp, "ffn_shexp", il);
  8257. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  8258. cb(cur, "ffn_out", il);
  8259. }
  8260. }
  8261. cur = ggml_add(ctx0, cur, ffn_inp);
  8262. cur = build_cvec(cur, il);
  8263. cb(cur, "l_out", il);
  8264. // input for next layer
  8265. inpL = cur;
  8266. }
  8267. cur = inpL;
  8268. cur = build_norm(cur,
  8269. model.output_norm, NULL,
  8270. LLM_NORM_RMS, -1);
  8271. cb(cur, "result_norm", -1);
  8272. res->t_embd = cur;
  8273. // lm_head
  8274. cur = ggml_mul_mat(ctx0, model.output, cur);
  8275. cb(cur, "result_output", -1);
  8276. res->t_logits = cur;
  8277. ggml_build_forward_expand(gf, cur);
  8278. }
  8279. };
  8280. struct llm_build_bitnet : public llm_graph_context {
  8281. llm_build_bitnet(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8282. const int64_t n_embd_head = hparams.n_embd_head_v;
  8283. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8284. ggml_tensor * cur;
  8285. ggml_tensor * inpL;
  8286. inpL = build_inp_embd(model.tok_embd);
  8287. // inp_pos - contains the positions
  8288. ggml_tensor * inp_pos = build_inp_pos();
  8289. auto * inp_attn = build_attn_inp_kv_unified();
  8290. for (int il = 0; il < n_layer; ++il) {
  8291. ggml_tensor * inpSA = inpL;
  8292. cur = build_norm(inpL,
  8293. model.layers[il].attn_norm, NULL,
  8294. LLM_NORM_RMS, il);
  8295. cb(cur, "attn_norm", il);
  8296. // self-attention
  8297. {
  8298. // compute Q and K and RoPE them
  8299. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  8300. if (model.layers[il].wq_scale) {
  8301. Qcur = ggml_mul(ctx0, Qcur, model.layers[il].wq_scale);
  8302. }
  8303. cb(Qcur, "Qcur", il);
  8304. if (model.layers[il].bq) {
  8305. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8306. cb(Qcur, "Qcur", il);
  8307. }
  8308. // B1.K
  8309. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  8310. if (model.layers[il].wk_scale) {
  8311. Kcur = ggml_mul(ctx0, Kcur, model.layers[il].wk_scale);
  8312. }
  8313. cb(Kcur, "Kcur", il);
  8314. if (model.layers[il].bk) {
  8315. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8316. cb(Kcur, "Kcur", il);
  8317. }
  8318. // B1.V
  8319. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  8320. if (model.layers[il].wv_scale) {
  8321. Vcur = ggml_mul(ctx0, Vcur, model.layers[il].wv_scale);
  8322. }
  8323. cb(Vcur, "Vcur", il);
  8324. if (model.layers[il].bv) {
  8325. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8326. cb(Vcur, "Vcur", il);
  8327. }
  8328. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8329. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8330. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8331. Qcur = ggml_rope_ext(
  8332. ctx0, Qcur, inp_pos, nullptr,
  8333. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8334. ext_factor, attn_factor, beta_fast, beta_slow
  8335. );
  8336. Kcur = ggml_rope_ext(
  8337. ctx0, Kcur, inp_pos, nullptr,
  8338. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8339. ext_factor, attn_factor, beta_fast, beta_slow
  8340. );
  8341. cb(Qcur, "Qcur", il);
  8342. cb(Kcur, "Kcur", il);
  8343. cb(Vcur, "Vcur", il);
  8344. cur = build_attn(inp_attn, gf,
  8345. NULL, NULL,
  8346. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8347. cur = build_norm(cur,
  8348. model.layers[il].attn_sub_norm, NULL,
  8349. LLM_NORM_RMS, il);
  8350. cb(cur, "attn_sub_norm", il);
  8351. cur = build_lora_mm(model.layers[il].wo, cur);
  8352. if (model.layers[il].wo_scale) {
  8353. cur = ggml_mul(ctx0, cur, model.layers[il].wo_scale);
  8354. }
  8355. if (model.layers[il].bo) {
  8356. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  8357. }
  8358. cb(cur, "attn_o_out", il);
  8359. }
  8360. if (il == n_layer - 1) {
  8361. // skip computing output for unused tokens
  8362. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8363. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8364. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8365. }
  8366. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8367. cb(ffn_inp, "ffn_inp", il);
  8368. // feed-forward forward
  8369. cur = build_norm(ffn_inp,
  8370. model.layers[il].ffn_norm, NULL,
  8371. LLM_NORM_RMS, il);
  8372. cb(cur, "ffn_norm", il);
  8373. cur = build_ffn(cur,
  8374. model.layers[il].ffn_up, NULL, model.layers[il].ffn_up_scale,
  8375. model.layers[il].ffn_gate, NULL, model.layers[il].ffn_gate_scale,
  8376. NULL, NULL, NULL,
  8377. NULL,
  8378. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8379. cb(cur, "ffn_sub_out", il);
  8380. cur = build_norm(cur,
  8381. model.layers[il].ffn_sub_norm, NULL,
  8382. LLM_NORM_RMS, il);
  8383. cb(cur, "ffn_sub_norm", il);
  8384. cur = build_lora_mm(model.layers[il].ffn_down, cur);
  8385. if (model.layers[il].ffn_down_scale) {
  8386. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_down_scale);
  8387. }
  8388. cb(cur, "ffn_down", il);
  8389. cur = ggml_add(ctx0, cur, ffn_inp);
  8390. cb(cur, "l_out", il);
  8391. // input for next layer
  8392. inpL = cur;
  8393. }
  8394. cur = inpL;
  8395. cur = build_norm(cur,
  8396. model.output_norm, NULL,
  8397. LLM_NORM_RMS, -1);
  8398. cb(cur, "result_norm", -1);
  8399. res->t_embd = cur;
  8400. // lm_head
  8401. // FIXME: do not use model.tok_embd directly, duplicate as model.output
  8402. cur = build_lora_mm(model.tok_embd, cur);
  8403. cb(cur, "result_output", -1);
  8404. res->t_logits = cur;
  8405. ggml_build_forward_expand(gf, cur);
  8406. }
  8407. };
  8408. struct llm_build_t5_enc : public llm_graph_context {
  8409. llm_build_t5_enc(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8410. const int64_t n_embd_head = hparams.n_embd_head_v;
  8411. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8412. ggml_tensor * cur;
  8413. ggml_tensor * inpL;
  8414. inpL = build_inp_embd(model.tok_embd);
  8415. ggml_tensor * pos_bucket_enc = build_inp_pos_bucket_enc();
  8416. auto * inp_attn = build_attn_inp_no_cache();
  8417. for (int il = 0; il < n_layer; ++il) {
  8418. ggml_tensor * inpSA = inpL;
  8419. // norm
  8420. cur = build_norm(inpL,
  8421. model.layers[il].attn_norm_enc, NULL,
  8422. LLM_NORM_RMS, il);
  8423. cb(cur, "attn_norm", il);
  8424. // self-attention
  8425. {
  8426. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq_enc, cur);
  8427. cb(Qcur, "Qcur", il);
  8428. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk_enc, cur);
  8429. cb(Kcur, "Kcur", il);
  8430. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv_enc, cur);
  8431. cb(Vcur, "Vcur", il);
  8432. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8433. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8434. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8435. ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b_enc ? model.layers[il].attn_rel_b_enc : model.layers[0].attn_rel_b_enc;
  8436. ggml_tensor * kq_b = build_pos_bias(pos_bucket_enc, attn_rel_b);
  8437. cur = build_attn(inp_attn, gf,
  8438. model.layers[il].wo_enc, nullptr,
  8439. Qcur, Kcur, Vcur, kq_b, nullptr, 1.0f, il);
  8440. cb(cur, "kqv_out", il);
  8441. }
  8442. if (il == n_layer - 1) {
  8443. // skip computing output for unused tokens
  8444. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8445. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8446. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8447. }
  8448. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8449. cb(ffn_inp, "ffn_inp", il);
  8450. // feed-forward network
  8451. {
  8452. cur = build_norm(ffn_inp,
  8453. model.layers[il].ffn_norm_enc, NULL,
  8454. LLM_NORM_RMS, il);
  8455. cb(cur, "ffn_norm", il);
  8456. // T5 uses relu, flan-T5 uses gelu-gated
  8457. cur = build_ffn(cur,
  8458. model.layers[il].ffn_up_enc, NULL, NULL,
  8459. model.layers[il].ffn_gate_enc, NULL, NULL,
  8460. model.layers[il].ffn_down_enc, NULL, NULL,
  8461. NULL,
  8462. model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
  8463. model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
  8464. il);
  8465. cb(cur, "ffn_out", il);
  8466. }
  8467. cur = ggml_add(ctx0, cur, ffn_inp);
  8468. cb(cur, "ffn_out", il);
  8469. cur = build_cvec(cur, il);
  8470. cb(cur, "l_out", il);
  8471. // input for next layer
  8472. inpL = cur;
  8473. }
  8474. cur = inpL;
  8475. cb(cur, "result_embd", -1);
  8476. cur = build_norm(cur,
  8477. model.output_norm_enc, NULL,
  8478. LLM_NORM_RMS, -1);
  8479. cb(cur, "result_norm", -1);
  8480. res->t_embd = cur;
  8481. ggml_build_forward_expand(gf, cur);
  8482. }
  8483. };
  8484. struct llm_build_t5_dec : public llm_graph_context {
  8485. llm_build_t5_dec(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8486. const int64_t n_embd_head = hparams.n_embd_head_v;
  8487. //const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8488. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8489. ggml_tensor * cur;
  8490. ggml_tensor * inpL;
  8491. inpL = build_inp_embd(model.tok_embd);
  8492. ggml_tensor * embd_enc = build_inp_cross_embd();
  8493. ggml_tensor * pos_bucket_dec = build_inp_pos_bucket_dec();
  8494. const int64_t n_outputs_enc = embd_enc->ne[1];
  8495. auto * inp_attn_self = build_attn_inp_kv_unified();
  8496. auto * inp_attn_cross = build_attn_inp_cross();
  8497. for (int il = 0; il < n_layer; ++il) {
  8498. ggml_tensor * inpSA = inpL;
  8499. // norm
  8500. cur = build_norm(inpL,
  8501. model.layers[il].attn_norm, NULL,
  8502. LLM_NORM_RMS, il);
  8503. cb(cur, "attn_norm", il);
  8504. // self-attention
  8505. {
  8506. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  8507. cb(Qcur, "Qcur", il);
  8508. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  8509. cb(Kcur, "Kcur", il);
  8510. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  8511. cb(Vcur, "Vcur", il);
  8512. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8513. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8514. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8515. ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b ? model.layers[il].attn_rel_b : model.layers[0].attn_rel_b;
  8516. ggml_tensor * kq_b = build_pos_bias(pos_bucket_dec, attn_rel_b);
  8517. cur = build_attn(inp_attn_self, gf,
  8518. model.layers[il].wo, model.layers[il].bo,
  8519. Qcur, Kcur, Vcur, kq_b, nullptr, 1.0f, il);
  8520. cb(cur, "kqv_out", il);
  8521. }
  8522. cur = ggml_add(ctx0, cur, inpSA);
  8523. cb(cur, "cross_inp", il);
  8524. ggml_tensor * inpCA = cur;
  8525. // norm
  8526. cur = build_norm(cur,
  8527. model.layers[il].attn_norm_cross, NULL,
  8528. LLM_NORM_RMS, il);
  8529. cb(cur, "attn_norm_cross", il);
  8530. // cross-attention
  8531. {
  8532. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq_cross, cur);
  8533. cb(Qcur, "Qcur", il);
  8534. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk_cross, embd_enc);
  8535. cb(Kcur, "Kcur", il);
  8536. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv_cross, embd_enc);
  8537. cb(Vcur, "Vcur", il);
  8538. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8539. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_outputs_enc);
  8540. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_outputs_enc);
  8541. cur = build_attn(inp_attn_cross, gf,
  8542. model.layers[il].wo_cross, nullptr,
  8543. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  8544. cb(cur, "kqv_out", il);
  8545. //ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  8546. //ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  8547. //ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  8548. //cb(kq, "kq", il);
  8549. //kq = ggml_soft_max_ext(ctx0, kq, KQ_mask_cross, 1.0f, hparams.f_max_alibi_bias);
  8550. //cb(kq, "kq_soft_max_ext", il);
  8551. //ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_outputs_enc)));
  8552. //cb(v, "v", il);
  8553. //ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_outputs_enc, n_embd_head, n_head_kv), kq);
