convert_hf_to_gguf.py 491 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. from gguf.vocab import MistralTokenizerType, MistralVocab
  27. try:
  28. from mistral_common.tokens.tokenizers.base import TokenizerVersion # pyright: ignore[reportMissingImports]
  29. from mistral_common.tokens.tokenizers.multimodal import DATASET_MEAN as _MISTRAL_COMMON_DATASET_MEAN, DATASET_STD as _MISTRAL_COMMON_DATASET_STD # pyright: ignore[reportMissingImports]
  30. from mistral_common.tokens.tokenizers.tekken import Tekkenizer # pyright: ignore[reportMissingImports]
  31. from mistral_common.tokens.tokenizers.sentencepiece import ( # pyright: ignore[reportMissingImports]
  32. SentencePieceTokenizer,
  33. )
  34. _mistral_common_installed = True
  35. _mistral_import_error_msg = ""
  36. except ImportError:
  37. _MISTRAL_COMMON_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
  38. _MISTRAL_COMMON_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
  39. _mistral_common_installed = False
  40. TokenizerVersion = None
  41. Tekkenizer = None
  42. SentencePieceTokenizer = None
  43. _mistral_import_error_msg = (
  44. "Mistral format requires `mistral-common` to be installed. Please run "
  45. "`pip install mistral-common[image,audio]` to install it."
  46. )
  47. logger = logging.getLogger("hf-to-gguf")
  48. ###### MODEL DEFINITIONS ######
  49. class SentencePieceTokenTypes(IntEnum):
  50. NORMAL = 1
  51. UNKNOWN = 2
  52. CONTROL = 3
  53. USER_DEFINED = 4
  54. UNUSED = 5
  55. BYTE = 6
  56. class ModelType(IntEnum):
  57. TEXT = 1
  58. MMPROJ = 2
  59. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  60. class ModelBase:
  61. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  62. ModelType.TEXT: {},
  63. ModelType.MMPROJ: {},
  64. }
  65. dir_model: Path
  66. ftype: gguf.LlamaFileType
  67. fname_out: Path
  68. is_big_endian: bool
  69. endianess: gguf.GGUFEndian
  70. use_temp_file: bool
  71. lazy: bool
  72. dry_run: bool
  73. hparams: dict[str, Any]
  74. model_tensors: dict[str, Callable[[], Tensor]]
  75. gguf_writer: gguf.GGUFWriter
  76. model_name: str | None
  77. metadata_override: Path | None
  78. dir_model_card: Path
  79. remote_hf_model_id: str | None
  80. # subclasses should define this!
  81. model_arch: gguf.MODEL_ARCH
  82. # subclasses should initialize this!
  83. block_count: int
  84. tensor_map: gguf.TensorNameMap
  85. # Mistral format specifics
  86. is_mistral_format: bool = False
  87. disable_mistral_community_chat_template: bool = False
  88. sentence_transformers_dense_modules: bool = False
  89. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  90. use_temp_file: bool = False, eager: bool = False,
  91. metadata_override: Path | None = None, model_name: str | None = None,
  92. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  93. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None,
  94. disable_mistral_community_chat_template: bool = False,
  95. sentence_transformers_dense_modules: bool = False):
  96. if type(self) is ModelBase or \
  97. type(self) is TextModel or \
  98. type(self) is MmprojModel:
  99. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  100. if self.is_mistral_format and not _mistral_common_installed:
  101. raise ImportError(_mistral_import_error_msg)
  102. self.dir_model = dir_model
  103. self.ftype = ftype
  104. self.fname_out = fname_out
  105. self.is_big_endian = is_big_endian
  106. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  107. self.use_temp_file = use_temp_file
  108. self.lazy = not eager or (remote_hf_model_id is not None)
  109. self.dry_run = dry_run
  110. self.remote_hf_model_id = remote_hf_model_id
  111. self.sentence_transformers_dense_modules = sentence_transformers_dense_modules
  112. self.hparams = ModelBase.load_hparams(self.dir_model, self.is_mistral_format) if hparams is None else hparams
  113. self.model_tensors = self.index_tensors(remote_hf_model_id=remote_hf_model_id)
  114. self.metadata_override = metadata_override
  115. self.model_name = model_name
  116. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  117. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  118. if self.ftype == gguf.LlamaFileType.GUESSED:
  119. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  120. _, first_tensor = next(self.get_tensors())
  121. if first_tensor.dtype == torch.float16:
  122. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  123. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  124. else:
  125. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  126. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  127. self.dequant_model()
  128. # Configure GGUF Writer
  129. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  130. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  131. # Mistral specific
  132. self.disable_mistral_community_chat_template = disable_mistral_community_chat_template
  133. @classmethod
  134. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  135. stem, suffix = path.stem, path.suffix
  136. new_name = f"{prefix}{stem}{suffix}"
  137. return path.with_name(new_name)
  138. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  139. key = next((k for k in keys if k in self.hparams), None)
  140. if key is not None:
  141. return self.hparams[key]
  142. if optional:
  143. return None
  144. raise KeyError(f"could not find any of: {keys}")
  145. def index_tensors(self, remote_hf_model_id: str | None = None) -> dict[str, Callable[[], Tensor]]:
  146. tensors: dict[str, Callable[[], Tensor]] = {}
  147. if remote_hf_model_id is not None:
  148. is_safetensors = True
  149. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  150. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  151. for name, remote_tensor in remote_tensors.items():
  152. tensors[name] = lambda r=remote_tensor: LazyTorchTensor.from_remote_tensor(r)
  153. return tensors
  154. prefix = "model" if not self.is_mistral_format else "consolidated"
  155. part_names: list[str] = ModelBase.get_model_part_names(self.dir_model, prefix, ".safetensors")
  156. is_safetensors: bool = len(part_names) > 0
  157. if not is_safetensors:
  158. part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  159. tensor_names_from_index: set[str] = set()
  160. if not self.is_mistral_format:
  161. index_name = "model.safetensors" if is_safetensors else "pytorch_model.bin"
  162. index_name += ".index.json"
  163. index_file = self.dir_model / index_name
  164. if index_file.is_file():
  165. logger.info(f"gguf: loading model weight map from '{index_name}'")
  166. with open(index_file, "r", encoding="utf-8") as f:
  167. index: dict[str, Any] = json.load(f)
  168. weight_map = index.get("weight_map")
  169. if weight_map is None or not isinstance(weight_map, dict):
  170. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  171. tensor_names_from_index.update(weight_map.keys())
  172. part_dict: dict[str, None] = dict.fromkeys(weight_map.values(), None)
  173. part_names = sorted(part_dict.keys())
  174. else:
  175. weight_map = {}
  176. else:
  177. weight_map = {}
  178. for part_name in part_names:
  179. logger.info(f"gguf: indexing model part '{part_name}'")
  180. ctx: ContextManager[Any]
  181. if is_safetensors:
  182. ctx = cast(ContextManager[Any], gguf.utility.SafetensorsLocal(self.dir_model / part_name))
  183. else:
  184. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  185. with ctx as model_part:
  186. assert model_part is not None
  187. for name in model_part.keys():
  188. if is_safetensors:
  189. data: gguf.utility.LocalTensor = model_part[name]
  190. if self.lazy:
  191. data_gen = lambda data=data: LazyTorchTensor.from_local_tensor(data) # noqa: E731
  192. else:
  193. dtype = LazyTorchTensor._dtype_str_map[data.dtype]
  194. data_gen = lambda data=data, dtype=dtype: torch.from_numpy(data.mmap_bytes()).view(dtype).reshape(data.shape) # noqa: E731
  195. else:
  196. data_torch: Tensor = model_part[name]
  197. if self.lazy:
  198. data_gen = lambda data=data_torch: LazyTorchTensor.from_eager(data) # noqa: E731
  199. else:
  200. data_gen = lambda data=data_torch: data # noqa: E731
  201. tensors[name] = data_gen
  202. # verify tensor name presence and identify potentially missing files
  203. if len(tensor_names_from_index) > 0:
  204. tensor_names_from_parts = set(tensors.keys())
  205. if len(tensor_names_from_parts.symmetric_difference(tensor_names_from_index)) > 0:
  206. missing = sorted(tensor_names_from_index.difference(tensor_names_from_parts))
  207. extra = sorted(tensor_names_from_parts.difference(tensor_names_from_index))
  208. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  209. if len(extra) == 0 and len(missing_files) > 0:
  210. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  211. f"Missing tensors: {missing}")
  212. else:
  213. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  214. f"Missing tensors: {missing}\n"
  215. f"Extra tensors: {extra}")
  216. return tensors
  217. def dequant_model(self):
  218. tensors_to_remove: list[str] = []
  219. new_tensors: dict[str, Callable[[], Tensor]] = {}
  220. if (quant_config := self.hparams.get("quantization_config")) and isinstance(quant_config, dict):
  221. quant_method = quant_config.get("quant_method")
  222. def dequant_bitnet(weight: Tensor, scale: Tensor) -> Tensor:
  223. weight = weight.view(torch.uint8)
  224. orig_shape = weight.shape
  225. shift = torch.tensor([0, 2, 4, 6], dtype=torch.uint8).reshape((4, *(1 for _ in range(len(orig_shape)))))
  226. data = weight.unsqueeze(0).expand((4, *orig_shape)) >> shift
  227. data = data & 3
  228. data = (data.float() - 1).reshape((orig_shape[0] * 4, *orig_shape[1:]))
  229. # The scale is inverted
  230. return data / scale.float()
  231. def dequant_simple(weight: Tensor, scale: Tensor, block_size: Sequence[int] | None = None) -> Tensor:
  232. scale = scale.float()
  233. if block_size is not None:
  234. for i, size in enumerate(block_size):
  235. scale = scale.repeat_interleave(size, i)
  236. # unpad the scale (e.g. when the tensor size isn't a multiple of the block size)
  237. scale = scale[tuple(slice(0, size) for size in weight.shape)]
  238. return weight.float() * scale
  239. # ref: https://github.com/ModelCloud/GPTQModel/blob/037c5c0f6c9e33c500d975b038d02e7ca437546d/gptqmodel/nn_modules/qlinear/__init__.py#L437-L476
  240. def dequant_gptq(g_idx: Tensor, qweight: Tensor, qzeros: Tensor, scales: Tensor) -> Tensor:
  241. bits = quant_config["bits"]
  242. assert bits in (2, 3, 4, 8)
  243. assert qweight.dtype == qzeros.dtype
  244. maxq = (2 ** bits) - 1
  245. weight = None
  246. zeros = None
  247. pack_dtype_bits = qweight.dtype.itemsize * 8
  248. if bits in [2, 4, 8]:
  249. pack_factor = pack_dtype_bits // bits
  250. wf = torch.tensor(list(range(0, pack_dtype_bits, bits)), dtype=torch.int32).unsqueeze(0)
  251. if self.lazy:
  252. wf = LazyTorchTensor.from_eager(wf)
  253. zeros = torch.bitwise_right_shift(
  254. qzeros.unsqueeze(2).expand(-1, -1, pack_factor),
  255. wf.unsqueeze(0)
  256. ).to(torch.int16 if bits == 8 else torch.int8)
  257. zeros = torch.bitwise_and(zeros, maxq).reshape(scales.shape)
  258. weight = torch.bitwise_and(
  259. torch.bitwise_right_shift(
  260. qweight.unsqueeze(1).expand(-1, pack_factor, -1),
  261. wf.unsqueeze(-1)
  262. ).to(torch.int16 if bits == 8 else torch.int8),
  263. maxq
  264. )
  265. elif bits == 3:
  266. raise NotImplementedError("3-bit gptq dequantization is not yet implemented")
  267. assert weight is not None
  268. assert zeros is not None
  269. weight = weight.reshape(weight.shape[0] * weight.shape[1], weight.shape[2])
  270. # gptq_v2 doesn't need to offset zeros
  271. if quant_config.get("checkpoint_format", "gptq") == "gptq":
  272. zeros += 1
  273. return (scales[g_idx].float() * (weight - zeros[g_idx]).float()).T
  274. def dequant_packed(w: Tensor, scale: Tensor, shape_tensor: Tensor, zero_point: Tensor | None, num_bits: int, group_size: int):
  275. assert w.dtype == torch.int32
  276. shape = tuple(shape_tensor.tolist())
  277. assert len(shape) == 2
  278. mask = (1 << num_bits) - 1
  279. shifts = torch.arange(0, 32 - (num_bits - 1), num_bits, dtype=torch.int32)
  280. if self.lazy:
  281. shifts = LazyTorchTensor.from_eager(shifts)
  282. if zero_point is None:
  283. offset = 1 << (num_bits - 1)
  284. else:
  285. assert len(zero_point.shape) == 2
  286. offset = (zero_point.unsqueeze(1) >> shifts.reshape(1, -1, 1)) & mask
  287. offset = offset.reshape(-1, zero_point.shape[1])
  288. # trim padding, and prepare for broadcast
  289. # NOTE: the zero-point is packed along dim 0
  290. offset = offset[:shape[0], :].unsqueeze(-1)
  291. # extract values
  292. # NOTE: the weights are packed along dim 1
  293. unpacked = (w.unsqueeze(-1) >> shifts.reshape(1, 1, -1)) & mask
  294. unpacked = unpacked.reshape(shape[0], -1)
  295. # trim padding
  296. unpacked = unpacked[:, :shape[1]]
  297. # prepare for broadcast of the scale
  298. unpacked = unpacked.reshape(shape[0], (unpacked.shape[-1] + group_size - 1) // group_size, group_size)
  299. unpacked = unpacked - offset
  300. return (unpacked * scale.unsqueeze(-1).float()).reshape(shape)
  301. if quant_method == "bitnet":
  302. for name in self.model_tensors.keys():
  303. if name.endswith(".weight_scale"):
  304. weight_name = name.removesuffix("_scale")
  305. w = self.model_tensors[weight_name]
  306. s = self.model_tensors[name]
  307. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_bitnet(w(), s())
  308. tensors_to_remove.append(name)
  309. elif quant_method == "fp8":
  310. block_size = quant_config.get("weight_block_size")
  311. for name in self.model_tensors.keys():
  312. if name.endswith(".weight_scale_inv"):
  313. weight_name = name.removesuffix("_scale_inv")
  314. w = self.model_tensors[weight_name]
  315. s = self.model_tensors[name]
  316. self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
  317. tensors_to_remove.append(name)
  318. if name.endswith(".activation_scale"): # unused
  319. tensors_to_remove.append(name)
  320. # mistral format
  321. if name.endswith(".qscale_weight"):
  322. weight_name = name.removesuffix("qscale_weight") + "weight"
  323. w = self.model_tensors[weight_name]
  324. s = self.model_tensors[name]
  325. self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
  326. tensors_to_remove.append(name)
  327. if name.endswith(".qscale_act"):
  328. tensors_to_remove.append(name)
  329. elif quant_method == "gptq":
  330. for name in self.model_tensors.keys():
  331. if name.endswith(".qweight"):
  332. base_name = name.removesuffix(".qweight")
  333. g_idx = self.model_tensors[base_name + ".g_idx"]
  334. qweight = self.model_tensors[base_name + ".qweight"]
  335. qzeros = self.model_tensors[base_name + ".qzeros"]
  336. scales = self.model_tensors[base_name + ".scales"]
  337. new_tensors[base_name + ".weight"] = (
  338. lambda g=g_idx, z=qzeros, w=qweight, s=scales: dequant_gptq(
  339. g(), w(), z(), s()
  340. )
  341. )
  342. tensors_to_remove += [
  343. base_name + n
  344. for n in (
  345. ".g_idx",
  346. ".qzeros",
  347. ".qweight",
  348. ".scales",
  349. )
  350. ]
  351. elif quant_method == "compressed-tensors":
  352. quant_format = quant_config["format"]
  353. groups = quant_config["config_groups"]
  354. if len(groups) > 1:
  355. raise NotImplementedError("Can't handle multiple config groups for compressed-tensors yet")
  356. weight_config = tuple(groups.values())[0]["weights"]
  357. if quant_format == "float-quantized" or quant_format == "int-quantized" or quant_format == "naive-quantized":
  358. block_size = weight_config.get("block_structure", None)
  359. strategy = weight_config.get("strategy")
  360. assert strategy == "channel" or strategy == "block"
  361. assert weight_config.get("group_size") is None # didn't find a model using this yet
  362. for name in self.model_tensors.keys():
  363. if name.endswith(".weight_scale"):
  364. weight_name = name.removesuffix("_scale")
  365. w = self.model_tensors[weight_name]
  366. s = self.model_tensors[name]
  367. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_simple(w(), s(), block_size)
  368. tensors_to_remove.append(name)
  369. elif quant_format == "pack-quantized":
  370. assert weight_config.get("strategy") == "group"
  371. assert weight_config.get("type", "int") == "int"
  372. num_bits = weight_config.get("num_bits")
  373. group_size = weight_config.get("group_size")
  374. assert isinstance(num_bits, int)
  375. assert isinstance(group_size, int)
  376. for name in self.model_tensors.keys():
  377. if name.endswith(".weight_packed"):
  378. base_name = name.removesuffix("_packed")
  379. w = self.model_tensors[name]
  380. scale = self.model_tensors[base_name + "_scale"]
  381. shape = self.model_tensors[base_name + "_shape"]
  382. zero_point = self.model_tensors.get(base_name + "_zero_point", lambda: None)
  383. new_tensors[base_name] = (
  384. lambda w=w, scale=scale, shape=shape, zero_point=zero_point: dequant_packed(
  385. w(), scale(), shape(), zero_point(), num_bits, group_size,
  386. )
  387. )
  388. tensors_to_remove += [base_name + n for n in ("_packed", "_shape", "_scale")]
  389. if (base_name + "_zero_point") in self.model_tensors:
  390. tensors_to_remove.append(base_name + "_zero_point")
  391. else:
  392. raise NotImplementedError(f"Quant format {quant_format!r} for method {quant_method!r} is not yet supported")
  393. else:
  394. raise NotImplementedError(f"Quant method is not yet supported: {quant_method!r}")
  395. for name in tensors_to_remove:
  396. if name in self.model_tensors:
  397. del self.model_tensors[name]
  398. for name, value in new_tensors.items():
  399. self.model_tensors[name] = value
  400. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  401. for name, gen in self.model_tensors.items():
  402. yield name, gen()
  403. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  404. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  405. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  406. name: str = gguf.TENSOR_NAMES[key]
  407. if "{bid}" in name:
  408. assert bid is not None
  409. name = name.format(bid=bid)
  410. return name + suffix
  411. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  412. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  413. return False
  414. key_name: str = gguf.TENSOR_NAMES[key]
  415. if "{bid}" in key_name:
  416. if bid is None:
  417. return False
  418. key_name = key_name.format(bid=bid)
  419. else:
  420. if bid is not None:
  421. return False
  422. return name == (key_name + suffix)
  423. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  424. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  425. if new_name is None:
  426. raise ValueError(f"Can not map tensor {name!r}")
  427. return new_name
  428. def set_gguf_parameters(self):
  429. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  430. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  431. del bid # unused
  432. return [(self.map_tensor_name(name), data_torch)]
  433. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  434. del name, new_name, bid, n_dims # unused
  435. return False
  436. # some models need extra generated tensors (like rope_freqs)
  437. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  438. return ()
  439. def prepare_tensors(self):
  440. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  441. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  442. # we don't need these
  443. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  444. continue
  445. old_dtype = data_torch.dtype
  446. # convert any unsupported data types to float32
  447. if data_torch.dtype not in (torch.float16, torch.float32):
  448. data_torch = data_torch.to(torch.float32)
  449. # use the first number-like part of the tensor name as the block id
  450. bid = None
  451. for part in name.split("."):
  452. if part.isdecimal():
  453. bid = int(part)
  454. break
  455. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  456. # TODO: why do we squeeze here?
  457. # data = data_torch.squeeze().numpy()
  458. data = data_torch.numpy()
  459. n_dims = len(data.shape)
  460. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  461. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  462. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  463. data_qtype = gguf.GGMLQuantizationType.F32
  464. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  465. # Some tensor types are always in float32
  466. if data_qtype is False and (
  467. any(
  468. self.match_model_tensor_name(new_name, key, bid)
  469. for key in (
  470. gguf.MODEL_TENSOR.FFN_GATE_INP,
  471. gguf.MODEL_TENSOR.POS_EMBD,
  472. gguf.MODEL_TENSOR.TOKEN_TYPES,
  473. gguf.MODEL_TENSOR.SSM_CONV1D,
  474. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  475. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  476. gguf.MODEL_TENSOR.TIME_MIX_W1,
  477. gguf.MODEL_TENSOR.TIME_MIX_W2,
  478. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  479. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  480. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  481. gguf.MODEL_TENSOR.POSNET_NORM1,
  482. gguf.MODEL_TENSOR.POSNET_NORM2,
  483. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  484. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  485. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  486. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  487. )
  488. )
  489. or new_name[-7:] not in (".weight", ".lora_a", ".lora_b")
  490. ):
  491. data_qtype = gguf.GGMLQuantizationType.F32
  492. if data_qtype is False and any(
  493. self.match_model_tensor_name(new_name, key, bid)
  494. for key in (
  495. gguf.MODEL_TENSOR.TOKEN_EMBD,
  496. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  497. gguf.MODEL_TENSOR.OUTPUT,
  498. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  499. gguf.MODEL_TENSOR.LAUREL_L,
  500. gguf.MODEL_TENSOR.LAUREL_R,
  501. )
  502. ):
  503. if self.ftype in (
  504. gguf.LlamaFileType.MOSTLY_TQ1_0,
  505. gguf.LlamaFileType.MOSTLY_TQ2_0,
  506. ):
  507. # TODO: use Q4_K and Q6_K
  508. data_qtype = gguf.GGMLQuantizationType.F16
  509. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  510. if isinstance(data_qtype, bool):
  511. if self.ftype == gguf.LlamaFileType.ALL_F32:
  512. data_qtype = gguf.GGMLQuantizationType.F32
  513. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  514. data_qtype = gguf.GGMLQuantizationType.F16
  515. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  516. data_qtype = gguf.GGMLQuantizationType.BF16
  517. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  518. data_qtype = gguf.GGMLQuantizationType.Q8_0
  519. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  520. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  521. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  522. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  523. else:
  524. raise ValueError(f"Unknown file type: {self.ftype.name}")
  525. try:
  526. data = gguf.quants.quantize(data, data_qtype)
  527. except gguf.QuantError as e:
  528. logger.warning("%s, %s", e, "falling back to F16")
  529. data_qtype = gguf.GGMLQuantizationType.F16
  530. data = gguf.quants.quantize(data, data_qtype)
  531. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  532. # reverse shape to make it similar to the internal ggml dimension order
  533. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  534. # n_dims is implicit in the shape
  535. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  536. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  537. def set_type(self):
  538. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  539. def prepare_metadata(self, vocab_only: bool):
  540. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  541. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  542. # If we are using HF model id, set the metadata name to the model id
  543. if self.remote_hf_model_id:
  544. self.metadata.name = self.remote_hf_model_id
  545. # Fallback to model directory name if metadata name is still missing
  546. if self.metadata.name is None:
  547. self.metadata.name = self.dir_model.name
  548. # Generate parameter weight class (useful for leader boards) if not yet determined
  549. if self.metadata.size_label is None and total_params > 0:
  550. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  551. self.set_type()
  552. logger.info("Set meta model")
  553. self.metadata.set_gguf_meta_model(self.gguf_writer)
  554. logger.info("Set model parameters")
  555. self.set_gguf_parameters()
  556. logger.info("Set model quantization version")
  557. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  558. def write_vocab(self):
  559. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  560. def write(self):
  561. self.prepare_tensors()
  562. self.prepare_metadata(vocab_only=False)
  563. self.gguf_writer.write_header_to_file(path=self.fname_out)
  564. self.gguf_writer.write_kv_data_to_file()
  565. self.gguf_writer.write_tensors_to_file(progress=True)
  566. self.gguf_writer.close()
  567. @staticmethod
  568. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  569. part_names: list[str] = []
  570. for filename in os.listdir(dir_model):
  571. if filename.startswith(prefix) and filename.endswith(suffix):
  572. part_names.append(filename)
  573. part_names.sort()
  574. return part_names
  575. @staticmethod
  576. def load_hparams(dir_model: Path, is_mistral_format: bool):
  577. if is_mistral_format:
  578. with open(dir_model / "params.json", "r", encoding="utf-8") as f:
  579. config = json.load(f)
  580. return config
  581. try:
  582. # for security reason, we don't allow loading remote code by default
  583. # if a model need remote code, we will fallback to config.json
  584. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  585. except Exception as e:
  586. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  587. logger.warning("Trying to load config.json instead")
  588. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  589. config = json.load(f)
  590. if "llm_config" in config:
  591. # rename for InternVL
  592. config["text_config"] = config["llm_config"]
  593. if "lm_config" in config:
  594. # rename for GlmASR
  595. config["text_config"] = config["lm_config"]
  596. if "thinker_config" in config:
  597. # rename for Qwen2.5-Omni
  598. config["text_config"] = config["thinker_config"]["text_config"]
  599. if "lfm" in config:
  600. # rename for LFM2-Audio
  601. config["text_config"] = config["lfm"]
  602. return config
  603. @classmethod
  604. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  605. assert names
  606. def func(modelcls: AnyModel) -> AnyModel:
  607. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  608. for name in names:
  609. cls._model_classes[model_type][name] = modelcls
  610. return modelcls
  611. return func
  612. @classmethod
  613. def print_registered_models(cls):
  614. for model_type, model_classes in cls._model_classes.items():
  615. logger.error(f"{model_type.name} models:")
  616. for name in sorted(model_classes.keys()):
  617. logger.error(f" - {name}")
  618. @classmethod
  619. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  620. try:
  621. return cls._model_classes[model_type][arch]
  622. except KeyError:
  623. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  624. class TextModel(ModelBase):
  625. model_type = ModelType.TEXT
  626. hf_arch: str
  627. def __init__(self, *args, **kwargs):
  628. super().__init__(*args, **kwargs)
  629. if not self.is_mistral_format:
  630. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  631. else:
  632. self.hf_arch = ""
  633. if "text_config" in self.hparams:
  634. # move the text_config to the root level
  635. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  636. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  637. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  638. self.rope_parameters = self.hparams.get("rope_parameters", self.hparams.get("rope_scaling")) or {}
  639. # Ensure "rope_theta" and "rope_type" is mirrored in rope_parameters
  640. if "full_attention" not in self.rope_parameters and "sliding_attention" not in self.rope_parameters:
  641. if "rope_theta" not in self.rope_parameters and (rope_theta := self.find_hparam(["rope_theta", "global_rope_theta", "rotary_emb_base"], optional=True)) is not None:
  642. self.rope_parameters["rope_theta"] = rope_theta
  643. if "rope_type" not in self.rope_parameters and (rope_type := self.rope_parameters.get("type")) is not None:
  644. self.rope_parameters["rope_type"] = rope_type
  645. @classmethod
  646. def __init_subclass__(cls):
  647. # can't use an abstract property, because overriding it without type errors
  648. # would require using decorated functions instead of simply defining the property
  649. if "model_arch" not in cls.__dict__:
  650. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  651. def set_vocab(self):
  652. self._set_vocab_gpt2()
  653. def prepare_metadata(self, vocab_only: bool):
  654. super().prepare_metadata(vocab_only=vocab_only)
  655. total_params = self.gguf_writer.get_total_parameter_count()[0]
  656. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  657. output_type: str = self.ftype.name.partition("_")[2]
  658. # Filename Output
  659. if self.fname_out.is_dir():
  660. # Generate default filename based on model specification and available metadata
  661. if not vocab_only:
  662. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  663. else:
  664. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  665. # Use the default filename
  666. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  667. else:
  668. # Output path is a custom defined templated filename
  669. # Note: `not is_dir()` is used because `.is_file()` will not detect
  670. # file template strings as it doesn't actually exist as a file
  671. # Process templated file name with the output ftype, useful with the "auto" ftype
  672. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  673. logger.info("Set model tokenizer")
  674. self.set_vocab()
  675. def set_gguf_parameters(self):
  676. self.gguf_writer.add_block_count(self.block_count)
  677. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length", "max_sequence_length", "model_max_length"], optional=True)) is not None:
  678. self.gguf_writer.add_context_length(n_ctx)
  679. logger.info(f"gguf: context length = {n_ctx}")
  680. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  681. self.gguf_writer.add_embedding_length(n_embd)
  682. logger.info(f"gguf: embedding length = {n_embd}")
  683. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  684. self.gguf_writer.add_feed_forward_length(n_ff)
  685. logger.info(f"gguf: feed forward length = {n_ff}")
  686. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  687. self.gguf_writer.add_head_count(n_head)
  688. logger.info(f"gguf: head count = {n_head}")
  689. if (n_head_kv := self.find_hparam(["num_key_value_heads", "n_kv_heads"], optional=True)) is not None:
  690. self.gguf_writer.add_head_count_kv(n_head_kv)
  691. logger.info(f"gguf: key-value head count = {n_head_kv}")
  692. rope_params = self.rope_parameters.get("full_attention", self.rope_parameters)
  693. if (rope_type := rope_params.get("rope_type")) is not None:
  694. rope_factor = rope_params.get("factor")
  695. rope_gguf_type = gguf.RopeScalingType.NONE
  696. if rope_type == "linear" and rope_factor is not None:
  697. rope_gguf_type = gguf.RopeScalingType.LINEAR
  698. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  699. self.gguf_writer.add_rope_scaling_factor(rope_factor)
  700. elif rope_type == "yarn" and rope_factor is not None:
  701. rope_gguf_type = gguf.RopeScalingType.YARN
  702. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  703. self.gguf_writer.add_rope_scaling_factor(rope_factor)
  704. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_params["original_max_position_embeddings"])
  705. if (yarn_ext_factor := rope_params.get("extrapolation_factor")) is not None:
  706. self.gguf_writer.add_rope_scaling_yarn_ext_factor(yarn_ext_factor)
  707. if (yarn_attn_factor := rope_params.get("attention_factor", rope_params.get("attn_factor"))) is not None:
  708. self.gguf_writer.add_rope_scaling_yarn_attn_factor(yarn_attn_factor)
  709. if (yarn_beta_fast := rope_params.get("beta_fast")) is not None:
  710. self.gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_beta_fast)
  711. if (yarn_beta_slow := rope_params.get("beta_slow")) is not None:
  712. self.gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_beta_slow)
  713. # self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"])
  714. elif rope_type == "su" or rope_type == "longrope":
  715. rope_gguf_type = gguf.RopeScalingType.LONGROPE
  716. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  717. elif rope_type == "dynamic":
  718. # HunYuan, handled in model class
  719. pass
  720. elif rope_type.lower() == "llama3":
  721. # Handled in generate_extra_tensors
  722. pass
  723. else:
  724. logger.warning(f"Unknown RoPE type: {rope_type}")
  725. logger.info(f"gguf: rope scaling type = {rope_gguf_type.name}")
  726. if "mrope_section" in self.rope_parameters:
  727. mrope_section = self.rope_parameters["mrope_section"]
  728. # Pad to 4 dimensions [time, height, width, extra]
  729. while len(mrope_section) < 4:
  730. mrope_section.append(0)
  731. self.gguf_writer.add_rope_dimension_sections(mrope_section[:4])
  732. logger.info(f"gguf: mrope sections: {mrope_section[:4]}")
  733. if (rope_theta := rope_params.get("rope_theta")) is not None:
  734. self.gguf_writer.add_rope_freq_base(rope_theta)
  735. logger.info(f"gguf: rope theta = {rope_theta}")
  736. if (f_rms_eps := self.find_hparam(["rms_norm_eps", "norm_eps"], optional=True)) is not None:
  737. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  738. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  739. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  740. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  741. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  742. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  743. self.gguf_writer.add_expert_count(n_experts)
  744. logger.info(f"gguf: expert count = {n_experts}")
  745. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  746. self.gguf_writer.add_expert_used_count(n_experts_used)
  747. logger.info(f"gguf: experts used count = {n_experts_used}")
  748. if (n_expert_groups := self.hparams.get("n_group")) is not None:
  749. self.gguf_writer.add_expert_group_count(n_expert_groups)
  750. logger.info(f"gguf: expert groups count = {n_expert_groups}")
  751. if (n_group_used := self.hparams.get("topk_group")) is not None:
  752. self.gguf_writer.add_expert_group_used_count(n_group_used)
  753. logger.info(f"gguf: expert groups used count = {n_group_used}")
  754. if (score_func := self.find_hparam(["score_function", "scoring_func", "score_func"], optional=True)) is not None:
  755. if score_func == "sigmoid":
  756. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  757. elif score_func == "softmax":
  758. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  759. else:
  760. raise ValueError(f"Unsupported expert score gating function value: {score_func}")
  761. logger.info(f"gguf: expert score gating function = {score_func}")
  762. if (head_dim := self.hparams.get("head_dim")) is not None:
  763. self.gguf_writer.add_key_length(head_dim)
  764. self.gguf_writer.add_value_length(head_dim)
  765. self.gguf_writer.add_file_type(self.ftype)
  766. logger.info(f"gguf: file type = {self.ftype}")
  767. def write_vocab(self):
  768. if len(self.gguf_writer.tensors) != 1:
  769. raise ValueError('Splitting the vocabulary is not supported')
  770. self.prepare_metadata(vocab_only=True)
  771. self.gguf_writer.write_header_to_file(path=self.fname_out)
  772. self.gguf_writer.write_kv_data_to_file()
  773. self.gguf_writer.close()
  774. def does_token_look_special(self, token: str | bytes) -> bool:
  775. if isinstance(token, (bytes, bytearray)):
  776. token_text = token.decode(encoding="utf-8")
  777. elif isinstance(token, memoryview):
  778. token_text = token.tobytes().decode(encoding="utf-8")
  779. else:
  780. token_text = token
  781. # Some models mark some added tokens which ought to be control tokens as not special.
  782. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  783. seems_special = token_text in (
  784. "<pad>", # deepseek-coder
  785. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  786. )
  787. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  788. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  789. # TODO: should these be marked as UNUSED instead? (maybe not)
  790. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  791. return seems_special
  792. # used for GPT-2 BPE and WordPiece vocabs
  793. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  794. tokens: list[str] = []
  795. toktypes: list[int] = []
  796. from transformers import AutoTokenizer
  797. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  798. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  799. assert max(tokenizer.vocab.values()) < vocab_size
  800. tokpre = self.get_vocab_base_pre(tokenizer)
  801. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  802. added_vocab = tokenizer.get_added_vocab()
  803. added_tokens_decoder = tokenizer.added_tokens_decoder
  804. for i in range(vocab_size):
  805. if i not in reverse_vocab:
  806. tokens.append(f"[PAD{i}]")
  807. toktypes.append(gguf.TokenType.UNUSED)
  808. else:
  809. token: str = reverse_vocab[i]
  810. if token in added_vocab:
  811. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  812. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  813. if not added_tokens_decoder[i].normalized:
  814. previous_token = token
  815. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  816. if previous_token != token:
  817. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  818. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  819. toktypes.append(gguf.TokenType.CONTROL)
  820. else:
  821. # NOTE: this was added for Gemma.
  822. # Encoding and decoding the tokens above isn't sufficient for this case.
  823. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  824. toktypes.append(gguf.TokenType.USER_DEFINED)
  825. else:
  826. toktypes.append(gguf.TokenType.NORMAL)
  827. tokens.append(token)
  828. return tokens, toktypes, tokpre
  829. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  830. # do not modify it manually!
