1
0

common.h 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844
  1. // Various helper functions and utilities
  2. #pragma once
  3. #include "ggml-opt.h"
  4. #include "llama-cpp.h"
  5. #include <set>
  6. #include <sstream>
  7. #include <string>
  8. #include <string_view>
  9. #include <vector>
  10. #include <map>
  11. #if defined(_WIN32) && !defined(_WIN32_WINNT)
  12. #define _WIN32_WINNT 0x0A00
  13. #endif
  14. #ifdef _WIN32
  15. #define DIRECTORY_SEPARATOR '\\'
  16. #else
  17. #define DIRECTORY_SEPARATOR '/'
  18. #endif // _WIN32
  19. #define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
  20. #define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
  21. #define print_build_info() do { \
  22. fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
  23. fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
  24. } while(0)
  25. struct common_time_meas {
  26. common_time_meas(int64_t & t_acc, bool disable = false);
  27. ~common_time_meas();
  28. const int64_t t_start_us;
  29. int64_t & t_acc;
  30. };
  31. struct common_adapter_lora_info {
  32. std::string path;
  33. float scale;
  34. std::string task_name;
  35. std::string prompt_prefix;
  36. struct llama_adapter_lora * ptr;
  37. };
  38. using llama_tokens = std::vector<llama_token>;
  39. // build info
  40. extern int LLAMA_BUILD_NUMBER;
  41. extern const char * LLAMA_COMMIT;
  42. extern const char * LLAMA_COMPILER;
  43. extern const char * LLAMA_BUILD_TARGET;
  44. struct common_control_vector_load_info;
  45. //
  46. // CPU utils
  47. //
  48. struct cpu_params {
  49. int n_threads = -1;
  50. bool cpumask[GGML_MAX_N_THREADS] = {false}; // CPU affinity mask.
  51. bool mask_valid = false; // Default: any CPU
  52. enum ggml_sched_priority priority = GGML_SCHED_PRIO_NORMAL; // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime)
  53. bool strict_cpu = false; // Use strict CPU placement
  54. uint32_t poll = 50; // Polling (busywait) level (0 - no polling, 100 - mostly polling)
  55. };
  56. int32_t cpu_get_num_physical_cores();
  57. int32_t cpu_get_num_math();
  58. //
  59. // Common params
  60. //
  61. enum llama_example {
  62. LLAMA_EXAMPLE_COMMON,
  63. LLAMA_EXAMPLE_SPECULATIVE,
  64. LLAMA_EXAMPLE_COMPLETION,
  65. LLAMA_EXAMPLE_CLI,
  66. LLAMA_EXAMPLE_EMBEDDING,
  67. LLAMA_EXAMPLE_PERPLEXITY,
  68. LLAMA_EXAMPLE_RETRIEVAL,
  69. LLAMA_EXAMPLE_PASSKEY,
  70. LLAMA_EXAMPLE_IMATRIX,
  71. LLAMA_EXAMPLE_BENCH,
  72. LLAMA_EXAMPLE_SERVER,
  73. LLAMA_EXAMPLE_CVECTOR_GENERATOR,
  74. LLAMA_EXAMPLE_EXPORT_LORA,
  75. LLAMA_EXAMPLE_MTMD,
  76. LLAMA_EXAMPLE_LOOKUP,
  77. LLAMA_EXAMPLE_PARALLEL,
  78. LLAMA_EXAMPLE_TTS,
  79. LLAMA_EXAMPLE_DIFFUSION,
  80. LLAMA_EXAMPLE_FINETUNE,
  81. LLAMA_EXAMPLE_FIT_PARAMS,
  82. LLAMA_EXAMPLE_COUNT,
  83. };
  84. enum common_sampler_type {
  85. COMMON_SAMPLER_TYPE_NONE = 0,
  86. COMMON_SAMPLER_TYPE_DRY = 1,
  87. COMMON_SAMPLER_TYPE_TOP_K = 2,
  88. COMMON_SAMPLER_TYPE_TOP_P = 3,
  89. COMMON_SAMPLER_TYPE_MIN_P = 4,
  90. //COMMON_SAMPLER_TYPE_TFS_Z = 5,
  91. COMMON_SAMPLER_TYPE_TYPICAL_P = 6,
  92. COMMON_SAMPLER_TYPE_TEMPERATURE = 7,
  93. COMMON_SAMPLER_TYPE_XTC = 8,
  94. COMMON_SAMPLER_TYPE_INFILL = 9,
  95. COMMON_SAMPLER_TYPE_PENALTIES = 10,
  96. COMMON_SAMPLER_TYPE_TOP_N_SIGMA = 11,
  97. };
  98. // dimensionality reduction methods, used by cvector-generator
  99. enum dimre_method {
  100. DIMRE_METHOD_PCA,
  101. DIMRE_METHOD_MEAN,
  102. };
  103. enum common_conversation_mode {
  104. COMMON_CONVERSATION_MODE_DISABLED = 0,