  8554. //cb(kqv, "kqv", il);
  8555. //ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  8556. //cb(kqv_merged, "kqv_merged", il);
  8557. //cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  8558. //cb(cur, "kqv_merged_cont", il);
  8559. //ggml_build_forward_expand(gf, cur);
  8560. //cur = build_lora_mm(model.layers[il].wo_cross, cur);
  8561. //cb(cur, "kqv_out", il);
  8562. }
  8563. if (il == n_layer - 1) {
  8564. // skip computing output for unused tokens
  8565. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8566. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8567. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8568. inpCA = ggml_get_rows(ctx0, inpCA, inp_out_ids);
  8569. }
  8570. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpCA);
  8571. cb(ffn_inp, "ffn_inp", il);
  8572. // feed-forward network
  8573. {
  8574. cur = build_norm(ffn_inp,
  8575. model.layers[il].ffn_norm, NULL,
  8576. LLM_NORM_RMS, il);
  8577. cb(cur, "ffn_norm", il);
  8578. // T5 uses relu, flan-T5 uses gelu-gated
  8579. cur = build_ffn(cur,
  8580. model.layers[il].ffn_up, NULL, NULL,
  8581. model.layers[il].ffn_gate, NULL, NULL,
  8582. model.layers[il].ffn_down, NULL, NULL,
  8583. NULL,
  8584. model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
  8585. model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
  8586. il);
  8587. cb(cur, "ffn_out", il);
  8588. }
  8589. cur = ggml_add(ctx0, cur, ffn_inp);
  8590. cb(cur, "ffn_out", il);
  8591. cur = build_cvec(cur, il);
  8592. cb(cur, "l_out", il);
  8593. // input for next layer
  8594. inpL = cur;
  8595. }
  8596. cur = inpL;
  8597. cb(cur, "result_embd", -1);
  8598. cur = build_norm(cur,
  8599. model.output_norm, NULL,
  8600. LLM_NORM_RMS, -1);
  8601. cb(cur, "result_norm", -1);
  8602. res->t_embd = cur;
  8603. // lm_head
  8604. cur = build_lora_mm(model.output, cur);
  8605. cb(cur, "result_output", -1);
  8606. res->t_logits = cur;
  8607. ggml_build_forward_expand(gf, cur);
  8608. }
  8609. };
  8610. struct llm_build_jais : public llm_graph_context {
  8611. llm_build_jais(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8612. const int64_t n_embd_head = hparams.n_embd_head_v;
  8613. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8614. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8615. ggml_tensor * cur;
  8616. ggml_tensor * inpL;
  8617. inpL = build_inp_embd(model.tok_embd);
  8618. auto * inp_attn = build_attn_inp_kv_unified();
  8619. for (int il = 0; il < n_layer; ++il) {
  8620. cur = build_norm(inpL,
  8621. model.layers[il].attn_norm,
  8622. model.layers[il].attn_norm_b,
  8623. LLM_NORM, il);
  8624. cb(cur, "attn_norm", il);
  8625. // self-attention
  8626. {
  8627. cur = build_lora_mm(model.layers[il].wqkv, cur);
  8628. cb(cur, "wqkv", il);
  8629. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8630. cb(cur, "bqkv", il);
  8631. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*cur->nb[0]*(n_embd)));
  8632. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd)));
  8633. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd + n_embd_gqa)));
  8634. cb(Qcur, "Qcur", il);
  8635. cb(Kcur, "Kcur", il);
  8636. cb(Vcur, "Vcur", il);
  8637. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8638. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8639. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8640. cur = build_attn(inp_attn, gf,
  8641. model.layers[il].wo, model.layers[il].bo,
  8642. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/float(n_embd_head), il);
  8643. }
  8644. if (il == n_layer - 1) {
  8645. // skip computing output for unused tokens
  8646. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8647. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8648. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8649. }
  8650. // add the input
  8651. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8652. cb(ffn_inp, "ffn_inp", il);
  8653. // FF
  8654. {
  8655. cur = build_norm(ffn_inp,
  8656. model.layers[il].ffn_norm,
  8657. model.layers[il].ffn_norm_b,
  8658. LLM_NORM, il);
  8659. cb(cur, "ffn_norm", il);
  8660. cur = build_ffn(cur,
  8661. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  8662. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  8663. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  8664. NULL,
  8665. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8666. cb(cur, "ffn_out", il);
  8667. }
  8668. inpL = ggml_add(ctx0, cur, ffn_inp);
  8669. cb(inpL, "l_out", il);
  8670. }
  8671. cur = build_norm(inpL,
  8672. model.output_norm,
  8673. model.output_norm_b,
  8674. LLM_NORM, -1);
  8675. cb(cur, "result_norm", -1);
  8676. res->t_embd = cur;
  8677. cur = build_lora_mm(model.output, cur);
  8678. cb(cur, "result_output", -1);
  8679. res->t_logits = cur;
  8680. ggml_build_forward_expand(gf, cur);
  8681. }
  8682. };
  8683. struct llm_build_chatglm : public llm_graph_context {
  8684. llm_build_chatglm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8685. const int64_t n_embd_head = hparams.n_embd_head_v;
  8686. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8687. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8688. ggml_tensor * cur;
  8689. ggml_tensor * inpL;
  8690. inpL = build_inp_embd(model.tok_embd);
  8691. // inp_pos - contains the positions
  8692. ggml_tensor * inp_pos = build_inp_pos();
  8693. auto * inp_attn = build_attn_inp_kv_unified();
  8694. for (int il = 0; il < n_layer; ++il) {
  8695. ggml_tensor * inpSA = inpL;
  8696. cur = build_norm(inpL,
  8697. model.layers[il].attn_norm,
  8698. NULL,
  8699. LLM_NORM_RMS, il);
  8700. cb(cur, "attn_norm", il);
  8701. // self-attention
  8702. {
  8703. ggml_tensor * Qcur = nullptr;
  8704. ggml_tensor * Kcur = nullptr;
  8705. ggml_tensor * Vcur = nullptr;
  8706. if (model.layers[il].wqkv == nullptr) {
  8707. Qcur = build_lora_mm(model.layers[il].wq, cur);
  8708. if (model.layers[il].bq) {
  8709. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8710. }
  8711. Kcur = build_lora_mm(model.layers[il].wk, cur);
  8712. if (model.layers[il].bk) {
  8713. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8714. }
  8715. Vcur = build_lora_mm(model.layers[il].wv, cur);
  8716. if (model.layers[il].bv) {
  8717. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8718. }
  8719. } else {
  8720. cur = build_lora_mm(model.layers[il].wqkv, cur);
  8721. cb(cur, "wqkv", il);
  8722. if (model.layers[il].bqkv) {
  8723. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8724. cb(cur, "bqkv", il);
  8725. }
  8726. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8727. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8728. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8729. }
  8730. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8731. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8732. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8733. //printf("freq_base: %f freq_scale: %f ext_factor: %f attn_factor: %f\n", freq_base, freq_scale, ext_factor, attn_factor);
  8734. Qcur = ggml_rope_ext(
  8735. ctx0, Qcur, inp_pos, nullptr,
  8736. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8737. ext_factor, attn_factor, beta_fast, beta_slow
  8738. );
  8739. Kcur = ggml_rope_ext(
  8740. ctx0, Kcur, inp_pos, nullptr,
  8741. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8742. ext_factor, attn_factor, beta_fast, beta_slow
  8743. );
  8744. cb(Qcur, "Qcur", il);
  8745. cb(Kcur, "Kcur", il);
  8746. cb(Vcur, "Vcur", il);
  8747. cur = build_attn(inp_attn, gf,
  8748. model.layers[il].wo, NULL,
  8749. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8750. }
  8751. if (il == n_layer - 1) {
  8752. // skip computing output for unused tokens
  8753. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8754. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8755. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8756. }
  8757. // Add the input
  8758. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8759. cb(ffn_inp, "ffn_inp", il);
  8760. // FF
  8761. {
  8762. cur = build_norm(ffn_inp,
  8763. model.layers[il].ffn_norm,
  8764. NULL,
  8765. LLM_NORM_RMS, il);
  8766. cb(cur, "ffn_norm", il);
  8767. cur = build_ffn(cur,
  8768. model.layers[il].ffn_up, NULL, NULL,
  8769. NULL, NULL, NULL,
  8770. model.layers[il].ffn_down, NULL, NULL,
  8771. NULL,
  8772. LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
  8773. cb(cur, "ffn_out", il);
  8774. }
  8775. inpL = ggml_add(ctx0, cur, ffn_inp);
  8776. cb(inpL, "l_out", il);
  8777. }
  8778. cur = build_norm(inpL,
  8779. model.output_norm,
  8780. NULL,
  8781. LLM_NORM_RMS, -1);
  8782. cb(cur, "result_norm", -1);
  8783. res->t_embd = cur;
  8784. cur = build_lora_mm(model.output, cur);
  8785. cb(cur, "result_output", -1);
  8786. res->t_logits = cur;
  8787. ggml_build_forward_expand(gf, cur);
  8788. }
  8789. };
  8790. struct llm_build_glm4 : public llm_graph_context {
  8791. llm_build_glm4(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8792. const int64_t n_embd_head = hparams.n_embd_head_v;
  8793. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8794. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8795. ggml_tensor * cur;
  8796. ggml_tensor * inpL;
  8797. inpL = build_inp_embd(model.tok_embd);
  8798. // inp_pos - contains the positions
  8799. ggml_tensor * inp_pos = build_inp_pos();
  8800. auto * inp_attn = build_attn_inp_kv_unified();
  8801. for (int il = 0; il < n_layer; ++il) {
  8802. ggml_tensor * inpSA = inpL;
  8803. // Pre-attention norm
  8804. cur = build_norm(inpL,
  8805. model.layers[il].attn_norm,
  8806. NULL,
  8807. LLM_NORM_RMS, il);
  8808. cb(cur, "attn_norm", il);
  8809. // self-attention
  8810. {
  8811. ggml_tensor * Qcur = nullptr;
  8812. ggml_tensor * Kcur = nullptr;
  8813. ggml_tensor * Vcur = nullptr;
  8814. if (model.layers[il].wqkv == nullptr) {
  8815. Qcur = build_lora_mm(model.layers[il].wq, cur);
  8816. if (model.layers[il].bq) {
  8817. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8818. }
  8819. Kcur = build_lora_mm(model.layers[il].wk, cur);
  8820. if (model.layers[il].bk) {
  8821. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8822. }
  8823. Vcur = build_lora_mm(model.layers[il].wv, cur);
  8824. if (model.layers[il].bv) {
  8825. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8826. }
  8827. } else {
  8828. cur = build_lora_mm(model.layers[il].wqkv, cur);
  8829. cb(cur, "wqkv", il);
  8830. if (model.layers[il].bqkv) {
  8831. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8832. cb(cur, "bqkv", il);
  8833. }
  8834. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8835. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8836. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8837. }
  8838. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8839. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8840. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8841. Qcur = ggml_rope_ext(
  8842. ctx0, Qcur, inp_pos, nullptr,
  8843. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8844. ext_factor, attn_factor, beta_fast, beta_slow
  8845. );
  8846. Kcur = ggml_rope_ext(
  8847. ctx0, Kcur, inp_pos, nullptr,
  8848. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8849. ext_factor, attn_factor, beta_fast, beta_slow
  8850. );
  8851. cb(Qcur, "Qcur", il);
  8852. cb(Kcur, "Kcur", il);
  8853. cb(Vcur, "Vcur", il);
  8854. cur = build_attn(inp_attn, gf,
  8855. model.layers[il].wo, NULL,
  8856. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8857. }
  8858. if (il == n_layer - 1) {
  8859. // skip computing output for unused tokens
  8860. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8861. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8862. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8863. }
  8864. // Post-attention norm (new!)