  831. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  832. # Marker: Start get_vocab_base_pre
  833. def get_vocab_base_pre(self, tokenizer) -> str:
  834. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  835. # is specific for the BPE pre-tokenizer used by the model
  836. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  837. # use in llama.cpp to implement the same pre-tokenizer
  838. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  839. chktok = tokenizer.encode(chktxt)
  840. chkhsh = sha256(str(chktok).encode()).hexdigest()
  841. logger.debug(f"chktok: {chktok}")
  842. logger.debug(f"chkhsh: {chkhsh}")
  843. res = None
  844. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  845. # or pull the latest version of the model from Huggingface
  846. # don't edit the hashes manually!
  847. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  848. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  849. res = "chatglm-bpe"
  850. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  851. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  852. res = "chatglm-bpe"
  853. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  854. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  855. res = "glm4"
  856. if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902":
  857. # ref: https://huggingface.co/zai-org/GLM-4.5-Air
  858. res = "glm4"
  859. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  860. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  861. res = "minerva-7b"
  862. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  863. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  864. res = "hunyuan"
  865. if chkhsh == "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6":
  866. # ref: https://huggingface.co/tencent/Hunyuan-4B-Instruct
  867. res = "hunyuan-dense"
  868. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  869. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  870. res = "falcon-h1"
  871. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  872. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  873. res = "falcon-h1"
  874. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  875. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  876. res = "falcon-h1"
  877. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  878. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  879. res = "falcon-h1"
  880. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  881. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  882. res = "kimi-k2"
  883. if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
  884. # ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
  885. res = "qwen2"
  886. if chkhsh == "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273":
  887. # ref: https://huggingface.co/alvarobartt/grok-2-tokenizer
  888. res = "grok-2"
  889. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  890. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  891. res = "llama-bpe"
  892. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  893. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  894. res = "deepseek-llm"
  895. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  896. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  897. res = "deepseek-coder"
  898. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  899. # ref: https://huggingface.co/tiiuae/falcon-7b
  900. res = "falcon"
  901. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  902. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  903. res = "bert-bge"
  904. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  905. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  906. res = "falcon3"
  907. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  908. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  909. res = "bert-bge-large"
  910. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  911. # ref: https://huggingface.co/mosaicml/mpt-7b
  912. res = "mpt"
  913. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  914. # ref: https://huggingface.co/bigcode/starcoder2-3b
  915. res = "starcoder"
  916. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  917. # ref: https://huggingface.co/openai-community/gpt2
  918. res = "gpt-2"
  919. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  920. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  921. res = "stablelm2"
  922. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  923. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  924. res = "refact"
  925. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  926. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  927. res = "command-r"
  928. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  929. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  930. res = "qwen2"
  931. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  932. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  933. res = "olmo"
  934. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  935. # ref: https://huggingface.co/databricks/dbrx-base
  936. res = "dbrx"
  937. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  938. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  939. res = "jina-v1-en"
  940. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  941. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  942. res = "jina-v2-en"
  943. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  944. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  945. res = "jina-v2-es"
  946. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  947. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  948. res = "jina-v2-de"
  949. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  950. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  951. res = "smaug-bpe"
  952. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  953. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  954. res = "poro-chat"
  955. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  956. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  957. res = "jina-v2-code"
  958. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  959. # ref: https://huggingface.co/LumiOpen/Viking-7B
  960. res = "viking"
  961. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  962. # ref: https://huggingface.co/core42/jais-13b
  963. res = "jais"
  964. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  965. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  966. res = "codeshell"
  967. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  968. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  969. res = "tekken"
  970. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  971. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  972. res = "smollm"
  973. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  974. # ref: https://huggingface.co/bigscience/bloom
  975. res = "bloom"
  976. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  977. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  978. res = "gpt3-finnish"
  979. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  980. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  981. res = "exaone"
  982. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  983. # ref: https://huggingface.co/microsoft/phi-2
  984. res = "phi-2"
  985. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  986. # ref: https://huggingface.co/facebook/chameleon-7b
  987. res = "chameleon"
  988. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  989. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  990. res = "roberta-bpe"
  991. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  992. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  993. res = "gigachat"
  994. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  995. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  996. res = "megrez"
  997. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  998. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  999. res = "deepseek-v3"
  1000. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  1001. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  1002. res = "deepseek-r1-qwen"
  1003. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  1004. # ref: https://huggingface.co/Xenova/gpt-4o
  1005. res = "gpt-4o"
  1006. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  1007. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  1008. res = "superbpe"
  1009. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  1010. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  1011. res = "trillion"
  1012. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  1013. # ref: https://huggingface.co/inclusionAI/Ling-lite
  1014. res = "bailingmoe"
  1015. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  1016. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  1017. res = "llama4"
  1018. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  1019. # ref: https://huggingface.co/mistral-community/pixtral-12b
  1020. res = "pixtral"
  1021. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  1022. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  1023. res = "seed-coder"
  1024. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  1025. # ref: https://huggingface.co/skt/A.X-4.0
  1026. res = "a.x-4.0"
  1027. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  1028. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  1029. res = "midm-2.0"
  1030. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  1031. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  1032. res = "lfm2"
  1033. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  1034. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  1035. res = "exaone4"
  1036. if chkhsh == "a1e163ecab2e718a4c829d1148b6e86824ec36163bb71941c3dca9cd5ac25756":
  1037. # ref: https://huggingface.co/JetBrains/Mellum-4b-base
  1038. res = "mellum"
  1039. if chkhsh == "49fc0303c9e0d2c2c565c510f64b2d9b271276acdcdadff733249eda9f7d59df":
  1040. # ref: https://huggingface.co/arcee-ai/Trinity-Tokenizer
  1041. res = "afmoe"
  1042. if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206":
  1043. # ref: https://huggingface.co/inclusionAI/Ling-mini-base-2.0
  1044. res = "bailingmoe2"
  1045. if chkhsh == "53e325976a6e142379c19b09afcae354f2f496f147afa8f9e189a33fe4e3024e":
  1046. # ref: https://huggingface.co/ibm-granite/granite-docling-258M
  1047. res = "granite-docling"
  1048. if chkhsh == "f4f37b6c8eb9ea29b3eac6bb8c8487c5ab7885f8d8022e67edc1c68ce8403e95":
  1049. # ref: https://huggingface.co/MiniMaxAI/MiniMax-M2
  1050. res = "minimax-m2"
  1051. if chkhsh == "4a2e2abae11ca2b86d570fc5b44be4d5eb5e72cc8f22dd136a94b37da83ab665":
  1052. # ref: https://huggingface.co/KORMo-Team/KORMo-tokenizer
  1053. res = "kormo"
  1054. if res is None:
  1055. logger.warning("\n")
  1056. logger.warning("**************************************************************************************")
  1057. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  1058. logger.warning("** There are 2 possible reasons for this:")
  1059. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  1060. logger.warning("** - the pre-tokenization config has changed upstream")
  1061. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  1062. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  1063. logger.warning("**")
  1064. logger.warning(f"** chkhsh: {chkhsh}")
  1065. logger.warning("**************************************************************************************")
  1066. logger.warning("\n")
  1067. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  1068. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  1069. logger.debug(f"chkhsh: {chkhsh}")
  1070. return res
  1071. # Marker: End get_vocab_base_pre
  1072. def _set_vocab_none(self) -> None:
  1073. self.gguf_writer.add_tokenizer_model("none")
  1074. def _set_vocab_gpt2(self) -> None:
  1075. tokens, toktypes, tokpre = self.get_vocab_base()
  1076. self.gguf_writer.add_tokenizer_model("gpt2")
  1077. self.gguf_writer.add_tokenizer_pre(tokpre)
  1078. self.gguf_writer.add_token_list(tokens)
  1079. self.gguf_writer.add_token_types(toktypes)
  1080. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1081. special_vocab.add_to_gguf(self.gguf_writer)
  1082. def _set_vocab_qwen(self):
  1083. dir_model = self.dir_model
  1084. hparams = self.hparams
  1085. tokens: list[str] = []
  1086. toktypes: list[int] = []
  1087. from transformers import AutoTokenizer
  1088. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  1089. vocab_size = hparams["vocab_size"]
  1090. assert max(tokenizer.get_vocab().values()) < vocab_size
  1091. tokpre = self.get_vocab_base_pre(tokenizer)
  1092. merges = []
  1093. vocab = {}
  1094. mergeable_ranks = tokenizer.mergeable_ranks
  1095. for token, rank in mergeable_ranks.items():
  1096. vocab[QwenModel.token_bytes_to_string(token)] = rank
  1097. if len(token) == 1:
  1098. continue
  1099. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  1100. assert len(merged) == 2
  1101. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  1102. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  1103. added_vocab = tokenizer.special_tokens
  1104. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  1105. for i in range(vocab_size):
  1106. if i not in reverse_vocab:
  1107. tokens.append(f"[PAD{i}]")
  1108. toktypes.append(gguf.TokenType.UNUSED)
  1109. elif reverse_vocab[i] in added_vocab:
  1110. tokens.append(reverse_vocab[i])
  1111. toktypes.append(gguf.TokenType.CONTROL)
  1112. else:
  1113. tokens.append(reverse_vocab[i])
  1114. toktypes.append(gguf.TokenType.NORMAL)
  1115. self.gguf_writer.add_tokenizer_model("gpt2")
  1116. self.gguf_writer.add_tokenizer_pre(tokpre)
  1117. self.gguf_writer.add_token_list(tokens)
  1118. self.gguf_writer.add_token_types(toktypes)
  1119. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  1120. special_vocab.merges = merges
  1121. # only add special tokens when they were not already loaded from config.json
  1122. if len(special_vocab.special_token_ids) == 0:
  1123. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  1124. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  1125. # this one is usually not in config.json anyway
  1126. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  1127. special_vocab.add_to_gguf(self.gguf_writer)
  1128. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  1129. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  1130. self.gguf_writer.add_tokenizer_model("llama")
  1131. self.gguf_writer.add_tokenizer_pre("default")
  1132. self.gguf_writer.add_token_list(tokens)
  1133. self.gguf_writer.add_token_scores(scores)
  1134. self.gguf_writer.add_token_types(toktypes)
  1135. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1136. special_vocab.add_to_gguf(self.gguf_writer)
  1137. def _create_vocab_sentencepiece(self):
  1138. from sentencepiece import SentencePieceProcessor
  1139. tokenizer_path = self.dir_model / 'tokenizer.model'
  1140. if not tokenizer_path.is_file():
  1141. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  1142. tokenizer = SentencePieceProcessor()
  1143. tokenizer.LoadFromFile(str(tokenizer_path))
  1144. vocab_size = self.find_hparam([
  1145. "vocab_size_per_layer_input", # gemma3n
  1146. "vocab_size",
  1147. ], optional=True) or tokenizer.vocab_size()
  1148. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1149. scores: list[float] = [-10000.0] * vocab_size
  1150. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1151. for token_id in range(tokenizer.vocab_size()):
  1152. if token_id >= vocab_size:
  1153. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  1154. break
  1155. piece = tokenizer.IdToPiece(token_id)
  1156. text = piece.encode("utf-8")
  1157. score = tokenizer.GetScore(token_id)
  1158. toktype = SentencePieceTokenTypes.NORMAL
  1159. if tokenizer.IsUnknown(token_id):
  1160. toktype = SentencePieceTokenTypes.UNKNOWN
  1161. elif tokenizer.IsControl(token_id):
  1162. toktype = SentencePieceTokenTypes.CONTROL
  1163. elif tokenizer.IsUnused(token_id):
  1164. toktype = SentencePieceTokenTypes.UNUSED
  1165. elif tokenizer.IsByte(token_id):
  1166. toktype = SentencePieceTokenTypes.BYTE
  1167. tokens[token_id] = text
  1168. scores[token_id] = score
  1169. toktypes[token_id] = toktype
  1170. added_tokens_file = self.dir_model / 'added_tokens.json'
  1171. if added_tokens_file.is_file():
  1172. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1173. added_tokens_json = json.load(f)
  1174. for key in added_tokens_json:
  1175. token_id = added_tokens_json[key]
  1176. if token_id >= vocab_size:
  1177. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1178. continue
  1179. tokens[token_id] = key.encode("utf-8")
  1180. scores[token_id] = -1000.0
  1181. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1182. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1183. if tokenizer_config_file.is_file():
  1184. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1185. tokenizer_config_json = json.load(f)
  1186. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1187. for token_id, token_data in added_tokens_decoder.items():
  1188. token_id = int(token_id)
  1189. token: str = token_data["content"]
  1190. if token_id >= vocab_size:
  1191. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1192. continue
  1193. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1194. if tokens[token_id] != token.encode("utf-8"):
  1195. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  1196. if token_data.get("special") or self.does_token_look_special(token):
  1197. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1198. else:
  1199. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  1200. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1201. scores[token_id] = -1000.0
  1202. tokens[token_id] = token.encode("utf-8")
  1203. if vocab_size > len(tokens):
  1204. pad_count = vocab_size - len(tokens)
  1205. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  1206. for i in range(1, pad_count + 1):
  1207. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  1208. scores.append(-1000.0)
  1209. toktypes.append(SentencePieceTokenTypes.UNUSED)
  1210. return tokens, scores, toktypes
  1211. def _set_vocab_llama_hf(self):
  1212. vocab = gguf.LlamaHfVocab(self.dir_model)
  1213. tokens = []
  1214. scores = []
  1215. toktypes = []
  1216. for text, score, toktype in vocab.all_tokens():
  1217. tokens.append(text)
  1218. scores.append(score)
  1219. toktypes.append(toktype)
  1220. assert len(tokens) == vocab.vocab_size
  1221. self.gguf_writer.add_tokenizer_model("llama")
  1222. self.gguf_writer.add_tokenizer_pre("default")
  1223. self.gguf_writer.add_token_list(tokens)
  1224. self.gguf_writer.add_token_scores(scores)
  1225. self.gguf_writer.add_token_types(toktypes)
  1226. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1227. special_vocab.add_to_gguf(self.gguf_writer)
  1228. def _set_vocab_rwkv_world(self):
  1229. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  1230. vocab_size = self.hparams.get("vocab_size", 65536)
  1231. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  1232. toktypes: list[int] = [gguf.TokenType.CONTROL]
  1233. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  1234. lines = f.readlines()
  1235. for line in lines:
  1236. parts = line.split(' ')
  1237. assert len(parts) >= 3
  1238. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  1239. token = token.encode("utf-8") if isinstance(token, str) else token
  1240. assert isinstance(token, bytes)
  1241. assert len(token) == token_len
  1242. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  1243. tokens.append(token_text.encode("utf-8"))
  1244. toktypes.append(gguf.TokenType.NORMAL)
  1245. remainder = vocab_size - len(tokens)
  1246. assert remainder >= 0
  1247. for i in range(len(tokens), vocab_size):
  1248. tokens.append(f"[PAD{i}]".encode("utf-8"))
  1249. toktypes.append(gguf.TokenType.UNUSED)
  1250. self.gguf_writer.add_tokenizer_model("rwkv")
  1251. self.gguf_writer.add_token_list(tokens)
  1252. self.gguf_writer.add_token_types(toktypes)
  1253. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  1254. if special_vocab.chat_template is None:
  1255. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  1256. if template_path.is_file():
  1257. with open(template_path, "r", encoding="utf-8") as f:
  1258. template = f.read()
  1259. else:
  1260. template = "rwkv-world"
  1261. special_vocab.chat_template = template
  1262. # hack: Add '\n\n' as the EOT token to make it chat normally
  1263. special_vocab._set_special_token("eot", 261)
  1264. # hack: Override these as they have already been set (incorrectly)
  1265. special_vocab.special_token_ids["bos"] = 0
  1266. special_vocab.special_token_ids["eos"] = 0
  1267. special_vocab.add_to_gguf(self.gguf_writer)
  1268. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  1269. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  1270. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1271. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  1272. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  1273. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1274. assert field # tokenizer model
  1275. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  1276. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  1277. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  1278. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1279. assert field # token list
  1280. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1281. if model_name == "llama-spm":
  1282. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  1283. assert field # token scores
  1284. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1285. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1286. assert field # token types
  1287. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1288. if model_name != "llama-spm":
  1289. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1290. assert field # token merges
  1291. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1292. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  1293. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1294. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  1295. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1296. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  1297. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1298. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  1299. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  1300. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  1301. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  1302. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  1303. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  1304. def _try_set_pooling_type(self) -> None:
  1305. # get pooling path
  1306. pooling_path = None
  1307. module_path = self.dir_model / "modules.json"
  1308. if module_path.is_file():
  1309. with open(module_path, encoding="utf-8") as f:
  1310. modules = json.load(f)
  1311. for mod in modules:
  1312. if mod["type"] == "sentence_transformers.models.Pooling":
  1313. pooling_path = mod["path"]
  1314. break
  1315. # get pooling type
  1316. if pooling_path is not None:
  1317. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1318. pooling = json.load(f)
  1319. if pooling["pooling_mode_mean_tokens"]:
  1320. pooling_type = gguf.PoolingType.MEAN
  1321. elif pooling["pooling_mode_cls_token"]:
  1322. pooling_type = gguf.PoolingType.CLS
  1323. elif pooling["pooling_mode_lasttoken"]:
  1324. pooling_type = gguf.PoolingType.LAST
  1325. else:
  1326. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  1327. self.gguf_writer.add_pooling_type(pooling_type)
  1328. def _set_vocab_glmedge(self):
  1329. from transformers import AutoTokenizer
  1330. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  1331. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1332. tokens, toktypes, tokpre = self.get_vocab_base()
  1333. self.gguf_writer.add_tokenizer_model("gpt2")
  1334. self.gguf_writer.add_tokenizer_pre(tokpre)
  1335. self.gguf_writer.add_token_list(tokens)
  1336. self.gguf_writer.add_token_types(toktypes)
  1337. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  1338. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  1339. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  1340. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  1341. special_vocab.add_to_gguf(self.gguf_writer)
  1342. def _set_vocab_interns1(self):
  1343. tokens: list[str] = []
  1344. toktypes: list[int] = []
  1345. from transformers import AutoTokenizer
  1346. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  1347. vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
  1348. vocab_size = self.hparams.get("vocab_size", len(vocab))
  1349. assert max(vocab.values()) < vocab_size
  1350. tokpre = self.get_vocab_base_pre(tokenizer)
  1351. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
  1352. added_vocab = tokenizer.get_added_vocab()
  1353. added_tokens_decoder = tokenizer.added_tokens_decoder
  1354. for i in range(vocab_size):
  1355. if i not in reverse_vocab:
  1356. tokens.append(f"[PAD{i}]")
  1357. toktypes.append(gguf.TokenType.UNUSED)
  1358. else:
  1359. token: str = reverse_vocab[i]
  1360. if token in added_vocab:
  1361. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  1362. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  1363. if not added_tokens_decoder[i].normalized:
  1364. previous_token = token
  1365. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  1366. if previous_token != token:
  1367. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  1368. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  1369. toktypes.append(gguf.TokenType.CONTROL)
  1370. else:
  1371. toktypes.append(gguf.TokenType.USER_DEFINED)
  1372. else:
  1373. toktypes.append(gguf.TokenType.NORMAL)
  1374. tokens.append(token)
  1375. self.gguf_writer.add_tokenizer_model("gpt2")
  1376. self.gguf_writer.add_tokenizer_pre(tokpre)
  1377. self.gguf_writer.add_token_list(tokens)
  1378. self.gguf_writer.add_token_types(toktypes)
  1379. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1380. special_vocab._set_special_token("bos", 151643)
  1381. special_vocab.add_to_gguf(self.gguf_writer)
  1382. def _set_vocab_mistral(self):
  1383. if not _mistral_common_installed:
  1384. raise ImportError(_mistral_import_error_msg)
  1385. vocab = MistralVocab(self.dir_model)
  1386. logger.info(
  1387. f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
  1388. )
  1389. self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
  1390. tokens = []
  1391. scores = []
  1392. toktypes = []
  1393. for text, score, toktype in vocab.all_tokens():
  1394. tokens.append(text)
  1395. scores.append(score)
  1396. toktypes.append(toktype)
  1397. assert len(tokens) == vocab.vocab_size, (
  1398. f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
  1399. )
  1400. if vocab.tokenizer_type == MistralTokenizerType.tekken:
  1401. self.gguf_writer.add_tokenizer_pre("tekken")
  1402. self.gguf_writer.add_token_merges(
  1403. vocab.extract_vocab_merges_from_model()
  1404. )
  1405. logger.info(
  1406. f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
  1407. )
  1408. self.gguf_writer.add_bos_token_id(vocab.bos_id)
  1409. self.gguf_writer.add_eos_token_id(vocab.eos_id)
  1410. self.gguf_writer.add_unk_token_id(vocab.unk_id)
  1411. self.gguf_writer.add_pad_token_id(vocab.pad_id)
  1412. self.gguf_writer.add_token_list(tokens)
  1413. self.gguf_writer.add_token_scores(scores)
  1414. self.gguf_writer.add_token_types(toktypes)
  1415. self.gguf_writer.add_vocab_size(vocab.vocab_size)
  1416. self.gguf_writer.add_add_bos_token(True)
  1417. self.gguf_writer.add_add_eos_token(False)
  1418. local_template_file_path = self.dir_model / "chat_template.jinja"
  1419. if self.is_mistral_format and local_template_file_path.is_file():
  1420. # Ministral-3 and other new Mistral models come with chat templates.
  1421. # ref: https://huggingface.co/mistralai/Ministral-3-14B-Instruct-2512/tree/main
  1422. logger.info("Using an existing Mistral local chat template.")
  1423. with open(local_template_file_path, "r", encoding="utf-8") as f:
  1424. template = f.read()
  1425. elif not self.is_mistral_format or not self.disable_mistral_community_chat_template:
  1426. template_dir = Path(__file__).parent / "models/templates/"
  1427. # Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
  1428. if self.is_mistral_format:
  1429. logger.info(
  1430. "Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
  1431. "Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
  1432. )
  1433. template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
  1434. else:
  1435. logger.info("Not using a Mistral local or community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
  1436. template = None
  1437. if template is not None:
  1438. self.gguf_writer.add_chat_template(template)
  1439. class MmprojModel(ModelBase):
  1440. model_type = ModelType.MMPROJ
  1441. model_arch = gguf.MODEL_ARCH.MMPROJ
  1442. preprocessor_config: dict[str, Any]
  1443. global_config: dict[str, Any]
  1444. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth", "encoder_layers"]
  1445. has_vision_encoder: bool = True # by default
  1446. has_audio_encoder: bool = False
  1447. # for models having multiple encoders, we need to separate their hparams
  1448. hparams_vision: dict[str, Any] | None = None
  1449. hparams_audio: dict[str, Any] | None = None
  1450. def __init__(self, *args, **kwargs):
  1451. super().__init__(*args, **kwargs)
  1452. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1453. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1454. # get n_embd of the text model
  1455. if not self.is_mistral_format:
  1456. if "text_config" not in self.hparams:
  1457. self.hparams["text_config"] = {}
  1458. if "audio_config" not in self.hparams:
  1459. self.hparams["audio_config"] = {}
  1460. text_config = {**self.hparams, **self.hparams["text_config"]}
  1461. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1462. else:
  1463. text_config = {
  1464. k: v for k, v in self.hparams.items() if k not in ["vision_encoder", "audio_encoder"]
  1465. }
  1466. self.n_embd_text = text_config.get("hidden_dim", 0)
  1467. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1468. # move vision config to the top level, while preserving the original hparams in global_config
  1469. import copy
  1470. self.global_config = copy.deepcopy(self.hparams)
  1471. self.hparams_vision = self.get_vision_config()
  1472. self.hparams_audio = self.get_audio_config()
  1473. if self.hparams_vision is None and self.hparams_audio is None:
  1474. raise ValueError("vision_config / audio_config not found in hparams")
  1475. # for compat with vision-only models
  1476. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1477. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1478. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1479. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1480. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1481. # load preprocessor config
  1482. self.preprocessor_config = {}
  1483. # prefer preprocessor_config.json if possible
  1484. preprocessor_config_path = self.dir_model / "preprocessor_config.json"
  1485. if preprocessor_config_path.is_file():
  1486. with open(preprocessor_config_path, "r", encoding="utf-8") as f:
  1487. self.preprocessor_config = json.load(f)
  1488. # prefer processor_config.json if possible
  1489. processor_config_path = self.dir_model / "processor_config.json"
  1490. if processor_config_path.is_file():
  1491. with open(processor_config_path, "r", encoding="utf-8") as f:
  1492. cfg = json.load(f)
  1493. # move image_processor to root level for compat
  1494. if "image_processor" in cfg:
  1495. cfg = {
  1496. **cfg,
  1497. **cfg["image_processor"],
  1498. }
  1499. # merge configs
  1500. self.preprocessor_config = {**self.preprocessor_config, **cfg}
  1501. def get_vision_config(self) -> dict[str, Any] | None:
  1502. config_name = "vision_config" if not self.is_mistral_format else "vision_encoder"
  1503. return self.global_config.get(config_name)
  1504. def get_audio_config(self) -> dict[str, Any] | None:
  1505. mm_config_key = "whisper_config" if "whisper_config" in self.hparams else "audio_config"
  1506. return self.global_config.get(mm_config_key)
  1507. def set_type(self):
  1508. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1509. def prepare_metadata(self, vocab_only: bool):
  1510. super().prepare_metadata(vocab_only=vocab_only)
  1511. output_type: str = self.ftype.name.partition("_")[2]
  1512. if self.fname_out.is_dir():
  1513. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=output_type, model_type=None)
  1514. self.fname_out = self.fname_out / f"mmproj-{fname_default}.gguf"
  1515. else:
  1516. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  1517. def set_gguf_parameters(self):
  1518. self.gguf_writer.add_file_type(self.ftype)
  1519. if self.has_vision_encoder:
  1520. self.gguf_writer.add_clip_has_vision_encoder(True)
  1521. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1522. # vision config
  1523. self.image_size = self.find_vparam(["image_size"])
  1524. self.gguf_writer.add_vision_image_size(self.image_size)
  1525. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1526. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1527. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1528. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1529. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads", "num_heads"]))
  1530. # preprocessor config
  1531. image_mean = _MISTRAL_COMMON_DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"]
  1532. image_std = _MISTRAL_COMMON_DATASET_STD if self.is_mistral_format else self.preprocessor_config["image_std"]
  1533. self.gguf_writer.add_vision_image_mean(image_mean)
  1534. self.gguf_writer.add_vision_image_std(image_std)
  1535. if self.has_audio_encoder:
  1536. self.gguf_writer.add_clip_has_audio_encoder(True)
  1537. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1538. # audio config
  1539. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1540. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1541. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1542. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1543. if not self.has_vision_encoder and not self.has_audio_encoder:
  1544. raise ValueError("MmprojModel must have either vision or audio encoder")
  1545. def write_vocab(self):
  1546. raise ValueError("MmprojModel does not support vocab writing")
  1547. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1548. assert self.hparams_vision is not None
  1549. return self._find_param(self.hparams_vision, keys, optional)
  1550. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1551. assert self.hparams_audio is not None
  1552. return self._find_param(self.hparams_audio, keys, optional)
  1553. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1554. key = next((k for k in keys if k in obj), None)
  1555. if key is not None:
  1556. return obj[key]
  1557. if optional:
  1558. return None
  1559. raise KeyError(f"could not find any of: {keys}")
  1560. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1561. del bid, name, n_dims # unused
  1562. if ".patch_embd.weight" in new_name or ".patch_merger.weight" in new_name:
  1563. return gguf.GGMLQuantizationType.F16 if self.ftype == gguf.LlamaFileType.MOSTLY_F16 else gguf.GGMLQuantizationType.F32
  1564. return False
  1565. @ModelBase.register("GPTNeoXForCausalLM")
  1566. class GPTNeoXModel(TextModel):
  1567. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1568. def set_gguf_parameters(self):
  1569. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1570. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1571. self.gguf_writer.add_block_count(self.block_count)
  1572. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1573. self.gguf_writer.add_rope_dimension_count(
  1574. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1575. )
  1576. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1577. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1578. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1579. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1580. del bid # unused
  1581. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1582. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1583. tensors: list[tuple[str, Tensor]] = []
  1584. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1585. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1586. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1587. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1588. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1589. data_torch = torch.cat(
  1590. (
  1591. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1592. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1593. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1594. ),
  1595. dim=0,
  1596. )
  1597. logger.info("re-format attention.linear_qkv.weight")
  1598. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1599. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1600. data_torch = torch.cat(
  1601. (
  1602. qkv_bias[:, 0, :].reshape((n_embed,)),
  1603. qkv_bias[:, 1, :].reshape((n_embed,)),
  1604. qkv_bias[:, 2, :].reshape((n_embed,)),
  1605. ),
  1606. dim=0,
  1607. )
  1608. logger.info("re-format attention.linear_qkv.bias")
  1609. tensors.append((self.map_tensor_name(name), data_torch))
  1610. return tensors
  1611. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1612. class BloomModel(TextModel):
  1613. model_arch = gguf.MODEL_ARCH.BLOOM
  1614. def set_gguf_parameters(self):
  1615. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1616. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1617. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1618. self.gguf_writer.add_embedding_length(n_embed)
  1619. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1620. self.gguf_writer.add_block_count(self.block_count)
  1621. self.gguf_writer.add_head_count(n_head)
  1622. self.gguf_writer.add_head_count_kv(n_head)
  1623. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1624. self.gguf_writer.add_file_type(self.ftype)
  1625. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1626. del bid # unused
  1627. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1628. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1629. name = re.sub(r'transformer\.', '', name)
  1630. tensors: list[tuple[str, Tensor]] = []
  1631. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1632. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1633. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1634. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1635. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1636. data_torch = torch.cat(
  1637. (
  1638. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1639. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1640. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1641. ),
  1642. dim=0,
  1643. )
  1644. logger.info("re-format attention.linear_qkv.weight")
  1645. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1646. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1647. data_torch = torch.cat(
  1648. (
  1649. qkv_bias[:, 0, :].reshape((n_embed,)),
  1650. qkv_bias[:, 1, :].reshape((n_embed,)),
  1651. qkv_bias[:, 2, :].reshape((n_embed,)),
  1652. ),
  1653. dim=0,
  1654. )
  1655. logger.info("re-format attention.linear_qkv.bias")
  1656. tensors.append((self.map_tensor_name(name), data_torch))
  1657. return tensors
  1658. @ModelBase.register("MPTForCausalLM")
  1659. class MPTModel(TextModel):
  1660. model_arch = gguf.MODEL_ARCH.MPT
  1661. def set_vocab(self):
  1662. try:
  1663. self._set_vocab_gpt2()
  1664. except Exception:
  1665. # Fallback for SEA-LION model
  1666. self._set_vocab_sentencepiece()
  1667. self.gguf_writer.add_add_bos_token(False)
  1668. self.gguf_writer.add_pad_token_id(3)
  1669. self.gguf_writer.add_eos_token_id(1)
  1670. self.gguf_writer.add_unk_token_id(0)
  1671. def set_gguf_parameters(self):
  1672. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1673. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1674. self.gguf_writer.add_block_count(self.block_count)
  1675. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1676. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1677. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1678. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1679. self.gguf_writer.add_layer_norm_eps(1e-5)
  1680. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1681. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1682. if self.hparams["attn_config"]["alibi"]:
  1683. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1684. else:
  1685. self.gguf_writer.add_max_alibi_bias(0.0)
  1686. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1687. del bid # unused
  1688. if "scales" in name:
  1689. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1690. new_name = new_name.replace("scales", "act.scales")
  1691. else:
  1692. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1693. return [(new_name, data_torch)]
  1694. @ModelBase.register("OrionForCausalLM")
  1695. class OrionModel(TextModel):
  1696. model_arch = gguf.MODEL_ARCH.ORION
  1697. def set_vocab(self):
  1698. self._set_vocab_sentencepiece()
  1699. def set_gguf_parameters(self):
  1700. head_count = self.hparams["num_attention_heads"]
  1701. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1702. ctx_length = 0
  1703. if "max_sequence_length" in self.hparams:
  1704. ctx_length = self.hparams["max_sequence_length"]
  1705. elif "max_position_embeddings" in self.hparams:
  1706. ctx_length = self.hparams["max_position_embeddings"]
  1707. elif "model_max_length" in self.hparams:
  1708. ctx_length = self.hparams["model_max_length"]
  1709. else:
  1710. raise ValueError("gguf: can not find ctx length parameter.")
  1711. self.gguf_writer.add_file_type(self.ftype)
  1712. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1713. self.gguf_writer.add_context_length(ctx_length)
  1714. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1715. self.gguf_writer.add_block_count(self.block_count)
  1716. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1717. self.gguf_writer.add_head_count(head_count)
  1718. self.gguf_writer.add_head_count_kv(head_count_kv)
  1719. # note: config provides rms norm but it is actually layer norm
  1720. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1721. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1722. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1723. class BaichuanModel(TextModel):
  1724. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1725. def set_vocab(self):
  1726. self._set_vocab_sentencepiece()
  1727. def set_gguf_parameters(self):
  1728. super().set_gguf_parameters()
  1729. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1730. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1731. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1732. head_count = self.hparams["num_attention_heads"]
  1733. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1734. tensors: list[tuple[str, Tensor]] = []
  1735. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1736. logger.info(f"Unpacking and permuting layer {bid}")
  1737. tensors = [
  1738. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1739. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1740. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1741. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1742. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1743. self._reverse_hf_part(data_torch, 2)),
  1744. ]
  1745. else:
  1746. tensors = [(self.map_tensor_name(name), data_torch)]
  1747. return tensors
  1748. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1749. if n_kv_head is not None and n_head != n_kv_head:
  1750. n_head //= n_kv_head
  1751. return (
  1752. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1753. .swapaxes(1, 2)
  1754. .reshape(weights.shape)
  1755. )
  1756. def _reverse_hf_permute_part(
  1757. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1758. ) -> Tensor:
  1759. r = weights.shape[0] // 3
  1760. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1761. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1762. r = weights.shape[0] // 3
  1763. return weights[r * n_part:r * n_part + r, ...]
  1764. @ModelBase.register("XverseForCausalLM")
  1765. class XverseModel(TextModel):
  1766. model_arch = gguf.MODEL_ARCH.XVERSE
  1767. def set_vocab(self):
  1768. assert (self.dir_model / "tokenizer.json").is_file()
  1769. dir_model = self.dir_model
  1770. hparams = self.hparams
  1771. tokens: list[bytes] = []
  1772. toktypes: list[int] = []
  1773. from transformers import AutoTokenizer
  1774. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1775. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1776. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1777. # because vocab_size is the count of items, and indexes start at 0.