  105. COMMON_CONVERSATION_MODE_ENABLED = 1,
  106. COMMON_CONVERSATION_MODE_AUTO = 2,
  107. };
  108. enum common_grammar_trigger_type {
  109. COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN,
  110. COMMON_GRAMMAR_TRIGGER_TYPE_WORD,
  111. COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN,
  112. COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL,
  113. };
  114. struct common_grammar_trigger {
  115. common_grammar_trigger_type type;
  116. std::string value;
  117. llama_token token = LLAMA_TOKEN_NULL;
  118. };
  119. enum common_params_sampling_config : uint64_t {
  120. COMMON_PARAMS_SAMPLING_CONFIG_SAMPLERS = 1 << 0,
  121. COMMON_PARAMS_SAMPLING_CONFIG_TOP_K = 1 << 1,
  122. COMMON_PARAMS_SAMPLING_CONFIG_TOP_P = 1 << 2,
  123. COMMON_PARAMS_SAMPLING_CONFIG_MIN_P = 1 << 3,
  124. COMMON_PARAMS_SAMPLING_CONFIG_XTC_PROBABILITY = 1 << 4,
  125. COMMON_PARAMS_SAMPLING_CONFIG_XTC_THRESHOLD = 1 << 5,
  126. COMMON_PARAMS_SAMPLING_CONFIG_TEMP = 1 << 6,
  127. COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_LAST_N = 1 << 7,
  128. COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_REPEAT = 1 << 8,
  129. COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT = 1 << 9,
  130. COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_TAU = 1 << 10,
  131. COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA = 1 << 11,
  132. };
  133. // sampling parameters
  134. struct common_params_sampling {
  135. uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
  136. int32_t n_prev = 64; // number of previous tokens to remember
  137. int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
  138. int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
  139. int32_t top_k = 40; // <= 0 to use vocab size
  140. float top_p = 0.95f; // 1.0 = disabled
  141. float min_p = 0.05f; // 0.0 = disabled
  142. float xtc_probability = 0.00f; // 0.0 = disabled
  143. float xtc_threshold = 0.10f; // > 0.5 disables XTC
  144. float typ_p = 1.00f; // typical_p, 1.0 = disabled
  145. float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
  146. float dynatemp_range = 0.00f; // 0.0 = disabled
  147. float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
  148. int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
  149. float penalty_repeat = 1.00f; // 1.0 = disabled
  150. float penalty_freq = 0.00f; // 0.0 = disabled
  151. float penalty_present = 0.00f; // 0.0 = disabled
  152. float dry_multiplier = 0.0f; // 0.0 = disabled; DRY repetition penalty for tokens extending repetition:
  153. float dry_base = 1.75f; // 0.0 = disabled; multiplier * base ^ (length of sequence before token - allowed length)
  154. int32_t dry_allowed_length = 2; // tokens extending repetitions beyond this receive penalty
  155. int32_t dry_penalty_last_n = -1; // how many tokens to scan for repetitions (0 = disable penalty, -1 = context size)
  156. int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
  157. float top_n_sigma = -1.00f;// -1.0 = disabled
  158. float mirostat_tau = 5.00f; // target entropy
  159. float mirostat_eta = 0.10f; // learning rate
  160. bool ignore_eos = false;
  161. bool no_perf = false; // disable performance metrics
  162. bool timing_per_token = false;
  163. uint64_t user_sampling_config = 0; // bitfield to track user-specified samplers
  164. std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY
  165. std::vector<enum common_sampler_type> samplers = {
  166. COMMON_SAMPLER_TYPE_PENALTIES,
  167. COMMON_SAMPLER_TYPE_DRY,
  168. COMMON_SAMPLER_TYPE_TOP_N_SIGMA,
  169. COMMON_SAMPLER_TYPE_TOP_K,