  8865. cur = build_norm(cur,
  8866. model.layers[il].attn_post_norm,
  8867. NULL,
  8868. LLM_NORM_RMS, il);
  8869. cb(cur, "post_attn_norm", il);
  8870. // Add the input (residual connection after post-attention norm)
  8871. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8872. cb(ffn_inp, "ffn_inp", il);
  8873. // FF
  8874. {
  8875. // Pre-MLP norm
  8876. cur = build_norm(ffn_inp,
  8877. model.layers[il].ffn_norm,
  8878. NULL,
  8879. LLM_NORM_RMS, il);
  8880. cb(cur, "ffn_norm", il);
  8881. // MLP
  8882. cur = build_ffn(cur,
  8883. model.layers[il].ffn_up, NULL, NULL,
  8884. NULL, NULL, NULL,
  8885. model.layers[il].ffn_down, NULL, NULL,
  8886. NULL,
  8887. LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
  8888. cb(cur, "ffn_out", il);
  8889. // Post-MLP norm
  8890. cur = build_norm(cur,
  8891. model.layers[il].ffn_post_norm,
  8892. NULL,
  8893. LLM_NORM_RMS, il);
  8894. cb(cur, "post_mlp_norm", il);
  8895. }
  8896. // Add residual connection after post-MLP norm
  8897. inpL = ggml_add(ctx0, cur, ffn_inp);
  8898. cb(inpL, "l_out", il);
  8899. }
  8900. // Final norm
  8901. cur = build_norm(inpL,
  8902. model.output_norm,
  8903. NULL,
  8904. LLM_NORM_RMS, -1);
  8905. cb(cur, "result_norm", -1);
  8906. res->t_embd = cur;
  8907. // Output projection
  8908. cur = build_lora_mm(model.output, cur);
  8909. cb(cur, "result_output", -1);
  8910. res->t_logits = cur;
  8911. ggml_build_forward_expand(gf, cur);
  8912. }
  8913. };
  8914. struct llm_build_nemotron : public llm_graph_context {
  8915. llm_build_nemotron(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8916. const int64_t n_embd_head = hparams.n_embd_head_v;
  8917. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8918. //GGML_ASSERT(n_embd_head == hparams.n_rot);
  8919. ggml_tensor * cur;
  8920. ggml_tensor * inpL;
  8921. inpL = build_inp_embd(model.tok_embd);
  8922. // inp_pos - contains the positions
  8923. ggml_tensor * inp_pos = build_inp_pos();
  8924. auto * inp_attn = build_attn_inp_kv_unified();
  8925. for (int il = 0; il < n_layer; ++il) {
  8926. ggml_tensor * inpSA = inpL;
  8927. // norm
  8928. cur = build_norm(inpL,
  8929. model.layers[il].attn_norm,
  8930. model.layers[il].attn_norm_b,
  8931. LLM_NORM, il);
  8932. cb(cur, "attn_norm", il);
  8933. // self-attention
  8934. {
  8935. // compute Q and K and RoPE them
  8936. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  8937. cb(Qcur, "Qcur", il);
  8938. if (model.layers[il].bq) {
  8939. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8940. cb(Qcur, "Qcur", il);
  8941. }
  8942. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  8943. cb(Kcur, "Kcur", il);
  8944. if (model.layers[il].bk) {
  8945. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8946. cb(Kcur, "Kcur", il);
  8947. }
  8948. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  8949. cb(Vcur, "Vcur", il);
  8950. if (model.layers[il].bv) {
  8951. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8952. cb(Vcur, "Vcur", il);
  8953. }
  8954. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8955. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8956. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8957. Qcur = ggml_rope_ext(
  8958. ctx0, Qcur, inp_pos, nullptr,
  8959. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8960. ext_factor, attn_factor, beta_fast, beta_slow
  8961. );
  8962. Kcur = ggml_rope_ext(
  8963. ctx0, Kcur, inp_pos, nullptr,
  8964. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8965. ext_factor, attn_factor, beta_fast, beta_slow
  8966. );
  8967. cb(Qcur, "Qcur", il);
  8968. cb(Kcur, "Kcur", il);
  8969. cb(Vcur, "Vcur", il);
  8970. cur = build_attn(inp_attn, gf,
  8971. model.layers[il].wo, model.layers[il].bo,
  8972. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8973. }
  8974. if (il == n_layer - 1) {
  8975. // skip computing output for unused tokens
  8976. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8977. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8978. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8979. }
  8980. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8981. cb(ffn_inp, "ffn_inp", il);
  8982. // feed-forward network
  8983. cur = build_norm(ffn_inp,
  8984. model.layers[il].ffn_norm,
  8985. model.layers[il].ffn_norm_b,
  8986. LLM_NORM, il);
  8987. cb(cur, "ffn_norm", il);
  8988. cur = build_ffn(cur,
  8989. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  8990. NULL, NULL, NULL,
  8991. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  8992. NULL,
  8993. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
  8994. cur = ggml_add(ctx0, cur, ffn_inp);
  8995. cb(cur, "ffn_out", il);
  8996. cur = build_cvec(cur, il);
  8997. cb(cur, "l_out", il);
  8998. // input for next layer
  8999. inpL = cur;
  9000. }
  9001. cur = inpL;
  9002. cur = build_norm(cur,
  9003. model.output_norm, model.output_norm_b,
  9004. LLM_NORM, -1);
  9005. cb(cur, "result_norm", -1);
  9006. res->t_embd = cur;
  9007. // lm_head
  9008. cur = build_lora_mm(model.output, cur);
  9009. cb(cur, "result_output", -1);
  9010. res->t_logits = cur;
  9011. ggml_build_forward_expand(gf, cur);
  9012. }
  9013. };
  9014. struct llm_build_exaone : public llm_graph_context {
  9015. llm_build_exaone(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  9016. const int64_t n_embd_head = hparams.n_embd_head_v;
  9017. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9018. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9019. ggml_tensor * cur;
  9020. ggml_tensor * inpL;
  9021. inpL = build_inp_embd(model.tok_embd);
  9022. // inp_pos - contains the positions
  9023. ggml_tensor * inp_pos = build_inp_pos();
  9024. auto * inp_attn = build_attn_inp_kv_unified();
  9025. for (int il = 0; il < n_layer; ++il) {
  9026. ggml_tensor * inpSA = inpL;
  9027. // norm
  9028. cur = build_norm(inpL,
  9029. model.layers[il].attn_norm, NULL,
  9030. LLM_NORM_RMS, il);
  9031. cb(cur, "attn_norm", il);
  9032. // self-attention
  9033. {
  9034. // rope freq factors for llama3; may return nullptr for llama2 and other models
  9035. ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
  9036. // compute Q and K and RoPE them
  9037. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  9038. cb(Qcur, "Qcur", il);
  9039. if (model.layers[il].bq) {
  9040. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  9041. cb(Qcur, "Qcur", il);
  9042. }
  9043. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  9044. cb(Kcur, "Kcur", il);
  9045. if (model.layers[il].bk) {
  9046. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  9047. cb(Kcur, "Kcur", il);
  9048. }
  9049. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  9050. cb(Vcur, "Vcur", il);
  9051. if (model.layers[il].bv) {
  9052. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  9053. cb(Vcur, "Vcur", il);
  9054. }
  9055. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  9056. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  9057. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  9058. Qcur = ggml_rope_ext(
  9059. ctx0, Qcur, inp_pos, rope_factors,
  9060. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9061. ext_factor, attn_factor, beta_fast, beta_slow
  9062. );
  9063. Kcur = ggml_rope_ext(
  9064. ctx0, Kcur, inp_pos, rope_factors,
  9065. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9066. ext_factor, attn_factor, beta_fast, beta_slow
  9067. );
  9068. cb(Qcur, "Qcur", il);
  9069. cb(Kcur, "Kcur", il);
  9070. cb(Vcur, "Vcur", il);
  9071. cur = build_attn(inp_attn, gf,
  9072. model.layers[il].wo, model.layers[il].bo,
  9073. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  9074. }
  9075. if (il == n_layer - 1) {
  9076. // skip computing output for unused tokens
  9077. ggml_tensor * inp_out_ids = build_inp_out_ids();
  9078. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9079. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9080. }
  9081. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9082. cb(ffn_inp, "ffn_inp", il);
  9083. // feed-forward network
  9084. cur = build_norm(ffn_inp,
  9085. model.layers[il].ffn_norm, NULL,
  9086. LLM_NORM_RMS, il);
  9087. cb(cur, "ffn_norm", il);
  9088. cur = build_ffn(cur,
  9089. model.layers[il].ffn_up, NULL, NULL,
  9090. model.layers[il].ffn_gate, NULL, NULL,
  9091. model.layers[il].ffn_down, NULL, NULL,
  9092. NULL,
  9093. LLM_FFN_SILU, LLM_FFN_PAR, il);
  9094. cb(cur, "ffn_out", il);
  9095. cur = ggml_add(ctx0, cur, ffn_inp);
  9096. cb(cur, "ffn_out", il);
  9097. cur = build_cvec(cur, il);
  9098. cb(cur, "l_out", il);
  9099. // input for next layer
  9100. inpL = cur;
  9101. }
  9102. cur = inpL;
  9103. cur = build_norm(cur,
  9104. model.output_norm, NULL,
  9105. LLM_NORM_RMS, -1);
  9106. cb(cur, "result_norm", -1);
  9107. res->t_embd = cur;
  9108. // lm_head
  9109. cur = build_lora_mm(model.output, cur);
  9110. cb(cur, "result_output", -1);
  9111. res->t_logits = cur;
  9112. ggml_build_forward_expand(gf, cur);
  9113. }
  9114. };
  9115. struct llm_build_rwkv6_base : public llm_graph_context {
  9116. const llama_model & model;
  9117. llm_build_rwkv6_base(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params), model(model) {
  9118. }
  9119. ggml_tensor * build_rwkv6_channel_mix(
  9120. const llama_layer * layer,
  9121. ggml_tensor * cur,
  9122. ggml_tensor * x_prev,
  9123. llm_arch arch) const {
  9124. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  9125. switch (arch) {
  9126. case LLM_ARCH_RWKV6:
  9127. {
  9128. ggml_tensor * xk = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_k), cur);
  9129. ggml_tensor * xr = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_r), cur);
  9130. ggml_tensor * r = ggml_sigmoid(ctx0, build_lora_mm(layer->channel_mix_receptance, xr));
  9131. ggml_tensor * k = ggml_sqr(
  9132. ctx0,
  9133. ggml_relu(
  9134. ctx0,
  9135. build_lora_mm(layer->channel_mix_key, xk)
  9136. )
  9137. );
  9138. cur = ggml_mul(ctx0, r, build_lora_mm(layer->channel_mix_value, k));
  9139. } break;
  9140. default:
  9141. GGML_ABORT("fatal error");
  9142. }
  9143. return cur;
  9144. }
  9145. ggml_tensor * build_rwkv6_time_mix(
  9146. ggml_cgraph * gf,
  9147. ggml_tensor * cur,
  9148. ggml_tensor * x_prev,
  9149. ggml_tensor * state_copy,
  9150. ggml_tensor * state_mask,
  9151. const llama_ubatch & ubatch,
  9152. int il) const {
  9153. const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
  9154. const auto n_tokens = ubatch.n_tokens;
  9155. const auto n_seqs = ubatch.n_seqs;
  9156. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9157. const auto n_embd = hparams.n_embd;
  9158. const auto head_size = hparams.wkv_head_size;
  9159. const auto n_head = n_embd / head_size;
  9160. const auto n_head_kv = hparams.n_head_kv(il);
  9161. const auto kv_head = kv_self->head;
  9162. const auto & layer = model.layers[il];
  9163. bool is_qrwkv = layer.time_mix_first == nullptr;
  9164. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  9165. sx = ggml_reshape_2d(ctx0, sx, n_embd, n_tokens);
  9166. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  9167. ggml_tensor * xxx = ggml_add(ctx0, ggml_mul(ctx0, sx, layer.time_mix_lerp_x), cur);
  9168. xxx = ggml_reshape_4d(
  9169. ctx0,
  9170. ggml_tanh(
  9171. ctx0,
  9172. ggml_mul_mat(ctx0, layer.time_mix_w1, xxx)
  9173. ),
  9174. layer.time_mix_w1->ne[1] / 5, 1, 5, n_tokens
  9175. );
  9176. xxx = ggml_cont(ctx0, ggml_permute(ctx0, xxx, 0, 1, 3, 2));
  9177. xxx = ggml_mul_mat(
  9178. ctx0,
  9179. ggml_reshape_4d(
  9180. ctx0,
  9181. layer.time_mix_w2,
  9182. layer.time_mix_w2->ne[0], layer.time_mix_w2->ne[1], 1, 5
  9183. ),
  9184. xxx
  9185. );
  9186. ggml_tensor *xw, *xk, *xv, *xr, *xg;
  9187. if (layer.time_mix_lerp_fused) {
  9188. // fusing these weights makes some performance improvement
  9189. sx = ggml_reshape_3d(ctx0, sx, n_embd, 1, n_tokens);
  9190. cur = ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens);
  9191. xxx = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xxx, layer.time_mix_lerp_fused), sx), cur);
  9192. xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
  9193. xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
  9194. xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
  9195. xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
  9196. xg = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
  9197. } else {
  9198. // for backward compatibility
  9199. xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
  9200. xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
  9201. xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
  9202. xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
  9203. xg = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
  9204. xw = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xw, layer.time_mix_lerp_w), sx), cur);
  9205. xk = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xk, layer.time_mix_lerp_k), sx), cur);
  9206. xv = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xv, layer.time_mix_lerp_v), sx), cur);
  9207. xr = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xr, layer.time_mix_lerp_r), sx), cur);
  9208. xg = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xg, layer.time_mix_lerp_g), sx), cur);
  9209. }
  9210. ggml_tensor * r = build_lora_mm(layer.time_mix_receptance, xr);
  9211. ggml_tensor * k = build_lora_mm(layer.time_mix_key, xk);
  9212. ggml_tensor * v = build_lora_mm(layer.time_mix_value, xv);
  9213. if (layer.time_mix_receptance_b) {
  9214. r = ggml_add(ctx0, r, layer.time_mix_receptance_b);
  9215. }
  9216. if (layer.time_mix_key_b) {
  9217. k = ggml_add(ctx0, k, layer.time_mix_key_b);
  9218. }
  9219. if (layer.time_mix_value_b) {
  9220. v = ggml_add(ctx0, v, layer.time_mix_value_b);
  9221. }
  9222. ggml_tensor * g = build_lora_mm(layer.time_mix_gate, xg);
  9223. if (is_qrwkv) {
  9224. g = ggml_sigmoid(ctx0, g);
  9225. } else {
  9226. g = ggml_silu(ctx0, g);
  9227. }
  9228. if (n_head_kv != 0 && n_head_kv != n_head) {
  9229. GGML_ASSERT(n_head % n_head_kv == 0);
  9230. k = ggml_reshape_4d(ctx0, k, head_size, 1, n_head_kv, n_tokens);
  9231. v = ggml_reshape_4d(ctx0, v, head_size, 1, n_head_kv, n_tokens);
  9232. ggml_tensor * tmp = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, head_size, n_head / n_head_kv, n_head_kv, n_tokens);
  9233. k = ggml_repeat(ctx0, k, tmp);
  9234. v = ggml_repeat(ctx0, v, tmp);
  9235. }
  9236. k = ggml_reshape_3d(ctx0, k, head_size, n_head, n_tokens);
  9237. v = ggml_reshape_3d(ctx0, v, head_size, n_head, n_tokens);
  9238. r = ggml_reshape_3d(ctx0, r, head_size, n_head, n_tokens);
  9239. ggml_tensor * w = ggml_mul_mat(
  9240. ctx0,
  9241. layer.time_mix_decay_w2,
  9242. ggml_tanh(
  9243. ctx0,
  9244. ggml_mul_mat(ctx0, layer.time_mix_decay_w1, xw)
  9245. )
  9246. );
  9247. w = ggml_add(ctx0, w, layer.time_mix_decay);
  9248. w = ggml_exp(ctx0, ggml_neg(ctx0, ggml_exp(ctx0, w)));
  9249. w = ggml_reshape_3d(ctx0, w, head_size, n_head, n_tokens);
  9250. if (is_qrwkv) {
  9251. // k = k * (1 - w)
  9252. k = ggml_sub(ctx0, k, ggml_mul(ctx0, k, w));
  9253. }
  9254. ggml_tensor * wkv_state = build_copy_mask_state(
  9255. gf, kv_self->v_l[il], state_copy, state_mask,
  9256. hparams.n_embd_v_s(), n_seqs);
  9257. ggml_tensor * wkv_output;
  9258. if (is_qrwkv) {
  9259. wkv_output = ggml_gated_linear_attn(ctx0, k, v, r, w, wkv_state, pow(head_size, -0.5f));
  9260. } else {
  9261. wkv_output = ggml_rwkv_wkv6(ctx0, k, v, r, layer.time_mix_first, w, wkv_state);
  9262. }
  9263. cur = ggml_view_1d(ctx0, wkv_output, n_embd * n_tokens, 0);
  9264. wkv_state = ggml_view_1d(ctx0, wkv_output, n_embd * head_size * n_seqs, n_embd * n_tokens * sizeof(float));
  9265. ggml_build_forward_expand(
  9266. gf,
  9267. ggml_cpy(
  9268. ctx0,
  9269. wkv_state,
  9270. ggml_view_1d(
  9271. ctx0,
  9272. kv_self->v_l[il],
  9273. hparams.n_embd_v_s() * n_seqs,
  9274. hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_self->v_l[il])
  9275. )
  9276. )
  9277. );
  9278. if (!is_qrwkv) {
  9279. // group norm with head_count groups
  9280. cur = ggml_reshape_3d(ctx0, cur, n_embd / n_head, n_head, n_tokens);
  9281. cur = ggml_norm(ctx0, cur, 64e-5f);
  9282. // Convert back to regular vectors.