  1778. max_vocab_index = max(tokenizer.get_vocab().values())
  1779. if max_vocab_index >= vocab_size:
  1780. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1781. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1782. added_vocab = tokenizer.get_added_vocab()
  1783. for token_id in range(vocab_size):
  1784. token_text = reverse_vocab[token_id].encode('utf-8')
  1785. # replace "\x00" to string with length > 0
  1786. if token_text == b"\x00":
  1787. toktype = gguf.TokenType.BYTE # special
  1788. token_text = f"<{token_text}>".encode('utf-8')
  1789. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1790. toktype = gguf.TokenType.BYTE # special
  1791. elif reverse_vocab[token_id] in added_vocab:
  1792. if tokenizer.added_tokens_decoder[token_id].special:
  1793. toktype = gguf.TokenType.CONTROL
  1794. else:
  1795. toktype = gguf.TokenType.USER_DEFINED
  1796. else:
  1797. toktype = gguf.TokenType.NORMAL
  1798. tokens.append(token_text)
  1799. toktypes.append(toktype)
  1800. self.gguf_writer.add_tokenizer_model("llama")
  1801. self.gguf_writer.add_tokenizer_pre("default")
  1802. self.gguf_writer.add_token_list(tokens)
  1803. self.gguf_writer.add_token_types(toktypes)
  1804. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1805. special_vocab.add_to_gguf(self.gguf_writer)
  1806. def set_gguf_parameters(self):
  1807. super().set_gguf_parameters()
  1808. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1809. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1810. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1811. del bid # unused
  1812. head_count = self.hparams["num_attention_heads"]
  1813. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1814. # HF models permute some of the tensors, so we need to undo that
  1815. if name.endswith("q_proj.weight"):
  1816. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1817. if name.endswith("k_proj.weight"):
  1818. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1819. return [(self.map_tensor_name(name), data_torch)]
  1820. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1821. if n_kv_head is not None and n_head != n_kv_head:
  1822. n_head //= n_kv_head
  1823. return (
  1824. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1825. .swapaxes(1, 2)
  1826. .reshape(weights.shape)
  1827. )
  1828. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1829. class FalconModel(TextModel):
  1830. model_arch = gguf.MODEL_ARCH.FALCON
  1831. def set_gguf_parameters(self):
  1832. n_head = self.hparams.get("num_attention_heads")
  1833. if n_head is None:
  1834. n_head = self.hparams["n_head"] # old name
  1835. n_head_kv = self.hparams.get("num_kv_heads")
  1836. if n_head_kv is None:
  1837. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1838. self.gguf_writer.add_context_length(2048) # not in config.json
  1839. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1840. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1841. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1842. self.gguf_writer.add_block_count(self.block_count)
  1843. self.gguf_writer.add_head_count(n_head)
  1844. self.gguf_writer.add_head_count_kv(n_head_kv)
  1845. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1846. self.gguf_writer.add_file_type(self.ftype)
  1847. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1848. del bid # unused
  1849. # QKV tensor transform
  1850. # The original query_key_value tensor contains n_head_kv "kv groups",
  1851. # each consisting of n_head/n_head_kv query weights followed by one key
  1852. # and one value weight (shared by all query heads in the kv group).
  1853. # This layout makes it a big pain to work with in GGML.
  1854. # So we rearrange them here,, so that we have n_head query weights
  1855. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1856. # in contiguous fashion.
  1857. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1858. if "query_key_value" in name:
  1859. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1860. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1861. head_dim = self.hparams["hidden_size"] // n_head
  1862. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1863. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1864. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1865. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1866. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1867. return [(self.map_tensor_name(name), data_torch)]
  1868. @ModelBase.register("GPTBigCodeForCausalLM")
  1869. class StarCoderModel(TextModel):
  1870. model_arch = gguf.MODEL_ARCH.STARCODER
  1871. def set_gguf_parameters(self):
  1872. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1873. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1874. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1875. self.gguf_writer.add_block_count(self.block_count)
  1876. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1877. self.gguf_writer.add_head_count_kv(1)
  1878. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1879. self.gguf_writer.add_file_type(self.ftype)
  1880. @ModelBase.register("GPTRefactForCausalLM")
  1881. class RefactModel(TextModel):
  1882. model_arch = gguf.MODEL_ARCH.REFACT
  1883. def set_vocab(self):
  1884. super().set_vocab()
  1885. # TODO: how to determine special FIM tokens automatically?
  1886. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1887. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1888. special_vocab._set_special_token("prefix", 1)
  1889. special_vocab._set_special_token("suffix", 3)
  1890. special_vocab._set_special_token("middle", 2)
  1891. special_vocab.chat_template = None # do not add it twice
  1892. special_vocab.add_to_gguf(self.gguf_writer)
  1893. def set_gguf_parameters(self):
  1894. hidden_dim = self.hparams["n_embd"]
  1895. inner_dim = 4 * hidden_dim
  1896. hidden_dim = int(2 * inner_dim / 3)
  1897. multiple_of = 256
  1898. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1899. # refact uses Alibi. So this is from config.json which might be used by training.
  1900. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1901. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1902. self.gguf_writer.add_feed_forward_length(ff_dim)
  1903. self.gguf_writer.add_block_count(self.block_count)
  1904. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1905. self.gguf_writer.add_head_count_kv(1)
  1906. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1907. self.gguf_writer.add_file_type(self.ftype)
  1908. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1909. hidden_dim = self.hparams["n_embd"]
  1910. inner_dim = 4 * hidden_dim
  1911. hidden_dim = int(2 * inner_dim / 3)
  1912. multiple_of = 256
  1913. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1914. n_head = self.hparams["n_head"]
  1915. n_head_kv = 1
  1916. head_dim = self.hparams["n_embd"] // n_head
  1917. tensors: list[tuple[str, Tensor]] = []
  1918. if bid is not None:
  1919. if name == f"transformer.h.{bid}.attn.kv.weight":
  1920. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1921. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1922. elif name == f"transformer.h.{bid}.attn.q.weight":
  1923. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1924. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1925. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1926. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1927. if len(tensors) == 0:
  1928. tensors.append((self.map_tensor_name(name), data_torch))
  1929. return tensors
  1930. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1931. class StableLMModel(TextModel):
  1932. model_arch = gguf.MODEL_ARCH.STABLELM
  1933. def set_vocab(self):
  1934. if (self.dir_model / "tokenizer.json").is_file():
  1935. self._set_vocab_gpt2()
  1936. else:
  1937. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1938. self._set_vocab_qwen()
  1939. def set_gguf_parameters(self):
  1940. hparams = self.hparams
  1941. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1942. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1943. self.gguf_writer.add_block_count(self.block_count)
  1944. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1945. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1946. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1947. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1948. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1949. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1950. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1951. self.gguf_writer.add_file_type(self.ftype)
  1952. _q_norms: list[dict[str, Tensor]] | None = None
  1953. _k_norms: list[dict[str, Tensor]] | None = None
  1954. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1955. n_head = self.hparams["num_attention_heads"]
  1956. n_kv_head = self.hparams["num_key_value_heads"]
  1957. if name.find("q_layernorm.norms") != -1:
  1958. assert bid is not None
  1959. if self._q_norms is None:
  1960. self._q_norms = [{} for _ in range(self.block_count)]
  1961. self._q_norms[bid][name] = data_torch
  1962. if len(self._q_norms[bid]) >= n_head:
  1963. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1964. else:
  1965. return []
  1966. if name.find("k_layernorm.norms") != -1:
  1967. assert bid is not None
  1968. if self._k_norms is None:
  1969. self._k_norms = [{} for _ in range(self.block_count)]
  1970. self._k_norms[bid][name] = data_torch
  1971. if len(self._k_norms[bid]) >= n_kv_head:
  1972. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1973. else:
  1974. return []
  1975. return [(self.map_tensor_name(name), data_torch)]
  1976. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1977. datas: list[Tensor] = []
  1978. # extract the norms in order
  1979. for xid in range(n_head):
  1980. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1981. datas.append(norms[ename])
  1982. del norms[ename]
  1983. data_torch = torch.stack(datas, dim=0)
  1984. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1985. new_name = self.map_tensor_name(merged_name)
  1986. return [(new_name, data_torch)]
  1987. def prepare_tensors(self):
  1988. super().prepare_tensors()
  1989. if self._q_norms is not None or self._k_norms is not None:
  1990. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1991. norms = (
  1992. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1993. ) + (
  1994. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1995. )
  1996. if len(norms) > 0:
  1997. raise ValueError(f"Unprocessed norms: {norms}")
  1998. @ModelBase.register(
  1999. "LLaMAForCausalLM",
  2000. "LlamaForCausalLM",
  2001. "MistralForCausalLM",
  2002. "MixtralForCausalLM",
  2003. "VLlama3ForCausalLM",
  2004. "LlavaForConditionalGeneration",
  2005. "VoxtralForConditionalGeneration",
  2006. "LlamaModel")
  2007. class LlamaModel(TextModel):
  2008. model_arch = gguf.MODEL_ARCH.LLAMA
  2009. undo_permute = True
  2010. def __init__(self, *args, **kwargs):
  2011. super().__init__(*args, **kwargs)
  2012. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  2013. if self.hf_arch == "VLlama3ForCausalLM":
  2014. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  2015. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  2016. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  2017. def set_vocab(self):
  2018. if self.origin_hf_arch == "GlmasrModel":
  2019. return self._set_vocab_glmedge()
  2020. if self.is_mistral_format:
  2021. return self._set_vocab_mistral()
  2022. path_tekken_json = self.dir_model / "tekken.json"
  2023. path_tokenizer_json = self.dir_model / "tokenizer.json"
  2024. if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
  2025. self._set_vocab_mistral()
  2026. try:
  2027. self._set_vocab_sentencepiece()
  2028. except FileNotFoundError:
  2029. try:
  2030. self._set_vocab_llama_hf()
  2031. except (FileNotFoundError, TypeError):
  2032. # Llama 3
  2033. self._set_vocab_gpt2()
  2034. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  2035. if self.hparams.get("vocab_size", 32000) == 32016:
  2036. special_vocab = gguf.SpecialVocab(
  2037. self.dir_model, load_merges=False,
  2038. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  2039. )
  2040. special_vocab._set_special_token("prefix", 32007)
  2041. special_vocab._set_special_token("suffix", 32008)
  2042. special_vocab._set_special_token("middle", 32009)
  2043. special_vocab._set_special_token("eot", 32010)
  2044. special_vocab.add_to_gguf(self.gguf_writer)
  2045. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2046. if tokenizer_config_file.is_file():
  2047. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2048. tokenizer_config_json = json.load(f)
  2049. if "add_prefix_space" in tokenizer_config_json:
  2050. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2051. # Apply to granite small models only
  2052. if self.hparams.get("vocab_size", 32000) == 49152:
  2053. self.gguf_writer.add_add_bos_token(False)
  2054. def set_gguf_parameters(self):
  2055. super().set_gguf_parameters()
  2056. hparams = self.hparams
  2057. if not self.is_mistral_format:
  2058. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2059. if (rope_dim := hparams.get("head_dim")) is None:
  2060. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2061. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2062. @staticmethod
  2063. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2064. if n_head_kv is not None and n_head != n_head_kv:
  2065. n_head = n_head_kv
  2066. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2067. .swapaxes(1, 2)
  2068. .reshape(weights.shape))
  2069. _experts: list[dict[str, Tensor]] | None = None
  2070. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2071. n_head = self.find_hparam(["n_heads", "num_attention_heads"])
  2072. n_kv_head = self.find_hparam(["n_kv_heads", "num_key_value_heads"])
  2073. vision_prefixes = [
  2074. "vision_encoder.",
  2075. "vision_language_adapter.",
  2076. "patch_merger.",
  2077. "pre_mm_projector_norm",
  2078. "audio_encoder.",
  2079. ]
  2080. is_multimodal_tensor = "vision_tower" in name \
  2081. or "vision_model" in name \
  2082. or "audio_tower" in name \
  2083. or "model.connector" in name \
  2084. or "multi_modal_projector" in name \
  2085. or any(
  2086. name.startswith(prefix)
  2087. for prefix in vision_prefixes
  2088. )
  2089. if is_multimodal_tensor:
  2090. return [] # skip vision tensors
  2091. elif self.hf_arch == "LlamaModel":
  2092. name = "model." + name
  2093. elif name.startswith("model.text_model"):
  2094. name = name.replace("text_model.", "") # for SmolVLM
  2095. elif name.startswith("language_model."):
  2096. name = name.replace("language_model.", "") # for the rest
  2097. if self.undo_permute:
  2098. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2099. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2100. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2101. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2102. # process the experts separately
  2103. if name.find("block_sparse_moe.experts") != -1:
  2104. n_experts = self.hparams["num_local_experts"]
  2105. assert bid is not None
  2106. if self._experts is None:
  2107. self._experts = [{} for _ in range(self.block_count)]
  2108. self._experts[bid][name] = data_torch
  2109. if len(self._experts[bid]) >= n_experts * 3:
  2110. tensors: list[tuple[str, Tensor]] = []
  2111. # merge the experts into a single 3d tensor
  2112. for wid in ["w1", "w2", "w3"]:
  2113. datas: list[Tensor] = []
  2114. for xid in range(n_experts):
  2115. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2116. datas.append(self._experts[bid][ename])
  2117. del self._experts[bid][ename]
  2118. data_torch = torch.stack(datas, dim=0)
  2119. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2120. new_name = self.map_tensor_name(merged_name)
  2121. tensors.append((new_name, data_torch))
  2122. return tensors
  2123. else:
  2124. return []
  2125. return [(self.map_tensor_name(name), data_torch)]
  2126. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2127. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  2128. if rope_params.get("rope_type", '').lower() == "llama3":
  2129. base = rope_params.get("rope_theta", 10000.0)
  2130. if (dim := self.hparams.get("head_dim")) is None:
  2131. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2132. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2133. factor = rope_params.get("factor", 8.0)
  2134. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  2135. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  2136. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2137. low_freq_wavelen = old_context_len / low_freq_factor
  2138. high_freq_wavelen = old_context_len / high_freq_factor
  2139. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  2140. rope_factors = []
  2141. for freq in freqs:
  2142. wavelen = 2 * math.pi / freq
  2143. if wavelen < high_freq_wavelen:
  2144. rope_factors.append(1)
  2145. elif wavelen > low_freq_wavelen:
  2146. rope_factors.append(factor)
  2147. else:
  2148. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2149. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2150. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2151. def prepare_tensors(self):
  2152. super().prepare_tensors()
  2153. if self._experts is not None:
  2154. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2155. experts = [k for d in self._experts for k in d.keys()]
  2156. if len(experts) > 0:
  2157. raise ValueError(f"Unprocessed experts: {experts}")
  2158. @ModelBase.register("ArceeForCausalLM")
  2159. class ArceeModel(LlamaModel):
  2160. model_arch = gguf.MODEL_ARCH.ARCEE
  2161. def set_gguf_parameters(self):
  2162. super().set_gguf_parameters()
  2163. self._try_set_pooling_type()
  2164. @ModelBase.register("AfmoeForCausalLM")
  2165. class AfmoeModel(LlamaModel):
  2166. model_arch = gguf.MODEL_ARCH.AFMOE
  2167. def set_gguf_parameters(self):
  2168. super().set_gguf_parameters()
  2169. # MoE parameters
  2170. if (n_experts := self.hparams.get("num_experts")) is not None:
  2171. self.gguf_writer.add_expert_count(n_experts)
  2172. if (n_shared_experts := self.hparams.get("num_shared_experts")) is not None:
  2173. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  2174. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2175. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2176. if (n_dense_layers := self.hparams.get("num_dense_layers")) is not None:
  2177. self.gguf_writer.add_leading_dense_block_count(n_dense_layers)
  2178. # Route normalization and scaling
  2179. if (route_norm := self.hparams.get("route_norm")) is not None:
  2180. self.gguf_writer.add_expert_weights_norm(route_norm)
  2181. if (route_scale := self.hparams.get("route_scale")) is not None:
  2182. self.gguf_writer.add_expert_weights_scale(route_scale)
  2183. # Sliding window attention
  2184. if (sliding_window := self.hparams.get("sliding_window")) is not None:
  2185. self.gguf_writer.add_sliding_window(sliding_window)
  2186. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2187. # Handle expert weights - they're already merged in the HF format
  2188. # process the experts separately
  2189. if name.find("mlp.experts") != -1:
  2190. n_experts = self.hparams["num_experts"]
  2191. assert bid is not None
  2192. if self._experts is None:
  2193. self._experts = [{} for _ in range(self.block_count)]
  2194. self._experts[bid][name] = data_torch
  2195. if len(self._experts[bid]) >= n_experts * 3:
  2196. tensors: list[tuple[str, Tensor]] = []
  2197. # merge the experts into a single 3d tensor
  2198. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2199. datas: list[Tensor] = []
  2200. for xid in range(n_experts):
  2201. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2202. datas.append(self._experts[bid][ename_to_retrieve])
  2203. del self._experts[bid][ename_to_retrieve]
  2204. data_torch = torch.stack(datas, dim=0)
  2205. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2206. new_name = self.map_tensor_name(merged_name)
  2207. tensors.append((new_name, data_torch))
  2208. return tensors
  2209. else:
  2210. return []
  2211. if name.endswith(".expert_bias"):
  2212. name = name.replace(".expert_bias", ".expert_bias.bias")
  2213. return [(self.map_tensor_name(name), data_torch)]
  2214. @ModelBase.register(
  2215. "LlavaForConditionalGeneration", # pixtral
  2216. "Mistral3ForConditionalGeneration", # mistral small 3.1
  2217. )
  2218. class LlavaVisionModel(MmprojModel):
  2219. img_break_tok_id = -1
  2220. use_break_tok = True
  2221. def __init__(self, *args, **kwargs):
  2222. super().__init__(*args, **kwargs)
  2223. if self.hparams.get("model_type") == "pixtral":
  2224. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  2225. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  2226. if self.use_break_tok:
  2227. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  2228. elif self.is_mistral_format:
  2229. # hparams is already vision config here so norm_eps is only defined in global_config.
  2230. self.hparams["norm_eps"] = self.global_config.get("norm_eps", None)
  2231. assert self.hparams["norm_eps"] is not None, "norm_eps not found in params.json"
  2232. if self.use_break_tok:
  2233. self.img_break_tok_id = self.find_vparam(["image_break_token_id"])
  2234. else:
  2235. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  2236. logger.info(f"Image break token id: {self.img_break_tok_id}")
  2237. def get_token_id(self, token: str) -> int:
  2238. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2239. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2240. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  2241. for id_, token_data in added_tokens_decoder.items():
  2242. if token_data["content"] == token:
  2243. return int(id_)
  2244. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  2245. def set_gguf_parameters(self):
  2246. super().set_gguf_parameters()
  2247. hparams = self.hparams
  2248. if hparams.get("model_type") == "pixtral":
  2249. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  2250. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2251. # hidden_act
  2252. if hparams["hidden_act"] == "silu":
  2253. self.gguf_writer.add_vision_use_silu(True)
  2254. elif hparams["hidden_act"] == "gelu":
  2255. self.gguf_writer.add_vision_use_gelu(True)
  2256. else:
  2257. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2258. # spatial_merge_size
  2259. if "spatial_merge_size" in self.global_config:
  2260. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  2261. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2262. del bid # unused
  2263. n_head = (
  2264. self.hparams["num_attention_heads"] if not self.is_mistral_format else self.find_vparam(["num_attention_heads"])
  2265. )
  2266. n_kv_head = n_head
  2267. valid_prefixes = (
  2268. "multi_modal_projector.",
  2269. "vision_tower.",
  2270. "vision_encoder.",
  2271. "vision_language_adapter.",
  2272. "patch_merger.",
  2273. "pre_mm_projector_norm",
  2274. )
  2275. if any(name.startswith(prefix) for prefix in valid_prefixes):
  2276. # process vision tensors
  2277. if name.endswith(("q_proj.weight", "q_proj.bias")) and not self.is_mistral_format:
  2278. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2279. if name.endswith(("k_proj.weight", "k_proj.bias")) and not self.is_mistral_format:
  2280. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2281. return [(self.map_tensor_name(name), data_torch)]
  2282. embed_key = "embed_tokens.weight" if not self.is_mistral_format else "tok_embeddings.weight"
  2283. if self.img_break_tok_id > 0 and embed_key in name:
  2284. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  2285. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  2286. img_break_embd = data_torch[self.img_break_tok_id]
  2287. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  2288. return [(self.map_tensor_name(name), img_break_embd)]
  2289. return [] # skip other tensors
  2290. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  2291. class SmolVLMModel(MmprojModel):
  2292. def __init__(self, *args, **kwargs):
  2293. super().__init__(*args, **kwargs)
  2294. if self.hparams["model_type"] == "smolvlm_vision":
  2295. # fix for SmolVLM2, missing some keys in config.json
  2296. # default values are taken from transformers code
  2297. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  2298. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  2299. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  2300. def set_gguf_parameters(self):
  2301. super().set_gguf_parameters()
  2302. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  2303. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  2304. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  2305. self.gguf_writer.add_vision_use_gelu(True)
  2306. # Add the preprocessor longest edge size
  2307. preproc_image_size = self.preprocessor_config.get("size", {}).get("longest_edge", self.image_size)
  2308. self.gguf_writer.add_vision_preproc_image_size(preproc_image_size)
  2309. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2310. if ".embeddings." in name:
  2311. return gguf.GGMLQuantizationType.F32
  2312. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2313. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2314. del bid # unused
  2315. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  2316. if is_vision_tensor:
  2317. return [(self.map_tensor_name(name), data_torch)]
  2318. return [] # skip other tensors
  2319. @ModelBase.register(
  2320. "Llama4ForConditionalGeneration",
  2321. "Llama4ForCausalLM",
  2322. )
  2323. class Llama4Model(LlamaModel):
  2324. model_arch = gguf.MODEL_ARCH.LLAMA4
  2325. undo_permute = False
  2326. def __init__(self, *args, **kwargs):
  2327. super().__init__(*args, **kwargs)
  2328. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  2329. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  2330. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  2331. def set_vocab(self):
  2332. self._set_vocab_gpt2()
  2333. def set_gguf_parameters(self):
  2334. super().set_gguf_parameters()
  2335. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  2336. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  2337. if "layer_types" in self.hparams:
  2338. if all(lt == "full_attention" for lt in self.hparams["layer_types"]):
  2339. # all layers are full attention (for MobileLLM), disable swa
  2340. self.gguf_writer.add_sliding_window(0)
  2341. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2342. if name.startswith("language_model."):
  2343. name = name.replace("language_model.", "")
  2344. # split the gate_up into gate and up
  2345. if "gate_up_proj" in name:
  2346. name_up = name.replace("gate_up_proj", "up_proj.weight")
  2347. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  2348. dim_half = data_torch.shape[-1] // 2
  2349. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  2350. return [
  2351. (self.map_tensor_name(name_gate), gate_proj_weight),
  2352. (self.map_tensor_name(name_up), up_proj_weight)
  2353. ]
  2354. if name.endswith("down_proj"):
  2355. name += ".weight"
  2356. data_torch = data_torch.transpose(-1, -2)
  2357. if "multi_modal_projector" in name or "vision_model" in name:
  2358. return []
  2359. return super().modify_tensors(data_torch, name, bid)
  2360. @ModelBase.register("Llama4ForConditionalGeneration")
  2361. class Llama4VisionModel(MmprojModel):
  2362. def set_gguf_parameters(self):
  2363. super().set_gguf_parameters()
  2364. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  2365. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  2366. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  2367. assert self.hparams["hidden_act"] == "gelu"
  2368. self.gguf_writer.add_vision_use_gelu(True)
  2369. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2370. del bid # unused
  2371. if "multi_modal_projector" in name or "vision_model" in name:
  2372. # process vision tensors
  2373. if "positional_embedding_vlm" in name and ".weight" not in name:
  2374. name += ".weight"
  2375. if "multi_modal_projector.linear_1" in name:
  2376. # despite the name with number postfix, this is a single fully connected layer
  2377. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  2378. return [(self.map_tensor_name(name), data_torch)]
  2379. return []
  2380. @ModelBase.register("Mistral3ForConditionalGeneration")
  2381. class Mistral3Model(LlamaModel):
  2382. model_arch = gguf.MODEL_ARCH.MISTRAL3
  2383. def __init__(self, *args, **kwargs):
  2384. super().__init__(*args, **kwargs)
  2385. # for compatibility, we use LLAMA arch for older models
  2386. # TODO: remove this once everyone has migrated to newer version of llama.cpp
  2387. if self.hparams.get("model_type") != "ministral3":
  2388. self.model_arch = gguf.MODEL_ARCH.LLAMA
  2389. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
  2390. self.gguf_writer.add_architecture()
  2391. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  2392. def set_gguf_parameters(self):
  2393. super().set_gguf_parameters()
  2394. rope_params = self.rope_parameters
  2395. if self.hparams.get("model_type") == "ministral3":
  2396. assert rope_params, "ministral3 must have 'rope_parameters' config"
  2397. assert rope_params["rope_type"] == "yarn", "ministral3 rope_type must be 'yarn'"
  2398. self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"])
  2399. self.gguf_writer.add_attn_temperature_scale(rope_params["llama_4_scaling_beta"])
  2400. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2401. name = name.replace("language_model.", "")
  2402. if "multi_modal_projector" in name or "vision_tower" in name:
  2403. return []
  2404. return super().modify_tensors(data_torch, name, bid)
  2405. @ModelBase.register("DeciLMForCausalLM")
  2406. class DeciModel(TextModel):
  2407. model_arch = gguf.MODEL_ARCH.DECI
  2408. @staticmethod
  2409. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  2410. # DeciLM-specific code
  2411. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  2412. return DeciModel._find_multiple(intermediate_size, 256)
  2413. @staticmethod
  2414. def _find_multiple(n: int, k: int) -> int:
  2415. # DeciLM-specific code
  2416. if n % k == 0:
  2417. return n
  2418. return n + k - (n % k)
  2419. def __init__(self, *args, **kwargs):
  2420. super().__init__(*args, **kwargs)
  2421. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2422. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  2423. assert self.block_count == len(_block_configs)
  2424. self._num_kv_heads = list()
  2425. self._num_heads = list()
  2426. _ffn_multipliers = list()
  2427. # ***linear attention layer***
  2428. # if n_heads_in_group is None and replace_with_linear is True
  2429. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  2430. # ***attention-free layer***
  2431. # if n_heads_in_group is None and replace_with_linear is False
  2432. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  2433. # ***normal attention-layer***
  2434. # if n_heads_in_group is not None, then
  2435. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  2436. # _num_heads[il] is num_attention_head
  2437. # ***dummy layer*** for nemotron 253B
  2438. # if n_heads_in_group is None and ffn_mult is None
  2439. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  2440. for il in range(len(_block_configs)):
  2441. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  2442. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  2443. self._num_kv_heads.append(0)
  2444. self._num_heads.append(self.hparams["num_attention_heads"])
  2445. else:
  2446. self._num_kv_heads.append(0)
  2447. self._num_heads.append(0)
  2448. else:
  2449. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  2450. self._num_heads.append(self.hparams["num_attention_heads"])
  2451. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  2452. _ffn_multipliers.append(0.0)
  2453. else:
  2454. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  2455. assert self.block_count == len(self._num_kv_heads)
  2456. assert self.block_count == len(self._num_heads)
  2457. assert self.block_count == len(_ffn_multipliers)
  2458. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2459. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  2460. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  2461. self._ffn_dims: list[int] = [
  2462. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  2463. for multiplier in _ffn_multipliers
  2464. ]
  2465. def set_vocab(self):
  2466. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  2467. # eos_token from '|eot_id|' to '|end_of_text|'
  2468. if self.hparams.get("vocab_size", 128256) == 128256:
  2469. tokens, toktypes, tokpre = self.get_vocab_base()
  2470. self.gguf_writer.add_tokenizer_model("gpt2")
  2471. self.gguf_writer.add_tokenizer_pre(tokpre)
  2472. self.gguf_writer.add_token_list(tokens)
  2473. self.gguf_writer.add_token_types(toktypes)
  2474. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  2475. special_vocab.add_to_gguf(self.gguf_writer)
  2476. else:
  2477. # DeciLM-7B
  2478. self._set_vocab_llama_hf()
  2479. def set_gguf_parameters(self):
  2480. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2481. assert self.block_count == len(self._num_kv_heads)
  2482. assert self.block_count == len(self._num_heads)
  2483. assert self.block_count == len(self._ffn_dims)
  2484. if (rope_theta := self.rope_parameters.get("rope_theta")) is not None:
  2485. self.gguf_writer.add_rope_freq_base(rope_theta)
  2486. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2487. self.gguf_writer.add_head_count(self._num_heads)
  2488. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2489. self.gguf_writer.add_block_count(self.block_count)
  2490. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2491. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2492. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2493. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2494. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2495. self.gguf_writer.add_file_type(self.ftype)
  2496. else: # DeciLM-7B
  2497. super().set_gguf_parameters()
  2498. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  2499. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  2500. assert self.block_count == len(self._num_kv_heads)
  2501. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2502. hparams = self.hparams
  2503. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2504. if (rope_dim := hparams.get("head_dim")) is None:
  2505. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2506. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2507. @staticmethod
  2508. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2509. if n_head_kv is not None and n_head != n_head_kv:
  2510. n_head = n_head_kv
  2511. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2512. .swapaxes(1, 2)
  2513. .reshape(weights.shape))
  2514. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2515. n_head = self.hparams["num_attention_heads"]
  2516. if bid is not None:
  2517. if "num_key_value_heads_per_layer" in self.hparams:
  2518. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  2519. elif "block_configs" in self.hparams:
  2520. n_kv_head = self._num_kv_heads[bid]
  2521. n_head = self._num_heads[bid]
  2522. else:
  2523. n_kv_head = self.hparams.get("num_key_value_heads")
  2524. else:
  2525. n_kv_head = self.hparams.get("num_key_value_heads")
  2526. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2527. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  2528. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2529. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  2530. return [(self.map_tensor_name(name), data_torch)]
  2531. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2532. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  2533. if rope_params.get("rope_type", '').lower() == "llama3":
  2534. base = rope_params.get("rope_theta", 10000.0)
  2535. if (dim := self.hparams.get("head_dim")) is None:
  2536. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2537. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2538. factor = rope_params.get("factor", 8.0)
  2539. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  2540. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  2541. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2542. low_freq_wavelen = old_context_len / low_freq_factor
  2543. high_freq_wavelen = old_context_len / high_freq_factor
  2544. assert low_freq_wavelen != high_freq_wavelen
  2545. rope_factors = []
  2546. for freq in freqs:
  2547. wavelen = 2 * math.pi / freq
  2548. if wavelen < high_freq_wavelen:
  2549. rope_factors.append(1)
  2550. elif wavelen > low_freq_wavelen:
  2551. rope_factors.append(factor)
  2552. else:
  2553. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2554. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2555. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2556. def prepare_tensors(self):
  2557. super().prepare_tensors()
  2558. @ModelBase.register("BitnetForCausalLM")
  2559. class BitnetModel(TextModel):
  2560. model_arch = gguf.MODEL_ARCH.BITNET
  2561. def set_vocab(self):
  2562. self._set_vocab_sentencepiece()
  2563. def set_gguf_parameters(self):
  2564. super().set_gguf_parameters()
  2565. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2566. self.gguf_writer.add_rope_scaling_factor(1.0)
  2567. def weight_quant(self, weight: Tensor) -> Tensor:
  2568. dtype = weight.dtype
  2569. weight = weight.float()
  2570. scale = weight.abs().mean().clamp(min=1e-5)
  2571. iscale = 1 / scale
  2572. # TODO: multiply by the scale directly instead of inverting it twice
  2573. # (this is also unnecessarily doubly inverted upstream)
  2574. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2575. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2576. return result.type(dtype)
  2577. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2578. new_name = self.map_tensor_name(name)
  2579. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2580. gguf.MODEL_TENSOR.ATTN_Q,
  2581. gguf.MODEL_TENSOR.ATTN_K,
  2582. gguf.MODEL_TENSOR.ATTN_V,
  2583. gguf.MODEL_TENSOR.ATTN_OUT,
  2584. gguf.MODEL_TENSOR.FFN_UP,
  2585. gguf.MODEL_TENSOR.FFN_DOWN,
  2586. gguf.MODEL_TENSOR.FFN_GATE,
  2587. ]):
  2588. # transform weight into 1/0/-1 (in fp32)
  2589. data_torch = self.weight_quant(data_torch)
  2590. yield (new_name, data_torch)
  2591. @ModelBase.register("GrokForCausalLM", "Grok1ForCausalLM")
  2592. class GrokModel(TextModel):
  2593. model_arch = gguf.MODEL_ARCH.GROK
  2594. def set_vocab(self):
  2595. if (self.dir_model / 'tokenizer.model').is_file():
  2596. self._set_vocab_sentencepiece()
  2597. return
  2598. if not (self.dir_model / 'tokenizer.json').is_file() or not (self.dir_model / 'chat_template.jinja').is_file():
  2599. logger.error('Error: Missing vocab and chat template, download files from https://huggingface.co/alvarobartt/grok-2-tokenizer')
  2600. sys.exit(1)
  2601. self._set_vocab_gpt2()
  2602. def __init__(self, *args, **kwargs):
  2603. super().__init__(*args, **kwargs)
  2604. def set_gguf_parameters(self):
  2605. super().set_gguf_parameters()
  2606. self.gguf_writer.add_attn_logit_softcapping(self.hparams.get("attn_logit_softcapping", 30.0))
  2607. self.gguf_writer.add_router_logit_softcapping(self.hparams.get("router_logit_softcapping", 30.0))
  2608. if (final_logit_softcap := self.hparams.get("final_logit_softcapping")):
  2609. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  2610. if (rope_dim := self.hparams.get("head_dim")) is None:
  2611. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2612. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2613. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2614. # Treat "original" as "yarn", seems to have been a mistake
  2615. if self.hparams.get("rope_type") in ("yarn", "original"):
  2616. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2617. self.gguf_writer.add_rope_scaling_factor(self.hparams["scaling_factor"])
  2618. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["original_max_position_embeddings"])
  2619. self.gguf_writer.add_rope_scaling_yarn_ext_factor(self.hparams["extrapolation_factor"])
  2620. self.gguf_writer.add_rope_scaling_yarn_attn_factor(self.hparams["attn_factor"])
  2621. self.gguf_writer.add_rope_scaling_yarn_beta_fast(self.hparams["beta_fast"])
  2622. self.gguf_writer.add_rope_scaling_yarn_beta_slow(self.hparams["beta_slow"])
  2623. if temp_len := self.hparams.get("attn_temperature_len"):
  2624. self.gguf_writer.add_attn_temperature_length(temp_len)
  2625. self.gguf_writer.add_attn_output_scale(self.hparams.get("attn_output_multiplier", rope_dim**-0.5))
  2626. self.gguf_writer.add_embedding_scale(self.hparams["embedding_multiplier_scale"])
  2627. self.gguf_writer.add_logit_scale(self.hparams["output_multiplier_scale"])
  2628. _experts: list[dict[str, list[Tensor]]] | None = None
  2629. _cur_expert = ""
  2630. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2631. tensors: list[tuple[str, Tensor]] = []
  2632. is_expert = ".moe." in name or ".block_sparse_moe.experts." in name
  2633. if not is_expert:
  2634. tensors.append((self.map_tensor_name(name), data_torch))
  2635. # process the experts separately
  2636. if is_expert or self._cur_expert:
  2637. n_experts = self.hparams["num_local_experts"]
  2638. assert bid is not None
  2639. if self._experts is None:
  2640. self._experts = [{} for _ in range(self.block_count)]
  2641. # concatenate split tensors
  2642. if name in self._experts[bid]:
  2643. self._cur_expert = name
  2644. self._experts[bid][name].append(data_torch)
  2645. return []
  2646. elif is_expert:
  2647. self._cur_expert = name
  2648. self._experts[bid][name] = [data_torch]
  2649. return []
  2650. else:
  2651. self._cur_expert = ""
  2652. for bid in range(self.block_count):
  2653. if len(self._experts[bid]) >= n_experts * 3:
  2654. # merge the experts into a single 3d tensor
  2655. for wid in [("linear", "w1", 0), ("linear_1", "w2", 1), ("linear_v", "w3", 0)]:
  2656. datas: list[Tensor] = []
  2657. for xid in range(n_experts):
  2658. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid[0]}.weight"
  2659. if ename not in self._experts[bid]:
  2660. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid[1]}.weight"
  2661. tensor_list = self._experts[bid][ename]
  2662. datas.append(torch.cat(tensor_list, dim=wid[2]) if len(tensor_list) > 1 else tensor_list[0])
  2663. del self._experts[bid][ename]
  2664. data_torch = torch.stack(datas, dim=0)
  2665. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid[0]}.weight"
  2666. new_name = self.map_tensor_name(merged_name)
  2667. yield (new_name, data_torch)
  2668. yield from tensors
  2669. @ModelBase.register("DbrxForCausalLM")
  2670. class DbrxModel(TextModel):
  2671. model_arch = gguf.MODEL_ARCH.DBRX
  2672. def set_gguf_parameters(self):
  2673. ffn_config = self.hparams["ffn_config"]
  2674. attn_config = self.hparams["attn_config"]
  2675. self.gguf_writer.add_block_count(self.block_count)