  170. COMMON_SAMPLER_TYPE_TYPICAL_P,
  171. COMMON_SAMPLER_TYPE_TOP_P,
  172. COMMON_SAMPLER_TYPE_MIN_P,
  173. COMMON_SAMPLER_TYPE_XTC,
  174. COMMON_SAMPLER_TYPE_TEMPERATURE,
  175. };
  176. std::string grammar; // optional BNF-like grammar to constrain sampling
  177. bool grammar_lazy = false;
  178. std::vector<common_grammar_trigger> grammar_triggers; // optional triggers (for lazy grammars)
  179. std::set<llama_token> preserved_tokens;
  180. std::vector<llama_logit_bias> logit_bias; // logit biases to apply
  181. std::vector<llama_logit_bias> logit_bias_eog; // pre-calculated logit biases for EOG tokens
  182. bool has_logit_bias() const {
  183. return !logit_bias.empty();
  184. }
  185. // print the parameters into a string
  186. std::string print() const;
  187. };
  188. struct common_params_model {
  189. std::string path = ""; // model local path // NOLINT
  190. std::string url = ""; // model url to download // NOLINT
  191. std::string hf_repo = ""; // HF repo // NOLINT
  192. std::string hf_file = ""; // HF file // NOLINT
  193. std::string docker_repo = ""; // Docker repo // NOLINT
  194. std::string name = ""; // in format <user>/<model>[:<tag>] (tag is optional) // NOLINT
  195. };
  196. struct common_params_speculative {
  197. std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
  198. int32_t n_ctx = 0; // draft context size
  199. int32_t n_max = 16; // maximum number of tokens to draft during speculative decoding
  200. int32_t n_min = 0; // minimum number of draft tokens to use for speculative decoding
  201. int32_t n_gpu_layers = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
  202. float p_split = 0.1f; // speculative decoding split probability
  203. float p_min = 0.75f; // minimum speculative decoding probability (greedy)
  204. std::vector<std::pair<std::string, std::string>> replacements; // main to speculative model replacements
  205. std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
  206. ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
  207. ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
  208. struct cpu_params cpuparams;
  209. struct cpu_params cpuparams_batch;
  210. struct common_params_model model;
  211. };
  212. struct common_params_vocoder {
  213. struct common_params_model model;
  214. std::string speaker_file = ""; // speaker file path // NOLINT
  215. bool use_guide_tokens = false; // enable guide tokens to improve TTS accuracy // NOLINT
  216. };
  217. struct common_params_diffusion {
  218. int32_t steps = 128;
  219. bool visual_mode = false;
  220. float eps = 0; // epsilon for timesteps
  221. int32_t block_length = 0; // block length for generation
  222. int32_t algorithm = 4; // default algorithm: low-confidence
  223. float alg_temp = 0.0f; // algorithm temperature
  224. float cfg_scale = 0; // classifier-free guidance scale
  225. bool add_gumbel_noise = false; // add gumbel noise to the logits if temp > 0.0
  226. };
  227. // reasoning API response format (not to be confused as chat template's reasoning format)
  228. enum common_reasoning_format {
  229. COMMON_REASONING_FORMAT_NONE,
  230. COMMON_REASONING_FORMAT_AUTO, // Same as deepseek, using `message.reasoning_content`
  231. COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY, // Extract thinking tag contents and return as `message.reasoning_content`, or leave inline in <think> tags in stream mode
  232. COMMON_REASONING_FORMAT_DEEPSEEK, // Extract thinking tag contents and return as `message.reasoning_content`, including in streaming deltas.