  9283. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  9284. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.time_mix_ln), layer.time_mix_ln_b);
  9285. } else {
  9286. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  9287. }
  9288. cur = ggml_mul(ctx0, cur, g);
  9289. cur = build_lora_mm(layer.time_mix_output, cur);
  9290. return ggml_reshape_3d(ctx0, cur, n_embd, n_seq_tokens, n_seqs);
  9291. }
  9292. };
  9293. struct llm_build_rwkv6 : public llm_build_rwkv6_base {
  9294. llm_build_rwkv6(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv6_base(model, params) {
  9295. GGML_ASSERT(hparams.token_shift_count == 2);
  9296. ggml_tensor * cur;
  9297. ggml_tensor * inpL;
  9298. inpL = build_inp_embd(model.tok_embd);
  9299. inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
  9300. ggml_tensor * state_copy = build_inp_s_copy();
  9301. ggml_tensor * state_mask = build_inp_s_mask();
  9302. const auto n_embd = hparams.n_embd;
  9303. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9304. const auto n_seqs = ubatch.n_seqs;
  9305. for (int il = 0; il < n_layer; ++il) {
  9306. const llama_layer * layer = &model.layers[il];
  9307. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  9308. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  9309. gf, state_copy, state_mask, ubatch, il
  9310. );
  9311. ggml_tensor * att_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0);
  9312. ggml_tensor * ffn_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], n_embd * ggml_element_size(token_shift));
  9313. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM, il);
  9314. cb(att_norm, "attn_norm", il);
  9315. ggml_tensor * x_prev = ggml_concat(
  9316. ctx0,
  9317. att_shift,
  9318. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  9319. 1
  9320. );
  9321. cur = build_rwkv6_time_mix(gf, att_norm, x_prev, state_copy, state_mask, ubatch, il);
  9322. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9323. cb(ffn_inp, "ffn_inp", il);
  9324. ggml_tensor * ffn_norm = build_norm(ffn_inp, layer->attn_norm_2, layer->attn_norm_2_b, LLM_NORM, il);
  9325. cb(ffn_norm, "ffn_norm", il);
  9326. x_prev = ggml_concat(
  9327. ctx0,
  9328. ffn_shift,
  9329. ggml_view_3d(ctx0, ffn_norm, n_embd, n_seq_tokens - 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], 0),
  9330. 1
  9331. );
  9332. token_shift = ggml_concat(ctx0,
  9333. ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm)),
  9334. ggml_view_3d(ctx0, ffn_norm, n_embd, 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(ffn_norm)),
  9335. 1
  9336. );
  9337. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  9338. if (il == n_layer - 1) {
  9339. // skip computing output for unused tokens
  9340. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9341. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  9342. ffn_norm = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_norm, n_embd, n_tokens), inp_out_ids);
  9343. x_prev = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, x_prev, n_embd, n_tokens), inp_out_ids);
  9344. cur = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, cur, n_embd, n_tokens), inp_out_ids);
  9345. }
  9346. cur = build_rwkv6_channel_mix(layer, ffn_norm, x_prev, LLM_ARCH_RWKV6);
  9347. cur = ggml_add(ctx0, cur, ffn_inp);
  9348. if (hparams.rescale_every_n_layers != 0 && (il + 1) % hparams.rescale_every_n_layers == 0) {
  9349. cur = ggml_scale(ctx0, cur, 0.5F);
  9350. }
  9351. cur = build_cvec(cur, il);
  9352. cb(cur, "l_out", il);
  9353. // input for next layer
  9354. inpL = cur;
  9355. }
  9356. cur = inpL;
  9357. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1);
  9358. cb(cur, "result_norm", -1);
  9359. res->t_embd = cur;
  9360. cur = build_lora_mm(model.output, cur);
  9361. cb(cur, "result_output", -1);
  9362. res->t_logits = cur;
  9363. ggml_build_forward_expand(gf, cur);
  9364. }
  9365. };
  9366. // ref: https://huggingface.co/recursal/QRWKV6-32B-Instruct-Preview-v0.1/blob/main/modeling_rwkv6qwen2.py
  9367. struct llm_build_rwkv6qwen2 : public llm_build_rwkv6_base {
  9368. llm_build_rwkv6qwen2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv6_base(model, params) {
  9369. GGML_ASSERT(n_embd == hparams.n_embd_k_s());
  9370. ggml_tensor * cur;
  9371. ggml_tensor * inpL;
  9372. inpL = build_inp_embd(model.tok_embd);
  9373. ggml_tensor * state_copy = build_inp_s_copy();
  9374. ggml_tensor * state_mask = build_inp_s_mask();
  9375. const auto n_embd = hparams.n_embd;
  9376. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9377. const auto n_seqs = ubatch.n_seqs;
  9378. for (int il = 0; il < n_layer; ++il) {
  9379. const llama_layer * layer = &model.layers[il];
  9380. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  9381. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  9382. gf, state_copy, state_mask, ubatch, il
  9383. );
  9384. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM_RMS, il);
  9385. cb(att_norm, "attn_norm", il);
  9386. ggml_tensor * x_prev = ggml_concat(
  9387. ctx0,
  9388. token_shift,
  9389. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  9390. 1
  9391. );
  9392. cur = build_rwkv6_time_mix(gf, att_norm, x_prev, state_copy, state_mask, ubatch, il);
  9393. token_shift = ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm));
  9394. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  9395. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9396. cb(ffn_inp, "ffn_inp", il);
  9397. if (il == n_layer - 1) {
  9398. // skip computing output for unused tokens
  9399. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9400. cur = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, cur, n_embd, n_tokens), inp_out_ids);
  9401. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  9402. }
  9403. // feed-forward network
  9404. cur = build_norm(ffn_inp,
  9405. model.layers[il].ffn_norm, NULL,
  9406. LLM_NORM_RMS, il);
  9407. cb(cur, "ffn_norm", il);
  9408. cur = build_ffn(cur,
  9409. model.layers[il].ffn_up, NULL, NULL,
  9410. model.layers[il].ffn_gate, NULL, NULL,
  9411. model.layers[il].ffn_down, NULL, NULL,
  9412. NULL,
  9413. LLM_FFN_SILU, LLM_FFN_PAR, il);
  9414. cb(cur, "ffn_out", il);
  9415. cur = ggml_add(ctx0, cur, ffn_inp);
  9416. cur = build_cvec(cur, il);
  9417. cb(cur, "l_out", il);
  9418. // input for next layer
  9419. inpL = cur;
  9420. }
  9421. cur = inpL;
  9422. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM_RMS, -1);
  9423. cb(cur, "result_norm", -1);
  9424. res->t_embd = cur;
  9425. cur = build_lora_mm(model.output, cur);
  9426. cb(cur, "result_output", -1);
  9427. res->t_logits = cur;
  9428. ggml_build_forward_expand(gf, cur);
  9429. }
  9430. };
  9431. struct llm_build_rwkv7_base : public llm_graph_context {
  9432. const llama_model & model;
  9433. llm_build_rwkv7_base(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params), model(model) {
  9434. }
  9435. ggml_tensor * build_rwkv7_channel_mix(
  9436. const llama_layer * layer,
  9437. ggml_tensor * cur,
  9438. ggml_tensor * x_prev,
  9439. llm_arch arch) const {
  9440. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  9441. switch (arch) {
  9442. case LLM_ARCH_RWKV7:
  9443. {
  9444. ggml_tensor * xk = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_k), cur);
  9445. ggml_tensor * k = ggml_sqr(
  9446. ctx0,
  9447. ggml_relu(
  9448. ctx0,
  9449. build_lora_mm(layer->channel_mix_key, xk)
  9450. )
  9451. );
  9452. cur = build_lora_mm(layer->channel_mix_value, k);
  9453. } break;
  9454. default:
  9455. GGML_ABORT("fatal error");
  9456. }
  9457. return cur;
  9458. }
  9459. ggml_tensor * build_rwkv7_time_mix(
  9460. ggml_cgraph * gf,
  9461. ggml_tensor * cur,
  9462. ggml_tensor * x_prev,
  9463. ggml_tensor * state_copy,
  9464. ggml_tensor * state_mask,
  9465. ggml_tensor *& first_layer_value,
  9466. const llama_ubatch & ubatch,
  9467. int il) const {
  9468. const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
  9469. const auto n_tokens = ubatch.n_tokens;
  9470. const auto n_seqs = ubatch.n_seqs;
  9471. const auto n_embd = hparams.n_embd;
  9472. const auto head_size = hparams.wkv_head_size;
  9473. const auto head_count = n_embd / head_size;
  9474. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9475. const auto kv_head = kv_self->head;
  9476. const auto & layer = model.layers[il];
  9477. bool has_gating = layer.time_mix_g1 && layer.time_mix_g2;
  9478. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  9479. ggml_tensor * dummy = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_embd, n_seq_tokens, n_seqs, has_gating ? 6 : 5);
  9480. sx = ggml_repeat(ctx0, sx, dummy);
  9481. ggml_tensor * xxx = ggml_add(ctx0, ggml_mul(ctx0, sx, layer.time_mix_lerp_fused), cur);
  9482. ggml_tensor * xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
  9483. ggml_tensor * xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
  9484. ggml_tensor * xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
  9485. ggml_tensor * xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
  9486. ggml_tensor * xa = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
  9487. ggml_tensor * xg = has_gating ? ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 5 * sizeof(float)) : nullptr;
  9488. ggml_tensor * r = build_lora_mm(layer.time_mix_receptance, xr);
  9489. ggml_tensor * w = ggml_add(
  9490. ctx0,
  9491. ggml_mul_mat(ctx0, layer.time_mix_w2, ggml_tanh(ctx0, ggml_mul_mat(ctx0, layer.time_mix_w1, xw))),
  9492. layer.time_mix_w0
  9493. );
  9494. w = ggml_exp(ctx0, ggml_scale(ctx0, ggml_sigmoid(ctx0, w), -0.606531));
  9495. ggml_tensor * k = build_lora_mm(layer.time_mix_key, xk);
  9496. ggml_tensor * v = build_lora_mm(layer.time_mix_value, xv);
  9497. if (first_layer_value == nullptr) {
  9498. first_layer_value = v;
  9499. } else {
  9500. // Add the first layer value as a residual connection.