  2676. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2677. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2678. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2679. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2680. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2681. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2682. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2683. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2684. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2685. self.gguf_writer.add_layer_norm_eps(1e-5)
  2686. self.gguf_writer.add_file_type(self.ftype)
  2687. logger.info(f"gguf: file type = {self.ftype}")
  2688. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2689. del bid # unused
  2690. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2691. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2692. n_embd = self.hparams["d_model"]
  2693. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2694. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2695. # But llama.cpp moe graph works differently
  2696. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2697. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2698. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2699. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2700. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2701. experts = False
  2702. for exp_tensor_name in exp_tensor_names.keys():
  2703. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2704. experts = True
  2705. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2706. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2707. data_torch = data_torch.permute(*permute_tensor)
  2708. break
  2709. # map tensor names
  2710. # In MoE models the ffn tensors are typically most of the model weights,
  2711. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2712. # Every other model has the weight names ending in .weight,
  2713. # let's assume that is the convention which is not the case for dbrx:
  2714. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2715. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2716. return [(new_name, data_torch)]
  2717. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2718. del name, new_name, bid # unused
  2719. return n_dims > 1
  2720. @ModelBase.register("MiniCPMForCausalLM")
  2721. class MiniCPMModel(TextModel):
  2722. model_arch = gguf.MODEL_ARCH.MINICPM
  2723. def set_gguf_parameters(self):
  2724. super().set_gguf_parameters()
  2725. embedding_scale = float(self.hparams["scale_emb"])
  2726. self.gguf_writer.add_embedding_scale(embedding_scale)
  2727. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2728. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2729. self.gguf_writer.add_residual_scale(residual_scale)
  2730. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2731. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2732. self.gguf_writer.add_logit_scale(logit_scale)
  2733. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2734. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2735. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2736. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2737. if rope_scaling is not None:
  2738. long_factors = rope_scaling.get('long_factor', None)
  2739. short_factors = rope_scaling.get('short_factor', None)
  2740. if long_factors is None or short_factors is None:
  2741. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2742. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2743. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2744. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2745. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2746. def set_vocab(self):
  2747. self._set_vocab_sentencepiece()
  2748. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2749. del bid # unused
  2750. n_head = self.hparams["num_attention_heads"]
  2751. n_kv_head = self.hparams.get("num_key_value_heads")
  2752. # HF models permute some of the tensors, so we need to undo that
  2753. if name.endswith(("q_proj.weight")):
  2754. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2755. if name.endswith(("k_proj.weight")):
  2756. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2757. return [(self.map_tensor_name(name), data_torch)]
  2758. @ModelBase.register("MiniCPM3ForCausalLM")
  2759. class MiniCPM3Model(TextModel):
  2760. model_arch = gguf.MODEL_ARCH.MINICPM3
  2761. def set_gguf_parameters(self):
  2762. hparams = self.hparams
  2763. self.gguf_writer.add_file_type(self.ftype)
  2764. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2765. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2766. self.gguf_writer.add_block_count(self.block_count)
  2767. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2768. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2769. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2770. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2771. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2772. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2773. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2774. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2775. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2776. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2777. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2778. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2779. if rope_scaling is not None:
  2780. rope_dims = self.hparams["qk_rope_head_dim"]
  2781. long_factors = rope_scaling.get('long_factor', None)
  2782. short_factors = rope_scaling.get('short_factor', None)
  2783. if long_factors is None or short_factors is None:
  2784. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2785. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2786. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2787. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2788. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2789. def set_vocab(self):
  2790. self._set_vocab_sentencepiece()
  2791. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2792. if n_kv_head is not None and n_head != n_kv_head:
  2793. n_head //= n_kv_head
  2794. return (
  2795. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2796. .swapaxes(1, 2)
  2797. .reshape(weights.shape)
  2798. )
  2799. @ModelBase.register("QWenLMHeadModel")
  2800. class QwenModel(TextModel):
  2801. model_arch = gguf.MODEL_ARCH.QWEN
  2802. @staticmethod
  2803. def token_bytes_to_string(b):
  2804. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2805. byte_encoder = bytes_to_unicode()
  2806. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2807. @staticmethod
  2808. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2809. parts = [bytes([b]) for b in token]
  2810. while True:
  2811. min_idx = None
  2812. min_rank = None
  2813. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2814. rank = mergeable_ranks.get(pair[0] + pair[1])
  2815. if rank is not None and (min_rank is None or rank < min_rank):
  2816. min_idx = i
  2817. min_rank = rank
  2818. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2819. break
  2820. assert min_idx is not None
  2821. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2822. return parts
  2823. def set_vocab(self):
  2824. self._set_vocab_qwen()
  2825. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration", "KORMoForCausalLM")
  2826. class Qwen2Model(TextModel):
  2827. model_arch = gguf.MODEL_ARCH.QWEN2
  2828. def set_vocab(self):
  2829. try:
  2830. self._set_vocab_sentencepiece()
  2831. except FileNotFoundError:
  2832. self._set_vocab_gpt2()
  2833. def set_gguf_parameters(self):
  2834. super().set_gguf_parameters()
  2835. self._try_set_pooling_type()
  2836. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2837. if self.hf_arch == "Qwen2Model":
  2838. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2839. if "language_model." in name:
  2840. name = name.replace("language_model.", "") # for InternVL
  2841. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2842. or name.startswith("vision_model") or name.startswith("audio_tower") \
  2843. or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  2844. # skip vision and audio tensors
  2845. return []
  2846. yield from super().modify_tensors(data_torch, name, bid)
  2847. @ModelBase.register("DreamModel")
  2848. class DreamModel(TextModel):
  2849. model_arch = gguf.MODEL_ARCH.DREAM
  2850. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2851. tokens: list[str] = []
  2852. toktypes: list[int] = []
  2853. from transformers import AutoTokenizer
  2854. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2855. vocab_dict = tokenizer.get_vocab()
  2856. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2857. assert max(vocab_dict.values()) < vocab_size
  2858. tokpre = self.get_vocab_base_pre(tokenizer)
  2859. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2860. added_vocab = tokenizer.get_added_vocab()
  2861. for i in range(vocab_size):
  2862. if i not in reverse_vocab:
  2863. tokens.append(f"[PAD{i}]")
  2864. toktypes.append(gguf.TokenType.UNUSED)
  2865. elif reverse_vocab[i] in added_vocab:
  2866. tokens.append(reverse_vocab[i])
  2867. # Check if it's a special token - treat special tokens as CONTROL tokens
  2868. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2869. if tokenizer.added_tokens_decoder[i].special:
  2870. toktypes.append(gguf.TokenType.CONTROL)
  2871. else:
  2872. toktypes.append(gguf.TokenType.USER_DEFINED)
  2873. else:
  2874. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2875. toktypes.append(gguf.TokenType.CONTROL)
  2876. else:
  2877. tokens.append(reverse_vocab[i])
  2878. toktypes.append(gguf.TokenType.NORMAL)
  2879. return tokens, toktypes, tokpre
  2880. def set_vocab(self):
  2881. try:
  2882. self._set_vocab_sentencepiece()
  2883. except FileNotFoundError:
  2884. self._set_vocab_gpt2()
  2885. def set_gguf_parameters(self):
  2886. super().set_gguf_parameters()
  2887. self._try_set_pooling_type()
  2888. # Dream models use non-causal attention for diffusion
  2889. self.gguf_writer.add_causal_attention(False)
  2890. # Add Dream-specific parameters
  2891. mask_token_id = self.hparams.get("mask_token_id")
  2892. if mask_token_id is not None:
  2893. self.gguf_writer.add_mask_token_id(mask_token_id)
  2894. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2895. # Dream model tensors should be mapped directly since it's the base model
  2896. yield from super().modify_tensors(data_torch, name, bid)
  2897. @ModelBase.register("LLaDAModelLM")
  2898. class LLaDAModel(TextModel):
  2899. model_arch = gguf.MODEL_ARCH.LLADA
  2900. undo_permute = True
  2901. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2902. tokens: list[str] = []
  2903. toktypes: list[int] = []
  2904. from transformers import AutoTokenizer
  2905. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2906. vocab_dict = tokenizer.get_vocab()
  2907. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2908. assert max(vocab_dict.values()) < vocab_size
  2909. tokpre = self.get_vocab_base_pre(tokenizer)
  2910. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2911. added_vocab = tokenizer.get_added_vocab()
  2912. for i in range(vocab_size):
  2913. if i not in reverse_vocab:
  2914. tokens.append(f"[PAD{i}]")
  2915. toktypes.append(gguf.TokenType.UNUSED)
  2916. elif reverse_vocab[i] in added_vocab:
  2917. tokens.append(reverse_vocab[i])
  2918. # Check if it's a special token - treat special tokens as CONTROL tokens
  2919. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2920. if tokenizer.added_tokens_decoder[i].special:
  2921. toktypes.append(gguf.TokenType.CONTROL)
  2922. else:
  2923. toktypes.append(gguf.TokenType.USER_DEFINED)
  2924. else:
  2925. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2926. toktypes.append(gguf.TokenType.CONTROL)
  2927. else:
  2928. tokens.append(reverse_vocab[i])
  2929. toktypes.append(gguf.TokenType.NORMAL)
  2930. return tokens, toktypes, tokpre
  2931. def set_vocab(self):
  2932. self._set_vocab_gpt2()
  2933. # LLaDA specific parameters
  2934. self.gguf_writer.add_add_bos_token(True)
  2935. def set_gguf_parameters(self):
  2936. super().set_gguf_parameters()
  2937. self._try_set_pooling_type()
  2938. # Add parameters similar to LlamaModel
  2939. hparams = self.hparams
  2940. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2941. if (rope_dim := hparams.get("head_dim")) is None:
  2942. n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
  2943. rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
  2944. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2945. # Set context length for LLaDA
  2946. context_length = self.hparams.get("max_sequence_length", 4096)
  2947. self.gguf_writer.add_context_length(context_length)
  2948. # Set embedding length (dimension size)
  2949. embedding_length = self.hparams.get("d_model", 4096)
  2950. self.gguf_writer.add_embedding_length(embedding_length)
  2951. # Set feed forward length (MLP hidden size)
  2952. feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
  2953. self.gguf_writer.add_feed_forward_length(feed_forward_length)
  2954. # LLaDA models use non-causal attention for diffusion, similar to Dream
  2955. self.gguf_writer.add_causal_attention(False)
  2956. # LLaDA models don't shift their logits
  2957. self.gguf_writer.add_diffusion_shift_logits(False)
  2958. @staticmethod
  2959. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2960. if n_head_kv is not None and n_head != n_head_kv:
  2961. n_head = n_head_kv
  2962. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2963. .swapaxes(1, 2)
  2964. .reshape(weights.shape))
  2965. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2966. n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
  2967. n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
  2968. if self.undo_permute:
  2969. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2970. data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
  2971. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2972. data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
  2973. # LLaDA model tensors should be mapped directly since it's the base model
  2974. yield from super().modify_tensors(data_torch, name, bid)
  2975. @ModelBase.register("Ernie4_5_ForCausalLM", "Ernie4_5ForCausalLM")
  2976. class Ernie4_5Model(TextModel):
  2977. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  2978. def set_vocab(self):
  2979. self._set_vocab_sentencepiece()
  2980. def set_gguf_parameters(self):
  2981. super().set_gguf_parameters()
  2982. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2983. num_heads = self.hparams["num_attention_heads"]
  2984. num_kv_heads = self.hparams["num_key_value_heads"]
  2985. if (head_dim := self.hparams.get("head_dim")) is None:
  2986. head_dim = self.hparams["hidden_size"] // num_heads
  2987. if "ernie." in name:
  2988. name = name.replace("ernie.", "model.")
  2989. # split the qkv weights
  2990. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  2991. if "qkv_proj" in name:
  2992. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  2993. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  2994. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  2995. total_q_dim = num_heads * head_dim
  2996. total_k_dim = num_kv_heads * head_dim
  2997. total_v_dim = num_kv_heads * head_dim
  2998. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  2999. return [
  3000. (self.map_tensor_name(name_q), q_proj_weight),
  3001. (self.map_tensor_name(name_k), k_proj_weight),
  3002. (self.map_tensor_name(name_v), v_proj_weight)
  3003. ]
  3004. # split the up_gate_proj into gate and up
  3005. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  3006. if "up_gate_proj" in name:
  3007. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  3008. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  3009. dim_half = data_torch.shape[0] // 2
  3010. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  3011. return [
  3012. (self.map_tensor_name(name_gate), gate_proj_weight),
  3013. (self.map_tensor_name(name_up), up_proj_weight)
  3014. ]
  3015. return [(self.map_tensor_name(name), data_torch)]
  3016. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  3017. class Ernie4_5MoeModel(Ernie4_5Model):
  3018. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  3019. _experts: list[dict[str, Tensor]] | None = None
  3020. def __init__(self, *args, **kwargs):
  3021. super().__init__(*args, **kwargs)
  3022. self._experts = [{} for _ in range(self.block_count)]
  3023. def set_gguf_parameters(self):
  3024. super().set_gguf_parameters()
  3025. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  3026. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  3027. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  3028. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  3029. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3030. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3031. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  3032. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  3033. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  3034. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  3035. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3036. # Modify correction bias name as in DeepseekV2
  3037. if name.endswith("e_score_correction_bias"):
  3038. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  3039. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  3040. match = re.match(r"model.mtp_block.(\d+)", name)
  3041. if match:
  3042. return []
  3043. # skip all other MTP tensors for now
  3044. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  3045. if match:
  3046. return []
  3047. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  3048. if match:
  3049. return []
  3050. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  3051. if match:
  3052. return []
  3053. # process the experts separately
  3054. if name.find("mlp.experts") != -1:
  3055. n_experts = self.hparams["moe_num_experts"]
  3056. assert bid is not None
  3057. if self._experts is None:
  3058. self._experts = [{} for _ in range(self.block_count)]
  3059. self._experts[bid][name] = data_torch
  3060. if len(self._experts[bid]) >= n_experts * 3:
  3061. tensors: list[tuple[str, Tensor]] = []
  3062. # merge the experts into a single 3d tensor
  3063. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  3064. datas: list[Tensor] = []
  3065. for xid in range(n_experts):
  3066. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3067. datas.append(self._experts[bid][ename_to_retrieve])
  3068. del self._experts[bid][ename_to_retrieve]
  3069. data_torch = torch.stack(datas, dim=0)
  3070. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3071. new_name = self.map_tensor_name(merged_name)
  3072. tensors.append((new_name, data_torch))
  3073. return tensors
  3074. else:
  3075. return []
  3076. return [(self.map_tensor_name(name), data_torch)]
  3077. def prepare_tensors(self):
  3078. super().prepare_tensors()
  3079. if self._experts is not None:
  3080. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3081. experts = [k for d in self._experts for k in d.keys()]
  3082. if len(experts) > 0:
  3083. raise ValueError(f"Unprocessed experts: {experts}")
  3084. @ModelBase.register(
  3085. "Qwen2VLModel",
  3086. "Qwen2VLForConditionalGeneration",
  3087. "Qwen2_5_VLForConditionalGeneration",
  3088. "Qwen2_5OmniModel",
  3089. )
  3090. class Qwen2VLModel(TextModel):
  3091. model_arch = gguf.MODEL_ARCH.QWEN2VL
  3092. def set_gguf_parameters(self):
  3093. super().set_gguf_parameters()
  3094. def set_vocab(self):
  3095. try:
  3096. self._set_vocab_sentencepiece()
  3097. except FileNotFoundError:
  3098. self._set_vocab_gpt2()
  3099. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3100. del bid # unused
  3101. if name.startswith("thinker."):
  3102. name = name.replace("thinker.", "")
  3103. if name.startswith("visual") or name.startswith("audio") or \
  3104. name.startswith("talker") or name.startswith("token2wav"):
  3105. # skip multimodal tensors
  3106. return []
  3107. return [(self.map_tensor_name(name), data_torch)]
  3108. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  3109. class Qwen2VLVisionModel(MmprojModel):
  3110. def __init__(self, *args, **kwargs):
  3111. super().__init__(*args, **kwargs)
  3112. assert self.hparams_vision is not None
  3113. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  3114. # rename config.json values
  3115. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3116. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3117. if "embed_dim" in self.hparams_vision: # qwen2vl
  3118. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  3119. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  3120. def set_gguf_parameters(self):
  3121. super().set_gguf_parameters()
  3122. assert self.hparams_vision is not None
  3123. hparams = self.hparams_vision
  3124. model_type = self.global_config['model_type']
  3125. if model_type == 'qwen2_vl':
  3126. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  3127. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  3128. if model_type == 'qwen2_5_omni':
  3129. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  3130. else:
  3131. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  3132. self.gguf_writer.add_vision_use_silu(True)
  3133. # find n_wa_pattern (window attention pattern)
  3134. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  3135. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  3136. n_wa_pattern = fullatt_block_indexes[0] + 1
  3137. # validate n_wa_pattern
  3138. for i in range(1, len(fullatt_block_indexes)):
  3139. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  3140. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  3141. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  3142. else:
  3143. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  3144. # default values below are taken from HF tranformers code
  3145. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  3146. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3147. if ".position_embd." in new_name:
  3148. return gguf.GGMLQuantizationType.F32
  3149. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3150. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3151. del bid # unused
  3152. if name.startswith("visual."):
  3153. # process visual tensors
  3154. # split QKV tensors if needed
  3155. if ".qkv." in name:
  3156. if data_torch.ndim == 2: # weight
  3157. c3, _ = data_torch.shape
  3158. else: # bias
  3159. c3 = data_torch.shape[0]
  3160. assert c3 % 3 == 0
  3161. c = c3 // 3
  3162. wq = data_torch[:c]
  3163. wk = data_torch[c: c * 2]
  3164. wv = data_torch[c * 2:]
  3165. return [
  3166. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  3167. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  3168. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  3169. ]
  3170. elif 'patch_embed.proj.weight' in name:
  3171. # split Conv3D into Conv2Ds
  3172. c1, c2, kt, kh, kw = data_torch.shape
  3173. del c1, c2, kh, kw # unused
  3174. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  3175. return [
  3176. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  3177. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3178. ]
  3179. else:
  3180. return [(self.map_tensor_name(name), data_torch)]
  3181. return [] # skip other tensors
  3182. @ModelBase.register("Qwen2_5OmniModel")
  3183. class Qwen25OmniModel(Qwen2VLVisionModel):
  3184. has_vision_encoder = True
  3185. has_audio_encoder = True
  3186. def __init__(self, *args, **kwargs):
  3187. super().__init__(*args, **kwargs)
  3188. assert self.hparams_audio is not None
  3189. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  3190. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  3191. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  3192. def set_gguf_parameters(self):
  3193. super().set_gguf_parameters()
  3194. assert self.hparams_audio is not None
  3195. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  3196. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  3197. def get_vision_config(self) -> dict[str, Any] | None:
  3198. return self.global_config["thinker_config"].get("vision_config")
  3199. def get_audio_config(self) -> dict[str, Any] | None:
  3200. return self.global_config["thinker_config"].get("audio_config")
  3201. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3202. # SinusoidsPositionEmbedding
  3203. assert self.hparams_audio is not None
  3204. max_timescale = 10000
  3205. length = 1500
  3206. channels = self.hparams_audio["hidden_size"]
  3207. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  3208. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  3209. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  3210. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  3211. yield ("audio_tower.embed_positions.weight", pos_embd)
  3212. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3213. if ".conv" in name and ".weight" in name:
  3214. return gguf.GGMLQuantizationType.F16
  3215. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3216. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3217. if name.startswith("thinker."):
  3218. name = name.replace("thinker.", "")
  3219. if name.startswith("audio_tower"):
  3220. # process audio tensors
  3221. if "conv1.bias" in name or "conv2.bias" in name:
  3222. # transpose conv1 and conv2 bias
  3223. data_torch = data_torch.unsqueeze(-1)
  3224. if "audio_bos_eos_token" in name:
  3225. # this tensor is left unused in transformers code
  3226. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  3227. return []
  3228. return [(self.map_tensor_name(name), data_torch)]
  3229. return super().modify_tensors(data_torch, name, bid)
  3230. @ModelBase.register("InternVisionModel")
  3231. class InternVisionModel(MmprojModel):
  3232. def set_gguf_parameters(self):
  3233. assert self.hparams_vision is not None
  3234. if isinstance(self.hparams_vision['image_size'], list):
  3235. self.hparams_vision['image_size'] = self.hparams_vision['image_size'][0]
  3236. if isinstance(self.hparams_vision['patch_size'], list):
  3237. self.hparams_vision['patch_size'] = self.hparams_vision['patch_size'][0]
  3238. super().set_gguf_parameters()
  3239. hparams = self.hparams
  3240. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  3241. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  3242. # hidden_act
  3243. if hparams["hidden_act"] == "silu":
  3244. self.gguf_writer.add_vision_use_silu(True)
  3245. elif hparams["hidden_act"] == "gelu":
  3246. self.gguf_writer.add_vision_use_gelu(True)
  3247. else:
  3248. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  3249. # downsample_ratio
  3250. downsample_ratio = self.global_config.get("downsample_ratio")
  3251. assert downsample_ratio is not None
  3252. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  3253. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3254. if ".position_embd." in new_name:
  3255. return gguf.GGMLQuantizationType.F32
  3256. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3257. def _mapping_interns1_name(self, name):
  3258. names_map = {
  3259. "model.multi_modal_projector.layer_norm.bias": "mlp1.0.bias",
  3260. "model.multi_modal_projector.layer_norm.weight": "mlp1.0.weight",
  3261. "model.multi_modal_projector.linear_1.bias": "mlp1.1.bias",
  3262. "model.multi_modal_projector.linear_1.weight": "mlp1.1.weight",
  3263. "model.multi_modal_projector.linear_2.bias": "mlp1.3.bias",
  3264. "model.multi_modal_projector.linear_2.weight": "mlp1.3.weight",
  3265. }
  3266. if name in names_map:
  3267. name = names_map[name]
  3268. return name
  3269. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3270. del bid # unused
  3271. vision_prefix = ['vision_model', 'mlp', 'model.vision_tower', 'model.multi_modal_projector']
  3272. # deal with intern-s1 special case
  3273. name = self._mapping_interns1_name(name)
  3274. if any([name.startswith(prefix) for prefix in vision_prefix]):
  3275. # process visual tensors
  3276. # correct name
  3277. if name.startswith("vision_model"):
  3278. name = "vision_tower." + name
  3279. if (".ls" in name or ".lambda_" in name or "position_embedding" in name) and not name.endswith(".weight"):
  3280. name += ".weight"
  3281. # split QKV tensors if needed
  3282. if ".qkv." in name:
  3283. if data_torch.ndim == 2: # weight
  3284. c3, _ = data_torch.shape
  3285. else: # bias
  3286. c3 = data_torch.shape[0]
  3287. assert c3 % 3 == 0
  3288. c = c3 // 3
  3289. wq = data_torch[:c]
  3290. wk = data_torch[c: c * 2]
  3291. wv = data_torch[c * 2:]
  3292. return [
  3293. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  3294. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  3295. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  3296. ]
  3297. return [(self.map_tensor_name(name), data_torch)]
  3298. return [] # skip other tensors
  3299. @ModelBase.register("WavTokenizerDec")
  3300. class WavTokenizerDecModel(TextModel):
  3301. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  3302. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3303. del bid # unused
  3304. if \
  3305. name.endswith("codebook.cluster_size") or \
  3306. name.endswith("codebook.embed_avg") or \
  3307. name.endswith("codebook.inited"):
  3308. logger.debug(f"Skipping {name!r}")
  3309. return []
  3310. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  3311. return [(self.map_tensor_name(name), data_torch)]
  3312. def set_vocab(self):
  3313. self._set_vocab_none()
  3314. def set_gguf_parameters(self):
  3315. super().set_gguf_parameters()
  3316. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  3317. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  3318. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  3319. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  3320. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  3321. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  3322. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  3323. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  3324. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  3325. self.gguf_writer.add_causal_attention(False)
  3326. @ModelBase.register("Qwen2MoeForCausalLM")
  3327. class Qwen2MoeModel(TextModel):
  3328. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  3329. def set_gguf_parameters(self):
  3330. super().set_gguf_parameters()
  3331. if (n_experts := self.hparams.get("num_experts")) is not None:
  3332. self.gguf_writer.add_expert_count(n_experts)
  3333. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3334. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3335. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  3336. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  3337. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  3338. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  3339. _experts: list[dict[str, Tensor]] | None = None
  3340. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3341. # process the experts separately
  3342. name = name.replace("language_model.", "") # InternVL
  3343. # handle aggregated expert tensors
  3344. # GGUF stores dimensions reversed from PyTorch, so:
  3345. # PyTorch (A,B,C) -> GGUF writes [C,B,A] -> GGML reads ne={C,B,A}
  3346. # Input shapes from HF: (n_expert, n_ff_exp, n_embd) or (n_expert, n_embd, n_ff_exp)
  3347. # Expected GGML ne: {n_embd, n_ff_exp, n_expert} for gate/up, {n_ff_exp, n_embd, n_expert} for down
  3348. if name.endswith("mlp.experts.down_proj") or name.endswith("mlp.experts.down_proj.weight"):
  3349. mapped = f"{name}.weight" if not name.endswith(".weight") else name
  3350. # Input: (n_expert=128, n_ff_exp=768, n_embd=2048)
  3351. # Want GGML ne: {n_ff_exp, n_embd, n_expert} = {768, 2048, 128}
  3352. # Need PyTorch: (128, 2048, 768) [reversed of GGML]
  3353. # So: permute(0, 2, 1): (128, 768, 2048) -> (128, 2048, 768)
  3354. permuted = data_torch.permute(0, 2, 1).contiguous()
  3355. return [(self.map_tensor_name(mapped), permuted)]
  3356. if name.endswith("mlp.experts.gate_up_proj") or name.endswith("mlp.experts.gate_up_proj.weight"):
  3357. if data_torch.ndim < 3 or data_torch.shape[-1] % 2 != 0:
  3358. raise ValueError(f"Unexpected gate_up_proj shape for {name}: {tuple(data_torch.shape)}")
  3359. split_dim = data_torch.shape[-1] // 2
  3360. gate = data_torch[..., :split_dim].contiguous()
  3361. up = data_torch[..., split_dim:].contiguous()
  3362. # Input gate/up: (n_expert=128, n_embd=2048, n_ff_exp=768)
  3363. # Want GGML ne: {n_embd, n_ff_exp, n_expert} = {2048, 768, 128}
  3364. # Need PyTorch: (128, 768, 2048) [reversed of GGML]
  3365. # So: permute(0, 2, 1): (128, 2048, 768) -> (128, 768, 2048)
  3366. base_name = name.removesuffix(".weight")
  3367. base = base_name.rsplit('.', 1)[0]
  3368. mapped_gate = f"{base}.gate_proj.weight"
  3369. mapped_up = f"{base}.up_proj.weight"
  3370. perm_gate = gate.permute(0, 2, 1).contiguous()
  3371. perm_up = up.permute(0, 2, 1).contiguous()
  3372. return [
  3373. (self.map_tensor_name(mapped_gate), perm_gate),
  3374. (self.map_tensor_name(mapped_up), perm_up),
  3375. ]
  3376. if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector") or name.startswith("model.visual"):
  3377. # skip visual tensors
  3378. return []
  3379. if name.find("experts") != -1:
  3380. n_experts = self.hparams["num_experts"]
  3381. assert bid is not None
  3382. if self._experts is None:
  3383. self._experts = [{} for _ in range(self.block_count)]
  3384. self._experts[bid][name] = data_torch
  3385. if len(self._experts[bid]) >= n_experts * 3:
  3386. tensors: list[tuple[str, Tensor]] = []
  3387. # merge the experts into a single 3d tensor
  3388. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3389. datas: list[Tensor] = []
  3390. for xid in range(n_experts):
  3391. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3392. datas.append(self._experts[bid][ename])
  3393. del self._experts[bid][ename]
  3394. data_torch = torch.stack(datas, dim=0)
  3395. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3396. new_name = self.map_tensor_name(merged_name)
  3397. tensors.append((new_name, data_torch))
  3398. return tensors
  3399. else:
  3400. return []
  3401. return [(self.map_tensor_name(name), data_torch)]
  3402. def prepare_tensors(self):
  3403. super().prepare_tensors()
  3404. if self._experts is not None:
  3405. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3406. experts = [k for d in self._experts for k in d.keys()]
  3407. if len(experts) > 0:
  3408. raise ValueError(f"Unprocessed experts: {experts}")
  3409. @ModelBase.register("Qwen3ForCausalLM")
  3410. class Qwen3Model(Qwen2Model):
  3411. model_arch = gguf.MODEL_ARCH.QWEN3
  3412. # extra logic for rerank models
  3413. is_rerank: bool = False
  3414. is_tied_embeddings: bool = False
  3415. token_false_id: int | None = None
  3416. token_true_id: int | None = None
  3417. def __init__(self, *args, **kwargs):
  3418. super().__init__(*args, **kwargs)
  3419. # track for intern-s1-mini
  3420. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  3421. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3422. # a bit hacky, but currently the only way to detect if this is a rerank model
  3423. # ref: https://huggingface.co/Qwen/Qwen3-Reranker-0.6B
  3424. readme_path = self.dir_model / "README.md"
  3425. readme_text = ""
  3426. if readme_path.exists():
  3427. with readme_path.open("r", encoding="utf-8") as f:
  3428. readme_text = f.read()
  3429. if "# Qwen3-Reranker" in readme_text:
  3430. self._find_rerank_config()
  3431. def set_vocab(self):
  3432. # deal with intern-s1-mini
  3433. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3434. self._set_vocab_interns1()
  3435. return
  3436. super().set_vocab()
  3437. def _find_rerank_config(self):
  3438. from transformers import AutoTokenizer
  3439. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3440. self.is_rerank = True
  3441. self.is_tied_embeddings = self.hparams.get("tie_word_embeddings", False)
  3442. self.token_false_id = tokenizer.convert_tokens_to_ids("no")
  3443. self.token_true_id = tokenizer.convert_tokens_to_ids("yes")
  3444. self.sep_token_id = tokenizer.convert_tokens_to_ids("|")
  3445. assert self.token_false_id is not None and self.token_true_id is not None
  3446. def set_gguf_parameters(self):
  3447. super().set_gguf_parameters()
  3448. if self.is_rerank:
  3449. self.gguf_writer.add_pooling_type(gguf.PoolingType.RANK)
  3450. self.gguf_writer.add_classifier_output_labels(["yes", "no"])
  3451. self.gguf_writer.add_chat_template([{
  3452. "name": "rerank",
  3453. "template": "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n"
  3454. "<|im_start|>user\n<Instruct>: Given a web search query, retrieve relevant passages that answer the query\n<Query>: {query}\n<Document>: {document}<|im_end|>\n"
  3455. "<|im_start|>assistant\n<think>\n\n</think>\n\n"
  3456. }])
  3457. def _get_cls_out_tensor(self, data_torch: Tensor) -> Tensor:
  3458. # extract "yes" and "no" tokens from the output lm_head tensor
  3459. false_row = data_torch[self.token_false_id]
  3460. true_row = data_torch[self.token_true_id]
  3461. return torch.stack([true_row, false_row], dim=0)
  3462. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3463. if "model.vision_" in name:
  3464. # skip multimodal tensors
  3465. return []
  3466. if self.is_rerank:
  3467. is_tied_head = self.is_tied_embeddings and "embed_tokens" in name
  3468. is_real_head = not self.is_tied_embeddings and "lm_head" in name
  3469. if is_tied_head or is_real_head:
  3470. cls_out_head = (
  3471. gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.CLS_OUT] + ".weight",
  3472. self._get_cls_out_tensor(data_torch),
  3473. )
  3474. if is_tied_head:
  3475. embed = (self.map_tensor_name(name), data_torch)
  3476. return [cls_out_head, embed]
  3477. if is_real_head:
  3478. return [cls_out_head]
  3479. return super().modify_tensors(data_torch, name, bid)
  3480. @ModelBase.register("Qwen3MoeForCausalLM")
  3481. class Qwen3MoeModel(Qwen2MoeModel):
  3482. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  3483. def __init__(self, *args, **kwargs):
  3484. super().__init__(*args, **kwargs)
  3485. hparams = ModelBase.load_hparams(self.dir_model, False)
  3486. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3487. def set_vocab(self):
  3488. # deal with intern-s1
  3489. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3490. self._set_vocab_interns1()
  3491. return
  3492. super().set_vocab()
  3493. @ModelBase.register("Qwen3NextForCausalLM")
  3494. class Qwen3NextModel(Qwen2MoeModel):
  3495. model_arch = gguf.MODEL_ARCH.QWEN3NEXT
  3496. def set_gguf_parameters(self):
  3497. super().set_gguf_parameters()
  3498. self.gguf_writer.add_ssm_conv_kernel(self.hparams["linear_conv_kernel_dim"])
  3499. self.gguf_writer.add_ssm_state_size(self.hparams["linear_key_head_dim"])
  3500. self.gguf_writer.add_ssm_group_count(self.hparams["linear_num_key_heads"])
  3501. self.gguf_writer.add_ssm_time_step_rank(self.hparams["linear_num_value_heads"])
  3502. self.gguf_writer.add_ssm_inner_size(self.hparams["linear_value_head_dim"] * self.hparams["linear_num_value_heads"])
  3503. if (rope_dim := self.hparams.get("head_dim")) is None:
  3504. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  3505. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.25)))
  3506. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3507. if name.startswith("mtp"):
  3508. return [] # ignore MTP layers for now
  3509. if name.endswith(".A_log"):
  3510. data_torch = -torch.exp(data_torch)
  3511. elif name.endswith(".dt_bias"):
  3512. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3513. elif "conv1d" in name:
  3514. data_torch = data_torch.squeeze()
  3515. elif name.endswith("norm.weight") and not name.endswith("linear_attn.norm.weight"):
  3516. data_torch = data_torch + 1
  3517. yield from super().modify_tensors(data_torch, name, bid)
  3518. @ModelBase.register("RND1")
  3519. class RND1Model(Qwen2MoeModel):
  3520. model_arch = gguf.MODEL_ARCH.RND1
  3521. def set_gguf_parameters(self):
  3522. super().set_gguf_parameters()
  3523. # RND1 specific parameters
  3524. # RND1 uses bidirectional attention
  3525. self.gguf_writer.add_causal_attention(False)
  3526. if (mask_token_id := self.hparams.get("mask_token_id")) is not None:
  3527. self.gguf_writer.add_mask_token_id(mask_token_id)
  3528. @ModelBase.register("Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration")
  3529. class Qwen3VLVisionModel(MmprojModel):
  3530. def __init__(self, *args, **kwargs):
  3531. super().__init__(*args, **kwargs)
  3532. assert self.hparams_vision is not None
  3533. # Compute image_size if not present
  3534. if "image_size" not in self.hparams_vision:
  3535. # For Qwen3VL/Qwen3VLMoe, compute from num_position_embeddings
  3536. num_pos = self.hparams_vision.get("num_position_embeddings", 2304)
  3537. patch_size = self.hparams_vision.get("patch_size", 16)
  3538. # num_position_embeddings = (image_size / patch_size) ** 2
  3539. # So image_size = sqrt(num_position_embeddings) * patch_size
  3540. image_size = int(num_pos**0.5 * patch_size)
  3541. self.hparams_vision["image_size"] = image_size
  3542. # Rename config values for compatibility
  3543. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3544. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3545. self.is_deepstack_layers = [False] * int(self.hparams_vision["num_hidden_layers"] or 0)
  3546. for idx in self.hparams_vision.get("deepstack_visual_indexes", []):
  3547. self.is_deepstack_layers[idx] = True
  3548. def set_gguf_parameters(self):
  3549. super().set_gguf_parameters()
  3550. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN3VL)
  3551. self.gguf_writer.add_vision_use_gelu(True)
  3552. if self.hparams_vision is not None:
  3553. merge_size = self.hparams_vision.get("spatial_merge_size")
  3554. if merge_size is not None:
  3555. self.gguf_writer.add_vision_spatial_merge_size(int(merge_size))
  3556. # Use text config's rms_norm_eps for vision attention layernorm eps
  3557. rms_norm_eps = self.global_config.get("text_config", {}).get("rms_norm_eps", 1e-6)
  3558. self.gguf_writer.add_vision_attention_layernorm_eps(rms_norm_eps)
  3559. if self.is_deepstack_layers:
  3560. self.gguf_writer.add_vision_is_deepstack_layers(self.is_deepstack_layers)
  3561. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3562. assert self.hparams_vision is not None
  3563. # Skip text model tensors - they go in the text model file
  3564. if name.startswith("model.language_model.") or name.startswith("lm_head."):
  3565. return []
  3566. if name.startswith("model.visual."):
  3567. name = name.replace("model.visual.", "visual.", 1)
  3568. if name.startswith("visual.deepstack_merger_list."):
  3569. prefix, rest = name.split(".", maxsplit=3)[2:]
  3570. # prefix is the layer index, convert to absolute clip layer index!