  233. // do not extend this enum unless you absolutely have to
  234. // in most cases, use COMMON_REASONING_FORMAT_AUTO
  235. // see: https://github.com/ggml-org/llama.cpp/pull/15408
  236. };
  237. struct lr_opt {
  238. float lr0 = 1e-5; // learning rate at first epoch
  239. float lr_min = -1;
  240. float decay_epochs = -1; // if >0, the learning rate starts at lr0 and decays to lr_min after this many epochs
  241. float scale_epoch = 0;
  242. float wd = 0;
  243. unsigned epochs = 2;
  244. unsigned epoch; // set by optimizer outer (epochs) loop
  245. // learning rate decay - constant LR per epoch only for now
  246. float get_lr(float e) const;
  247. float get_lr() const { return get_lr(epoch); }
  248. // must call after arg parse, before get_lr
  249. void init();
  250. };
  251. struct ggml_opt_optimizer_params common_opt_lr_pars(void * userdata);
  252. struct common_params {
  253. int32_t n_predict = -1; // max. number of new tokens to predict, -1 == no limit
  254. int32_t n_ctx = 0; // context size, 0 == context the model was trained with
  255. int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
  256. int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
  257. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  258. int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
  259. int32_t n_parallel = 1; // number of parallel sequences to decode
  260. int32_t n_sequences = 1; // number of sequences to decode
  261. int32_t grp_attn_n = 1; // group-attention factor
  262. int32_t grp_attn_w = 512; // group-attention width
  263. int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
  264. float rope_freq_base = 0.0f; // RoPE base frequency
  265. float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
  266. float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
  267. float yarn_attn_factor = -1.0f; // YaRN magnitude scaling factor
  268. float yarn_beta_fast = -1.0f; // YaRN low correction dim
  269. float yarn_beta_slow = -1.0f; // YaRN high correction dim
  270. int32_t yarn_orig_ctx = 0; // YaRN original context length
  271. // offload params
  272. std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
  273. int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
  274. int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
  275. float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
  276. bool fit_params = true; // whether to fit unset model/context parameters to free device memory
  277. size_t fit_params_target = 1024 * 1024*1024; // margin per device in bytes for fitting parameters to free memory
  278. int32_t fit_params_min_ctx = 4096; // minimum context size to set when trying to reduce memory use
  279. enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
  280. struct cpu_params cpuparams;
  281. struct cpu_params cpuparams_batch;
  282. ggml_backend_sched_eval_callback cb_eval = nullptr;
  283. void * cb_eval_user_data = nullptr;
  284. ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
  285. enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  286. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
  287. enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
  288. enum llama_flash_attn_type flash_attn_type = LLAMA_FLASH_ATTN_TYPE_AUTO; // whether to use Flash Attention
  289. struct common_params_sampling sampling;
  290. struct common_params_speculative speculative;
  291. struct common_params_vocoder vocoder;
  292. struct common_params_diffusion diffusion;
  293. struct common_params_model model;
  294. std::string model_alias = ""; // model alias // NOLINT
  295. std::string hf_token = ""; // HF token // NOLINT
  296. std::string prompt = ""; // NOLINT
  297. std::string system_prompt = ""; // NOLINT
  298. std::string prompt_file = ""; // store the external prompt file name // NOLINT
  299. std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT
  300. std::string input_prefix = ""; // string to prefix user inputs with // NOLINT
  301. std::string input_suffix = ""; // string to suffix user inputs with // NOLINT
  302. std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT
  303. std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
  304. std::string logits_file = ""; // file for saving *all* logits // NOLINT
  305. std::vector<std::string> in_files; // all input files
  306. std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
  307. std::vector<llama_model_kv_override> kv_overrides;
  308. std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
  309. bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_adapter_lora_apply)
  310. std::vector<common_adapter_lora_info> lora_adapters; // lora adapter path with user defined scale