  9501. v = ggml_add(ctx0, v,
  9502. ggml_mul(ctx0,
  9503. ggml_sub(ctx0, first_layer_value, v),
  9504. ggml_sigmoid(ctx0, ggml_add(ctx0,
  9505. ggml_mul_mat(ctx0, layer.time_mix_v2, ggml_mul_mat(ctx0, layer.time_mix_v1, xv)),
  9506. layer.time_mix_v0
  9507. )
  9508. )
  9509. )
  9510. );
  9511. }
  9512. ggml_tensor * g = nullptr;
  9513. if (layer.time_mix_g1 && layer.time_mix_g2) {
  9514. g = ggml_mul_mat(ctx0, layer.time_mix_g2, ggml_sigmoid(ctx0, ggml_mul_mat(ctx0, layer.time_mix_g1, xg)));
  9515. }
  9516. ggml_tensor * a = ggml_sigmoid(ctx0,
  9517. ggml_add(
  9518. ctx0,
  9519. ggml_mul_mat(ctx0, layer.time_mix_a2, ggml_mul_mat(ctx0, layer.time_mix_a1, xa)),
  9520. layer.time_mix_a0
  9521. )
  9522. );
  9523. ggml_tensor * kk = ggml_reshape_3d(ctx0, ggml_mul(ctx0, k, layer.time_mix_k_k), head_size, head_count, n_tokens);
  9524. kk = ggml_l2_norm(ctx0, kk, 1e-12);
  9525. ggml_tensor * ka = ggml_mul(ctx0, k, layer.time_mix_k_a);
  9526. k = ggml_add(ctx0, k, ggml_sub(ctx0, ggml_mul(ctx0, a, ka), ka));
  9527. r = ggml_reshape_3d(ctx0, r, head_size, head_count, n_tokens);
  9528. w = ggml_reshape_3d(ctx0, w, head_size, head_count, n_tokens);
  9529. k = ggml_reshape_3d(ctx0, k, head_size, head_count, n_tokens);
  9530. v = ggml_reshape_3d(ctx0, v, head_size, head_count, n_tokens);
  9531. a = ggml_reshape_3d(ctx0, a, head_size, head_count, n_tokens);
  9532. ggml_tensor * wkv_state = build_copy_mask_state(
  9533. gf, kv_self->v_l[il], state_copy, state_mask,
  9534. hparams.n_embd_v_s(), n_seqs);
  9535. ggml_tensor * wkv_output = ggml_rwkv_wkv7(ctx0, r, w, k, v, ggml_neg(ctx0, kk), ggml_mul(ctx0, kk, a), wkv_state);
  9536. cur = ggml_view_1d(ctx0, wkv_output, n_embd * n_tokens, 0);
  9537. wkv_state = ggml_view_1d(ctx0, wkv_output, n_embd * head_size * n_seqs, n_embd * n_tokens * sizeof(float));
  9538. ggml_build_forward_expand(
  9539. gf,
  9540. ggml_cpy(
  9541. ctx0,
  9542. wkv_state,
  9543. ggml_view_1d(
  9544. ctx0,
  9545. kv_self->v_l[il],
  9546. hparams.n_embd_v_s() * n_seqs,
  9547. hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_self->v_l[il])
  9548. )
  9549. )
  9550. );
  9551. if (layer.time_mix_ln && layer.time_mix_ln_b) {
  9552. // group norm with head_count groups
  9553. cur = ggml_reshape_3d(ctx0, cur, n_embd / head_count, head_count, n_tokens);
  9554. cur = ggml_norm(ctx0, cur, 64e-5f);
  9555. // Convert back to regular vectors.
  9556. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  9557. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.time_mix_ln), layer.time_mix_ln_b);
  9558. } else {
  9559. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  9560. }
  9561. ggml_tensor * rk = ggml_sum_rows(ctx0,
  9562. ggml_mul(ctx0, ggml_mul(ctx0, k, r), ggml_reshape_2d(ctx0, layer.time_mix_r_k, head_size, head_count)));
  9563. cur = ggml_add(ctx0, cur, ggml_reshape_2d(ctx0, ggml_mul(ctx0, v, rk), n_embd, n_tokens));
  9564. if (has_gating) {
  9565. cur = ggml_mul(ctx0, cur, g);
  9566. }
  9567. cur = build_lora_mm(layer.time_mix_output, cur);
  9568. return ggml_reshape_3d(ctx0, cur, n_embd, n_seq_tokens, n_seqs);
  9569. }
  9570. };
  9571. struct llm_build_rwkv7 : public llm_build_rwkv7_base {
  9572. llm_build_rwkv7(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv7_base(model, params) {
  9573. GGML_ASSERT(hparams.token_shift_count == 2);
  9574. ggml_tensor * cur;
  9575. ggml_tensor * inpL;
  9576. ggml_tensor * v_first = nullptr;
  9577. inpL = build_inp_embd(model.tok_embd);
  9578. inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
  9579. ggml_tensor * state_copy = build_inp_s_copy();
  9580. ggml_tensor * state_mask = build_inp_s_mask();
  9581. const auto n_embd = hparams.n_embd;
  9582. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9583. const auto n_seqs = ubatch.n_seqs;
  9584. for (int il = 0; il < n_layer; ++il) {
  9585. const llama_layer * layer = &model.layers[il];
  9586. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  9587. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  9588. gf, state_copy, state_mask, ubatch, il
  9589. );
  9590. ggml_tensor * att_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0);
  9591. ggml_tensor * ffn_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], n_embd * ggml_element_size(token_shift));
  9592. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM, il);
  9593. cb(att_norm, "attn_norm", il);
  9594. ggml_tensor * x_prev = ggml_concat(
  9595. ctx0,
  9596. att_shift,
  9597. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  9598. 1
  9599. );
  9600. cur = build_rwkv7_time_mix(gf, att_norm, x_prev, state_copy, state_mask, v_first, ubatch, il);
  9601. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9602. cb(ffn_inp, "ffn_inp", il);
  9603. ggml_tensor * ffn_norm = build_norm(ffn_inp, layer->attn_norm_2, layer->attn_norm_2_b, LLM_NORM, il);
  9604. cb(ffn_norm, "ffn_norm", il);
  9605. x_prev = ggml_concat(
  9606. ctx0,
  9607. ffn_shift,
  9608. ggml_view_3d(ctx0, ffn_norm, n_embd, n_seq_tokens - 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], 0),
  9609. 1
  9610. );
  9611. token_shift = ggml_concat(ctx0,
  9612. ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm)),
  9613. ggml_view_3d(ctx0, ffn_norm, n_embd, 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(ffn_norm)),
  9614. 1
  9615. );
  9616. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  9617. if (il == n_layer - 1) {
  9618. // skip computing output for unused tokens
  9619. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9620. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  9621. ffn_norm = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_norm, n_embd, n_tokens), inp_out_ids);
  9622. x_prev = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, x_prev, n_embd, n_tokens), inp_out_ids);
  9623. }
  9624. cur = build_rwkv7_channel_mix(layer, ffn_norm, x_prev, LLM_ARCH_RWKV7);
  9625. cur = ggml_add(ctx0, cur, ffn_inp);
  9626. cur = build_cvec(cur, il);
  9627. cb(cur, "l_out", il);
  9628. // input for next layer
  9629. inpL = cur;
  9630. }
  9631. cur = inpL;
  9632. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1);
  9633. cb(cur, "result_norm", -1);
  9634. res->t_embd = cur;
  9635. cur = build_lora_mm(model.output, cur);
  9636. cb(cur, "result_output", -1);
  9637. res->t_logits = cur;
  9638. ggml_build_forward_expand(gf, cur);
  9639. }
  9640. };
  9641. struct llm_build_arwkv7 : public llm_build_rwkv7_base {
  9642. llm_build_arwkv7(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv7_base(model, params) {
  9643. GGML_ASSERT(n_embd == hparams.n_embd_k_s());
  9644. ggml_tensor * cur;
  9645. ggml_tensor * inpL;
  9646. ggml_tensor * v_first = nullptr;
  9647. inpL = build_inp_embd(model.tok_embd);
  9648. ggml_tensor * state_copy = build_inp_s_copy();
  9649. ggml_tensor * state_mask = build_inp_s_mask();
  9650. const auto n_embd = hparams.n_embd;
  9651. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9652. const auto n_seqs = ubatch.n_seqs;
  9653. for (int il = 0; il < n_layer; ++il) {
  9654. const llama_layer * layer = &model.layers[il];
  9655. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  9656. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  9657. gf, state_copy, state_mask, ubatch, il
  9658. );
  9659. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM_RMS, il);
  9660. cb(att_norm, "attn_norm", il);
  9661. ggml_tensor * x_prev = ggml_concat(
  9662. ctx0,
  9663. token_shift,
  9664. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  9665. 1
  9666. );
  9667. cur = build_rwkv7_time_mix(gf, att_norm, x_prev, state_copy, state_mask, v_first, ubatch, il);
  9668. token_shift = ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm));
  9669. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  9670. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9671. cb(ffn_inp, "ffn_inp", il);
  9672. if (il == n_layer - 1) {
  9673. // skip computing output for unused tokens
  9674. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9675. cur = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, cur, n_embd, n_tokens), inp_out_ids);
  9676. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  9677. }
  9678. // feed-forward network
  9679. cur = build_norm(ffn_inp,
  9680. model.layers[il].ffn_norm, NULL,
  9681. LLM_NORM_RMS, il);
  9682. cb(cur, "ffn_norm", il);
  9683. cur = build_ffn(cur,
  9684. model.layers[il].ffn_up, NULL, NULL,
  9685. model.layers[il].ffn_gate, NULL, NULL,
  9686. model.layers[il].ffn_down, NULL, NULL,
  9687. NULL,
  9688. LLM_FFN_SILU, LLM_FFN_PAR, il);
  9689. cb(cur, "ffn_out", il);
  9690. cur = ggml_add(ctx0, cur, ffn_inp);
  9691. cur = build_cvec(cur, il);
  9692. cb(cur, "l_out", il);
  9693. // input for next layer
  9694. inpL = cur;
  9695. }
  9696. cur = inpL;
  9697. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM_RMS, -1);
  9698. cb(cur, "result_norm", -1);
  9699. res->t_embd = cur;
  9700. cur = build_lora_mm(model.output, cur);
  9701. cb(cur, "result_output", -1);
  9702. res->t_logits = cur;
  9703. ggml_build_forward_expand(gf, cur);
  9704. }
  9705. };
  9706. // ref: https://github.com/facebookresearch/chameleon
  9707. // based on the original build_llama() function, changes:
  9708. // * qk-norm
  9709. // * swin-norm
  9710. // * removed bias
  9711. // * removed MoE
  9712. struct llm_build_chameleon : public llm_graph_context {
  9713. llm_build_chameleon(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  9714. const int64_t n_embd_head = hparams.n_embd_head_v;
  9715. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9716. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9717. ggml_tensor * cur;
  9718. ggml_tensor * inpL;
  9719. inpL = build_inp_embd(model.tok_embd);
  9720. // inp_pos - contains the positions
  9721. ggml_tensor * inp_pos = build_inp_pos();
  9722. auto * inp_attn = build_attn_inp_kv_unified();
  9723. for (int il = 0; il < n_layer; ++il) {
  9724. ggml_tensor * inpSA = inpL;
  9725. // norm
  9726. if (hparams.swin_norm) {
  9727. cur = inpL;
  9728. } else {
  9729. cur = build_norm(inpL,
  9730. model.layers[il].attn_norm, NULL,
  9731. LLM_NORM_RMS, il);
  9732. cb(cur, "attn_norm", il);
  9733. }
  9734. // self-attention
  9735. {
  9736. // compute Q and K and RoPE them
  9737. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  9738. cb(Qcur, "Qcur", il);
  9739. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  9740. cb(Kcur, "Kcur", il);
  9741. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  9742. cb(Vcur, "Vcur", il);
  9743. if (model.layers[il].attn_q_norm) {
  9744. Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
  9745. ggml_element_size(Qcur) * n_embd_head,
  9746. ggml_element_size(Qcur) * n_embd_head * n_head,
  9747. 0);
  9748. cb(Qcur, "Qcur", il);
  9749. Qcur = build_norm(Qcur,
  9750. model.layers[il].attn_q_norm,
  9751. model.layers[il].attn_q_norm_b,
  9752. LLM_NORM, il);
  9753. cb(Qcur, "Qcur", il);
  9754. }
  9755. if (model.layers[il].attn_k_norm) {
  9756. Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
  9757. ggml_element_size(Kcur) * n_embd_head,
  9758. ggml_element_size(Kcur) * n_embd_head * n_head_kv,
  9759. 0);
  9760. cb(Kcur, "Kcur", il);
  9761. Kcur = build_norm(Kcur,
  9762. model.layers[il].attn_k_norm,
  9763. model.layers[il].attn_k_norm_b,
  9764. LLM_NORM, il);
  9765. cb(Kcur, "Kcur", il);
  9766. }
  9767. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  9768. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  9769. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  9770. Qcur = ggml_rope_ext(
  9771. ctx0, Qcur, inp_pos, nullptr,
  9772. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9773. ext_factor, attn_factor, beta_fast, beta_slow
  9774. );
  9775. Kcur = ggml_rope_ext(
  9776. ctx0, Kcur, inp_pos, nullptr,
  9777. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9778. ext_factor, attn_factor, beta_fast, beta_slow
  9779. );
  9780. cb(Qcur, "Qcur", il);
  9781. cb(Kcur, "Kcur", il);
  9782. cb(Vcur, "Vcur", il);
  9783. cur = build_attn(inp_attn, gf,
  9784. model.layers[il].wo, nullptr,
  9785. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  9786. if (hparams.swin_norm) {
  9787. cur = build_norm(cur,
  9788. model.layers[il].attn_norm, NULL,
  9789. LLM_NORM_RMS, il);
  9790. }
  9791. }
  9792. if (il == n_layer - 1) {
  9793. // skip computing output for unused tokens
  9794. ggml_tensor * inp_out_ids = build_inp_out_ids();
  9795. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9796. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9797. }
  9798. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9799. cb(ffn_inp, "ffn_inp", il);
  9800. // feed-forward network
  9801. if (!hparams.swin_norm) {
  9802. cur = build_norm(ffn_inp,
  9803. model.layers[il].ffn_norm, NULL,
  9804. LLM_NORM_RMS, il);
  9805. cb(cur, "ffn_norm", il);
  9806. }
  9807. cur = build_ffn(cur,
  9808. model.layers[il].ffn_up, NULL, NULL,
  9809. model.layers[il].ffn_gate, NULL, NULL,
  9810. model.layers[il].ffn_down, NULL, NULL,
  9811. NULL,
  9812. LLM_FFN_SILU, LLM_FFN_PAR, il);
  9813. cb(cur, "ffn_out", il);
  9814. if (hparams.swin_norm) {
  9815. cur = build_norm(cur,
  9816. model.layers[il].ffn_norm, NULL,
  9817. LLM_NORM_RMS, il);
  9818. cb(cur, "ffn_norm", il);
  9819. }
  9820. cur = ggml_add(ctx0, cur, ffn_inp);
  9821. cb(cur, "ffn_out", il);
  9822. cur = build_cvec(cur, il);
  9823. cb(cur, "l_out", il);
  9824. // input for next layer
  9825. inpL = cur;
  9826. }
  9827. cur = inpL;
  9828. cur = build_norm(cur,
  9829. model.output_norm, NULL,
  9830. LLM_NORM_RMS, -1);
  9831. cb(cur, "result_norm", -1);
  9832. res->t_embd = cur;
  9833. // lm_head
  9834. cur = build_lora_mm(model.output, cur);
  9835. cb(cur, "result_output_with_img_logits", -1);
  9836. // TODO: this suppresses the output of image tokens, which is required to enable text-only outputs.