  3571. idx = self.hparams_vision.get("deepstack_visual_indexes", [])[int(prefix)]
  3572. target = rest
  3573. tensor_type: gguf.MODEL_TENSOR
  3574. if target.startswith("norm."):
  3575. tensor_type = gguf.MODEL_TENSOR.V_DS_NORM
  3576. suffix = target.split(".", 1)[1]
  3577. elif target.startswith("linear_fc1."):
  3578. tensor_type = gguf.MODEL_TENSOR.V_DS_FC1
  3579. suffix = target.split(".", 1)[1]
  3580. elif target.startswith("linear_fc2."):
  3581. tensor_type = gguf.MODEL_TENSOR.V_DS_FC2
  3582. suffix = target.split(".", 1)[1]
  3583. else:
  3584. raise ValueError(f"Unexpected deepstack tensor: {name}")
  3585. new_name = self.format_tensor_name(tensor_type, idx, suffix=f".{suffix}")
  3586. return [(new_name, data_torch)]
  3587. if name.startswith("visual.merger."):
  3588. suffix = name.split(".", 2)[2]
  3589. if suffix.startswith("linear_fc"):
  3590. fc_idx_str, tail = suffix.split(".", 1)
  3591. fc_num = int(fc_idx_str.replace("linear_fc", ""))
  3592. # Qwen3VL has linear_fc1 and linear_fc2
  3593. # Map to indices 0 and 2 (matching Qwen2VL which uses indices 0 and 2)
  3594. if fc_num == 1:
  3595. fc_idx = 0
  3596. elif fc_num == 2:
  3597. fc_idx = 2
  3598. else:
  3599. raise ValueError(f"unexpected fc index {fc_num} in {name}")
  3600. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, fc_idx, suffix=f".{tail}")
  3601. elif suffix.startswith("norm."):
  3602. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_POST_NORM, suffix=f".{suffix.split('.', 1)[1]}")
  3603. else:
  3604. raise ValueError(f"Unexpected merger tensor: {name}")
  3605. return [(new_name, data_torch)]
  3606. if name == "visual.patch_embed.proj.weight":
  3607. # split Conv3D into Conv2Ds along temporal dimension
  3608. c1, c2, kt, _, _ = data_torch.shape
  3609. del c1, c2
  3610. if kt != 2:
  3611. raise ValueError("Current implementation only supports temporal_patch_size of 2")
  3612. return [
  3613. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight", data_torch[:, :, 0, ...]),
  3614. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3615. ]
  3616. if name == "visual.patch_embed.proj.bias":
  3617. # Include the bias - it's used by the C++ code
  3618. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".bias", data_torch)]
  3619. if name.startswith("visual."):
  3620. return [(self.map_tensor_name(name), data_torch)]
  3621. # Fall back to parent class for other tensors
  3622. return super().modify_tensors(data_torch, name, bid)
  3623. @ModelBase.register("Glm4vForConditionalGeneration", "Glm4vMoeForConditionalGeneration")
  3624. class Glm4VVisionModel(Qwen3VLVisionModel):
  3625. def set_gguf_parameters(self):
  3626. MmprojModel.set_gguf_parameters(self) # skip Qwen3VLVisionModel parameters
  3627. assert self.hparams_vision is not None
  3628. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GLM4V)
  3629. hidden_act = str(self.hparams_vision.get("hidden_act", "")).lower()
  3630. if hidden_act == "gelu":
  3631. self.gguf_writer.add_vision_use_gelu(True)
  3632. elif hidden_act == "silu":
  3633. self.gguf_writer.add_vision_use_silu(True)
  3634. rms_norm_eps = self.hparams_vision.get("rms_norm_eps", 1e-5)
  3635. self.gguf_writer.add_vision_attention_layernorm_eps(rms_norm_eps)
  3636. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3637. if name.startswith("model.visual."):
  3638. name = name.replace("model.visual.", "visual.")
  3639. if name.startswith("visual.merger."):
  3640. return [(self.map_tensor_name(name), data_torch)]
  3641. return super().modify_tensors(data_torch, name, bid)
  3642. @ModelBase.register("Qwen3VLForConditionalGeneration")
  3643. class Qwen3VLTextModel(Qwen3Model):
  3644. model_arch = gguf.MODEL_ARCH.QWEN3VL
  3645. def set_gguf_parameters(self):
  3646. super().set_gguf_parameters()
  3647. # Handle MRoPE (Multi-axis Rotary Position Embedding) for Qwen3-VL
  3648. vision_config = self.hparams.get("vision_config", {})
  3649. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3650. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3651. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3652. # Skip vision tensors - they go in the mmproj file
  3653. if name.startswith("model.visual."):
  3654. return []
  3655. return super().modify_tensors(data_torch, name, bid)
  3656. @ModelBase.register("Qwen3VLMoeForConditionalGeneration")
  3657. class Qwen3VLMoeTextModel(Qwen3MoeModel):
  3658. model_arch = gguf.MODEL_ARCH.QWEN3VLMOE
  3659. def set_gguf_parameters(self):
  3660. super().set_gguf_parameters()
  3661. vision_config = self.hparams.get("vision_config", {})
  3662. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3663. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3664. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3665. # Skip vision tensors - they go in the mmproj file
  3666. if name.startswith("model.visual."):
  3667. return []
  3668. return super().modify_tensors(data_torch, name, bid)
  3669. @ModelBase.register("GPT2LMHeadModel")
  3670. class GPT2Model(TextModel):
  3671. model_arch = gguf.MODEL_ARCH.GPT2
  3672. def set_gguf_parameters(self):
  3673. self.gguf_writer.add_block_count(self.block_count)
  3674. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  3675. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3676. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3677. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3678. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3679. self.gguf_writer.add_file_type(self.ftype)
  3680. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3681. del bid # unused
  3682. tensors: list[tuple[str, Tensor]] = []
  3683. # we don't need these
  3684. if name.endswith((".attn.bias", ".attn.masked_bias")):
  3685. return tensors
  3686. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  3687. data_torch = data_torch.transpose(1, 0)
  3688. new_name = self.map_tensor_name(name)
  3689. tensors.append((new_name, data_torch))
  3690. return tensors
  3691. @ModelBase.register("PhiForCausalLM")
  3692. class Phi2Model(TextModel):
  3693. model_arch = gguf.MODEL_ARCH.PHI2
  3694. def set_gguf_parameters(self):
  3695. rot_pct = self.find_hparam(["partial_rotary_factor"])
  3696. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3697. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3698. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  3699. self.gguf_writer.add_embedding_length(n_embd)
  3700. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  3701. self.gguf_writer.add_block_count(self.block_count)
  3702. self.gguf_writer.add_head_count(n_head)
  3703. self.gguf_writer.add_head_count_kv(n_head)
  3704. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  3705. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3706. self.gguf_writer.add_file_type(self.ftype)
  3707. self.gguf_writer.add_add_bos_token(False)
  3708. @ModelBase.register("Phi3ForCausalLM")
  3709. class Phi3MiniModel(TextModel):
  3710. model_arch = gguf.MODEL_ARCH.PHI3
  3711. def set_vocab(self):
  3712. # Phi-4 model uses GPT2Tokenizer
  3713. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3714. if tokenizer_config_file.is_file():
  3715. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3716. tokenizer_config_json = json.load(f)
  3717. tokenizer_class = tokenizer_config_json['tokenizer_class']
  3718. if tokenizer_class == 'GPT2Tokenizer':
  3719. return self._set_vocab_gpt2()
  3720. from sentencepiece import SentencePieceProcessor
  3721. tokenizer_path = self.dir_model / 'tokenizer.model'
  3722. if not tokenizer_path.is_file():
  3723. raise ValueError(f'Error: Missing {tokenizer_path}')
  3724. tokenizer = SentencePieceProcessor()
  3725. tokenizer.LoadFromFile(str(tokenizer_path))
  3726. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3727. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3728. scores: list[float] = [-10000.0] * vocab_size
  3729. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3730. for token_id in range(tokenizer.vocab_size()):
  3731. piece = tokenizer.IdToPiece(token_id)
  3732. text = piece.encode("utf-8")
  3733. score = tokenizer.GetScore(token_id)
  3734. toktype = SentencePieceTokenTypes.NORMAL
  3735. if tokenizer.IsUnknown(token_id):
  3736. toktype = SentencePieceTokenTypes.UNKNOWN
  3737. elif tokenizer.IsControl(token_id):
  3738. toktype = SentencePieceTokenTypes.CONTROL
  3739. elif tokenizer.IsUnused(token_id):
  3740. toktype = SentencePieceTokenTypes.UNUSED
  3741. elif tokenizer.IsByte(token_id):
  3742. toktype = SentencePieceTokenTypes.BYTE
  3743. tokens[token_id] = text
  3744. scores[token_id] = score
  3745. toktypes[token_id] = toktype
  3746. added_tokens_file = self.dir_model / 'added_tokens.json'
  3747. if added_tokens_file.is_file():
  3748. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3749. added_tokens_json = json.load(f)
  3750. for key in added_tokens_json:
  3751. token_id = added_tokens_json[key]
  3752. if token_id >= vocab_size:
  3753. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3754. continue
  3755. tokens[token_id] = key.encode("utf-8")
  3756. scores[token_id] = -1000.0
  3757. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3758. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3759. if tokenizer_config_file.is_file():
  3760. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3761. tokenizer_config_json = json.load(f)
  3762. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3763. for token_id, foken_data in added_tokens_decoder.items():
  3764. token_id = int(token_id)
  3765. token = foken_data["content"].encode("utf-8")
  3766. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3767. if tokens[token_id] != token:
  3768. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3769. tokens[token_id] = token
  3770. scores[token_id] = -1000.0
  3771. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3772. if foken_data.get("special"):
  3773. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3774. tokenizer_file = self.dir_model / 'tokenizer.json'
  3775. if tokenizer_file.is_file():
  3776. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3777. tokenizer_json = json.load(f)
  3778. added_tokens = tokenizer_json.get("added_tokens", [])
  3779. for foken_data in added_tokens:
  3780. token_id = int(foken_data["id"])
  3781. token = foken_data["content"].encode("utf-8")
  3782. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3783. if tokens[token_id] != token:
  3784. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3785. tokens[token_id] = token
  3786. scores[token_id] = -1000.0
  3787. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3788. if foken_data.get("special"):
  3789. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3790. self.gguf_writer.add_tokenizer_model("llama")
  3791. self.gguf_writer.add_tokenizer_pre("default")
  3792. self.gguf_writer.add_token_list(tokens)
  3793. self.gguf_writer.add_token_scores(scores)
  3794. self.gguf_writer.add_token_types(toktypes)
  3795. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3796. special_vocab.add_to_gguf(self.gguf_writer)
  3797. def set_gguf_parameters(self):
  3798. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3799. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3800. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  3801. rms_eps = self.find_hparam(["rms_norm_eps"])
  3802. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3803. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3804. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3805. rope_dims = int(rot_pct * n_embd) // n_head
  3806. self.gguf_writer.add_context_length(max_pos_embds)
  3807. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  3808. self.gguf_writer.add_embedding_length(n_embd)
  3809. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  3810. self.gguf_writer.add_block_count(self.block_count)
  3811. self.gguf_writer.add_head_count(n_head)
  3812. self.gguf_writer.add_head_count_kv(n_head_kv)
  3813. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  3814. self.gguf_writer.add_rope_dimension_count(rope_dims)
  3815. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("full_attention", self.rope_parameters)["rope_theta"])
  3816. self.gguf_writer.add_file_type(self.ftype)
  3817. sliding_window = self.hparams.get("sliding_window")
  3818. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  3819. if sliding_window is None:
  3820. sliding_window = 0
  3821. self.gguf_writer.add_sliding_window(sliding_window)
  3822. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3823. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3824. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3825. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3826. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3827. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3828. rope_dims = int(rot_pct * n_embd) // n_head
  3829. # write rope scaling for long context (128k) model
  3830. rope_scaling = self.find_hparam(['rope_scaling'], True)
  3831. if rope_scaling is None:
  3832. return
  3833. scale = max_pos_embds / orig_max_pos_embds
  3834. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  3835. if len(rope_scaling_type) == 0:
  3836. raise KeyError('Missing the required key rope_scaling.type')
  3837. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  3838. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  3839. elif rope_scaling_type == 'yarn':
  3840. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  3841. else:
  3842. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  3843. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  3844. long_factors = rope_scaling.get('long_factor', None)
  3845. short_factors = rope_scaling.get('short_factor', None)
  3846. if long_factors is None or short_factors is None:
  3847. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  3848. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  3849. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  3850. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  3851. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  3852. @ModelBase.register("PhiMoEForCausalLM")
  3853. class PhiMoeModel(Phi3MiniModel):
  3854. model_arch = gguf.MODEL_ARCH.PHIMOE
  3855. _experts: list[dict[str, Tensor]] | None = None
  3856. def set_gguf_parameters(self):
  3857. super().set_gguf_parameters()
  3858. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  3859. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  3860. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3861. # process the experts separately
  3862. if name.find("block_sparse_moe.experts") != -1:
  3863. n_experts = self.hparams["num_local_experts"]
  3864. assert bid is not None
  3865. if self._experts is None:
  3866. self._experts = [{} for _ in range(self.block_count)]
  3867. self._experts[bid][name] = data_torch
  3868. if len(self._experts[bid]) >= n_experts * 3:
  3869. tensors: list[tuple[str, Tensor]] = []
  3870. # merge the experts into a single 3d tensor
  3871. for w_name in ["w1", "w2", "w3"]:
  3872. datas: list[Tensor] = []
  3873. for xid in range(n_experts):
  3874. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  3875. datas.append(self._experts[bid][ename])
  3876. del self._experts[bid][ename]
  3877. data_torch = torch.stack(datas, dim=0)
  3878. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  3879. new_name = self.map_tensor_name(merged_name)
  3880. tensors.append((new_name, data_torch))
  3881. return tensors
  3882. else:
  3883. return []
  3884. return [(self.map_tensor_name(name), data_torch)]
  3885. def prepare_tensors(self):
  3886. super().prepare_tensors()
  3887. if self._experts is not None:
  3888. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3889. experts = [k for d in self._experts for k in d.keys()]
  3890. if len(experts) > 0:
  3891. raise ValueError(f"Unprocessed experts: {experts}")
  3892. @ModelBase.register("PlamoForCausalLM")
  3893. class PlamoModel(TextModel):
  3894. model_arch = gguf.MODEL_ARCH.PLAMO
  3895. def set_vocab(self):
  3896. self._set_vocab_sentencepiece()
  3897. def set_gguf_parameters(self):
  3898. hparams = self.hparams
  3899. self.gguf_writer.add_context_length(4096) # not in config.json
  3900. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3901. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3902. self.gguf_writer.add_block_count(self.block_count)
  3903. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3904. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  3905. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  3906. self.gguf_writer.add_file_type(self.ftype)
  3907. def shuffle_attn_q_weight(self, data_torch):
  3908. assert data_torch.size() == (5120, 5120)
  3909. data_torch = data_torch.reshape(8, 5, 128, 5120)
  3910. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  3911. data_torch = torch.reshape(data_torch, (5120, 5120))
  3912. return data_torch
  3913. def shuffle_attn_output_weight(self, data_torch):
  3914. assert data_torch.size() == (5120, 5120)
  3915. data_torch = data_torch.reshape(5120, 8, 5, 128)
  3916. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  3917. data_torch = torch.reshape(data_torch, (5120, 5120))
  3918. return data_torch
  3919. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3920. del bid # unused
  3921. new_name = self.map_tensor_name(name)
  3922. # shuffle for broadcasting of gqa in ggml_mul_mat
  3923. if new_name.endswith("attn_q.weight"):
  3924. data_torch = self.shuffle_attn_q_weight(data_torch)
  3925. elif new_name.endswith("attn_output.weight"):
  3926. data_torch = self.shuffle_attn_output_weight(data_torch)
  3927. return [(new_name, data_torch)]
  3928. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  3929. class Plamo2Model(TextModel):
  3930. model_arch = gguf.MODEL_ARCH.PLAMO2
  3931. def set_vocab(self):
  3932. # PLaMo 2 uses a custom tokenizer with a .jsonl file
  3933. # We need to handle this specially
  3934. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  3935. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  3936. if not tokenizer_jsonl_path.is_file():
  3937. raise FileNotFoundError(f"PLaMo 2 tokenizer file not found: {tokenizer_jsonl_path}")
  3938. # Load tokenizer config
  3939. with open(tokenizer_config_path, 'r', encoding='utf-8') as f:
  3940. tokenizer_config = json.load(f)
  3941. # Load tokens from JSONL file (actually a list format)
  3942. tokens = []
  3943. scores = []
  3944. toktypes = []
  3945. with open(tokenizer_jsonl_path, 'r', encoding='utf-8') as f:
  3946. for line_num, line in enumerate(f):
  3947. if line.strip():
  3948. token_data = json.loads(line)
  3949. # Format: [token, score, type, ?, ?, ?, ?]
  3950. token = token_data[0].encode("utf-8")
  3951. score = float(token_data[1])
  3952. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  3953. tokens.append(token)
  3954. scores.append(score)
  3955. # Map token type strings to GGUF token types
  3956. if token_type_str == "UNKNOWN":
  3957. toktypes.append(gguf.TokenType.UNKNOWN)
  3958. elif token_type_str == "CONTROL":
  3959. toktypes.append(gguf.TokenType.CONTROL)
  3960. elif token_type_str == "BYTE":
  3961. toktypes.append(gguf.TokenType.BYTE)
  3962. else:
  3963. # Check for PLaMo-2 special tokens
  3964. token_str = token_data[0]
  3965. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  3966. toktypes.append(gguf.TokenType.CONTROL)
  3967. else:
  3968. toktypes.append(gguf.TokenType.NORMAL)
  3969. vocab_size = self.hparams["vocab_size"]
  3970. if vocab_size > len(tokens):
  3971. pad_count = vocab_size - len(tokens)
  3972. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3973. for i in range(1, pad_count + 1):
  3974. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3975. scores.append(-1000.0)
  3976. toktypes.append(gguf.TokenType.UNUSED)
  3977. # Use "plamo2" tokenizer type for PLaMo-2's custom Aho-Corasick tokenizer
  3978. self.gguf_writer.add_tokenizer_model("plamo2")
  3979. self.gguf_writer.add_tokenizer_pre("default")
  3980. self.gguf_writer.add_token_list(tokens)
  3981. self.gguf_writer.add_token_scores(scores)
  3982. self.gguf_writer.add_token_types(toktypes)
  3983. # Add special tokens from config
  3984. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  3985. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  3986. self.gguf_writer.add_bos_token_id(token_id)
  3987. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  3988. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  3989. self.gguf_writer.add_eos_token_id(token_id)
  3990. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  3991. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  3992. self.gguf_writer.add_pad_token_id(token_id)
  3993. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  3994. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  3995. self.gguf_writer.add_sep_token_id(token_id)
  3996. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  3997. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  3998. self.gguf_writer.add_unk_token_id(token_id)
  3999. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  4000. self.gguf_writer.add_eot_token_id(4)
  4001. self.gguf_writer.add_add_space_prefix(False)
  4002. def set_gguf_parameters(self):
  4003. hparams = self.hparams
  4004. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4005. # Which layers are Mamba layers
  4006. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  4007. # This logic matches modeling_plamo.py's is_mamba function
  4008. mamba_step = hparams.get("mamba_step", 2)
  4009. mamba_enabled = hparams.get("mamba_enabled", True)
  4010. num_key_value_heads = []
  4011. num_attention_heads = []
  4012. if mamba_enabled:
  4013. for i in range(self.block_count):
  4014. if self.block_count <= (mamba_step // 2):
  4015. # use attention in last layer
  4016. is_mamba = (i != self.block_count - 1)
  4017. else:
  4018. is_mamba = (i % mamba_step) != (mamba_step // 2)
  4019. if is_mamba:
  4020. num_key_value_heads.append(0)
  4021. num_attention_heads.append(0)
  4022. else:
  4023. num_key_value_heads.append(hparams.get("num_key_value_heads", 4))
  4024. num_attention_heads.append(hparams.get("num_attention_heads", 32))
  4025. if num_key_value_heads and num_attention_heads:
  4026. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  4027. self.gguf_writer.add_head_count(num_attention_heads)
  4028. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  4029. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  4030. self.gguf_writer.add_key_length(hparams.get("hidden_size_per_head", 128))
  4031. self.gguf_writer.add_value_length(hparams.get("hidden_size_per_head", 128))
  4032. self.gguf_writer.add_block_count(self.block_count)
  4033. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  4034. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("rope_theta", 10000))
  4035. # Mamba parameters
  4036. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  4037. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  4038. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  4039. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  4040. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  4041. self.gguf_writer.add_ssm_group_count(0)
  4042. # MLP feed forward parameters (for attention layers)
  4043. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
  4044. self.gguf_writer.add_file_type(self.ftype)
  4045. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4046. del bid # unused
  4047. if name.endswith(".A_log"):
  4048. data_torch = -torch.exp(data_torch)
  4049. elif name.endswith(".dt_bias"):
  4050. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4051. elif name.endswith(".dt_norm_weight"):
  4052. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  4053. elif name.endswith(".B_norm_weight"):
  4054. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  4055. elif name.endswith(".C_norm_weight"):
  4056. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  4057. elif name.endswith(".k_weight"):
  4058. name = name.rpartition(".k_weight")[0] + ".k.weight"
  4059. elif name.endswith(".q_weight"):
  4060. name = name.rpartition(".q_weight")[0] + ".q.weight"
  4061. elif name.endswith(".conv1d.weight"):
  4062. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  4063. assert data_torch.ndim == 2
  4064. elif name.endswith(".pre_mixer_norm.weight"):
  4065. data_torch += 1.0
  4066. elif name.endswith(".post_mixer_norm.weight"):
  4067. data_torch += 1.0 / 5
  4068. elif name.endswith(".pre_mlp_norm.weight"):
  4069. data_torch += 1.0
  4070. elif name.endswith(".post_mlp_norm.weight"):
  4071. data_torch += 1.0 / (5**1.5)
  4072. elif name.endswith(".norm.weight"):
  4073. data_torch += 1.0
  4074. new_name = self.map_tensor_name(name)
  4075. return [(new_name, data_torch)]
  4076. @ModelBase.register("CodeShellForCausalLM")
  4077. class CodeShellModel(TextModel):
  4078. model_arch = gguf.MODEL_ARCH.CODESHELL
  4079. def set_gguf_parameters(self):
  4080. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  4081. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  4082. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  4083. self.gguf_writer.add_block_count(self.block_count)
  4084. self.gguf_writer.add_head_count(self.hparams["n_head"])
  4085. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  4086. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4087. self.gguf_writer.add_file_type(self.ftype)
  4088. self.gguf_writer.add_rope_freq_base(10000.0)
  4089. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4090. self.gguf_writer.add_rope_scaling_factor(1.0)
  4091. @ModelBase.register("InternLM2ForCausalLM")
  4092. class InternLM2Model(TextModel):
  4093. model_arch = gguf.MODEL_ARCH.INTERNLM2
  4094. def set_vocab(self):
  4095. # (TODO): Is there a better way?
  4096. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  4097. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  4098. # recognized as an empty string in C++.
  4099. from sentencepiece import SentencePieceProcessor
  4100. from sentencepiece import sentencepiece_model_pb2 as model
  4101. tokenizer_path = self.dir_model / 'tokenizer.model'
  4102. tokens: list[bytes] = []
  4103. scores: list[float] = []
  4104. toktypes: list[int] = []
  4105. if not tokenizer_path.is_file():
  4106. logger.error(f'Error: Missing {tokenizer_path}')
  4107. sys.exit(1)
  4108. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4109. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4110. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4111. tokenizer = SentencePieceProcessor()
  4112. tokenizer.LoadFromFile(str(tokenizer_path))
  4113. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4114. for token_id in range(vocab_size):
  4115. piece = tokenizer.IdToPiece(token_id)
  4116. text = piece.encode("utf-8")
  4117. score = tokenizer.GetScore(token_id)
  4118. if text == b"\x00":
  4119. # (TODO): fixme
  4120. # Hack here and replace the \x00 characters.
  4121. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  4122. text = "🐉".encode("utf-8")
  4123. toktype = SentencePieceTokenTypes.NORMAL
  4124. if tokenizer.IsUnknown(token_id):
  4125. toktype = SentencePieceTokenTypes.UNKNOWN
  4126. elif tokenizer.IsControl(token_id):
  4127. toktype = SentencePieceTokenTypes.CONTROL
  4128. elif tokenizer.IsUnused(token_id):
  4129. toktype = SentencePieceTokenTypes.UNUSED
  4130. elif tokenizer.IsByte(token_id):
  4131. toktype = SentencePieceTokenTypes.BYTE
  4132. # take care of ununsed raw token
  4133. if piece.startswith('[UNUSED'):
  4134. toktype = SentencePieceTokenTypes.UNUSED
  4135. tokens.append(text)
  4136. scores.append(score)
  4137. toktypes.append(toktype)
  4138. added_tokens_file = self.dir_model / 'added_tokens.json'
  4139. if added_tokens_file.is_file():
  4140. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4141. added_tokens_json = json.load(f)
  4142. for key in added_tokens_json:
  4143. tokens.append(key.encode("utf-8"))
  4144. scores.append(-1000.0)
  4145. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  4146. chat_eos_token = '<|im_end|>'
  4147. chat_eos_token_id = None
  4148. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4149. if tokenizer_config_file.is_file():
  4150. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4151. tokenizer_config_json = json.load(f)
  4152. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  4153. for token_id, foken_data in added_tokens_decoder.items():
  4154. token_id = int(token_id)
  4155. token = foken_data["content"]
  4156. if token == chat_eos_token:
  4157. chat_eos_token_id = token_id
  4158. token = token.encode("utf-8")
  4159. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4160. if tokens[token_id] != token:
  4161. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4162. tokens[token_id] = token
  4163. scores[token_id] = -1000.0
  4164. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4165. if foken_data.get("special"):
  4166. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4167. tokenizer_file = self.dir_model / 'tokenizer.json'
  4168. if tokenizer_file.is_file():
  4169. with open(tokenizer_file, "r", encoding="utf-8") as f:
  4170. tokenizer_json = json.load(f)
  4171. added_tokens = tokenizer_json.get("added_tokens", [])
  4172. for foken_data in added_tokens:
  4173. token_id = int(foken_data["id"])
  4174. token = foken_data["content"]
  4175. if token == chat_eos_token:
  4176. chat_eos_token_id = token_id
  4177. token = token.encode("utf-8")
  4178. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4179. if tokens[token_id] != token:
  4180. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4181. tokens[token_id] = token
  4182. scores[token_id] = -1000.0
  4183. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4184. if foken_data.get("special"):
  4185. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4186. self.gguf_writer.add_tokenizer_model("llama")
  4187. self.gguf_writer.add_tokenizer_pre("default")
  4188. self.gguf_writer.add_token_list(tokens)
  4189. self.gguf_writer.add_token_scores(scores)
  4190. self.gguf_writer.add_token_types(toktypes)
  4191. self.gguf_writer.add_add_space_prefix(add_prefix)
  4192. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4193. old_eos = special_vocab.special_token_ids["eos"]
  4194. if chat_eos_token_id is not None:
  4195. # For the chat model, we replace the eos with '<|im_end|>'.
  4196. # TODO: this is a hack, should be fixed
  4197. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  4198. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  4199. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  4200. " in chat mode so that the conversation can end normally.")
  4201. special_vocab.add_to_gguf(self.gguf_writer)
  4202. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4203. num_heads = self.hparams["num_attention_heads"]
  4204. num_kv_heads = self.hparams["num_key_value_heads"]
  4205. n_embd = self.hparams["hidden_size"]
  4206. q_per_kv = num_heads // num_kv_heads
  4207. head_dim = n_embd // num_heads
  4208. num_groups = num_heads // q_per_kv
  4209. name = name.replace("language_model.", "") # InternVL
  4210. if name.startswith("mlp") or name.startswith("vision_model"):
  4211. # skip visual tensors
  4212. return []
  4213. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  4214. qkv = data_torch
  4215. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  4216. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  4217. # The model weights of q and k equire additional reshape.