  311. std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale
  312. int32_t verbosity = 3; // LOG_LEVEL_INFO
  313. int32_t control_vector_layer_start = -1; // layer range for control vector
  314. int32_t control_vector_layer_end = -1; // layer range for control vector
  315. bool offline = false;
  316. int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
  317. int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
  318. // (which is more convenient to use for plotting)
  319. //
  320. bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
  321. size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
  322. bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt
  323. size_t winogrande_tasks = 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
  324. bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt
  325. size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
  326. bool kl_divergence = false; // compute KL divergence
  327. bool usage = false; // print usage
  328. bool completion = false; // print source-able completion script
  329. bool use_color = false; // use color to distinguish generations and inputs
  330. bool special = false; // enable special token output
  331. bool interactive = false; // interactive mode
  332. bool interactive_first = false; // wait for user input immediately
  333. bool prompt_cache_all = false; // save user input and generations to prompt cache
  334. bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
  335. bool escape = true; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
  336. bool multiline_input = false; // reverse the usage of `\`
  337. bool simple_io = false; // improves compatibility with subprocesses and limited consoles
  338. bool cont_batching = true; // insert new sequences for decoding on-the-fly
  339. bool no_perf = false; // disable performance metrics
  340. bool show_timings = true; // show timing information on CLI
  341. bool ctx_shift = false; // context shift on infinite text generation
  342. bool swa_full = false; // use full-size SWA cache (https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)
  343. bool kv_unified = false; // enable unified KV cache
  344. bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
  345. bool use_mmap = true; // use mmap for faster loads
  346. bool use_mlock = false; // use mlock to keep model in memory
  347. bool verbose_prompt = false; // print prompt tokens before generation
  348. bool display_prompt = true; // print prompt before generation
  349. bool no_kv_offload = false; // disable KV offloading
  350. bool warmup = true; // warmup run
  351. bool check_tensors = false; // validate tensor data
  352. bool no_op_offload = false; // globally disable offload host tensor operations to device
  353. bool no_extra_bufts = false; // disable extra buffer types (used for weight repacking)
  354. bool no_host = false; // bypass host buffer allowing extra buffers to be used
  355. bool single_turn = false; // single turn chat conversation
  356. ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
  357. ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
  358. common_conversation_mode conversation_mode = COMMON_CONVERSATION_MODE_AUTO;
  359. // multimodal models (see tools/mtmd)
  360. struct common_params_model mmproj;
  361. bool mmproj_use_gpu = true; // use GPU for multimodal model
  362. bool no_mmproj = false; // explicitly disable multimodal model
  363. std::vector<std::string> image; // path to image file(s)
  364. int image_min_tokens = -1;
  365. int image_max_tokens = -1;
  366. // finetune
  367. struct lr_opt lr;
  368. enum ggml_opt_optimizer_type optimizer = GGML_OPT_OPTIMIZER_TYPE_ADAMW;
  369. float val_split = 0.05f; // fraction of the data used for the validation set
  370. // embedding
  371. bool embedding = false; // get only sentence embedding
  372. int32_t embd_normalize = 2; // normalisation for embeddings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
  373. std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
  374. std::string embd_sep = "\n"; // separator of embeddings
  375. std::string cls_sep = "\t"; // separator of classification sequences
  376. // server params
  377. int32_t port = 8080; // server listens on this network port
  378. int32_t timeout_read = 600; // http read timeout in seconds
  379. int32_t timeout_write = timeout_read; // http write timeout in seconds
  380. int32_t n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
  381. int32_t n_cache_reuse = 0; // min chunk size to reuse from the cache via KV shifting
  382. int32_t n_ctx_checkpoints = 8; // max number of context checkpoints per slot
  383. int32_t cache_ram_mib = 8192; // -1 = no limit, 0 - disable, 1 = 1 MiB, etc.