  9837. // Needs to be removed once image outputs are supported.
  9838. int img_token_end_idx = 8196;
  9839. int img_token_start_idx = 4;
  9840. int num_img_tokens = img_token_end_idx - img_token_start_idx;
  9841. // creates 1d tensor of size num_img_tokens and values -FLT_MAX,
  9842. // which ensures that text token values are always at least larger than image token values
  9843. ggml_tensor * img_logits = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, num_img_tokens);
  9844. img_logits = ggml_clamp(ctx0, img_logits, -FLT_MAX, -FLT_MAX);
  9845. cb(img_logits, "img_logits", -1);
  9846. cur = ggml_set_1d(ctx0, cur, img_logits, ggml_element_size(cur) * img_token_start_idx);
  9847. cb(cur, "result_output", -1);
  9848. res->t_logits = cur;
  9849. ggml_build_forward_expand(gf, cur);
  9850. }
  9851. };
  9852. struct llm_build_wavtokenizer_dec : public llm_graph_context {
  9853. llm_build_wavtokenizer_dec(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  9854. ggml_tensor * cur;
  9855. ggml_tensor * inpL;
  9856. inpL = build_inp_embd(model.tok_embd);
  9857. cur = ggml_cont(ctx0, ggml_transpose(ctx0, inpL));
  9858. cur = ggml_conv_1d_ph(ctx0, model.conv1d, cur, 1, 1);
  9859. cur = ggml_add(ctx0, cur, model.conv1d_b);
  9860. // posnet
  9861. for (uint32_t il = 0; il < hparams.posnet.n_layer; ++il) {
  9862. const auto & layer = model.layers[il].posnet;
  9863. inpL = cur;
  9864. switch (il) {
  9865. case 0:
  9866. case 1:
  9867. case 3:
  9868. case 4:
  9869. {
  9870. cur = build_norm(cur,
  9871. layer.norm1,
  9872. layer.norm1_b,
  9873. LLM_NORM_GROUP, 0);
  9874. cur = ggml_mul(ctx0, ggml_sigmoid(ctx0, cur), cur);
  9875. cur = ggml_conv_1d_ph(ctx0, layer.conv1, cur, 1, 1);
  9876. cur = ggml_add(ctx0, cur, layer.conv1_b);
  9877. cur = build_norm(cur,
  9878. layer.norm2,
  9879. layer.norm2_b,
  9880. LLM_NORM_GROUP, 0);
  9881. cur = ggml_mul(ctx0, ggml_sigmoid(ctx0, cur), cur);
  9882. cur = ggml_conv_1d_ph(ctx0, layer.conv2, cur, 1, 1);
  9883. cur = ggml_add(ctx0, cur, layer.conv2_b);
  9884. cur = ggml_add(ctx0, cur, inpL);
  9885. } break;
  9886. case 2:
  9887. {
  9888. cur = build_norm(cur,
  9889. layer.attn_norm,
  9890. layer.attn_norm_b,
  9891. LLM_NORM_GROUP, 0);
  9892. ggml_tensor * q;
  9893. ggml_tensor * k;
  9894. ggml_tensor * v;
  9895. q = ggml_conv_1d_ph(ctx0, layer.attn_q, cur, 1, 1);
  9896. k = ggml_conv_1d_ph(ctx0, layer.attn_k, cur, 1, 1);
  9897. v = ggml_conv_1d_ph(ctx0, layer.attn_v, cur, 1, 1);
  9898. q = ggml_add(ctx0, q, layer.attn_q_b);
  9899. k = ggml_add(ctx0, k, layer.attn_k_b);
  9900. v = ggml_add(ctx0, v, layer.attn_v_b);
  9901. q = ggml_cont(ctx0, ggml_transpose(ctx0, q));
  9902. k = ggml_cont(ctx0, ggml_transpose(ctx0, k));
  9903. ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  9904. kq = ggml_soft_max_ext(ctx0, kq, nullptr, 1.0f/sqrtf(float(hparams.posnet.n_embd)), 0.0f);
  9905. cur = ggml_mul_mat(ctx0, kq, v);
  9906. cur = ggml_conv_1d_ph(ctx0, layer.attn_o, cur, 1, 1);
  9907. cur = ggml_add(ctx0, cur, layer.attn_o_b);
  9908. cur = ggml_add(ctx0, cur, inpL);
  9909. } break;
  9910. case 5:
  9911. {
  9912. cur = build_norm(cur,
  9913. layer.norm,
  9914. layer.norm_b,
  9915. LLM_NORM_GROUP, 0);
  9916. } break;
  9917. default: GGML_ABORT("unknown posnet layer");
  9918. };
  9919. }
  9920. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  9921. cur = build_norm(cur,
  9922. model.tok_norm,
  9923. model.tok_norm_b,
  9924. LLM_NORM, -1);
  9925. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  9926. inpL = cur;
  9927. // convnext
  9928. for (uint32_t il = 0; il < hparams.convnext.n_layer; ++il) {
  9929. const auto & layer = model.layers[il].convnext;
  9930. cur = inpL;
  9931. cur = ggml_conv_1d_dw_ph(ctx0, layer.dw, cur, 1, 1);
  9932. cur = ggml_add(ctx0, cur, layer.dw_b);
  9933. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  9934. cur = build_norm(cur,
  9935. layer.norm,
  9936. layer.norm_b,
  9937. LLM_NORM, -1);
  9938. cur = build_ffn(cur,
  9939. layer.pw1, layer.pw1_b, NULL,
  9940. NULL, NULL, NULL,
  9941. layer.pw2, layer.pw2_b, NULL,
  9942. NULL,
  9943. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  9944. cur = ggml_mul(ctx0, cur, layer.gamma);
  9945. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  9946. inpL = ggml_add(ctx0, cur, inpL);
  9947. }
  9948. cur = inpL;
  9949. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  9950. cur = build_norm(cur,
  9951. model.output_norm,
  9952. model.output_norm_b,
  9953. LLM_NORM, -1);
  9954. // lm_head
  9955. cur = build_lora_mm(model.output, cur);
  9956. cur = ggml_add(ctx0, cur, model.output_b);
  9957. cb(cur, "result_embd", -1);
  9958. res->t_embd = cur;
  9959. ggml_build_forward_expand(gf, cur);
  9960. }
  9961. };
  9962. struct llm_build_plm : public llm_graph_context {
  9963. llm_build_plm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  9964. const float kq_scale = 1.0f/sqrtf(float(hparams.n_embd_head_k));
  9965. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  9966. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  9967. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  9968. ggml_tensor * cur;
  9969. ggml_tensor * inpL;
  9970. // {n_embd, n_tokens}
  9971. inpL = build_inp_embd(model.tok_embd);
  9972. // inp_pos - contains the positions
  9973. ggml_tensor * inp_pos = build_inp_pos();
  9974. auto * inp_attn = build_attn_inp_kv_unified();
  9975. for (int il = 0; il < n_layer; ++il) {
  9976. ggml_tensor * inpSA = inpL;
  9977. // norm
  9978. cur = build_norm(inpL,
  9979. model.layers[il].attn_norm, NULL,
  9980. LLM_NORM_RMS, il);
  9981. cb(cur, "attn_norm", il);
  9982. // self_attention
  9983. {
  9984. ggml_tensor * q = NULL;
  9985. q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9986. cb(q, "q", il);
  9987. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  9988. ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
  9989. ggml_row_size(q->type, hparams.n_embd_head_k),
  9990. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  9991. 0);
  9992. cb(q_nope, "q_nope", il);
  9993. // and {n_head * n_embd_head_qk_rope, n_tokens}
  9994. ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
  9995. ggml_row_size(q->type, hparams.n_embd_head_k),
  9996. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  9997. ggml_row_size(q->type, n_embd_head_qk_nope));
  9998. cb(q_pe, "q_pe", il);
  9999. // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
  10000. ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  10001. cb(kv_pe_compresseed, "kv_pe_compresseed", il);
  10002. // split into {kv_lora_rank, n_tokens}
  10003. ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
  10004. kv_pe_compresseed->nb[1],
  10005. 0);
  10006. cb(kv_compressed, "kv_compressed", il);
  10007. // and {n_embd_head_qk_rope, n_tokens}
  10008. ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
  10009. kv_pe_compresseed->nb[1],
  10010. kv_pe_compresseed->nb[1],
  10011. ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
  10012. cb(k_pe, "k_pe", il);
  10013. kv_compressed = build_norm(kv_compressed,
  10014. model.layers[il].attn_kv_a_norm, NULL,
  10015. LLM_NORM_RMS, il);
  10016. cb(kv_compressed, "kv_compressed", il);
  10017. // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
  10018. ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
  10019. cb(kv, "kv", il);
  10020. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  10021. ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
  10022. ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
  10023. ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  10024. 0);
  10025. cb(k_nope, "k_nope", il);
  10026. // and {n_head * n_embd_head_v, n_tokens}
  10027. ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
  10028. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  10029. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
  10030. ggml_row_size(kv->type, (n_embd_head_qk_nope)));
  10031. cb(v_states, "v_states", il);
  10032. v_states = ggml_cont(ctx0, v_states);
  10033. cb(v_states, "v_states", il);
  10034. v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
  10035. ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
  10036. 0);
  10037. cb(v_states, "v_states", il);
  10038. q_pe = ggml_rope_ext(
  10039. ctx0, q_pe, inp_pos, nullptr,
  10040. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10041. ext_factor, attn_factor, beta_fast, beta_slow
  10042. );
  10043. cb(q_pe, "q_pe", il);
  10044. // shared RoPE key
  10045. k_pe = ggml_rope_ext(
  10046. ctx0, k_pe, inp_pos, nullptr,
  10047. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10048. ext_factor, attn_factor, beta_fast, beta_slow
  10049. );
  10050. cb(k_pe, "k_pe", il);
  10051. ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
  10052. cb(q_states, "q_states", il);
  10053. ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
  10054. cb(k_states, "k_states", il);
  10055. cur = build_attn(inp_attn, gf,
  10056. model.layers[il].wo, NULL,
  10057. q_states, k_states, v_states, nullptr, nullptr, kq_scale, il);
  10058. }
  10059. if (il == n_layer - 1) {
  10060. // skip computing output for unused tokens
  10061. ggml_tensor * inp_out_ids = build_inp_out_ids();
  10062. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10063. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  10064. }
  10065. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  10066. cb(ffn_inp, "ffn_inp", il);
  10067. cur = build_norm(ffn_inp,
  10068. model.layers[il].ffn_norm, NULL,
  10069. LLM_NORM_RMS, il);
  10070. cb(cur, "ffn_norm", il);
  10071. cur = build_ffn(cur,
  10072. model.layers[il].ffn_up, NULL, NULL,
  10073. NULL, NULL, NULL,
  10074. model.layers[il].ffn_down, NULL, NULL,
  10075. NULL,
  10076. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
  10077. cb(cur, "ffn_out", il);
  10078. cur = ggml_add(ctx0, cur, ffn_inp);
  10079. cur = build_cvec(cur, il);
  10080. cb(cur, "l_out", il);
  10081. // input for next layer
  10082. inpL = cur;
  10083. }
  10084. cur = inpL;
  10085. cur = build_norm(cur,
  10086. model.output_norm, NULL,
  10087. LLM_NORM_RMS, -1);
  10088. cb(cur, "result_norm", -1);
  10089. res->t_embd = cur;
  10090. cur = build_lora_mm(model.output, cur);
  10091. cb(cur, "result_output", -1);
  10092. res->t_logits = cur;
  10093. ggml_build_forward_expand(gf, cur);
  10094. }
  10095. };
  10096. struct llm_build_bailingmoe : public llm_graph_context {
  10097. llm_build_bailingmoe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  10098. ggml_tensor * cur;
  10099. ggml_tensor * inpL;
  10100. inpL = build_inp_embd(model.tok_embd);
  10101. // inp_pos - contains the positions
  10102. ggml_tensor * inp_pos = build_inp_pos();
  10103. auto * inp_attn = build_attn_inp_kv_unified();
  10104. for (int il = 0; il < n_layer; ++il) {
  10105. ggml_tensor * inpSA = inpL;
  10106. // norm
  10107. cur = build_norm(inpL,