  4218. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  4219. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  4220. v = v.reshape((-1, v.shape[-1]))
  4221. return [
  4222. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  4223. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  4224. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  4225. ]
  4226. else:
  4227. return [(self.map_tensor_name(name), data_torch)]
  4228. @ModelBase.register("InternLM3ForCausalLM")
  4229. class InternLM3Model(TextModel):
  4230. model_arch = gguf.MODEL_ARCH.LLAMA
  4231. def set_vocab(self):
  4232. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  4233. self.gguf_writer.add_tokenizer_model("llama")
  4234. self.gguf_writer.add_tokenizer_pre("default")
  4235. self.gguf_writer.add_token_list(tokens)
  4236. self.gguf_writer.add_token_scores(scores)
  4237. self.gguf_writer.add_token_types(toktypes)
  4238. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4239. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4240. if tokenizer_config_file.is_file():
  4241. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4242. tokenizer_config_json = json.load(f)
  4243. if "add_prefix_space" in tokenizer_config_json:
  4244. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  4245. if "added_tokens_decoder" in tokenizer_config_json:
  4246. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  4247. if token_data.get("special"):
  4248. token_id = int(token_id)
  4249. token = token_data["content"]
  4250. special_vocab._set_special_token(token, token_id)
  4251. # update eos token
  4252. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  4253. special_vocab.special_token_ids["eos"] = token_id
  4254. special_vocab.add_to_gguf(self.gguf_writer)
  4255. def set_gguf_parameters(self):
  4256. super().set_gguf_parameters()
  4257. hparams = self.hparams
  4258. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4259. if (rope_dim := hparams.get("head_dim")) is None:
  4260. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4261. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4262. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4263. n_head = self.hparams["num_attention_heads"]
  4264. n_kv_head = self.hparams.get("num_key_value_heads")
  4265. name = name.replace("language_model.", "") # InternVL
  4266. if name.startswith("mlp") or name.startswith("vision_model"):
  4267. # skip visual tensors
  4268. return []
  4269. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4270. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4271. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4272. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4273. return [(self.map_tensor_name(name), data_torch)]
  4274. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  4275. class BertModel(TextModel):
  4276. model_arch = gguf.MODEL_ARCH.BERT
  4277. def __init__(self, *args, **kwargs):
  4278. super().__init__(*args, **kwargs)
  4279. self.vocab_size = None
  4280. if cls_out_labels := self.hparams.get("id2label"):
  4281. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  4282. # Remove dummy labels added by AutoConfig
  4283. cls_out_labels = None
  4284. self.cls_out_labels = cls_out_labels
  4285. def set_gguf_parameters(self):
  4286. super().set_gguf_parameters()
  4287. self.gguf_writer.add_causal_attention(False)
  4288. self._try_set_pooling_type()
  4289. if self.cls_out_labels:
  4290. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  4291. def set_vocab(self):
  4292. tokens, toktypes, tokpre = self.get_vocab_base()
  4293. self.vocab_size = len(tokens)
  4294. # we need this to validate the size of the token_type embeddings
  4295. # though currently we are passing all zeros to the token_type embeddings
  4296. # "Sequence A" or "Sequence B"
  4297. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4298. # convert to phantom space vocab
  4299. def phantom(tok):
  4300. if tok.startswith("[") and tok.endswith("]"):
  4301. return tok
  4302. if tok.startswith("##"):
  4303. return tok[2:]
  4304. return "\u2581" + tok
  4305. tokens = list(map(phantom, tokens))
  4306. # add vocab to gguf
  4307. self.gguf_writer.add_tokenizer_model("bert")
  4308. self.gguf_writer.add_tokenizer_pre(tokpre)
  4309. self.gguf_writer.add_token_list(tokens)
  4310. self.gguf_writer.add_token_types(toktypes)
  4311. # handle special tokens
  4312. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4313. special_vocab.add_to_gguf(self.gguf_writer)
  4314. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4315. del bid # unused
  4316. if name.startswith("bert."):
  4317. name = name[5:]
  4318. if name.endswith(".gamma"):
  4319. name = name[:-6] + ".weight"
  4320. if name.endswith(".beta"):
  4321. name = name[:-5] + ".bias"
  4322. # we are only using BERT for embeddings so we don't need the pooling layer
  4323. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  4324. return [] # we don't need these
  4325. if name.startswith("cls.predictions"):
  4326. return []
  4327. if name.startswith("cls.seq_relationship"):
  4328. return []
  4329. if self.cls_out_labels:
  4330. # For BertForSequenceClassification (direct projection layer)
  4331. if name == "classifier.weight":
  4332. name = "classifier.out_proj.weight"
  4333. if name == "classifier.bias":
  4334. name = "classifier.out_proj.bias"
  4335. return [(self.map_tensor_name(name), data_torch)]
  4336. def _xlmroberta_tokenizer_init(self) -> None:
  4337. # we need the pad_token_id to know how to chop down position_embd matrix
  4338. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4339. self._position_offset = 1 + pad_token_id
  4340. if "max_position_embeddings" in self.hparams:
  4341. self.hparams["max_position_embeddings"] -= self._position_offset
  4342. else:
  4343. self._position_offset = None
  4344. def _xlmroberta_set_vocab(self) -> None:
  4345. # to avoid TypeError: Descriptors cannot be created directly
  4346. # exception when importing sentencepiece_model_pb2
  4347. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4348. from sentencepiece import SentencePieceProcessor
  4349. from sentencepiece import sentencepiece_model_pb2 as model
  4350. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  4351. tokenizer_json = {}
  4352. tokenizer_config_json = {}
  4353. if not tokenizer_path.is_file():
  4354. tokenizer_path = self.dir_model / 'tokenizer.json'
  4355. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  4356. if not tokenizer_path.is_file():
  4357. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4358. from base64 import b64decode
  4359. from transformers import AutoTokenizer
  4360. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  4361. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  4362. tokenizer_json = json.load(fp)
  4363. if tokenizer_config_path.is_file():
  4364. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  4365. tokenizer_config_json = json.load(fp)
  4366. add_prefix = tokenizer.add_prefix_space
  4367. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  4368. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  4369. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  4370. else:
  4371. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4372. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4373. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4374. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4375. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4376. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4377. tokenizer = SentencePieceProcessor()
  4378. tokenizer.LoadFromFile(str(tokenizer_path))
  4379. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  4380. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4381. scores: list[float] = [-10000.0] * vocab_size
  4382. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4383. if isinstance(tokenizer, SentencePieceProcessor):
  4384. for token_id in range(tokenizer.vocab_size()):
  4385. piece = tokenizer.IdToPiece(token_id)
  4386. text = piece.encode("utf-8")
  4387. score = tokenizer.GetScore(token_id)
  4388. toktype = SentencePieceTokenTypes.NORMAL
  4389. if tokenizer.IsUnknown(token_id):
  4390. toktype = SentencePieceTokenTypes.UNKNOWN
  4391. elif tokenizer.IsControl(token_id):
  4392. toktype = SentencePieceTokenTypes.CONTROL
  4393. elif tokenizer.IsUnused(token_id):
  4394. toktype = SentencePieceTokenTypes.UNUSED
  4395. elif tokenizer.IsByte(token_id):
  4396. toktype = SentencePieceTokenTypes.BYTE
  4397. tokens[token_id] = text
  4398. scores[token_id] = score
  4399. toktypes[token_id] = toktype
  4400. else:
  4401. added_vocab = tokenizer.get_added_vocab()
  4402. unk_token = tokenizer_config_json.get("unk_token")
  4403. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  4404. for token_id in range(tokenizer.vocab_size):
  4405. piece = tokenizer._convert_id_to_token(token_id)
  4406. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  4407. text = piece.encode("utf-8")
  4408. score = tokenizer_json["model"]["vocab"][token_id][1]
  4409. toktype = SentencePieceTokenTypes.NORMAL
  4410. if token_id == unk_token_id:
  4411. toktype = SentencePieceTokenTypes.UNKNOWN
  4412. elif token_id in tokenizer.all_special_ids:
  4413. toktype = SentencePieceTokenTypes.CONTROL
  4414. elif token_id in added_vocab.values():
  4415. toktype = SentencePieceTokenTypes.USER_DEFINED
  4416. # No reliable way to detect this, but jina doesn't have any
  4417. # elif tokenizer.IsByte(token_id):
  4418. # toktype = SentencePieceTokenTypes.BYTE
  4419. tokens[token_id] = text
  4420. scores[token_id] = score
  4421. toktypes[token_id] = toktype
  4422. if isinstance(tokenizer, SentencePieceProcessor):
  4423. # realign tokens (see HF tokenizer code)
  4424. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  4425. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  4426. toktypes = [
  4427. SentencePieceTokenTypes.CONTROL,
  4428. SentencePieceTokenTypes.CONTROL,
  4429. SentencePieceTokenTypes.CONTROL,
  4430. SentencePieceTokenTypes.UNKNOWN,
  4431. ] + toktypes[3:-1]
  4432. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  4433. # Add mask token missing from sentencepiece.bpe.model
  4434. tokens[250001] = b'<mask>'
  4435. scores[250001] = 0.0
  4436. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  4437. self.gguf_writer.add_tokenizer_model("t5")
  4438. self.gguf_writer.add_tokenizer_pre("default")
  4439. self.gguf_writer.add_token_list(tokens)
  4440. self.gguf_writer.add_token_scores(scores)
  4441. self.gguf_writer.add_token_types(toktypes)
  4442. self.gguf_writer.add_add_space_prefix(add_prefix)
  4443. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4444. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4445. if precompiled_charsmap:
  4446. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4447. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4448. special_vocab.add_to_gguf(self.gguf_writer)
  4449. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  4450. class DistilBertModel(BertModel):
  4451. model_arch = gguf.MODEL_ARCH.BERT
  4452. def set_gguf_parameters(self):
  4453. self.gguf_writer.add_layer_norm_eps(1e-12)
  4454. logger.info("gguf: layer norm epsilon = 1e-12")
  4455. super().set_gguf_parameters()
  4456. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4457. if name.startswith("distilbert."):
  4458. name = name[11:]
  4459. # These layers act as MLM head, so we don't need them
  4460. if name.startswith("vocab_"):
  4461. return []
  4462. return super().modify_tensors(data_torch, name, bid)
  4463. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  4464. class RobertaModel(BertModel):
  4465. model_arch = gguf.MODEL_ARCH.BERT
  4466. def __init__(self, *args, **kwargs):
  4467. super().__init__(*args, **kwargs)
  4468. # we need the pad_token_id to know how to chop down position_embd matrix
  4469. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4470. self._position_offset = 1 + pad_token_id
  4471. if "max_position_embeddings" in self.hparams:
  4472. self.hparams["max_position_embeddings"] -= self._position_offset
  4473. else:
  4474. self._position_offset = None
  4475. def set_vocab(self):
  4476. """Support BPE tokenizers for roberta models"""
  4477. bpe_tok_path = self.dir_model / "tokenizer.json"
  4478. if bpe_tok_path.exists():
  4479. self._set_vocab_gpt2()
  4480. # we need this to validate the size of the token_type embeddings
  4481. # though currently we are passing all zeros to the token_type embeddings
  4482. # "Sequence A" or "Sequence B"
  4483. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4484. else:
  4485. return super().set_vocab()
  4486. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4487. # if name starts with "roberta.", remove the prefix
  4488. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4489. if name.startswith("roberta."):
  4490. name = name[8:]
  4491. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4492. if name == "embeddings.position_embeddings.weight":
  4493. if self._position_offset is not None:
  4494. data_torch = data_torch[self._position_offset:,:]
  4495. return super().modify_tensors(data_torch, name, bid)
  4496. @ModelBase.register("NomicBertModel")
  4497. class NomicBertModel(BertModel):
  4498. model_arch = gguf.MODEL_ARCH.BERT
  4499. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4500. hparams = kwargs.pop("hparams", None)
  4501. if hparams is None:
  4502. hparams = ModelBase.load_hparams(dir_model, False)
  4503. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  4504. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  4505. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4506. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  4507. if self._tokenizer_is_xlmroberta:
  4508. self._xlmroberta_tokenizer_init()
  4509. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  4510. if npos == 8192 and mtp == 2048:
  4511. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  4512. elif npos == 2048 and mtp == 2048:
  4513. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  4514. else:
  4515. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  4516. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  4517. # this doesn't do anything in the HF version
  4518. assert self.hparams["causal"] is False
  4519. # no bias tensors unless MoE
  4520. assert self.hparams["qkv_proj_bias"] == self.is_moe
  4521. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  4522. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  4523. # norm at end of layer
  4524. assert self.hparams["prenorm"] is False
  4525. # standard RoPE
  4526. assert self.hparams["rotary_emb_fraction"] == 1.0
  4527. assert self.hparams["rotary_emb_interleaved"] is False
  4528. assert self.hparams["rotary_emb_scale_base"] is None
  4529. def set_vocab(self) -> None:
  4530. if self._tokenizer_is_xlmroberta:
  4531. return self._xlmroberta_set_vocab()
  4532. return super().set_vocab()
  4533. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  4534. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  4535. if "mlp.experts.bias" in name:
  4536. return [] # Explicitly return an empty list.
  4537. if "mlp.experts.mlp.w1" in name:
  4538. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4539. name += ".weight"
  4540. if "mlp.experts.mlp.w2" in name:
  4541. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4542. data_torch = data_torch.transpose(1, 2)
  4543. name += ".weight"
  4544. return [(self.map_tensor_name(name), data_torch)]
  4545. def set_gguf_parameters(self):
  4546. super().set_gguf_parameters()
  4547. if self.is_moe:
  4548. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  4549. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4550. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  4551. def _is_tokenizer_xlmroberta(self) -> bool:
  4552. with open(self.dir_model / "tokenizer.json") as f:
  4553. tokenizer_json = json.load(f)
  4554. toktyp = tokenizer_json["model"]["type"]
  4555. if toktyp == "Unigram":
  4556. return True
  4557. if toktyp == "WordPiece":
  4558. return False
  4559. raise ValueError(f"unknown tokenizer: {toktyp}")
  4560. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  4561. class NeoBert(BertModel):
  4562. model_arch = gguf.MODEL_ARCH.NEO_BERT
  4563. def set_gguf_parameters(self):
  4564. super().set_gguf_parameters()
  4565. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  4566. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  4567. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  4568. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4569. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  4570. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  4571. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  4572. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  4573. def modify_tensors(self, data_torch, name, bid):
  4574. if name.startswith("decoder."):
  4575. return []
  4576. if name.startswith("model."):
  4577. name = name[6:]
  4578. return super().modify_tensors(data_torch, name, bid)
  4579. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  4580. class XLMRobertaModel(BertModel):
  4581. model_arch = gguf.MODEL_ARCH.BERT
  4582. _lora_files = {}
  4583. _lora_names = []
  4584. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4585. hparams = kwargs.pop("hparams", None)
  4586. if hparams is None:
  4587. hparams = ModelBase.load_hparams(dir_model, False)
  4588. if lora_names := hparams.get("lora_adaptations"):
  4589. self._lora_names = lora_names
  4590. self.model_arch = gguf.MODEL_ARCH.JINA_BERT_V3
  4591. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4592. self._xlmroberta_tokenizer_init()
  4593. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4594. if self._lora_names:
  4595. for name in self._lora_names:
  4596. fname = self.add_prefix_to_filename(self.fname_out, f"lora-{name}-")
  4597. self._lora_files[name] = gguf.GGUFWriter(fname, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file, dry_run=self.dry_run)
  4598. return super().generate_extra_tensors()
  4599. def set_type(self):
  4600. for lora_writer in self._lora_files.values():
  4601. lora_writer.add_type(gguf.GGUFType.ADAPTER)
  4602. lora_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
  4603. super().set_type()
  4604. def set_vocab(self):
  4605. self._xlmroberta_set_vocab()
  4606. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4607. # if name starts with "roberta.", remove the prefix
  4608. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4609. if name.startswith("roberta."):
  4610. name = name[8:]
  4611. # jina-embeddings-v3
  4612. if ".parametrizations." in name:
  4613. name = name.replace(".parametrizations.", ".")
  4614. if name.endswith(".original"):
  4615. name = name[:-9]
  4616. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4617. if name == "embeddings.position_embeddings.weight":
  4618. if self._position_offset is not None:
  4619. data_torch = data_torch[self._position_offset:,:]
  4620. if name.endswith(".0.lora_A") or name.endswith(".0.lora_B"):
  4621. if name.startswith("pooler.dense"):
  4622. return []
  4623. num_loras = data_torch.size(0)
  4624. assert num_loras == len(self._lora_names)
  4625. # Split out each LoRA in their own GGUF
  4626. for i, lora_writer in enumerate(self._lora_files.values()):
  4627. new_name = self.map_tensor_name(name[:-9]) + name[-7:].lower()
  4628. data = data_torch[i, :, :]
  4629. # Transpose/flip token_embd/types into correct shape
  4630. if new_name == "token_embd.weight.lora_b":
  4631. data = data.T
  4632. elif new_name.startswith("token_types.weight."):
  4633. new_name = new_name[:-1] + ("a" if new_name[-1:] == "b" else "b")
  4634. lora_writer.add_tensor(new_name, data.float().numpy(), raw_dtype=gguf.GGMLQuantizationType.F32)
  4635. return []
  4636. return super().modify_tensors(data_torch, name, bid)
  4637. def set_gguf_parameters(self):
  4638. super().set_gguf_parameters()
  4639. # jina-embeddings-v3
  4640. lora_alpha = self.hparams.get("lora_alpha")
  4641. if lora_prompt_prefixes := self.hparams.get("task_instructions"):
  4642. assert self._lora_files and all(lora_name in lora_prompt_prefixes for lora_name in self._lora_files.keys())
  4643. for lora_name, lora_writer in self._lora_files.items():
  4644. lora_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, lora_alpha if lora_alpha is not None else 1.0)
  4645. lora_writer.add_string(gguf.Keys.Adapter.LORA_TASK_NAME, lora_name)
  4646. if lora_prompt_prefixes:
  4647. lora_writer.add_string(gguf.Keys.Adapter.LORA_PROMPT_PREFIX, lora_prompt_prefixes[lora_name])
  4648. def write(self):
  4649. super().write()
  4650. for lora_writer in self._lora_files.values():
  4651. lora_writer.write_header_to_file()
  4652. lora_writer.write_kv_data_to_file()
  4653. lora_writer.write_tensors_to_file(progress=True)
  4654. lora_writer.close()
  4655. @ModelBase.register("GemmaForCausalLM")
  4656. class GemmaModel(TextModel):
  4657. model_arch = gguf.MODEL_ARCH.GEMMA
  4658. def set_vocab(self):
  4659. self._set_vocab_sentencepiece()
  4660. # TODO: these special tokens should be exported only for the CodeGemma family
  4661. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  4662. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  4663. special_vocab._set_special_token("prefix", 67)
  4664. special_vocab._set_special_token("suffix", 69)
  4665. special_vocab._set_special_token("middle", 68)
  4666. special_vocab._set_special_token("fsep", 70)
  4667. special_vocab._set_special_token("eot", 107)
  4668. special_vocab.chat_template = None # do not add it twice
  4669. special_vocab.add_to_gguf(self.gguf_writer)
  4670. self.gguf_writer.add_add_space_prefix(False)
  4671. def set_gguf_parameters(self):
  4672. hparams = self.hparams
  4673. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4674. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4675. self.gguf_writer.add_block_count(self.block_count)
  4676. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4677. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4678. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4679. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4680. self.gguf_writer.add_key_length(hparams["head_dim"])
  4681. self.gguf_writer.add_value_length(hparams["head_dim"])
  4682. self.gguf_writer.add_file_type(self.ftype)
  4683. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4684. del bid # unused
  4685. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4686. # To prevent errors, skip loading lm_head.weight.
  4687. if name == "lm_head.weight":
  4688. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4689. return []
  4690. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4691. if name.endswith("norm.weight"):
  4692. data_torch = data_torch + 1
  4693. return [(self.map_tensor_name(name), data_torch)]
  4694. @ModelBase.register("Gemma2ForCausalLM")
  4695. class Gemma2Model(TextModel):
  4696. model_arch = gguf.MODEL_ARCH.GEMMA2
  4697. def set_vocab(self):
  4698. self._set_vocab_sentencepiece()
  4699. self.gguf_writer.add_add_space_prefix(False)
  4700. def set_gguf_parameters(self):
  4701. hparams = self.hparams
  4702. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4703. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4704. self.gguf_writer.add_block_count(self.block_count)
  4705. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4706. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4707. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4708. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4709. self.gguf_writer.add_key_length(hparams["head_dim"])
  4710. self.gguf_writer.add_value_length(hparams["head_dim"])
  4711. self.gguf_writer.add_file_type(self.ftype)
  4712. self.gguf_writer.add_attn_logit_softcapping(
  4713. self.hparams["attn_logit_softcapping"]
  4714. )
  4715. self.gguf_writer.add_final_logit_softcapping(
  4716. self.hparams["final_logit_softcapping"]
  4717. )
  4718. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4719. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4720. del bid # unused
  4721. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4722. # To prevent errors, skip loading lm_head.weight.
  4723. if name == "lm_head.weight":
  4724. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4725. return []
  4726. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4727. if name.endswith("norm.weight"):
  4728. data_torch = data_torch + 1
  4729. return [(self.map_tensor_name(name), data_torch)]
  4730. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  4731. class Gemma3Model(TextModel):
  4732. model_arch = gguf.MODEL_ARCH.GEMMA3
  4733. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  4734. def set_vocab(self):
  4735. if (self.dir_model / "tokenizer.model").is_file():
  4736. self._set_vocab_sentencepiece()
  4737. self.gguf_writer.add_add_space_prefix(False)
  4738. else:
  4739. self._set_vocab_gpt2()
  4740. def set_gguf_parameters(self):
  4741. super().set_gguf_parameters()
  4742. hparams = self.hparams
  4743. # some default values are not specified in the hparams
  4744. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  4745. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  4746. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  4747. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  4748. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  4749. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("full_attention", self.rope_parameters).get("rope_theta", 1_000_000.0)) # for global layers
  4750. # attn_logit_softcapping is removed in Gemma3
  4751. assert hparams.get("attn_logit_softcapping") is None
  4752. if (final_logit_softcap := hparams.get("final_logit_softcapping")):
  4753. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  4754. if hparams.get("sliding_window_pattern") != 1:
  4755. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  4756. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  4757. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4758. del bid # unused
  4759. if "language_model." in name:
  4760. name = name.replace("language_model.", "")
  4761. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4762. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4763. return [] # skip vision tensors
  4764. # remove OOV (out-of-vocabulary) rows in token_embd
  4765. if "embed_tokens.weight" in name:
  4766. if (self.dir_model / "tokenizer.model").is_file():
  4767. tokens = self._create_vocab_sentencepiece()[0]
  4768. else:
  4769. tokens = self.get_vocab_base()[0]
  4770. data_torch = data_torch[:len(tokens)]
  4771. # ref code in Gemma3RMSNorm
  4772. # output = output * (1.0 + self.weight.float())
  4773. # note: this is not the case on gemma3n
  4774. if name.endswith("norm.weight"):
  4775. data_torch = data_torch + self.norm_shift
  4776. return [(self.map_tensor_name(name), data_torch)]
  4777. @ModelBase.register("Gemma3TextModel")
  4778. class EmbeddingGemma(Gemma3Model):
  4779. model_arch = gguf.MODEL_ARCH.GEMMA_EMBEDDING
  4780. module_paths = []
  4781. dense_features_dims = {}
  4782. def __init__(self, *args, **kwargs):
  4783. super().__init__(*args, **kwargs)
  4784. if self.sentence_transformers_dense_modules:
  4785. # read modules.json to determine if model has Dense layers
  4786. modules_file = self.dir_model / "modules.json"
  4787. if modules_file.is_file():
  4788. with open(modules_file, encoding="utf-8") as modules_json_file:
  4789. mods = json.load(modules_json_file)
  4790. for mod in mods:
  4791. if mod["type"] == "sentence_transformers.models.Dense":
  4792. mod_path = mod["path"]
  4793. # check if model.safetensors file for Dense layer exists
  4794. model_tensors_file = self.dir_model / mod_path / "model.safetensors"
  4795. if model_tensors_file.is_file():
  4796. self.module_paths.append(mod_path)
  4797. # read config.json of the Dense layer to get in/out features
  4798. mod_conf_file = self.dir_model / mod_path / "config.json"
  4799. if mod_conf_file.is_file():
  4800. with open(mod_conf_file, encoding="utf-8") as mod_conf_json_file:
  4801. mod_conf = json.load(mod_conf_json_file)
  4802. # hparams dense_2_feat_out and dense_3_feat_in are required when loading model's dense weights
  4803. prefix = self._get_dense_prefix(mod_path)
  4804. if mod_conf["in_features"] is not None and mod_conf["out_features"] is not None:
  4805. self.dense_features_dims[prefix] = (mod_conf["in_features"], mod_conf["out_features"])
  4806. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4807. from safetensors.torch import load_file
  4808. module_paths = list(self.module_paths)
  4809. for i, module_path in enumerate(module_paths):
  4810. tensors_file = self.dir_model / module_path / "model.safetensors"
  4811. local_tensors = load_file(tensors_file)
  4812. tensor_name = self._get_dense_prefix(module_path)
  4813. for name, local_tensor in local_tensors.items():
  4814. if not name.endswith(".weight"):
  4815. continue
  4816. orig_name = name.replace("linear", tensor_name)
  4817. name = self.map_tensor_name(orig_name)
  4818. yield name, local_tensor.clone()
  4819. @staticmethod
  4820. def _get_dense_prefix(module_path) -> str:
  4821. """Get the tensor name prefix for the Dense layer from module path."""
  4822. tensor_name = "dense_2" if module_path == "2_Dense" else "dense_3"
  4823. return tensor_name
  4824. def set_gguf_parameters(self):
  4825. super().set_gguf_parameters()
  4826. # Override the sliding window size as it gets adjusted by the Gemma3TextConfig
  4827. # constructor. We want to use the value from the original model's config.json.
  4828. # ref: https://github.com/huggingface/transformers/pull/40700
  4829. with open(self.dir_model / "config.json", "r", encoding="utf-8") as f:
  4830. config = json.load(f)
  4831. orig_sliding_window = config.get("sliding_window")
  4832. if orig_sliding_window is None:
  4833. raise ValueError("sliding_window not found in model config - this is required for the model")
  4834. logger.info(f"Using original sliding_window from config: {orig_sliding_window} "
  4835. f"instead of {self.hparams['sliding_window']}")
  4836. self.gguf_writer.add_sliding_window(orig_sliding_window)
  4837. if self.sentence_transformers_dense_modules:
  4838. for dense, dims in self.dense_features_dims.items():
  4839. logger.info(f"Setting dense layer {dense} in/out features to {dims}")
  4840. self.gguf_writer.add_dense_features_dims(dense, dims[0], dims[1])
  4841. self._try_set_pooling_type()
  4842. @ModelBase.register("Gemma3ForConditionalGeneration")
  4843. class Gemma3VisionModel(MmprojModel):
  4844. def set_gguf_parameters(self):
  4845. super().set_gguf_parameters()
  4846. hparams = self.hparams
  4847. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  4848. # default values below are taken from HF tranformers code
  4849. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  4850. self.gguf_writer.add_vision_use_gelu(True)
  4851. # calculate proj_scale_factor (used by tinygemma3 test model)
  4852. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  4853. n_per_side = int(image_seq_length ** 0.5)
  4854. image_size = self.hparams["image_size"]
  4855. patch_size = self.hparams["patch_size"]
  4856. proj_scale_factor = (image_size // patch_size) // n_per_side
  4857. if proj_scale_factor > 0 and proj_scale_factor != 4:
  4858. # we only need to write this if it's not the default value
  4859. # in this case, we are converting a test model
  4860. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  4861. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4862. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  4863. if "input_projection" in name:
  4864. return gguf.GGMLQuantizationType.F16
  4865. if ".embeddings." in name:
  4866. return gguf.GGMLQuantizationType.F32
  4867. return super().tensor_force_quant(name, new_name, bid, n_dims)
  4868. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4869. del bid # unused
  4870. if "vision_model.head." in name:
  4871. return [] # skip redundant tensors for tinygemma3
  4872. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4873. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4874. # process vision tensors
  4875. name = name.replace("_weight", ".weight")
  4876. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  4877. # the other norm values are part of SigLIP model, and they are already correct
  4878. # ref code: Gemma3RMSNorm
  4879. if "soft_emb_norm.weight" in name:
  4880. logger.info(f"Correcting norm value for '{name}'")
  4881. data_torch = data_torch + 1
  4882. return [(self.map_tensor_name(name), data_torch)]
  4883. return [] # skip other tensors
  4884. @ModelBase.register("Gemma3nForConditionalGeneration")
  4885. class Gemma3NModel(Gemma3Model):
  4886. model_arch = gguf.MODEL_ARCH.GEMMA3N
  4887. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  4888. _altup_proj: list[Tensor] = []
  4889. _altup_unembd: list[Tensor] = []
  4890. def __init__(self, *args, **kwargs):
  4891. super().__init__(*args, **kwargs)
  4892. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  4893. self._altup_proj = [
  4894. torch.Tensor(), # to be replaced
  4895. torch.Tensor(), # to be replaced
  4896. torch.Tensor(), # to be replaced
  4897. ]
  4898. self._altup_unembd = [
  4899. torch.Tensor(), # to be replaced
  4900. torch.Tensor(), # to be replaced
  4901. torch.Tensor(), # to be replaced
  4902. ]
  4903. def set_vocab(self):
  4904. super().set_vocab()
  4905. def set_gguf_parameters(self):
  4906. super().set_gguf_parameters()
  4907. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  4908. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  4909. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  4910. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  4911. activation_sparsity_scale = []
  4912. for s in self.hparams["activation_sparsity_pattern"]:
  4913. normal_dist = torch.distributions.normal.Normal(0, 1)
  4914. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  4915. activation_sparsity_scale.append(std_multiplier.item())
  4916. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  4917. sliding_window_pattern = []
  4918. for t in self.hparams["layer_types"]:
  4919. sliding_window_pattern.append(t == "sliding_attention")
  4920. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  4921. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  4922. has_all = all(m.numel() > 0 for m in matrices)
  4923. if not has_all:
  4924. return None
  4925. else:
  4926. return torch.stack(matrices, dim=0)
  4927. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4928. if name.endswith("_scale"):
  4929. name = name + ".weight"
  4930. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  4931. if "language_model." not in name:
  4932. return [] # skip non-language model tensors
  4933. if "altup_unembed_projections" in name:
  4934. data_torch = data_torch.to(device="cpu")
  4935. if ".0." in name:
  4936. self._altup_unembd[0] = data_torch
  4937. elif ".1." in name:
  4938. self._altup_unembd[1] = data_torch
  4939. elif ".2." in name:
  4940. self._altup_unembd[2] = data_torch
  4941. else:
  4942. raise ValueError(f"Unknown name: {name}")
  4943. out = self._stack_matrices(self._altup_unembd)
  4944. if out is not None:
  4945. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  4946. else:
  4947. return []
  4948. if "altup_projections" in name:
  4949. data_torch = data_torch.to(device="cpu")
  4950. if ".0." in name:
  4951. self._altup_proj[0] = data_torch
  4952. elif ".1." in name:
  4953. self._altup_proj[1] = data_torch
  4954. elif ".2." in name:
  4955. self._altup_proj[2] = data_torch
  4956. else:
  4957. raise ValueError(f"Unknown name: {name}")
  4958. out = self._stack_matrices(self._altup_proj)
  4959. if out is not None:
  4960. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  4961. else:
  4962. return []
  4963. return super().modify_tensors(data_torch, name, bid)
  4964. @ModelBase.register("Starcoder2ForCausalLM")
  4965. class StarCoder2Model(TextModel):
  4966. model_arch = gguf.MODEL_ARCH.STARCODER2
  4967. @ModelBase.register("Rwkv6ForCausalLM")
  4968. class Rwkv6Model(TextModel):
  4969. model_arch = gguf.MODEL_ARCH.RWKV6
  4970. def set_vocab(self):
  4971. self._set_vocab_rwkv_world()
  4972. def set_gguf_parameters(self):
  4973. head_size = self.hparams["head_size"]
  4974. hidden_size = self.hparams["hidden_size"]
  4975. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4976. rescale_every_n_layers = self.hparams["rescale_every"]
  4977. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  4978. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  4979. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  4980. # RWKV isn't context limited
  4981. self.gguf_writer.add_context_length(1048576)
  4982. self.gguf_writer.add_embedding_length(hidden_size)
  4983. self.gguf_writer.add_block_count(self.block_count)
  4984. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4985. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  4986. self.gguf_writer.add_wkv_head_size(head_size)
  4987. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4988. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4989. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4990. self.gguf_writer.add_file_type(self.ftype)
  4991. # required by llama.cpp, unused
  4992. self.gguf_writer.add_head_count(0)
  4993. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4994. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4995. new_name = self.map_tensor_name(name)
  4996. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4997. new_name += ".weight"
  4998. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  4999. data_torch = data_torch.transpose(0, 1)
  5000. if new_name.endswith("time_mix_w2.weight"):
  5001. data_torch = data_torch.permute(0, 2, 1)
  5002. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  5003. data_torch = data_torch.squeeze()
  5004. try:
  5005. rescale_every_n_layers = self.hparams["rescale_every"]
  5006. if rescale_every_n_layers > 0:
  5007. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  5008. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  5009. except KeyError:
  5010. pass
  5011. # concat time_mix_lerp weights to reduce some cpu overhead
  5012. # also reduces the number of tensors in the model
  5013. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  5014. try:
  5015. self.lerp_weights[bid][new_name] = data_torch
  5016. except KeyError:
  5017. self.lerp_weights[bid] = {new_name: data_torch}
  5018. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  5019. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5020. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  5021. yield (new_name, data)
  5022. return
  5023. yield (new_name, data_torch)
  5024. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  5025. class RWKV6Qwen2Model(Rwkv6Model):
  5026. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  5027. def set_vocab(self):
  5028. try:
  5029. self._set_vocab_sentencepiece()
  5030. except FileNotFoundError:
  5031. self._set_vocab_gpt2()
  5032. def set_gguf_parameters(self):
  5033. num_attention_heads = self.hparams["num_attention_heads"]
  5034. num_key_value_heads = self.hparams["num_key_value_heads"]
  5035. hidden_size = self.hparams["hidden_size"]
  5036. head_size = hidden_size // num_attention_heads
  5037. rms_norm_eps = self.hparams["rms_norm_eps"]
  5038. intermediate_size = self.hparams["intermediate_size"]
  5039. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  5040. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  5041. # RWKV isn't context limited
  5042. self.gguf_writer.add_context_length(1048576)
  5043. self.gguf_writer.add_embedding_length(hidden_size)
  5044. self.gguf_writer.add_block_count(self.block_count)
  5045. self.gguf_writer.add_wkv_head_size(head_size)
  5046. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  5047. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  5048. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5049. self.gguf_writer.add_file_type(self.ftype)
  5050. # special parameters for time_mixing in RWKV6QWEN2
  5051. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5052. self.gguf_writer.add_token_shift_count(1)
  5053. # RWKV6QWEN2 use grouped key/value like GQA
  5054. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  5055. # required by llama.cpp, unused
  5056. self.gguf_writer.add_head_count(0)
  5057. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5058. for new_name, data in super().modify_tensors(data_torch, name, bid):
  5059. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  5060. data = data.view(5, -1, data.shape[-1])
  5061. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  5062. # permute them here to avoid code changes
  5063. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  5064. if "w2" in new_name:
  5065. data = data.view(5, -1, data.shape[-1])
  5066. yield (new_name, data)
  5067. continue
  5068. yield (new_name, data)
  5069. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  5070. class Rwkv7Model(TextModel):
  5071. model_arch = gguf.MODEL_ARCH.RWKV7
  5072. def set_vocab(self):
  5073. self._set_vocab_rwkv_world()
  5074. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  5075. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  5076. def set_gguf_parameters(self):
  5077. try:
  5078. head_size = self.hparams["head_size"]
  5079. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  5080. except KeyError:
  5081. head_size = self.hparams["head_dim"]
  5082. layer_norm_eps = self.hparams["norm_eps"]
  5083. hidden_size = self.hparams["hidden_size"]
  5084. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  5085. # ICLR: In-Context-Learning-Rate
  5086. try:
  5087. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5088. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5089. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5090. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5091. except KeyError:
  5092. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5093. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5094. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5095. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5096. # RWKV isn't context limited
  5097. self.gguf_writer.add_context_length(1048576)
  5098. self.gguf_writer.add_embedding_length(hidden_size)
  5099. self.gguf_writer.add_block_count(self.block_count)
  5100. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  5101. self.gguf_writer.add_wkv_head_size(head_size)
  5102. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5103. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5104. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5105. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5106. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5107. self.gguf_writer.add_file_type(self.ftype)
  5108. # required by llama.cpp, unused
  5109. self.gguf_writer.add_head_count(0)
  5110. lerp_weights: dict[int, dict[str, Tensor]] = {}
  5111. lora_needs_transpose: bool = True
  5112. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5113. # unify tensor names here to make life easier
  5114. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  5115. name = name.replace("self_attn", "attention").replace("attn", "attention")
  5116. name = name.replace("time_mixer.", "")
  5117. # lora layer names in fla-hub's impl
  5118. if "_lora.lora" in name:
  5119. self.lora_needs_transpose = False
  5120. name = name.replace("_lora.lora.0.weight", "1.weight")
  5121. name = name.replace("_lora.lora.2.weight", "2.weight")
  5122. name = name.replace("_lora.lora.2.bias", "0.weight")
  5123. name = name.replace("feed_forward_norm", "ln2")
  5124. name = name.replace("g_norm", "ln_x")
  5125. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  5126. # some models have dummy v0/v1/v2 on first layer while others don't
  5127. # ignore them all since they are not used
  5128. return
  5129. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  5130. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  5131. if bid is not None and "attention.x_" in name:
  5132. if "attention.x_x" in name:
  5133. # already concatenated
  5134. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5135. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  5136. yield (new_name, data)
  5137. else:
  5138. try:
  5139. self.lerp_weights[bid][name] = data_torch
  5140. except KeyError:
  5141. self.lerp_weights[bid] = {name: data_torch}
  5142. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  5143. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5144. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  5145. yield (new_name, data)
  5146. return
  5147. else:
  5148. data_torch = data_torch.squeeze()
  5149. new_name = self.map_tensor_name(name)
  5150. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  5151. new_name += ".weight"
  5152. if self.lora_needs_transpose and any(
  5153. new_name.endswith(t) for t in [
  5154. "time_mix_w1.weight", "time_mix_w2.weight",
  5155. "time_mix_a1.weight", "time_mix_a2.weight",
  5156. "time_mix_v1.weight", "time_mix_v2.weight",
  5157. "time_mix_g1.weight", "time_mix_g2.weight",
  5158. ]
  5159. ):
  5160. data_torch = data_torch.transpose(0, 1)
  5161. if 'r_k' in new_name:
  5162. data_torch = data_torch.flatten()
  5163. if bid == 0 and "time_mix_a" in new_name:
  5164. # dummy v0/v1/v2 on first layer
  5165. # easist way to make llama happy
  5166. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  5167. yield (new_name, data_torch)
  5168. @ModelBase.register("RwkvHybridForCausalLM")
  5169. class ARwkv7Model(Rwkv7Model):
  5170. model_arch = gguf.MODEL_ARCH.ARWKV7
  5171. def set_vocab(self):
  5172. try:
  5173. self._set_vocab_sentencepiece()
  5174. except FileNotFoundError:
  5175. self._set_vocab_gpt2()
  5176. def set_gguf_parameters(self):
  5177. hidden_size = self.hparams["hidden_size"]
  5178. head_size = self.hparams["head_size"]
  5179. rms_norm_eps = self.hparams["rms_norm_eps"]
  5180. intermediate_size = self.hparams["intermediate_size"]
  5181. wkv_has_gate = self.hparams["wkv_has_gate"]
  5182. assert self.hparams["wkv_version"] == 7
  5183. # ICLR: In-Context-Learning-Rate
  5184. lora_rank_decay = 64
  5185. lora_rank_iclr = 64
  5186. lora_rank_value_residual_mix = 32
  5187. lora_rank_gate = 128 if wkv_has_gate else 0
  5188. # RWKV isn't context limited
  5189. self.gguf_writer.add_context_length(1048576)
  5190. self.gguf_writer.add_embedding_length(hidden_size)
  5191. self.gguf_writer.add_block_count(self.block_count)
  5192. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5193. self.gguf_writer.add_wkv_head_size(head_size)
  5194. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5195. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5196. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5197. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5198. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5199. self.gguf_writer.add_file_type(self.ftype)
  5200. self.gguf_writer.add_token_shift_count(1)
  5201. # required by llama.cpp, unused
  5202. self.gguf_writer.add_head_count(0)
  5203. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  5204. class MambaModel(TextModel):
  5205. model_arch = gguf.MODEL_ARCH.MAMBA
  5206. def __init__(self, dir_model: Path, *args, **kwargs):
  5207. # Avoid using AutoConfig for hparams
  5208. hparams = kwargs.pop("hparams", None)
  5209. if hparams is None:
  5210. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5211. hparams = json.load(f)
  5212. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5213. def set_vocab(self):
  5214. vocab_size = self.hparams["vocab_size"]
  5215. # Round vocab size to next multiple of 8
  5216. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  5217. # pad using ceiling division
  5218. # ref: https://stackoverflow.com/a/17511341/22827863
  5219. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5220. self.hparams["vocab_size"] = vocab_size
  5221. if (self.dir_model / "tokenizer.json").is_file():
  5222. self._set_vocab_gpt2()
  5223. elif (self.dir_model / "tokenizer.model").is_file():
  5224. self._set_vocab_sentencepiece()
  5225. else:
  5226. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5227. self._set_vocab_builtin("gpt-neox", vocab_size)
  5228. def set_gguf_parameters(self):
  5229. d_model = self.find_hparam(["hidden_size", "d_model"])
  5230. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5231. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  5232. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  5233. # ceiling division
  5234. # ref: https://stackoverflow.com/a/17511341/22827863
  5235. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5236. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  5237. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5238. use_dt_b_c_norm = False
  5239. # For falconmamba we do apply RMS norm on B / DT and C layers
  5240. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  5241. use_dt_b_c_norm = True
  5242. # Fail early for models which don't have a block expansion factor of 2
  5243. assert d_inner == 2 * d_model
  5244. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5245. self.gguf_writer.add_embedding_length(d_model)
  5246. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5247. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5248. self.gguf_writer.add_block_count(self.block_count)
  5249. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5250. self.gguf_writer.add_ssm_inner_size(d_inner)
  5251. self.gguf_writer.add_ssm_state_size(d_state)
  5252. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5253. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5254. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  5255. self.gguf_writer.add_file_type(self.ftype)
  5256. _tok_embd = None
  5257. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5258. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  5259. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  5260. new_name = self.map_tensor_name(name)
  5261. if name.endswith(".A_log"):
  5262. logger.debug("A_log --> A ==> " + new_name)
  5263. data_torch = -torch.exp(data_torch)
  5264. # [4 1 8192 1] -> [4 8192 1 1]
  5265. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5266. data_torch = data_torch.squeeze()
  5267. # assuming token_embd.weight is seen before output.weight
  5268. if self._tok_embd is not None and new_name == output_name:
  5269. if torch.equal(self._tok_embd, data_torch):
  5270. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  5271. return []
  5272. elif new_name == tok_embd_name:
  5273. self._tok_embd = data_torch
  5274. return [(new_name, data_torch)]
  5275. @ModelBase.register("Mamba2ForCausalLM")
  5276. class Mamba2Model(TextModel):
  5277. model_arch = gguf.MODEL_ARCH.MAMBA2
  5278. def __init__(self, dir_model: Path, *args, **kwargs):
  5279. # Avoid using AutoConfig for hparams
  5280. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  5281. hparams = kwargs.pop("hparams", None)
  5282. if hparams is None:
  5283. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5284. hparams = json.load(f)
  5285. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5286. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  5287. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  5288. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  5289. def set_vocab(self):
  5290. vocab_size = self.hparams["vocab_size"]
  5291. # Round vocab size to next multiple of 16
  5292. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  5293. # pad using ceiling division
  5294. # ref: https://stackoverflow.com/a/17511341/22827863
  5295. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5296. self.hparams["vocab_size"] = vocab_size
  5297. if (self.dir_model / "tokenizer.model").is_file():
  5298. self._set_vocab_sentencepiece()
  5299. elif (self.dir_model / "tokenizer.model.v3").is_file():
  5300. # mamba-codestral
  5301. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  5302. elif (self.dir_model / "tokenizer.json").is_file():
  5303. self._set_vocab_gpt2()
  5304. else:
  5305. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5306. self._set_vocab_builtin("gpt-neox", vocab_size)
  5307. def set_gguf_parameters(self):
  5308. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5309. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  5310. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  5311. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5312. # Fail early for models which don't have a block expansion factor of 2
  5313. # TODO: does this really matter?