  384. std::string hostname = "127.0.0.1";
  385. std::string public_path = ""; // NOLINT
  386. std::string api_prefix = ""; // NOLINT
  387. std::string chat_template = ""; // NOLINT
  388. bool use_jinja = true; // NOLINT
  389. bool enable_chat_template = true;
  390. common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
  391. int reasoning_budget = -1;
  392. bool prefill_assistant = true; // if true, any trailing assistant message will be prefilled into the response
  393. std::vector<std::string> api_keys;
  394. std::string ssl_file_key = ""; // NOLINT
  395. std::string ssl_file_cert = ""; // NOLINT
  396. std::map<std::string, std::string> default_template_kwargs;
  397. // webui configs
  398. bool webui = true;
  399. std::string webui_config_json;
  400. // "advanced" endpoints are disabled by default for better security
  401. bool endpoint_slots = true;
  402. bool endpoint_props = false; // only control POST requests, not GET
  403. bool endpoint_metrics = false;
  404. // router server configs
  405. std::string models_dir = ""; // directory containing models for the router server
  406. std::string models_preset = ""; // directory containing model presets for the router server
  407. int models_max = 4; // maximum number of models to load simultaneously
  408. bool models_autoload = true; // automatically load models when requested via the router server
  409. bool log_json = false;
  410. std::string slot_save_path;
  411. std::string media_path; // path to directory for loading media files
  412. float slot_prompt_similarity = 0.1f;
  413. // batched-bench params
  414. bool is_pp_shared = false;
  415. bool is_tg_separate = false;
  416. std::vector<int32_t> n_pp;
  417. std::vector<int32_t> n_tg;
  418. std::vector<int32_t> n_pl;
  419. // retrieval params
  420. std::vector<std::string> context_files; // context files to embed
  421. int32_t chunk_size = 64; // chunk size for context embedding
  422. std::string chunk_separator = "\n"; // chunk separator for context embedding
  423. // passkey params
  424. int32_t n_junk = 250; // number of times to repeat the junk text
  425. int32_t i_pos = -1; // position of the passkey in the junk text
  426. // imatrix params
  427. int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations
  428. int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations
  429. int32_t i_chunk = 0; // start processing from this chunk
  430. int8_t imat_dat = 0; // whether the legacy imatrix.dat format should be output (gguf <= 0 < dat)
  431. bool process_output = false; // collect data for the output tensor
  432. bool compute_ppl = true; // whether to compute perplexity
  433. bool show_statistics = false; // show imatrix statistics per tensor
  434. bool parse_special = false; // whether to parse special tokens during imatrix tokenization
  435. // cvector-generator params
  436. int n_pca_batch = 100;
  437. int n_pca_iterations = 1000;
  438. dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
  439. std::string cvector_positive_file = "tools/cvector-generator/positive.txt";
  440. std::string cvector_negative_file = "tools/cvector-generator/negative.txt";
  441. bool spm_infill = false; // suffix/prefix/middle pattern for infill
  442. // batched-bench params
  443. bool batched_bench_output_jsonl = false;
  444. // common params
  445. std::string out_file; // output filename for all example programs
  446. // optional callback for model loading progress and cancellation:
  447. // called with a progress value between 0.0 and 1.0.