  10108. model.layers[il].attn_norm, NULL,
  10109. LLM_NORM_RMS, il);
  10110. cb(cur, "attn_norm", il);
  10111. // self-attention
  10112. {
  10113. // rope freq factors for llama3; may return nullptr for llama2 and other models
  10114. ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
  10115. // compute Q and K and RoPE them
  10116. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  10117. cb(Qcur, "Qcur", il);
  10118. if (model.layers[il].bq) {
  10119. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  10120. cb(Qcur, "Qcur", il);
  10121. }
  10122. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  10123. cb(Kcur, "Kcur", il);
  10124. if (model.layers[il].bk) {
  10125. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  10126. cb(Kcur, "Kcur", il);
  10127. }
  10128. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  10129. cb(Vcur, "Vcur", il);
  10130. if (model.layers[il].bv) {
  10131. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  10132. cb(Vcur, "Vcur", il);
  10133. }
  10134. Qcur = ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens);
  10135. Kcur = ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens);
  10136. Vcur = ggml_reshape_3d(ctx0, Vcur, n_rot, n_head_kv, n_tokens);
  10137. Qcur = ggml_rope_ext(
  10138. ctx0, Qcur, inp_pos, rope_factors,
  10139. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10140. ext_factor, attn_factor, beta_fast, beta_slow
  10141. );
  10142. Kcur = ggml_rope_ext(
  10143. ctx0, Kcur, inp_pos, rope_factors,
  10144. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10145. ext_factor, attn_factor, beta_fast, beta_slow
  10146. );
  10147. cb(Qcur, "Qcur", il);
  10148. cb(Kcur, "Kcur", il);
  10149. cb(Vcur, "Vcur", il);
  10150. cur = build_attn(inp_attn, gf,
  10151. model.layers[il].wo, model.layers[il].bo,
  10152. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_rot)), il);
  10153. }
  10154. if (il == n_layer - 1) {
  10155. // skip computing output for unused tokens
  10156. ggml_tensor * inp_out_ids = build_inp_out_ids();
  10157. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10158. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  10159. }
  10160. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  10161. cb(ffn_inp, "ffn_inp", il);
  10162. cur = build_norm(ffn_inp,
  10163. model.layers[il].ffn_norm, NULL,
  10164. LLM_NORM_RMS, il);
  10165. cb(cur, "ffn_norm", il);
  10166. ggml_tensor * moe_out =
  10167. build_moe_ffn(cur,
  10168. model.layers[il].ffn_gate_inp,
  10169. model.layers[il].ffn_up_exps,
  10170. model.layers[il].ffn_gate_exps,
  10171. model.layers[il].ffn_down_exps,
  10172. nullptr,
  10173. n_expert, n_expert_used,
  10174. LLM_FFN_SILU, hparams.expert_weights_norm,
  10175. false, hparams.expert_weights_scale,
  10176. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  10177. il);
  10178. cb(moe_out, "ffn_moe_out", il);
  10179. // FFN shared expert
  10180. {
  10181. ggml_tensor * ffn_shexp = build_ffn(cur,
  10182. model.layers[il].ffn_up_shexp, NULL, NULL,
  10183. model.layers[il].ffn_gate_shexp, NULL, NULL,
  10184. model.layers[il].ffn_down_shexp, NULL, NULL,
  10185. NULL,
  10186. LLM_FFN_SILU, LLM_FFN_PAR, il);
  10187. cb(ffn_shexp, "ffn_shexp", il);
  10188. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  10189. cb(cur, "ffn_out", il);
  10190. }
  10191. cur = ggml_add(ctx0, cur, ffn_inp);
  10192. cur = build_cvec(cur, il);
  10193. cb(cur, "l_out", il);
  10194. // input for next layer
  10195. inpL = cur;
  10196. }
  10197. cur = inpL;
  10198. cur = build_norm(cur,
  10199. model.output_norm, NULL,
  10200. LLM_NORM_RMS, -1);
  10201. cb(cur, "result_norm", -1);
  10202. res->t_embd = cur;
  10203. // lm_head
  10204. cur = build_lora_mm(model.output, cur);
  10205. cb(cur, "result_output", -1);
  10206. res->t_logits = cur;
  10207. ggml_build_forward_expand(gf, cur);
  10208. }
  10209. };
  10210. llama_memory_i * llama_model::create_memory(const llama_memory_params & params, llama_cparams & cparams) const {
  10211. llama_memory_i * res;
  10212. switch (arch) {
  10213. case LLM_ARCH_MAMBA:
  10214. case LLM_ARCH_RWKV6:
  10215. case LLM_ARCH_RWKV6QWEN2:
  10216. case LLM_ARCH_RWKV7:
  10217. case LLM_ARCH_ARWKV7:
  10218. {
  10219. res = new llama_kv_cache_recurrent(
  10220. *this,
  10221. GGML_TYPE_F32,
  10222. GGML_TYPE_F32,
  10223. cparams.offload_kqv,
  10224. std::max((uint32_t) 1, cparams.n_seq_max));
  10225. } break;
  10226. default:
  10227. {
  10228. const auto padding = llama_kv_cache_unified::get_padding(cparams);
  10229. cparams.n_ctx = GGML_PAD(cparams.n_ctx, padding);
  10230. LLAMA_LOG_DEBUG("%s: n_ctx = %u (padded)\n", __func__, cparams.n_ctx);
  10231. res = new llama_kv_cache_unified(
  10232. *this,
  10233. params.type_k,
  10234. params.type_v,
  10235. !cparams.flash_attn,
  10236. cparams.offload_kqv,
  10237. cparams.n_ctx,
  10238. padding);
  10239. }
  10240. }
  10241. return res;
  10242. }
  10243. llm_graph_result_ptr llama_model::build_graph(
  10244. const llm_graph_params & params,
  10245. ggml_cgraph * gf,
  10246. llm_graph_type type) const {
  10247. std::unique_ptr<llm_graph_context> llm;
  10248. switch (arch) {
  10249. case LLM_ARCH_LLAMA:
  10250. case LLM_ARCH_LLAMA4:
  10251. case LLM_ARCH_MINICPM:
  10252. case LLM_ARCH_GRANITE:
  10253. case LLM_ARCH_GRANITE_MOE:
  10254. {
  10255. llm = std::make_unique<llm_build_llama>(*this, params, gf);
  10256. } break;
  10257. case LLM_ARCH_DECI:
  10258. {
  10259. llm = std::make_unique<llm_build_deci>(*this, params, gf);
  10260. } break;
  10261. case LLM_ARCH_BAICHUAN:
  10262. {
  10263. llm = std::make_unique<llm_build_baichuan>(*this, params, gf);
  10264. } break;
  10265. case LLM_ARCH_FALCON:
  10266. {
  10267. llm = std::make_unique<llm_build_falcon>(*this, params, gf);
  10268. } break;
  10269. case LLM_ARCH_GROK:
  10270. {
  10271. llm = std::make_unique<llm_build_grok>(*this, params, gf);
  10272. } break;
  10273. case LLM_ARCH_STARCODER:
  10274. {
  10275. llm = std::make_unique<llm_build_starcoder>(*this, params, gf);
  10276. } break;
  10277. case LLM_ARCH_REFACT:
  10278. {
  10279. llm = std::make_unique<llm_build_refact>(*this, params, gf);
  10280. } break;
  10281. case LLM_ARCH_BERT:
  10282. case LLM_ARCH_JINA_BERT_V2:
  10283. case LLM_ARCH_NOMIC_BERT:
  10284. case LLM_ARCH_NOMIC_BERT_MOE:
  10285. {
  10286. llm = std::make_unique<llm_build_bert>(*this, params, gf);
  10287. } break;
  10288. case LLM_ARCH_BLOOM:
  10289. {
  10290. llm = std::make_unique<llm_build_bloom>(*this, params, gf);
  10291. } break;
  10292. case LLM_ARCH_MPT:
  10293. {
  10294. llm = std::make_unique<llm_build_mpt>(*this, params, gf);
  10295. } break;
  10296. case LLM_ARCH_STABLELM:
  10297. {
  10298. llm = std::make_unique<llm_build_stablelm>(*this, params, gf);
  10299. } break;
  10300. case LLM_ARCH_QWEN:
  10301. {
  10302. llm = std::make_unique<llm_build_qwen>(*this, params, gf);
  10303. } break;
  10304. case LLM_ARCH_QWEN2:
  10305. {
  10306. llm = std::make_unique<llm_build_qwen2>(*this, params, gf);
  10307. } break;
  10308. case LLM_ARCH_QWEN2VL:
  10309. {
  10310. llm = std::make_unique<llm_build_qwen2vl>(*this, params, gf);
  10311. } break;
  10312. case LLM_ARCH_QWEN2MOE:
  10313. {
  10314. llm = std::make_unique<llm_build_qwen2moe>(*this, params, gf);
  10315. } break;
  10316. case LLM_ARCH_QWEN3:
  10317. {
  10318. llm = std::make_unique<llm_build_qwen3>(*this, params, gf);
  10319. } break;
  10320. case LLM_ARCH_QWEN3MOE:
  10321. {
  10322. llm = std::make_unique<llm_build_qwen3moe>(*this, params, gf);
  10323. } break;
  10324. case LLM_ARCH_PHI2:
  10325. {
  10326. llm = std::make_unique<llm_build_phi2>(*this, params, gf);
  10327. } break;
  10328. case LLM_ARCH_PHI3:
  10329. case LLM_ARCH_PHIMOE:
  10330. {
  10331. llm = std::make_unique<llm_build_phi3>(*this, params, gf);
  10332. } break;
  10333. case LLM_ARCH_PLAMO:
  10334. {
  10335. llm = std::make_unique<llm_build_plamo>(*this, params, gf);
  10336. } break;
  10337. case LLM_ARCH_GPT2:
  10338. {
  10339. llm = std::make_unique<llm_build_gpt2>(*this, params, gf);
  10340. } break;
  10341. case LLM_ARCH_CODESHELL:
  10342. {
  10343. llm = std::make_unique<llm_build_codeshell>(*this, params, gf);
  10344. } break;
  10345. case LLM_ARCH_ORION:
  10346. {
  10347. llm = std::make_unique<llm_build_orion>(*this, params, gf);
  10348. } break;
  10349. case LLM_ARCH_INTERNLM2:
  10350. {
  10351. llm = std::make_unique<llm_build_internlm2>(*this, params, gf);
  10352. } break;
  10353. case LLM_ARCH_MINICPM3:
  10354. {
  10355. llm = std::make_unique<llm_build_minicpm3>(*this, params, gf);
  10356. } break;
  10357. case LLM_ARCH_GEMMA:
  10358. {
  10359. llm = std::make_unique<llm_build_gemma>(*this, params, gf);
  10360. } break;
  10361. case LLM_ARCH_GEMMA2:
  10362. {
  10363. llm = std::make_unique<llm_build_gemma2>(*this, params, gf);
  10364. } break;
  10365. case LLM_ARCH_GEMMA3:
  10366. {
  10367. llm = std::make_unique<llm_build_gemma3>(*this, params, gf);
  10368. } break;
  10369. case LLM_ARCH_STARCODER2:
  10370. {
  10371. llm = std::make_unique<llm_build_starcoder2>(*this, params, gf);
  10372. } break;
  10373. case LLM_ARCH_MAMBA:
  10374. {
  10375. llm = std::make_unique<llm_build_mamba>(*this, params, gf);
  10376. } break;
  10377. case LLM_ARCH_XVERSE:
  10378. {
  10379. llm = std::make_unique<llm_build_xverse>(*this, params, gf);
  10380. } break;
  10381. case LLM_ARCH_COMMAND_R:
  10382. {
  10383. llm = std::make_unique<llm_build_command_r>(*this, params, gf);
  10384. } break;
  10385. case LLM_ARCH_COHERE2:
  10386. {
  10387. llm = std::make_unique<llm_build_cohere2>(*this, params, gf);
  10388. } break;
  10389. case LLM_ARCH_DBRX:
  10390. {
  10391. llm = std::make_unique<llm_build_dbrx>(*this, params, gf);
  10392. } break;
  10393. case LLM_ARCH_OLMO:
  10394. {
  10395. llm = std::make_unique<llm_build_olmo>(*this, params, gf);
  10396. } break;
  10397. case LLM_ARCH_OLMO2:
  10398. {
  10399. llm = std::make_unique<llm_build_olmo2>(*this, params, gf);
  10400. } break;
  10401. case LLM_ARCH_OLMOE:
  10402. {
  10403. llm = std::make_unique<llm_build_olmoe>(*this, params, gf);
  10404. } break;
  10405. case LLM_ARCH_OPENELM:
  10406. {
  10407. llm = std::make_unique<llm_build_openelm>(*this, params, gf);
  10408. } break;
  10409. case LLM_ARCH_GPTNEOX:
  10410. {
  10411. llm = std::make_unique<llm_build_gptneox>(*this, params, gf);
  10412. } break;
  10413. case LLM_ARCH_ARCTIC:
  10414. {
  10415. llm = std::make_unique<llm_build_arctic>(*this, params, gf);
  10416. } break;
  10417. case LLM_ARCH_DEEPSEEK:
  10418. {
  10419. llm = std::make_unique<llm_build_deepseek>(*this, params, gf);
  10420. } break;
  10421. case LLM_ARCH_DEEPSEEK2:
  10422. {
  10423. llm = std::make_unique<llm_build_deepseek2>(*this, params, gf);
  10424. } break;
  10425. case LLM_ARCH_CHATGLM:
  10426. {
  10427. llm = std::make_unique<llm_build_chatglm>(*this, params, gf);