  5314. # skip the assertion for FalconH1 Model
  5315. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  5316. assert self.d_inner == 2 * self.d_model
  5317. assert self.d_inner % head_dim == 0
  5318. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5319. self.gguf_writer.add_embedding_length(self.d_model)
  5320. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5321. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5322. self.gguf_writer.add_block_count(self.block_count)
  5323. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5324. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  5325. self.gguf_writer.add_ssm_state_size(d_state)
  5326. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  5327. self.gguf_writer.add_ssm_group_count(self.n_group)
  5328. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5329. self.gguf_writer.add_file_type(self.ftype)
  5330. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5331. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  5332. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  5333. name = name.removeprefix("model.")
  5334. if name.endswith(".dt_bias"):
  5335. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  5336. new_name = self.map_tensor_name(name)
  5337. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5338. data_torch = data_torch.squeeze()
  5339. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  5340. gguf.MODEL_TENSOR.SSM_A,
  5341. gguf.MODEL_TENSOR.SSM_D,
  5342. ]):
  5343. # unsqueeze A to use similar shape semantics as Mamba-1
  5344. # (D is also unsqueezed, but for more straightforward broadcast internally)
  5345. data_torch = data_torch.reshape((*data_torch.shape, 1))
  5346. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  5347. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  5348. if name.endswith(".A_log"):
  5349. logger.debug("A_log --> A ==> " + new_name)
  5350. data_torch = -torch.exp(data_torch)
  5351. yield (new_name, data_torch)
  5352. @ModelBase.register("JambaForCausalLM")
  5353. class JambaModel(TextModel):
  5354. model_arch = gguf.MODEL_ARCH.JAMBA
  5355. def set_vocab(self):
  5356. if (self.dir_model / "tokenizer.model").is_file():
  5357. self._set_vocab_sentencepiece()
  5358. else:
  5359. self._set_vocab_llama_hf()
  5360. self.gguf_writer.add_add_space_prefix(False)
  5361. def set_gguf_parameters(self):
  5362. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  5363. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  5364. d_inner = self.hparams["mamba_expand"] * d_model
  5365. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  5366. # ceiling division
  5367. # ref: https://stackoverflow.com/a/17511341/22827863
  5368. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5369. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  5370. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  5371. n_kv_head = self.hparams["num_key_value_heads"]
  5372. attn_offset = self.hparams["attn_layer_offset"]
  5373. attn_period = self.hparams["attn_layer_period"]
  5374. n_kv_vec = [0 for _ in range(attn_offset)] + [
  5375. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  5376. ]
  5377. self.gguf_writer.add_block_count(self.block_count)
  5378. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  5379. self.gguf_writer.add_embedding_length(d_model)
  5380. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  5381. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  5382. self.gguf_writer.add_head_count_kv(n_kv_vec)
  5383. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5384. self.gguf_writer.add_ssm_inner_size(d_inner)
  5385. self.gguf_writer.add_ssm_state_size(d_state)
  5386. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5387. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5388. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  5389. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  5390. self.gguf_writer.add_file_type(self.ftype)
  5391. _experts: list[dict[str, Tensor]] | None = None
  5392. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5393. # Mini-Jamba
  5394. name = name.replace(".moe.", ".feed_forward.")
  5395. if bid is not None:
  5396. moe_offset = self.hparams["expert_layer_offset"]
  5397. moe_period = self.hparams["expert_layer_period"]
  5398. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  5399. name = name.replace(".experts.0.", ".")
  5400. # process the experts separately
  5401. if ".feed_forward.experts." in name:
  5402. n_experts = self.hparams["num_experts"]
  5403. assert bid is not None
  5404. if self._experts is None:
  5405. self._experts = [{} for _ in range(self.block_count)]
  5406. self._experts[bid][name] = data_torch
  5407. if len(self._experts[bid]) >= n_experts * 3:
  5408. # merge the experts into a single 3d tensor
  5409. for wid in ["down_proj", "gate_proj", "up_proj"]:
  5410. datas: list[Tensor] = []
  5411. for xid in range(n_experts):
  5412. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  5413. datas.append(self._experts[bid][ename])
  5414. del self._experts[bid][ename]
  5415. data_torch = torch.stack(datas, dim=0)
  5416. # using the same merged name as qwen2moe
  5417. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  5418. new_name = self.map_tensor_name(merged_name)
  5419. yield new_name, data_torch
  5420. return
  5421. new_name = self.map_tensor_name(name)
  5422. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5423. data_torch = data_torch.squeeze()
  5424. if name.endswith(".A_log"):
  5425. logger.debug("A_log --> A ==> " + new_name)
  5426. data_torch = -torch.exp(data_torch)
  5427. yield (new_name, data_torch)
  5428. def prepare_tensors(self):
  5429. super().prepare_tensors()
  5430. if self._experts is not None:
  5431. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5432. experts = [k for d in self._experts for k in d.keys()]
  5433. if len(experts) > 0:
  5434. raise ValueError(f"Unprocessed experts: {experts}")
  5435. @ModelBase.register("CohereForCausalLM")
  5436. class CommandR2Model(TextModel):
  5437. model_arch = gguf.MODEL_ARCH.COMMAND_R
  5438. def __init__(self, *args, **kwargs):
  5439. super().__init__(*args, **kwargs)
  5440. # max_position_embeddings = 8192 in config.json but model was actually
  5441. # trained on 128k context length
  5442. # aya-23 models don't have model_max_length specified
  5443. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  5444. def set_gguf_parameters(self):
  5445. super().set_gguf_parameters()
  5446. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5447. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5448. @ModelBase.register("Cohere2ForCausalLM")
  5449. class Cohere2Model(TextModel):
  5450. model_arch = gguf.MODEL_ARCH.COHERE2
  5451. def set_gguf_parameters(self):
  5452. super().set_gguf_parameters()
  5453. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5454. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5455. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  5456. rotary_pct = self.hparams["rotary_pct"]
  5457. hidden_size = self.hparams["hidden_size"]
  5458. num_attention_heads = self.hparams["num_attention_heads"]
  5459. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  5460. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5461. @ModelBase.register("OlmoForCausalLM")
  5462. @ModelBase.register("OLMoForCausalLM")
  5463. class OlmoModel(TextModel):
  5464. model_arch = gguf.MODEL_ARCH.OLMO
  5465. def set_gguf_parameters(self):
  5466. super().set_gguf_parameters()
  5467. self.gguf_writer.add_layer_norm_eps(1e-5)
  5468. clip_qkv = self.hparams.get("clip_qkv")
  5469. if clip_qkv is not None:
  5470. self.gguf_writer.add_clamp_kqv(clip_qkv)
  5471. # Same as super class, but permuting q_proj, k_proj
  5472. # Copied from: LlamaModel
  5473. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5474. del bid # unused
  5475. n_head = self.hparams["num_attention_heads"]
  5476. n_kv_head = self.hparams.get("num_key_value_heads")
  5477. if name.endswith("q_proj.weight"):
  5478. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5479. if name.endswith("k_proj.weight"):
  5480. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5481. return [(self.map_tensor_name(name), data_torch)]
  5482. @ModelBase.register("SeedOssForCausalLM")
  5483. class SeedOssModel(TextModel):
  5484. model_arch = gguf.MODEL_ARCH.SEED_OSS
  5485. @ModelBase.register("Olmo2ForCausalLM")
  5486. @ModelBase.register("Olmo3ForCausalLM")
  5487. class Olmo2Model(TextModel):
  5488. model_arch = gguf.MODEL_ARCH.OLMO2
  5489. def set_gguf_parameters(self):
  5490. super().set_gguf_parameters()
  5491. if "sliding_window" in self.hparams:
  5492. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5493. sliding_window_pattern = []
  5494. if "layer_types" in self.hparams:
  5495. sliding_window_pattern = [t == "sliding_attention" for t in self.hparams["layer_types"]]
  5496. else:
  5497. # Olmo2 does not use sliding window attention.
  5498. # Olmo3 defaults to using sliding window for all layers except every 4th.
  5499. for i in range(self.hparams["num_hidden_layers"]):
  5500. sliding_window_pattern.append((i + 1) % 4 != 0)
  5501. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5502. @ModelBase.register("OlmoeForCausalLM")
  5503. class OlmoeModel(TextModel):
  5504. model_arch = gguf.MODEL_ARCH.OLMOE
  5505. def set_gguf_parameters(self):
  5506. super().set_gguf_parameters()
  5507. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  5508. if (n_experts := self.hparams.get("num_experts")) is not None:
  5509. self.gguf_writer.add_expert_count(n_experts)
  5510. _experts: list[dict[str, Tensor]] | None = None
  5511. # Copied from: Qwen2MoeModel
  5512. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5513. # process the experts separately
  5514. if name.find("experts") != -1:
  5515. n_experts = self.hparams["num_experts"]
  5516. assert bid is not None
  5517. if self._experts is None:
  5518. self._experts = [{} for _ in range(self.block_count)]
  5519. self._experts[bid][name] = data_torch
  5520. if len(self._experts[bid]) >= n_experts * 3:
  5521. tensors: list[tuple[str, Tensor]] = []
  5522. # merge the experts into a single 3d tensor
  5523. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5524. datas: list[Tensor] = []
  5525. for xid in range(n_experts):
  5526. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5527. datas.append(self._experts[bid][ename])
  5528. del self._experts[bid][ename]
  5529. data_torch = torch.stack(datas, dim=0)
  5530. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5531. new_name = self.map_tensor_name(merged_name)
  5532. tensors.append((new_name, data_torch))
  5533. return tensors
  5534. else:
  5535. return []
  5536. return [(self.map_tensor_name(name), data_torch)]
  5537. # Copied from: Qwen2MoeModel
  5538. def prepare_tensors(self):
  5539. super().prepare_tensors()
  5540. if self._experts is not None:
  5541. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5542. experts = [k for d in self._experts for k in d.keys()]
  5543. if len(experts) > 0:
  5544. raise ValueError(f"Unprocessed experts: {experts}")
  5545. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  5546. class JinaBertV2Model(BertModel):
  5547. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  5548. def set_vocab(self):
  5549. tokenizer_class = 'BertTokenizer'
  5550. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  5551. tokenizer_class = json.load(f)['tokenizer_class']
  5552. if tokenizer_class == 'BertTokenizer':
  5553. super().set_vocab()
  5554. elif tokenizer_class == 'RobertaTokenizer':
  5555. self._set_vocab_gpt2()
  5556. self.gguf_writer.add_token_type_count(2)
  5557. else:
  5558. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  5559. @ModelBase.register("OpenELMForCausalLM")
  5560. class OpenELMModel(TextModel):
  5561. model_arch = gguf.MODEL_ARCH.OPENELM
  5562. @staticmethod
  5563. def _make_divisible(v: float | int, divisor: int) -> int:
  5564. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  5565. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  5566. # Make sure that round down does not go down by more than 10%.
  5567. if new_v < 0.9 * v:
  5568. new_v += divisor
  5569. return new_v
  5570. def __init__(self, *args, **kwargs):
  5571. super().__init__(*args, **kwargs)
  5572. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  5573. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  5574. self._n_embd: int = self.hparams["model_dim"]
  5575. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  5576. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  5577. self._ffn_dims: list[int] = [
  5578. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  5579. for multiplier in ffn_multipliers
  5580. ]
  5581. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  5582. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  5583. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  5584. def set_vocab(self):
  5585. try:
  5586. self._set_vocab_sentencepiece()
  5587. except FileNotFoundError:
  5588. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  5589. def set_gguf_parameters(self):
  5590. n_embd = self._n_embd
  5591. head_dim = self.hparams["head_dim"]
  5592. rot_pct = 1.0
  5593. assert self.block_count == len(self._num_kv_heads)
  5594. assert self.block_count == len(self._num_query_heads)
  5595. assert self.block_count == len(self._ffn_dims)
  5596. self.gguf_writer.add_block_count(self.block_count)
  5597. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  5598. self.gguf_writer.add_embedding_length(n_embd)
  5599. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  5600. self.gguf_writer.add_head_count(self._num_query_heads)
  5601. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  5602. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  5603. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  5604. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  5605. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  5606. self.gguf_writer.add_key_length(head_dim)
  5607. self.gguf_writer.add_value_length(head_dim)
  5608. self.gguf_writer.add_file_type(self.ftype)
  5609. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  5610. if "n_layers" in keys:
  5611. return self.hparams["num_transformer_layers"]
  5612. return super().find_hparam(keys, optional)
  5613. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5614. # split ff
  5615. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  5616. ff_dim = self._ffn_dims[bid]
  5617. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  5618. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  5619. return
  5620. yield (self.map_tensor_name(name), data_torch)
  5621. @ModelBase.register("ArcticForCausalLM")
  5622. class ArcticModel(TextModel):
  5623. model_arch = gguf.MODEL_ARCH.ARCTIC
  5624. def set_vocab(self):
  5625. # The reason for using a custom implementation here is that the
  5626. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  5627. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  5628. from sentencepiece import SentencePieceProcessor
  5629. tokenizer_path = self.dir_model / 'tokenizer.model'
  5630. if not tokenizer_path.is_file():
  5631. logger.error(f'Error: Missing {tokenizer_path}')
  5632. sys.exit(1)
  5633. # Read the whole vocabulary from the tokenizer.model file
  5634. tokenizer = SentencePieceProcessor()
  5635. tokenizer.LoadFromFile(str(tokenizer_path))
  5636. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5637. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5638. scores: list[float] = [-10000.0] * vocab_size
  5639. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5640. for token_id in range(tokenizer.vocab_size()):
  5641. piece = tokenizer.IdToPiece(token_id)
  5642. text = piece.encode("utf-8")
  5643. score = tokenizer.GetScore(token_id)
  5644. toktype = SentencePieceTokenTypes.NORMAL
  5645. if tokenizer.IsUnknown(token_id):
  5646. toktype = SentencePieceTokenTypes.UNKNOWN
  5647. elif tokenizer.IsControl(token_id):
  5648. toktype = SentencePieceTokenTypes.CONTROL
  5649. elif tokenizer.IsUnused(token_id):
  5650. toktype = SentencePieceTokenTypes.UNUSED
  5651. elif tokenizer.IsByte(token_id):
  5652. toktype = SentencePieceTokenTypes.BYTE
  5653. tokens[token_id] = text
  5654. scores[token_id] = score
  5655. toktypes[token_id] = toktype
  5656. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  5657. # of information about added/redefined tokens and modify them accordingly.
  5658. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  5659. if tokenizer_config_file.is_file():
  5660. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  5661. tokenizer_config_json = json.load(f)
  5662. if "added_tokens_decoder" in tokenizer_config_json:
  5663. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  5664. for token_id, token_json in added_tokens_decoder.items():
  5665. token_id = int(token_id)
  5666. if token_id >= vocab_size:
  5667. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5668. continue
  5669. token_content = token_json["content"]
  5670. token_type = SentencePieceTokenTypes.USER_DEFINED
  5671. token_score = -10000.0
  5672. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  5673. # Set the score to 0.0 as in the original tokenizer.model
  5674. if ("special" in token_json) and token_json["special"]:
  5675. if token_content == tokenizer_config_json["unk_token"]:
  5676. token_type = SentencePieceTokenTypes.UNKNOWN
  5677. else:
  5678. token_type = SentencePieceTokenTypes.CONTROL
  5679. token_score = 0.0
  5680. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  5681. tokens[token_id] = token_content.encode("utf-8")
  5682. toktypes[token_id] = token_type
  5683. scores[token_id] = token_score
  5684. self.gguf_writer.add_tokenizer_model("llama")
  5685. self.gguf_writer.add_tokenizer_pre("default")
  5686. self.gguf_writer.add_token_list(tokens)
  5687. self.gguf_writer.add_token_scores(scores)
  5688. self.gguf_writer.add_token_types(toktypes)
  5689. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5690. special_vocab.add_to_gguf(self.gguf_writer)
  5691. def set_gguf_parameters(self):
  5692. super().set_gguf_parameters()
  5693. hparams = self.hparams
  5694. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5695. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  5696. _experts: list[dict[str, Tensor]] | None = None
  5697. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5698. n_head = self.hparams["num_attention_heads"]
  5699. n_kv_head = self.hparams.get("num_key_value_heads")
  5700. if name.endswith("q_proj.weight"):
  5701. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5702. if name.endswith("k_proj.weight"):
  5703. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5704. # process the experts separately
  5705. if name.find("block_sparse_moe.experts") != -1:
  5706. n_experts = self.hparams["num_local_experts"]
  5707. assert bid is not None
  5708. if self._experts is None:
  5709. self._experts = [{} for _ in range(self.block_count)]
  5710. self._experts[bid][name] = data_torch
  5711. if len(self._experts[bid]) >= n_experts * 3:
  5712. tensors: list[tuple[str, Tensor]] = []
  5713. # merge the experts into a single 3d tensor
  5714. for wid in ["w1", "w2", "w3"]:
  5715. datas: list[Tensor] = []
  5716. for xid in range(n_experts):
  5717. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  5718. datas.append(self._experts[bid][ename])
  5719. del self._experts[bid][ename]
  5720. data_torch = torch.stack(datas, dim=0)
  5721. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  5722. new_name = self.map_tensor_name(merged_name)
  5723. tensors.append((new_name, data_torch))
  5724. return tensors
  5725. else:
  5726. return []
  5727. return [(self.map_tensor_name(name), data_torch)]
  5728. def prepare_tensors(self):
  5729. super().prepare_tensors()
  5730. if self._experts is not None:
  5731. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5732. experts = [k for d in self._experts for k in d.keys()]
  5733. if len(experts) > 0:
  5734. raise ValueError(f"Unprocessed experts: {experts}")
  5735. @ModelBase.register("DeepseekForCausalLM")
  5736. class DeepseekModel(TextModel):
  5737. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  5738. def set_vocab(self):
  5739. try:
  5740. self._set_vocab_sentencepiece()
  5741. except FileNotFoundError:
  5742. self._set_vocab_gpt2()
  5743. def set_gguf_parameters(self):
  5744. super().set_gguf_parameters()
  5745. hparams = self.hparams
  5746. if (rope_dim := hparams.get("head_dim")) is None:
  5747. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5748. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5749. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5750. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5751. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5752. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5753. self.gguf_writer.add_expert_weights_scale(1.0)
  5754. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5755. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5756. _experts: list[dict[str, Tensor]] | None = None
  5757. @staticmethod
  5758. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5759. if n_head_kv is not None and n_head != n_head_kv:
  5760. n_head = n_head_kv
  5761. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5762. .swapaxes(1, 2)
  5763. .reshape(weights.shape))
  5764. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5765. n_head = self.hparams["num_attention_heads"]
  5766. n_kv_head = self.hparams.get("num_key_value_heads")
  5767. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5768. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  5769. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5770. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  5771. # process the experts separately
  5772. if name.find("mlp.experts") != -1:
  5773. n_experts = self.hparams["n_routed_experts"]
  5774. assert bid is not None
  5775. if self._experts is None:
  5776. self._experts = [{} for _ in range(self.block_count)]
  5777. self._experts[bid][name] = data_torch
  5778. if len(self._experts[bid]) >= n_experts * 3:
  5779. tensors: list[tuple[str, Tensor]] = []
  5780. # merge the experts into a single 3d tensor
  5781. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5782. datas: list[Tensor] = []
  5783. for xid in range(n_experts):
  5784. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5785. datas.append(self._experts[bid][ename])
  5786. del self._experts[bid][ename]
  5787. data_torch = torch.stack(datas, dim=0)
  5788. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5789. new_name = self.map_tensor_name(merged_name)
  5790. tensors.append((new_name, data_torch))
  5791. return tensors
  5792. else:
  5793. return []
  5794. return [(self.map_tensor_name(name), data_torch)]
  5795. def prepare_tensors(self):
  5796. super().prepare_tensors()
  5797. if self._experts is not None:
  5798. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5799. experts = [k for d in self._experts for k in d.keys()]
  5800. if len(experts) > 0:
  5801. raise ValueError(f"Unprocessed experts: {experts}")
  5802. @ModelBase.register(
  5803. "DeepseekV2ForCausalLM",
  5804. "DeepseekV3ForCausalLM",
  5805. "KimiVLForConditionalGeneration",
  5806. )
  5807. class DeepseekV2Model(TextModel):
  5808. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  5809. def set_vocab(self):
  5810. try:
  5811. self._set_vocab_gpt2()
  5812. return
  5813. except Exception:
  5814. pass
  5815. from transformers import AutoTokenizer
  5816. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5817. tokpre = self.get_vocab_base_pre(tokenizer)
  5818. if tokpre == "kimi-k2":
  5819. # Build merges list using the approach similar to HunYuanMoE
  5820. merges = []
  5821. vocab = {}
  5822. mergeable_ranks = tokenizer.model._mergeable_ranks
  5823. for token, rank in mergeable_ranks.items():
  5824. vocab[QwenModel.token_bytes_to_string(token)] = rank
  5825. if len(token) == 1:
  5826. continue
  5827. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  5828. if len(merged) == 2:
  5829. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  5830. # Build token list
  5831. vocab_size = self.hparams["vocab_size"]
  5832. special_tokens = tokenizer.special_tokens
  5833. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  5834. tokens: list[str] = []
  5835. toktypes: list[int] = []
  5836. for i in range(vocab_size):
  5837. if i not in reverse_vocab:
  5838. tokens.append(f"[PAD{i}]")
  5839. toktypes.append(gguf.TokenType.UNUSED)
  5840. else:
  5841. token = reverse_vocab[i]
  5842. tokens.append(token)
  5843. if i in special_tokens.values():
  5844. toktypes.append(gguf.TokenType.CONTROL)
  5845. else:
  5846. toktypes.append(gguf.TokenType.NORMAL)
  5847. self.gguf_writer.add_tokenizer_model("gpt2")
  5848. self.gguf_writer.add_tokenizer_pre(tokpre)
  5849. self.gguf_writer.add_token_list(tokens)
  5850. self.gguf_writer.add_token_types(toktypes)
  5851. self.gguf_writer.add_token_merges(merges)
  5852. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  5853. special_vocab.add_to_gguf(self.gguf_writer)
  5854. else:
  5855. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  5856. def set_gguf_parameters(self):
  5857. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  5858. self.hparams["num_key_value_heads"] = 1
  5859. super().set_gguf_parameters()
  5860. hparams = self.hparams
  5861. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5862. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5863. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  5864. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  5865. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5866. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  5867. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  5868. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  5869. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5870. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  5871. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5872. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5873. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5874. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  5875. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  5876. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5877. if (rope_mscale_all := self.rope_parameters.get("mscale_all_dim")) is not None:
  5878. # [TAG_DEEPSEEK2_YARN_LOG_MUL_FIX]
  5879. # note: for legacy reasons, this is not consistent with the other usages of self.gguf_writer.add_rope_scaling_yarn_log_mul
  5880. # ref https://github.com/ggml-org/llama.cpp/pull/17945
  5881. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_mscale_all)
  5882. _experts: list[dict[str, Tensor]] | None = None
  5883. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5884. # skip vision tensors and remove "language_model." for Kimi-VL
  5885. if "vision_tower" in name or "multi_modal_projector" in name:
  5886. return []
  5887. if name.startswith("language_model."):
  5888. name = name.replace("language_model.", "")
  5889. # rename e_score_correction_bias tensors
  5890. if name.endswith("e_score_correction_bias"):
  5891. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5892. # skip Multi-Token Prediction (MTP) layers
  5893. block_count = self.hparams["num_hidden_layers"]
  5894. match = re.match(r"model.layers.(\d+)", name)
  5895. if match and int(match.group(1)) >= block_count:
  5896. return []
  5897. # process the experts separately
  5898. if name.find("mlp.experts") != -1:
  5899. n_experts = self.hparams["n_routed_experts"]
  5900. assert bid is not None
  5901. if self._experts is None:
  5902. self._experts = [{} for _ in range(self.block_count)]
  5903. self._experts[bid][name] = data_torch
  5904. if len(self._experts[bid]) >= n_experts * 3:
  5905. tensors: list[tuple[str, Tensor]] = []
  5906. # merge the experts into a single 3d tensor
  5907. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5908. datas: list[Tensor] = []
  5909. for xid in range(n_experts):
  5910. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5911. datas.append(self._experts[bid][ename])
  5912. del self._experts[bid][ename]
  5913. data_torch = torch.stack(datas, dim=0)
  5914. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5915. new_name = self.map_tensor_name(merged_name)
  5916. tensors.append((new_name, data_torch))
  5917. return tensors
  5918. else:
  5919. return []
  5920. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  5921. if name.endswith("kv_b_proj.weight"):
  5922. name_kb = name.replace("kv_b_proj", "k_b_proj")
  5923. name_vb = name.replace("kv_b_proj", "v_b_proj")
  5924. n_head_kv = self.hparams["num_key_value_heads"]
  5925. v_head_dim = self.hparams["v_head_dim"]
  5926. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  5927. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  5928. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  5929. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  5930. k_b = k_b.transpose(1, 2)
  5931. return [
  5932. (self.map_tensor_name(name_kb), k_b),
  5933. (self.map_tensor_name(name_vb), v_b)
  5934. ]
  5935. return [(self.map_tensor_name(name), data_torch)]
  5936. def prepare_tensors(self):
  5937. super().prepare_tensors()
  5938. if self._experts is not None:
  5939. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5940. experts = [k for d in self._experts for k in d.keys()]
  5941. if len(experts) > 0:
  5942. raise ValueError(f"Unprocessed experts: {experts}")
  5943. @ModelBase.register("MiniMaxM2ForCausalLM")
  5944. class MiniMaxM2Model(TextModel):
  5945. model_arch = gguf.MODEL_ARCH.MINIMAXM2
  5946. _experts_cache: dict[int, dict[str, Tensor]] = {}
  5947. def __init__(self, *args, **kwargs):
  5948. super().__init__(*args, **kwargs)
  5949. self.hparams["num_experts"] = self.hparams["num_local_experts"]
  5950. def set_gguf_parameters(self):
  5951. super().set_gguf_parameters()
  5952. self.gguf_writer.add_expert_feed_forward_length(self.find_hparam(["intermediate_size"]))
  5953. self.gguf_writer.add_rope_dimension_count(self.find_hparam(["rotary_dim"]))
  5954. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  5955. if name.endswith("e_score_correction_bias"):
  5956. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5957. # merge expert weights
  5958. if 'experts' in name:
  5959. n_experts = self.hparams["num_experts"]
  5960. assert bid is not None
  5961. expert_cache = self._experts_cache.setdefault(bid, {})
  5962. expert_cache[name] = data_torch
  5963. expert_weights = ["w1", "w2", "w3"]
  5964. # not enough expert weights to merge
  5965. if len(expert_cache) < n_experts * len(expert_weights):
  5966. return []
  5967. tensors: list[tuple[str, Tensor]] = []
  5968. for w_name in expert_weights:
  5969. datas: list[Tensor] = []
  5970. for xid in range(n_experts):
  5971. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  5972. datas.append(expert_cache[ename])
  5973. del expert_cache[ename]
  5974. data_torch = torch.stack(datas, dim=0)
  5975. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  5976. new_name = self.map_tensor_name(merged_name)
  5977. tensors.append((new_name, data_torch))
  5978. del self._experts_cache[bid]
  5979. return tensors
  5980. return super().modify_tensors(data_torch, name, bid)
  5981. @ModelBase.register("PanguEmbeddedForCausalLM")
  5982. class PanguEmbeddedModel(TextModel):
  5983. model_arch = gguf.MODEL_ARCH.PANGU_EMBED
  5984. def set_vocab(self):
  5985. self._set_vocab_sentencepiece()
  5986. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  5987. if tokenizer_config_file.is_file():
  5988. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  5989. tokenizer_config_json = json.load(f)
  5990. if "add_prefix_space" in tokenizer_config_json:
  5991. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  5992. def set_gguf_parameters(self):
  5993. super().set_gguf_parameters()
  5994. hparams = self.hparams
  5995. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5996. # PanguEmbedded's hparam loaded from config.json without head_dim
  5997. if (rope_dim := hparams.get("head_dim")) is None:
  5998. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5999. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6000. if hparams.get("head_dim") is None:
  6001. self.gguf_writer.add_key_length(rope_dim)
  6002. self.gguf_writer.add_value_length(rope_dim)
  6003. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6004. if name == "lm_head.weight":
  6005. if self.hparams.get("tie_word_embeddings", False):
  6006. logger.info("Skipping tied output layer 'lm_head.weight'")
  6007. return []
  6008. return [(self.map_tensor_name(name), data_torch)]
  6009. @ModelBase.register("Dots1ForCausalLM")
  6010. class Dots1Model(Qwen2MoeModel):
  6011. model_arch = gguf.MODEL_ARCH.DOTS1
  6012. def __init__(self, *args, **kwargs):
  6013. super().__init__(*args, **kwargs)
  6014. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  6015. def set_gguf_parameters(self):
  6016. super().set_gguf_parameters()
  6017. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  6018. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  6019. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  6020. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  6021. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  6022. if name.endswith("e_score_correction_bias"):
  6023. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6024. if "shared_experts" in name:
  6025. return [(self.map_tensor_name(name), data_torch)]
  6026. return super().modify_tensors(data_torch, name, bid)
  6027. @ModelBase.register("PLMForCausalLM")
  6028. class PLMModel(TextModel):
  6029. model_arch = gguf.MODEL_ARCH.PLM
  6030. def set_vocab(self):
  6031. self._set_vocab_gpt2()
  6032. def set_gguf_parameters(self):
  6033. super().set_gguf_parameters()
  6034. hparams = self.hparams
  6035. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6036. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  6037. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  6038. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  6039. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  6040. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6041. return [(self.map_tensor_name(name), data_torch)]
  6042. def prepare_tensors(self):
  6043. super().prepare_tensors()
  6044. @ModelBase.register("T5WithLMHeadModel")
  6045. @ModelBase.register("T5ForConditionalGeneration")
  6046. @ModelBase.register("MT5ForConditionalGeneration")
  6047. @ModelBase.register("UMT5ForConditionalGeneration")
  6048. @ModelBase.register("UMT5Model")
  6049. class T5Model(TextModel):
  6050. model_arch = gguf.MODEL_ARCH.T5
  6051. def __init__(self, *args, **kwargs):
  6052. super().__init__(*args, **kwargs)
  6053. self.shared_token_embeddings_found = False
  6054. def set_vocab(self):
  6055. # to avoid TypeError: Descriptors cannot be created directly
  6056. # exception when importing sentencepiece_model_pb2
  6057. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6058. from sentencepiece import SentencePieceProcessor
  6059. from sentencepiece import sentencepiece_model_pb2 as model
  6060. tokenizer_path = self.dir_model / 'tokenizer.model'
  6061. # many older models use spiece.model tokenizer model filename
  6062. if not tokenizer_path.is_file():
  6063. tokenizer_path = self.dir_model / 'spiece.model'
  6064. if not tokenizer_path.is_file():
  6065. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6066. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6067. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6068. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6069. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6070. # assure the tokenizer model file name is correct
  6071. assert tokenizer_path.name == 'tokenizer.model'
  6072. return self._set_vocab_sentencepiece()
  6073. else:
  6074. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6075. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6076. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6077. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6078. tokenizer = SentencePieceProcessor()
  6079. tokenizer.LoadFromFile(str(tokenizer_path))
  6080. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6081. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6082. scores: list[float] = [-10000.0] * vocab_size
  6083. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6084. for token_id in range(tokenizer.vocab_size()):
  6085. piece = tokenizer.IdToPiece(token_id)
  6086. text = piece.encode("utf-8")
  6087. score = tokenizer.GetScore(token_id)
  6088. toktype = SentencePieceTokenTypes.NORMAL
  6089. if tokenizer.IsUnknown(token_id):
  6090. toktype = SentencePieceTokenTypes.UNKNOWN
  6091. elif tokenizer.IsControl(token_id):
  6092. toktype = SentencePieceTokenTypes.CONTROL
  6093. elif tokenizer.IsUnused(token_id):
  6094. toktype = SentencePieceTokenTypes.UNUSED
  6095. elif tokenizer.IsByte(token_id):
  6096. toktype = SentencePieceTokenTypes.BYTE
  6097. tokens[token_id] = text
  6098. scores[token_id] = score
  6099. toktypes[token_id] = toktype
  6100. added_tokens_file = self.dir_model / 'added_tokens.json'
  6101. if added_tokens_file.is_file():
  6102. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6103. added_tokens_json = json.load(f)
  6104. for key in added_tokens_json:
  6105. token_id = added_tokens_json[key]
  6106. if token_id >= vocab_size:
  6107. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6108. continue
  6109. tokens[token_id] = key.encode("utf-8")
  6110. scores[token_id] = -1000.0
  6111. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6112. if vocab_size > len(tokens):
  6113. pad_count = vocab_size - len(tokens)
  6114. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6115. for i in range(1, pad_count + 1):
  6116. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6117. scores.append(-1000.0)
  6118. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6119. self.gguf_writer.add_tokenizer_model("t5")
  6120. self.gguf_writer.add_tokenizer_pre("default")
  6121. self.gguf_writer.add_token_list(tokens)
  6122. self.gguf_writer.add_token_scores(scores)
  6123. self.gguf_writer.add_token_types(toktypes)
  6124. self.gguf_writer.add_add_space_prefix(add_prefix)
  6125. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6126. if precompiled_charsmap:
  6127. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6128. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6129. special_vocab.add_to_gguf(self.gguf_writer)
  6130. def set_gguf_parameters(self):
  6131. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6132. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6133. n_ctx = 512
  6134. self.gguf_writer.add_context_length(n_ctx)
  6135. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6136. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6137. self.gguf_writer.add_block_count(self.block_count)
  6138. if (dec_n_layer := self.hparams.get("num_decoder_layers")) is not None:
  6139. self.gguf_writer.add_decoder_block_count(dec_n_layer)
  6140. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6141. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6142. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6143. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6144. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6145. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6146. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  6147. self.gguf_writer.add_file_type(self.ftype)
  6148. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6149. del bid # unused
  6150. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6151. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6152. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6153. # and decoder and ignore the remaining ones.