  448. // return false from callback to abort model loading or true to continue
  449. llama_progress_callback load_progress_callback = NULL;
  450. void * load_progress_callback_user_data = NULL;
  451. bool has_speculative() const {
  452. return !speculative.model.path.empty() || !speculative.model.hf_repo.empty();
  453. }
  454. };
  455. // call once at the start of a program if it uses libcommon
  456. // initializes the logging system and prints info about the build
  457. void common_init();
  458. std::string common_params_get_system_info(const common_params & params);
  459. bool parse_cpu_range(const std::string & range, bool(&boolmask)[GGML_MAX_N_THREADS]);
  460. bool parse_cpu_mask(const std::string & mask, bool(&boolmask)[GGML_MAX_N_THREADS]);
  461. void postprocess_cpu_params(cpu_params & cpuparams, const cpu_params * role_model = nullptr);
  462. bool set_process_priority(enum ggml_sched_priority prio);
  463. //
  464. // String utils
  465. //
  466. #ifdef __GNUC__
  467. # if defined(__MINGW32__) && !defined(__clang__)
  468. # define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  469. # else
  470. # define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  471. # endif
  472. #else
  473. # define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
  474. #endif
  475. LLAMA_COMMON_ATTRIBUTE_FORMAT(1, 2)
  476. std::string string_format(const char * fmt, ...);
  477. std::string string_strip(const std::string & str);
  478. std::string string_get_sortable_timestamp();
  479. std::string string_join(const std::vector<std::string> & values, const std::string & separator);
  480. std::vector<std::string> string_split(const std::string & str, const std::string & delimiter);
  481. std::string string_repeat(const std::string & str, size_t n);
  482. void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
  483. std::string regex_escape(const std::string & s);
  484. template<class T>
  485. static std::vector<T> string_split(const std::string & str, char delim) {
  486. static_assert(!std::is_same<T, std::string>::value, "Please use the specialized version for std::string");
  487. std::vector<T> values;
  488. std::istringstream str_stream(str);
  489. std::string token;
  490. while (std::getline(str_stream, token, delim)) {
  491. T value;
  492. std::istringstream token_stream(token);
  493. token_stream >> value;
  494. values.push_back(value);
  495. }
  496. return values;
  497. }
  498. template<>
  499. std::vector<std::string> string_split<std::string>(const std::string & input, char separator)
  500. {
  501. std::vector<std::string> parts;
  502. size_t begin_pos = 0;
  503. size_t separator_pos = input.find(separator);
  504. while (separator_pos != std::string::npos) {
  505. std::string part = input.substr(begin_pos, separator_pos - begin_pos);
  506. parts.emplace_back(part);
  507. begin_pos = separator_pos + 1;
  508. separator_pos = input.find(separator, begin_pos);
  509. }
  510. parts.emplace_back(input.substr(begin_pos, separator_pos - begin_pos));
  511. return parts;
  512. }
  513. static bool string_starts_with(const std::string & str,
  514. const std::string & prefix) { // While we wait for C++20's std::string::starts_with...
  515. return str.rfind(prefix, 0) == 0;
  516. }
  517. // While we wait for C++20's std::string::ends_with...
  518. bool string_ends_with(const std::string_view & str, const std::string_view & suffix);
  519. bool string_remove_suffix(std::string & str, const std::string_view & suffix);
  520. size_t string_find_partial_stop(const std::string_view & str, const std::string_view & stop);
  521. bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
  522. void string_process_escapes(std::string & input);
  523. std::string string_from(bool value);
  524. std::string string_from(const std::vector<int> & values);
  525. std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens);
  526. std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch);
  527. //
  528. // Filesystem utils
  529. //
  530. bool fs_validate_filename(const std::string & filename, bool allow_subdirs = false);
  531. bool fs_create_directory_with_parents(const std::string & path);
  532. bool fs_is_directory(const std::string & path);
  533. std::string fs_get_cache_directory();
  534. std::string fs_get_cache_file(const std::string & filename);
  535. struct common_file_info {
  536. std::string path;
  537. std::string name;
  538. size_t size = 0; // in bytes
  539. bool is_dir = false;
  540. };
  541. std::vector<common_file_info> fs_list(const std::string & path, bool include_directories);
  542. //
  543. // TTY utils
  544. //
  545. // Auto-detect if colors can be enabled based on terminal and environment
  546. bool tty_can_use_colors();
  547. //
  548. // Model utils