  10428. } break;
  10429. case LLM_ARCH_GLM4:
  10430. {
  10431. llm = std::make_unique<llm_build_glm4>(*this, params, gf);
  10432. } break;
  10433. case LLM_ARCH_BITNET:
  10434. {
  10435. llm = std::make_unique<llm_build_bitnet>(*this, params, gf);
  10436. } break;
  10437. case LLM_ARCH_T5:
  10438. {
  10439. switch (type) {
  10440. case LLM_GRAPH_TYPE_ENCODER:
  10441. llm = std::make_unique<llm_build_t5_enc>(*this, params, gf);
  10442. break;
  10443. case LLM_GRAPH_TYPE_DEFAULT:
  10444. case LLM_GRAPH_TYPE_DECODER:
  10445. llm = std::make_unique<llm_build_t5_dec>(*this, params, gf);
  10446. break;
  10447. default:
  10448. GGML_ABORT("invalid graph type");
  10449. };
  10450. } break;
  10451. case LLM_ARCH_T5ENCODER:
  10452. {
  10453. llm = std::make_unique<llm_build_t5_enc>(*this, params, gf);
  10454. }
  10455. break;
  10456. case LLM_ARCH_JAIS:
  10457. {
  10458. llm = std::make_unique<llm_build_jais>(*this, params, gf);
  10459. } break;
  10460. case LLM_ARCH_NEMOTRON:
  10461. {
  10462. llm = std::make_unique<llm_build_nemotron>(*this, params, gf);
  10463. } break;
  10464. case LLM_ARCH_EXAONE:
  10465. {
  10466. llm = std::make_unique<llm_build_exaone>(*this, params, gf);
  10467. } break;
  10468. case LLM_ARCH_RWKV6:
  10469. {
  10470. llm = std::make_unique<llm_build_rwkv6>(*this, params, gf);
  10471. } break;
  10472. case LLM_ARCH_RWKV6QWEN2:
  10473. {
  10474. llm = std::make_unique<llm_build_rwkv6qwen2>(*this, params, gf);
  10475. } break;
  10476. case LLM_ARCH_RWKV7:
  10477. {
  10478. llm = std::make_unique<llm_build_rwkv7>(*this, params, gf);
  10479. } break;
  10480. case LLM_ARCH_ARWKV7:
  10481. {
  10482. llm = std::make_unique<llm_build_arwkv7>(*this, params, gf);
  10483. } break;
  10484. case LLM_ARCH_CHAMELEON:
  10485. {
  10486. llm = std::make_unique<llm_build_chameleon>(*this, params, gf);
  10487. } break;
  10488. case LLM_ARCH_WAVTOKENIZER_DEC:
  10489. {
  10490. llm = std::make_unique<llm_build_wavtokenizer_dec>(*this, params, gf);
  10491. } break;
  10492. case LLM_ARCH_PLM:
  10493. {
  10494. llm = std::make_unique<llm_build_plm>(*this, params, gf);
  10495. } break;
  10496. case LLM_ARCH_BAILINGMOE:
  10497. {
  10498. llm = std::make_unique<llm_build_bailingmoe>(*this, params, gf);
  10499. } break;
  10500. default:
  10501. GGML_ABORT("fatal error");
  10502. }
  10503. // add on pooling layer
  10504. llm->build_pooling(gf, cls, cls_b, cls_out, cls_out_b);
  10505. return std::move(llm->res);
  10506. }
  10507. //
  10508. // interface implementation
  10509. //
  10510. llama_model_params llama_model_default_params() {
  10511. llama_model_params result = {
  10512. /*.devices =*/ nullptr,
  10513. /*.tensor_buft_overrides =*/ nullptr,
  10514. /*.n_gpu_layers =*/ 0,
  10515. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  10516. /*.main_gpu =*/ 0,
  10517. /*.tensor_split =*/ nullptr,
  10518. /*.progress_callback =*/ nullptr,
  10519. /*.progress_callback_user_data =*/ nullptr,
  10520. /*.kv_overrides =*/ nullptr,
  10521. /*.vocab_only =*/ false,
  10522. /*.use_mmap =*/ true,
  10523. /*.use_mlock =*/ false,
  10524. /*.check_tensors =*/ false,
  10525. };
  10526. #ifdef GGML_USE_METAL
  10527. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  10528. result.n_gpu_layers = 999;
  10529. #endif
  10530. return result;
  10531. }
  10532. const llama_vocab * llama_model_get_vocab(const llama_model * model) {
  10533. return &model->vocab;
  10534. }
  10535. void llama_free_model(llama_model * model) {
  10536. llama_model_free(model);
  10537. }
  10538. void llama_model_free(llama_model * model) {
  10539. delete model;
  10540. }
  10541. int32_t llama_model_n_ctx_train(const llama_model * model) {
  10542. return model->hparams.n_ctx_train;
  10543. }
  10544. int32_t llama_model_n_embd(const llama_model * model) {
  10545. return model->hparams.n_embd;
  10546. }
  10547. int32_t llama_model_n_layer(const llama_model * model) {
  10548. return model->hparams.n_layer;
  10549. }
  10550. int32_t llama_model_n_head(const llama_model * model) {
  10551. return model->hparams.n_head();
  10552. }
  10553. int32_t llama_model_n_head_kv(const llama_model * model) {
  10554. return model->hparams.n_head_kv();
  10555. }
  10556. // deprecated
  10557. int32_t llama_n_ctx_train(const llama_model * model) {
  10558. return llama_model_n_ctx_train(model);
  10559. }
  10560. // deprecated
  10561. int32_t llama_n_embd(const llama_model * model) {
  10562. return llama_model_n_embd(model);
  10563. }
  10564. // deprecated
  10565. int32_t llama_n_layer(const llama_model * model) {
  10566. return llama_model_n_layer(model);
  10567. }
  10568. // deprecated
  10569. int32_t llama_n_head(const llama_model * model) {
  10570. return llama_model_n_head(model);
  10571. }
  10572. llama_rope_type llama_model_rope_type(const llama_model * model) {
  10573. switch (model->arch) {
  10574. // these models do not use RoPE
  10575. case LLM_ARCH_GPT2:
  10576. case LLM_ARCH_GPTJ:
  10577. case LLM_ARCH_MPT:
  10578. case LLM_ARCH_REFACT:
  10579. case LLM_ARCH_BLOOM:
  10580. case LLM_ARCH_MAMBA:
  10581. case LLM_ARCH_JINA_BERT_V2:
  10582. case LLM_ARCH_T5:
  10583. case LLM_ARCH_T5ENCODER:
  10584. case LLM_ARCH_JAIS:
  10585. case LLM_ARCH_RWKV6:
  10586. case LLM_ARCH_RWKV6QWEN2:
  10587. case LLM_ARCH_RWKV7:
  10588. case LLM_ARCH_ARWKV7:
  10589. case LLM_ARCH_WAVTOKENIZER_DEC:
  10590. return LLAMA_ROPE_TYPE_NONE;
  10591. // use what we call a normal RoPE, operating on pairs of consecutive head values
  10592. case LLM_ARCH_LLAMA:
  10593. case LLM_ARCH_LLAMA4:
  10594. case LLM_ARCH_DECI:
  10595. case LLM_ARCH_BAICHUAN:
  10596. case LLM_ARCH_STARCODER:
  10597. case LLM_ARCH_INTERNLM2:
  10598. case LLM_ARCH_MINICPM:
  10599. case LLM_ARCH_XVERSE:
  10600. case LLM_ARCH_COMMAND_R:
  10601. case LLM_ARCH_COHERE2:
  10602. case LLM_ARCH_OLMO:
  10603. case LLM_ARCH_ARCTIC:
  10604. case LLM_ARCH_DEEPSEEK:
  10605. case LLM_ARCH_DEEPSEEK2:
  10606. case LLM_ARCH_PLM:
  10607. case LLM_ARCH_CHATGLM:
  10608. case LLM_ARCH_GLM4:
  10609. case LLM_ARCH_GRANITE:
  10610. case LLM_ARCH_GRANITE_MOE:
  10611. case LLM_ARCH_CHAMELEON:
  10612. case LLM_ARCH_BAILINGMOE:
  10613. return LLAMA_ROPE_TYPE_NORM;
  10614. // the pairs of head values are offset by n_rot/2
  10615. case LLM_ARCH_FALCON:
  10616. case LLM_ARCH_GROK:
  10617. case LLM_ARCH_DBRX:
  10618. case LLM_ARCH_BERT:
  10619. case LLM_ARCH_NOMIC_BERT:
  10620. case LLM_ARCH_NOMIC_BERT_MOE:
  10621. case LLM_ARCH_STABLELM:
  10622. case LLM_ARCH_BITNET:
  10623. case LLM_ARCH_QWEN:
  10624. case LLM_ARCH_QWEN2:
  10625. case LLM_ARCH_QWEN2MOE:
  10626. case LLM_ARCH_QWEN3:
  10627. case LLM_ARCH_QWEN3MOE:
  10628. case LLM_ARCH_OLMO2:
  10629. case LLM_ARCH_OLMOE:
  10630. case LLM_ARCH_PHI2:
  10631. case LLM_ARCH_PHI3:
  10632. case LLM_ARCH_PHIMOE:
  10633. case LLM_ARCH_PLAMO:
  10634. case LLM_ARCH_GEMMA:
  10635. case LLM_ARCH_GEMMA2:
  10636. case LLM_ARCH_GEMMA3:
  10637. case LLM_ARCH_STARCODER2:
  10638. case LLM_ARCH_OPENELM:
  10639. case LLM_ARCH_GPTNEOX:
  10640. case LLM_ARCH_CODESHELL:
  10641. case LLM_ARCH_ORION:
  10642. case LLM_ARCH_NEMOTRON:
  10643. case LLM_ARCH_EXAONE:
  10644. case LLM_ARCH_MINICPM3:
  10645. return LLAMA_ROPE_TYPE_NEOX;
  10646. case LLM_ARCH_QWEN2VL:
  10647. return LLAMA_ROPE_TYPE_MROPE;
  10648. // all model arches should be listed explicitly here
  10649. case LLM_ARCH_UNKNOWN:
  10650. GGML_ABORT("unknown architecture");
  10651. }
  10652. return LLAMA_ROPE_TYPE_NONE;
  10653. }
  10654. float llama_model_rope_freq_scale_train(const llama_model * model) {
  10655. return model->hparams.rope_freq_scale_train;
  10656. }
  10657. int32_t llama_model_meta_val_str(const llama_model * model, const char * key, char * buf, size_t buf_size) {
  10658. const auto & it = model->gguf_kv.find(key);
  10659. if (it == model->gguf_kv.end()) {
  10660. if (buf_size > 0) {
  10661. buf[0] = '\0';
  10662. }
  10663. return -1;
  10664. }
  10665. return snprintf(buf, buf_size, "%s", it->second.c_str());
  10666. }
  10667. int32_t llama_model_meta_count(const llama_model * model) {
  10668. return (int)model->gguf_kv.size();
  10669. }
  10670. int32_t llama_model_meta_key_by_index(const llama_model * model, int i, char * buf, size_t buf_size) {
  10671. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  10672. if (buf_size > 0) {
  10673. buf[0] = '\0';
  10674. }
  10675. return -1;
  10676. }
  10677. auto it = model->gguf_kv.begin();
  10678. std::advance(it, i);
  10679. return snprintf(buf, buf_size, "%s", it->first.c_str());
  10680. }
  10681. int32_t llama_model_meta_val_str_by_index(const llama_model * model, int32_t i, char * buf, size_t buf_size) {
  10682. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  10683. if (buf_size > 0) {
  10684. buf[0] = '\0';
  10685. }
  10686. return -1;
  10687. }
  10688. auto it = model->gguf_kv.begin();
  10689. std::advance(it, i);
  10690. return snprintf(buf, buf_size, "%s", it->second.c_str());
  10691. }
  10692. int32_t llama_model_desc(const llama_model * model, char * buf, size_t buf_size) {
  10693. return snprintf(buf, buf_size, "%s", model->desc().c_str());
  10694. }
  10695. uint64_t llama_model_size(const llama_model * model) {
  10696. return model->size();
  10697. }
  10698. const char * llama_model_chat_template(const llama_model * model, const char * name) {
  10699. const auto key = name ? LLM_KV(model->arch, name)(LLM_KV_TOKENIZER_CHAT_TEMPLATE_N)
  10700. : LLM_KV(model->arch)(LLM_KV_TOKENIZER_CHAT_TEMPLATE);
  10701. const auto & it = model->gguf_kv.find(key);
  10702. if (it == model->gguf_kv.end()) {
  10703. return nullptr;
  10704. }
  10705. return it->second.c_str();
  10706. }
  10707. uint64_t llama_model_n_params(const llama_model * model) {
  10708. return model->n_elements();
  10709. }
  10710. bool llama_model_has_encoder(const llama_model * model) {
  10711. switch (model->arch) {
  10712. case LLM_ARCH_T5: return true;
  10713. case LLM_ARCH_T5ENCODER: return true;
  10714. default: return false;
  10715. }
  10716. }
  10717. bool llama_model_has_decoder(const llama_model * model) {
  10718. switch (model->arch) {
  10719. case LLM_ARCH_T5ENCODER: return false;
  10720. default: return true;
  10721. }
  10722. }
  10723. llama_token llama_model_decoder_start_token(const llama_model * model) {
  10724. return model->hparams.dec_start_token_id;
  10725. }
  10726. bool llama_model_is_recurrent(const llama_model * model) {
  10727. switch (model->arch) {
  10728. case LLM_ARCH_MAMBA: return true;
  10729. case LLM_ARCH_RWKV6: return true;
  10730. case LLM_ARCH_RWKV6QWEN2: return true;
  10731. case LLM_ARCH_RWKV7: return true;
  10732. case LLM_ARCH_ARWKV7: return true;
  10733. default: return false;
  10734. }
  10735. }
  10736. const std::vector<std::pair<std::string, ggml_tensor *>> & llama_internal_get_tensor_map(const llama_model * model) {
  10737. return model->tensors_by_name;
  10738. }