  549. //
  550. struct common_sampler;
  551. // note: defines the model, context, samplers, ets. lifetimes
  552. struct common_init_result {
  553. common_init_result(common_params & params);
  554. ~common_init_result();
  555. llama_model * model();
  556. llama_context * context();
  557. common_sampler * sampler(llama_seq_id seq_id);
  558. std::vector<llama_adapter_lora_ptr> & lora();
  559. void free_context();
  560. private:
  561. struct impl;
  562. std::unique_ptr<impl> pimpl;
  563. };
  564. using common_init_result_ptr = std::unique_ptr<common_init_result>;
  565. common_init_result_ptr common_init_from_params(common_params & params);
  566. struct llama_model_params common_model_params_to_llama ( common_params & params);
  567. struct llama_context_params common_context_params_to_llama(const common_params & params);
  568. struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
  569. // clear LoRA adapters from context, then apply new list of adapters
  570. void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora);
  571. std::string get_model_endpoint();
  572. //
  573. // Batch utils
  574. //
  575. void common_batch_clear(struct llama_batch & batch);
  576. void common_batch_add(
  577. struct llama_batch & batch,
  578. llama_token id,
  579. llama_pos pos,
  580. const std::vector<llama_seq_id> & seq_ids,
  581. bool logits);
  582. //
  583. // Token utils
  584. //
  585. // longest common prefix
  586. size_t common_lcp(const llama_tokens & a, const llama_tokens & b);
  587. // longet common subsequence
  588. size_t common_lcs(const llama_tokens & a, const llama_tokens & b);
  589. //
  590. // Vocab utils
  591. //
  592. // tokenizes a string into a vector of tokens
  593. // should work similar to Python's `tokenizer.encode`
  594. std::vector<llama_token> common_tokenize(
  595. const struct llama_context * ctx,
  596. const std::string & text,
  597. bool add_special,
  598. bool parse_special = false);
  599. std::vector<llama_token> common_tokenize(
  600. const struct llama_vocab * vocab,
  601. const std::string & text,
  602. bool add_special,
  603. bool parse_special = false);
  604. // tokenizes a token into a piece, optionally renders special/control tokens
  605. // should work similar to Python's `tokenizer.id_to_piece`
  606. std::string common_token_to_piece(
  607. const struct llama_context * ctx,
  608. llama_token token,
  609. bool special = true);
  610. std::string common_token_to_piece(
  611. const struct llama_vocab * vocab,
  612. llama_token token,
  613. bool special = true);
  614. // detokenizes a vector of tokens into a string
  615. // should work similar to Python's `tokenizer.decode`
  616. // optionally renders special/control tokens
  617. std::string common_detokenize(
  618. const struct llama_context * ctx,
  619. const std::vector<llama_token> & tokens,
  620. bool special = true);
  621. std::string common_detokenize(
  622. const struct llama_vocab * vocab,
  623. const std::vector<llama_token> & tokens,
  624. bool special = true);
  625. //
  626. // Embedding utils
  627. //
  628. // TODO: repace embd_norm with an enum
  629. void common_embd_normalize(const float * inp, float * out, int n, int embd_norm);
  630. float common_embd_similarity_cos(const float * embd1, const float * embd2, int n);
  631. //
  632. // Control vector utils
  633. //
  634. struct common_control_vector_data {
  635. int n_embd;
  636. // stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
  637. std::vector<float> data;
  638. };
  639. struct common_control_vector_load_info {
  640. float strength;
  641. std::string fname;
  642. };
  643. // Load control vectors, scale each by strength, and add them together.
  644. // On error, returns {-1, empty}
  645. common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos);
  646. //
  647. // Split utils
  648. //
  649. namespace {
  650. const char * const LLM_KV_SPLIT_NO = "split.no";
  651. const char * const LLM_KV_SPLIT_COUNT = "split.count";
  652. const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
  653. }
  654. //
  655. // MoE utils
  656. //
  657. const char * const LLM_FFN_EXPS_REGEX = "\\.ffn_(up|down|gate)_(ch|)exps";
  658. static std::string llm_ffn_exps_block_regex(int idx) {
  659. return string_format("blk\\.%d%s", idx, LLM_FFN_EXPS_REGEX);
  660. }
  661. static llama_model_tensor_buft_override llm_ffn_exps_cpu_override() {
  662. return { LLM_FFN_EXPS_REGEX, ggml_backend_cpu_buffer_type() };
  663. }
  664. //
  665. // training utils
  666. //
  667. ggml_opt_dataset_t common_opt_dataset_init(struct llama_context * ctx, const std::vector<llama_token> & tokens, int64_t stride);
  668. // "adamw" or "sgd" (case insensitive)
  669. enum ggml_opt_optimizer_type common_opt_get_optimizer(const char *);