  6154. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6155. if not self.shared_token_embeddings_found:
  6156. name = "shared.weight"
  6157. self.shared_token_embeddings_found = True
  6158. else:
  6159. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6160. return []
  6161. return [(self.map_tensor_name(name), data_torch)]
  6162. @ModelBase.register("T5EncoderModel")
  6163. class T5EncoderModel(TextModel):
  6164. model_arch = gguf.MODEL_ARCH.T5ENCODER
  6165. def __init__(self, *args, **kwargs):
  6166. super().__init__(*args, **kwargs)
  6167. self.shared_token_embeddings_found = False
  6168. def set_vocab(self):
  6169. # to avoid TypeError: Descriptors cannot be created directly
  6170. # exception when importing sentencepiece_model_pb2
  6171. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6172. from sentencepiece import SentencePieceProcessor
  6173. from sentencepiece import sentencepiece_model_pb2 as model
  6174. tokenizer_path = self.dir_model / 'tokenizer.model'
  6175. # many older models use spiece.model tokenizer model filename
  6176. if not tokenizer_path.is_file():
  6177. tokenizer_path = self.dir_model / 'spiece.model'
  6178. if not tokenizer_path.is_file():
  6179. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6180. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6181. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6182. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6183. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6184. # assure the tokenizer model file name is correct
  6185. assert tokenizer_path.name == 'tokenizer.model'
  6186. return self._set_vocab_sentencepiece()
  6187. else:
  6188. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6189. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6190. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6191. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6192. tokenizer = SentencePieceProcessor()
  6193. tokenizer.LoadFromFile(str(tokenizer_path))
  6194. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6195. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6196. scores: list[float] = [-10000.0] * vocab_size
  6197. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6198. for token_id in range(tokenizer.vocab_size()):
  6199. piece = tokenizer.IdToPiece(token_id)
  6200. text = piece.encode("utf-8")
  6201. score = tokenizer.GetScore(token_id)
  6202. toktype = SentencePieceTokenTypes.NORMAL
  6203. if tokenizer.IsUnknown(token_id):
  6204. toktype = SentencePieceTokenTypes.UNKNOWN
  6205. elif tokenizer.IsControl(token_id):
  6206. toktype = SentencePieceTokenTypes.CONTROL
  6207. elif tokenizer.IsUnused(token_id):
  6208. toktype = SentencePieceTokenTypes.UNUSED
  6209. elif tokenizer.IsByte(token_id):
  6210. toktype = SentencePieceTokenTypes.BYTE
  6211. tokens[token_id] = text
  6212. scores[token_id] = score
  6213. toktypes[token_id] = toktype
  6214. added_tokens_file = self.dir_model / 'added_tokens.json'
  6215. if added_tokens_file.is_file():
  6216. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6217. added_tokens_json = json.load(f)
  6218. for key in added_tokens_json:
  6219. token_id = added_tokens_json[key]
  6220. if token_id >= vocab_size:
  6221. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6222. continue
  6223. tokens[token_id] = key.encode("utf-8")
  6224. scores[token_id] = -1000.0
  6225. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6226. if vocab_size > len(tokens):
  6227. pad_count = vocab_size - len(tokens)
  6228. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6229. for i in range(1, pad_count + 1):
  6230. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6231. scores.append(-1000.0)
  6232. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6233. self.gguf_writer.add_tokenizer_model("t5")
  6234. self.gguf_writer.add_tokenizer_pre("default")
  6235. self.gguf_writer.add_token_list(tokens)
  6236. self.gguf_writer.add_token_scores(scores)
  6237. self.gguf_writer.add_token_types(toktypes)
  6238. self.gguf_writer.add_add_space_prefix(add_prefix)
  6239. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6240. if precompiled_charsmap:
  6241. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6242. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6243. special_vocab.add_to_gguf(self.gguf_writer)
  6244. def set_gguf_parameters(self):
  6245. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6246. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6247. n_ctx = 512
  6248. self.gguf_writer.add_context_length(n_ctx)
  6249. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6250. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6251. self.gguf_writer.add_block_count(self.block_count)
  6252. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6253. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6254. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6255. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6256. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6257. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6258. self.gguf_writer.add_file_type(self.ftype)
  6259. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6260. del bid # unused
  6261. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6262. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6263. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6264. # and decoder and ignore the remaining ones.
  6265. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6266. if not self.shared_token_embeddings_found:
  6267. name = "shared.weight"
  6268. self.shared_token_embeddings_found = True
  6269. else:
  6270. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6271. return []
  6272. return [(self.map_tensor_name(name), data_torch)]
  6273. @ModelBase.register("JAISLMHeadModel")
  6274. class JaisModel(TextModel):
  6275. model_arch = gguf.MODEL_ARCH.JAIS
  6276. def __init__(self, *args, **kwargs):
  6277. super().__init__(*args, **kwargs)
  6278. # SwigLU activation
  6279. assert self.hparams["activation_function"] == "swiglu"
  6280. # ALiBi position embedding
  6281. assert self.hparams["position_embedding_type"] == "alibi"
  6282. # Embeddings scale
  6283. self.embeddings_scale = 1.0
  6284. if 'mup_embeddings_scale' in self.hparams:
  6285. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  6286. elif 'embeddings_scale' in self.hparams:
  6287. self.embeddings_scale = self.hparams['embeddings_scale']
  6288. else:
  6289. assert False
  6290. self.width_scale = 1.0
  6291. if 'mup_output_alpha' in self.hparams:
  6292. assert 'mup_width_scale' in self.hparams
  6293. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  6294. elif 'width_scale' in self.hparams:
  6295. self.width_scale = self.hparams['width_scale']
  6296. else:
  6297. assert False
  6298. self.max_alibi_bias = 8.0
  6299. def set_vocab(self):
  6300. self._set_vocab_gpt2()
  6301. def set_gguf_parameters(self):
  6302. self.gguf_writer.add_block_count(self.block_count)
  6303. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  6304. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  6305. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  6306. self.gguf_writer.add_head_count(self.hparams["n_head"])
  6307. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6308. self.gguf_writer.add_file_type(self.ftype)
  6309. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6310. del bid # unused
  6311. tensors: list[tuple[str, Tensor]] = []
  6312. # we don't need these
  6313. if name.endswith((".attn.bias")):
  6314. return tensors
  6315. if name.endswith(("relative_pe.slopes")):
  6316. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  6317. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  6318. # but Jais's PyTorch model simply precalculates the slope values and places them
  6319. # in relative_pes.slopes
  6320. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  6321. first_val = float(data_torch[0].item())
  6322. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  6323. return tensors
  6324. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  6325. data_torch = data_torch.transpose(1, 0)
  6326. new_name = self.map_tensor_name(name)
  6327. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  6328. tensors.append((new_name, data_torch * self.embeddings_scale))
  6329. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  6330. tensors.append((new_name, data_torch * self.width_scale))
  6331. else:
  6332. tensors.append((new_name, data_torch))
  6333. return tensors
  6334. def prepare_tensors(self):
  6335. super().prepare_tensors()
  6336. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  6337. @ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
  6338. class Glm4Model(TextModel):
  6339. model_arch = gguf.MODEL_ARCH.GLM4
  6340. use_mrope = False
  6341. partial_rotary_factor = 0.5
  6342. def __init__(self, *args, **kwargs):
  6343. super().__init__(*args, **kwargs)
  6344. self.partial_rotary_factor = self.rope_parameters.get("partial_rotary_factor", 0.5)
  6345. if "mrope_section" in self.rope_parameters:
  6346. self.use_mrope = True
  6347. logger.info("Q/K weight will need to be permuted for M-RoPE")
  6348. def set_vocab(self):
  6349. from transformers import AutoTokenizer
  6350. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6351. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6352. tokens, toktypes, tokpre = self.get_vocab_base()
  6353. self.gguf_writer.add_tokenizer_model("gpt2")
  6354. self.gguf_writer.add_tokenizer_pre(tokpre)
  6355. self.gguf_writer.add_token_list(tokens)
  6356. self.gguf_writer.add_token_types(toktypes)
  6357. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6358. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6359. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6360. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6361. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6362. special_vocab.add_to_gguf(self.gguf_writer)
  6363. def set_gguf_parameters(self):
  6364. super().set_gguf_parameters()
  6365. if (rope_dim := self.hparams.get("head_dim")) is None:
  6366. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6367. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.partial_rotary_factor))
  6368. @staticmethod
  6369. def normal_to_neox(weights: Tensor, n_head: int, n_head_kv: int, head_dim: int, partial_rotary_factor: float) -> Tensor:
  6370. orig_shape = weights.shape
  6371. if len(orig_shape) == 1:
  6372. weights = weights.unsqueeze(1) # [out_dim, 1]
  6373. if len(weights.shape) != 2:
  6374. raise ValueError("Only 1D and 2D tensors are supported.")
  6375. n_effective_heads = weights.shape[0] // head_dim
  6376. if n_head_kv is not None and n_effective_heads != n_head:
  6377. if n_effective_heads != n_head_kv:
  6378. raise AssertionError(f"Mismatch in effective heads: computed {n_effective_heads}, expected {n_head} or {n_head_kv}")
  6379. rotary_dim = int(head_dim * partial_rotary_factor)
  6380. if rotary_dim % 2 != 0:
  6381. raise ValueError("rotary_dim must be even.")
  6382. reshaped = weights.reshape(n_effective_heads, head_dim, -1)
  6383. rot_part = reshaped[:, :rotary_dim, :]
  6384. non_rot_part = reshaped[:, rotary_dim:, :]
  6385. permuted_rot = torch.cat((rot_part[:, ::2, :], rot_part[:, 1::2, :]), dim=1)
  6386. combined = torch.cat((permuted_rot, non_rot_part), dim=1)
  6387. result = combined.reshape(weights.shape)
  6388. return result if len(orig_shape) != 1 else result.squeeze(1)
  6389. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6390. if name.startswith("model.visual."): # ignore visual part of Glm4v
  6391. return []
  6392. elif name.startswith("model.language_model."):
  6393. name = name.replace("language_model.", "") # for Glm4v
  6394. if self.use_mrope:
  6395. n_head = self.hparams["num_attention_heads"]
  6396. n_kv_head = self.hparams["num_key_value_heads"]
  6397. n_embd = self.hparams["hidden_size"]
  6398. head_dim = n_embd // n_head
  6399. # because llama.cpp M-RoPE kernel only supports Neox ordering, we have to permute the weights here
  6400. if name.endswith(("q_proj.weight", "q_proj.bias")):
  6401. data_torch = Glm4Model.normal_to_neox(data_torch, n_head, n_head, head_dim, self.partial_rotary_factor)
  6402. if name.endswith(("k_proj.weight", "k_proj.bias")):
  6403. data_torch = Glm4Model.normal_to_neox(data_torch, n_head, n_kv_head, head_dim, self.partial_rotary_factor)
  6404. return super().modify_tensors(data_torch, name, bid)
  6405. @ModelBase.register("Glm4MoeForCausalLM", "Glm4vMoeForConditionalGeneration")
  6406. class Glm4MoeModel(TextModel):
  6407. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  6408. def __init__(self, *args, **kwargs):
  6409. super().__init__(*args, **kwargs)
  6410. # GLM4_MOE has num_hidden_layers + 1 actual layers (including NextN layer)
  6411. self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
  6412. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  6413. def set_vocab(self):
  6414. from transformers import AutoTokenizer
  6415. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  6416. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6417. tokens, toktypes, tokpre = self.get_vocab_base()
  6418. self.gguf_writer.add_tokenizer_model("gpt2")
  6419. self.gguf_writer.add_tokenizer_pre(tokpre)
  6420. self.gguf_writer.add_token_list(tokens)
  6421. self.gguf_writer.add_token_types(toktypes)
  6422. # Special tokens
  6423. # Note: Using <|endoftext|> (151329) for eot causes endless generation
  6424. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
  6425. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
  6426. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
  6427. special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
  6428. special_vocab.add_to_gguf(self.gguf_writer)
  6429. def set_gguf_parameters(self):
  6430. super().set_gguf_parameters()
  6431. if (rope_dim := self.hparams.get("head_dim")) is None:
  6432. rope_dim = (
  6433. self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6434. )
  6435. self.gguf_writer.add_rope_dimension_count(
  6436. int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))
  6437. )
  6438. # MoE parameters - Use only routed expert count (shared experts handled separately)
  6439. if (n_routed_experts := self.hparams.get("n_routed_experts")) is not None:
  6440. self.gguf_writer.add_expert_count(n_routed_experts)
  6441. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  6442. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6443. if (n_shared_experts := self.hparams.get("n_shared_experts")) is not None:
  6444. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  6445. if (first_k_dense_replace := self.hparams.get("first_k_dense_replace")) is not None:
  6446. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  6447. # Expert gating function (sigmoid for GLM4_MOE)
  6448. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6449. # Routed scaling factor
  6450. if (routed_scaling_factor := self.hparams.get("routed_scaling_factor")) is not None:
  6451. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  6452. # Normalise topk probabilities
  6453. if (norm_topk_prob := self.hparams.get("norm_topk_prob")) is not None:
  6454. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  6455. # NextN/MTP prediction layers
  6456. if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  6457. self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
  6458. _experts: list[dict[str, Tensor]] | None = None
  6459. # note: unlike GLM4V non-MoE, we don't need to permute Q/K here since GLM4V_MOE uses Neox ordering already
  6460. def modify_tensors(
  6461. self, data_torch: Tensor, name: str, bid: int | None
  6462. ) -> Iterable[tuple[str, Tensor]]:
  6463. if name.startswith("model.visual."): # ignore visual part
  6464. return []
  6465. elif name.startswith("model.language_model."):
  6466. name = name.replace("language_model.", "") # for multimodal variants
  6467. # Handle main token embedding (but not layer-specific NextN embeddings)
  6468. if name == "model.embed_tokens.weight" and ".layers." not in name:
  6469. return [(self.map_tensor_name("token_embd.weight"), data_torch)]
  6470. # Handle routed experts
  6471. if name.find("mlp.experts") != -1:
  6472. n_experts = self.hparams["n_routed_experts"]
  6473. assert bid is not None
  6474. if self._experts is None:
  6475. self._experts = [{} for _ in range(self.block_count)]
  6476. self._experts[bid][name] = data_torch
  6477. if len(self._experts[bid]) >= n_experts * 3:
  6478. tensors: list[tuple[str, Tensor]] = []
  6479. # merge the experts into a single 3d tensor
  6480. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6481. datas: list[Tensor] = []
  6482. for xid in range(n_experts):
  6483. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6484. datas.append(self._experts[bid][ename])
  6485. del self._experts[bid][ename]
  6486. data_torch = torch.stack(datas, dim=0)
  6487. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6488. new_name = self.map_tensor_name(merged_name)
  6489. tensors.append((new_name, data_torch))
  6490. return tensors
  6491. else:
  6492. return []
  6493. if name.endswith("e_score_correction_bias"):
  6494. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6495. new_name = self.map_tensor_name(name)
  6496. return [(new_name, data_torch)]
  6497. def prepare_tensors(self):
  6498. super().prepare_tensors()
  6499. if self._experts is not None:
  6500. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6501. experts = [k for d in self._experts for k in d.keys()]
  6502. if len(experts) > 0:
  6503. raise ValueError(f"Unprocessed experts: {experts}")
  6504. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  6505. class ChatGLMModel(TextModel):
  6506. model_arch = gguf.MODEL_ARCH.CHATGLM
  6507. def set_vocab_chatglm3(self):
  6508. dir_model = self.dir_model
  6509. hparams = self.hparams
  6510. tokens: list[bytes] = []
  6511. toktypes: list[int] = []
  6512. scores: list[float] = []
  6513. from transformers import AutoTokenizer
  6514. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6515. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  6516. assert max(tokenizer.get_vocab().values()) < vocab_size
  6517. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  6518. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  6519. for token_id in range(vocab_size):
  6520. piece = tokenizer._convert_id_to_token(token_id)
  6521. if token_id == 0:
  6522. piece = "<unk>"
  6523. elif token_id == 1:
  6524. piece = "<bos>"
  6525. elif token_id == 2:
  6526. piece = "<eos>"
  6527. text = piece.encode("utf-8")
  6528. score = 0.0
  6529. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  6530. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  6531. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  6532. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  6533. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  6534. if piece in special_tokens:
  6535. toktype = SentencePieceTokenTypes.CONTROL
  6536. elif len(piece) == 0:
  6537. text = f"[PAD{token_id}]".encode("utf-8")
  6538. toktype = SentencePieceTokenTypes.UNUSED
  6539. else:
  6540. toktype = SentencePieceTokenTypes.USER_DEFINED
  6541. tokens.append(text)
  6542. scores.append(score)
  6543. toktypes.append(toktype)
  6544. continue
  6545. toktype = SentencePieceTokenTypes.NORMAL
  6546. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  6547. toktype = SentencePieceTokenTypes.UNKNOWN
  6548. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  6549. toktype = SentencePieceTokenTypes.CONTROL
  6550. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  6551. toktype = SentencePieceTokenTypes.UNUSED
  6552. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  6553. toktype = SentencePieceTokenTypes.BYTE
  6554. tokens.append(text)
  6555. scores.append(score)
  6556. toktypes.append(toktype)
  6557. self.gguf_writer.add_tokenizer_model("llama")
  6558. # glm3 needs prefix and suffix formatted as:
  6559. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  6560. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  6561. self.gguf_writer.add_token_list(tokens)
  6562. self.gguf_writer.add_token_scores(scores)
  6563. self.gguf_writer.add_token_types(toktypes)
  6564. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6565. special_vocab.add_to_gguf(self.gguf_writer)
  6566. @staticmethod
  6567. def token_bytes_to_string(b):
  6568. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  6569. byte_encoder = bytes_to_unicode()
  6570. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  6571. @staticmethod
  6572. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  6573. parts = [bytes([b]) for b in token]
  6574. while True:
  6575. min_idx = None
  6576. min_rank = None
  6577. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  6578. rank = mergeable_ranks.get(pair[0] + pair[1])
  6579. if rank is not None and (min_rank is None or rank < min_rank):
  6580. min_idx = i
  6581. min_rank = rank
  6582. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  6583. break
  6584. assert min_idx is not None
  6585. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  6586. return parts
  6587. def set_vocab(self):
  6588. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  6589. self.set_vocab_chatglm3()
  6590. return
  6591. dir_model = self.dir_model
  6592. hparams = self.hparams
  6593. tokens: list[str] = []
  6594. toktypes: list[int] = []
  6595. from transformers import AutoTokenizer
  6596. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6597. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  6598. assert max(tokenizer.get_vocab().values()) < vocab_size
  6599. tokens, toktypes, tokpre = self.get_vocab_base()
  6600. self.gguf_writer.add_tokenizer_model("gpt2")
  6601. self.gguf_writer.add_tokenizer_pre(tokpre)
  6602. self.gguf_writer.add_token_list(tokens)
  6603. self.gguf_writer.add_token_types(toktypes)
  6604. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6605. # only add special tokens when they were not already loaded from config.json
  6606. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6607. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6608. # this one is usually not in config.json anyway
  6609. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6610. special_vocab.add_to_gguf(self.gguf_writer)
  6611. def set_gguf_parameters(self):
  6612. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  6613. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  6614. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  6615. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  6616. self.gguf_writer.add_embedding_length(n_embed)
  6617. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  6618. self.gguf_writer.add_block_count(self.block_count)
  6619. self.gguf_writer.add_head_count(n_head)
  6620. self.gguf_writer.add_head_count_kv(n_head_kv)
  6621. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  6622. self.gguf_writer.add_file_type(self.ftype)
  6623. if "attention_dim" in self.hparams:
  6624. rope_dim = self.hparams["attention_dim"]
  6625. else:
  6626. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6627. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6628. self.gguf_writer.add_add_bos_token(False)
  6629. rope_freq = 10000
  6630. if "rope_ratio" in self.hparams:
  6631. rope_freq = rope_freq * self.hparams["rope_ratio"]
  6632. self.gguf_writer.add_rope_freq_base(rope_freq)
  6633. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6634. del bid # unused
  6635. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  6636. return []
  6637. name = name.removeprefix("transformer.")
  6638. return [(self.map_tensor_name(name), data_torch)]
  6639. @ModelBase.register("NemotronForCausalLM")
  6640. class NemotronModel(TextModel):
  6641. model_arch = gguf.MODEL_ARCH.NEMOTRON
  6642. def set_vocab(self):
  6643. self._set_vocab_sentencepiece()
  6644. self.gguf_writer.add_pad_token_id(0)
  6645. self.gguf_writer.add_unk_token_id(1)
  6646. def set_gguf_parameters(self):
  6647. super().set_gguf_parameters()
  6648. hparams = self.hparams
  6649. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6650. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  6651. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  6652. # * Partial RoPE
  6653. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  6654. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  6655. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  6656. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  6657. # * RopeScaling for Nemotron
  6658. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  6659. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6660. else:
  6661. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6662. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  6663. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6664. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  6665. # model.layers.{l}.input_layernorm.weight
  6666. # model.layers.{l}.post_attention_layernorm.weight
  6667. # model.norm.weight
  6668. if name.endswith("norm.weight"):
  6669. data_torch = data_torch + 1
  6670. return [(self.map_tensor_name(name), data_torch)]
  6671. @ModelBase.register("ExaoneForCausalLM")
  6672. class ExaoneModel(TextModel):
  6673. model_arch = gguf.MODEL_ARCH.EXAONE
  6674. def set_gguf_parameters(self):
  6675. super().set_gguf_parameters()
  6676. hparams = self.hparams
  6677. assert (hparams["activation_function"] == "silu")
  6678. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  6679. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  6680. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  6681. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6682. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  6683. if rope_params.get("rope_type", '').lower() == "llama3":
  6684. base = self.rope_parameters.get("rope_theta", 10000.0)
  6685. if (dim := self.hparams.get("head_dim")) is None:
  6686. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6687. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6688. factor = rope_params.get("factor", 8.0)
  6689. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  6690. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  6691. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6692. low_freq_wavelen = old_context_len / low_freq_factor
  6693. high_freq_wavelen = old_context_len / high_freq_factor
  6694. assert low_freq_wavelen != high_freq_wavelen
  6695. rope_factors = []
  6696. for freq in freqs:
  6697. wavelen = 2 * math.pi / freq
  6698. if wavelen < high_freq_wavelen:
  6699. rope_factors.append(1)
  6700. elif wavelen > low_freq_wavelen:
  6701. rope_factors.append(factor)
  6702. else:
  6703. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6704. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6705. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6706. @ModelBase.register("Exaone4ForCausalLM")
  6707. class Exaone4Model(TextModel):
  6708. model_arch = gguf.MODEL_ARCH.EXAONE4
  6709. def set_vocab(self):
  6710. tokens, toktypes, tokpre = self.get_vocab_base()
  6711. self.gguf_writer.add_tokenizer_model("gpt2")
  6712. self.gguf_writer.add_tokenizer_pre(tokpre)
  6713. self.gguf_writer.add_token_list(tokens)
  6714. self.gguf_writer.add_token_types(toktypes)
  6715. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6716. special_vocab.add_to_gguf(self.gguf_writer)
  6717. def set_gguf_parameters(self):
  6718. super().set_gguf_parameters()
  6719. hparams = self.hparams
  6720. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6721. if hparams.get("sliding_window") is not None:
  6722. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  6723. if "layer_types" in hparams:
  6724. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  6725. elif "sliding_window_pattern" in hparams:
  6726. sliding_window_pattern = []
  6727. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  6728. for i in range(hparams["num_hidden_layers"]):
  6729. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  6730. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  6731. for i in range(hparams["num_hidden_layers"]):
  6732. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  6733. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  6734. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  6735. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6736. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  6737. if rope_params.get("rope_type", '').lower() == "llama3":
  6738. base = rope_params.get("rope_theta", 10_000.0)
  6739. if (dim := self.hparams.get("head_dim")) is None:
  6740. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6741. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6742. factor = rope_params.get("factor", 16.0)
  6743. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  6744. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  6745. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6746. low_freq_wavelen = old_context_len / low_freq_factor
  6747. high_freq_wavelen = old_context_len / high_freq_factor
  6748. rope_factors = []
  6749. for freq in freqs:
  6750. wavelen = 2 * math.pi / freq
  6751. if wavelen < high_freq_wavelen:
  6752. rope_factors.append(1)
  6753. elif wavelen > low_freq_wavelen:
  6754. rope_factors.append(factor)
  6755. else:
  6756. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6757. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6758. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6759. @ModelBase.register("GraniteForCausalLM")
  6760. class GraniteModel(LlamaModel):
  6761. """Conversion for IBM's GraniteForCausalLM"""
  6762. model_arch = gguf.MODEL_ARCH.GRANITE
  6763. def set_gguf_parameters(self):
  6764. """Granite uses standard llama parameters with the following differences:
  6765. - No head_dim support
  6766. - New multiplier params:
  6767. - attention_scale
  6768. - embedding_scale
  6769. - residual_scale
  6770. - logits_scaling
  6771. """
  6772. if head_dim := self.hparams.pop("head_dim", None):
  6773. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  6774. super().set_gguf_parameters()
  6775. # NOTE: Convert _multiplier params to _scale params for naming
  6776. # consistency
  6777. if attention_scale := self.hparams.get("attention_multiplier"):
  6778. self.gguf_writer.add_attention_scale(attention_scale)
  6779. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  6780. if embedding_scale := self.hparams.get("embedding_multiplier"):
  6781. self.gguf_writer.add_embedding_scale(embedding_scale)
  6782. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  6783. if residual_scale := self.hparams.get("residual_multiplier"):
  6784. self.gguf_writer.add_residual_scale(residual_scale)
  6785. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  6786. if logits_scale := self.hparams.get("logits_scaling"):
  6787. self.gguf_writer.add_logit_scale(logits_scale)
  6788. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  6789. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  6790. class GraniteMoeModel(GraniteModel):
  6791. """Conversion for IBM's GraniteMoeForCausalLM"""
  6792. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  6793. def set_gguf_parameters(self):
  6794. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  6795. - shared_intermediate_size
  6796. """
  6797. super().set_gguf_parameters()
  6798. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  6799. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  6800. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  6801. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6802. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  6803. is used. This essentially merges w1 and w3 into a single tensor with 2x
  6804. the hidden size that is then split during forward. To keep compatibility
  6805. with existing mixtral support, we pull them apart here.
  6806. """
  6807. if name.endswith("block_sparse_moe.input_linear.weight"):
  6808. ffn_dim = self.hparams["intermediate_size"]
  6809. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  6810. gate, up = data_torch.split(ffn_dim, dim=-2)
  6811. return [
  6812. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  6813. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  6814. ]
  6815. has_experts = bool(self.hparams.get('num_local_experts'))
  6816. if name.endswith("shared_mlp.input_linear.weight"):
  6817. ffn_dim = self.hparams["shared_intermediate_size"]
  6818. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  6819. gate, up = data_torch.split(ffn_dim, dim=-2)
  6820. if has_experts:
  6821. return [
  6822. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  6823. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  6824. ]
  6825. return [
  6826. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  6827. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  6828. ]
  6829. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  6830. return [
  6831. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  6832. ]
  6833. return super().modify_tensors(data_torch, name, bid)
  6834. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  6835. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  6836. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  6837. layers and optionally uses MoE w/ a shared expert"""
  6838. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  6839. undo_permute = True
  6840. def __init__(self, *args, **kwargs):
  6841. # Hybrid mamba models use a prefix for the mamba-specific params.
  6842. # TODO: Extend this if the prefix(es) need to be configurable
  6843. self.hparam_prefixes = ["mamba"]
  6844. super().__init__(*args, **kwargs)
  6845. # Lists of which layers use ssm vs attention
  6846. self._attn_layers = self.get_attn_layers()
  6847. self._ssm_layers = [
  6848. i for i in range(self.block_count)
  6849. if i not in self._attn_layers
  6850. ]
  6851. # There are some models in this family that are non-hybrid, but keep the
  6852. # same parent class by setting all layers to "attention." If this is the
  6853. # case, the model architecture needs to be updated to a standard
  6854. # "granite" or "granitemoe" model
  6855. if not self._ssm_layers:
  6856. has_experts = self.find_hparam(["num_experts_per_tok"], optional=True)
  6857. new_arch = (
  6858. gguf.MODEL_ARCH.GRANITE_MOE
  6859. if has_experts else
  6860. gguf.MODEL_ARCH.GRANITE
  6861. )
  6862. self.model_arch = new_arch
  6863. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[new_arch]
  6864. self.gguf_writer.add_architecture()
  6865. # n_group and d_inner are used during reshape_tensors for mamba2
  6866. # NOTE: Explicitly include hparam prefix prefix for d_model to
  6867. # disambiguate with top-level head_dim
  6868. # NOTE 2: If needed for future models, this can be isolated in a method
  6869. # to separate the prefix setting and teh keys used
  6870. self.d_model = self.find_hparam([f"{self.hparam_prefixes[0]}_head_dim", "hidden_size", "d_model"])
  6871. self.n_group = self.find_hparam(["n_groups", "num_groups"])
  6872. self.d_inner = self.find_hparam(["expand", "num_heads"]) * self.d_model
  6873. def get_attn_layers(self):
  6874. # Explicit list of layer type names
  6875. if layer_types := self.hparams.get("layer_types"):
  6876. return [
  6877. i for i, typ in enumerate(layer_types)
  6878. if typ == "attention"
  6879. ]
  6880. # Layer types indicated by index or period
  6881. attn_layers = self.hparams.get("attn_layer_indices", [])
  6882. if not attn_layers:
  6883. attn_period = self.hparams.get("attn_layer_period")
  6884. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  6885. attn_offset = self.hparams.get("attn_layer_offset")
  6886. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  6887. attn_layers = [
  6888. i for i in range(self.block_count)
  6889. if i % attn_period == attn_offset
  6890. ]
  6891. return attn_layers
  6892. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6893. prefixed = []
  6894. for pfx in self.hparam_prefixes:
  6895. prefixed.extend(
  6896. "_".join([pfx, k])
  6897. for k in keys
  6898. )
  6899. keys = list(keys) + prefixed
  6900. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  6901. def modify_tensors(
  6902. self, data_torch: Tensor, name: str, bid: int | None
  6903. ) -> Iterable[tuple[str, Tensor]]:
  6904. if (
  6905. name.endswith("block_sparse_moe.input_linear.weight")
  6906. or "shared_mlp" in name
  6907. ):
  6908. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6909. # Determine whether this is a mamba layer or an attention layer
  6910. if bid in self._ssm_layers:
  6911. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  6912. elif bid in self._attn_layers:
  6913. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6914. return [(self.map_tensor_name(name), data_torch)]
  6915. def set_gguf_parameters(self):
  6916. """This method merges params from both parents and some that are
  6917. specific to this model. The result is some duplication of how the params
  6918. get set. The following warnings are expected during conversion:
  6919. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  6920. WARNING:Duplicated key name 'granitehybrid.context_length'
  6921. """
  6922. GraniteMoeModel.set_gguf_parameters(self)
  6923. ## Mamba mixer params ##
  6924. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  6925. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state", "state_dim", "ssm_state_size"]))
  6926. self.gguf_writer.add_ssm_group_count(self.n_group)
  6927. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  6928. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  6929. # in llama.cpp
  6930. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads", "num_heads"]))
  6931. ## Attention params ##
  6932. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  6933. head_count_kv_vec = [
  6934. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  6935. ]
  6936. if rope_dim := self.hparams.get("attn_rotary_emb"):
  6937. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6938. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  6939. ## If Bamba or non-hybrid, use rope, otherwise don't
  6940. use_rope = (
  6941. "BambaForCausalLM" in self.hparams["architectures"]
  6942. or not self._ssm_layers
  6943. )
  6944. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  6945. if not use_rope:
  6946. self.gguf_writer.add_context_length(2**20)
  6947. ## Validation ##
  6948. d_head = self.find_hparam(["d_head"], optional=True) or 64
  6949. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  6950. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  6951. def set_vocab(self):
  6952. self.hparams["pad_vocab_size_multiple"] = 8
  6953. Mamba2Model.set_vocab(self)
  6954. @ModelBase.register("NemotronHForCausalLM")
  6955. class NemotronHModel(GraniteHybridModel):
  6956. """Hybrid mamba2/attention model from NVIDIA"""
  6957. model_arch = gguf.MODEL_ARCH.NEMOTRON_H
  6958. is_moe: bool = False
  6959. def __init__(self, *args, **kwargs):
  6960. # We have to determine the correct model architecture (MoE vs non-MoE) before
  6961. # calling the parent __init__. This is because the parent constructor
  6962. # uses self.model_arch to build the tensor name map, and all MoE-specific
  6963. # mappings would be missed if it were called with the default non-MoE arch.
  6964. hparams = ModelBase.load_hparams(args[0], self.is_mistral_format)
  6965. if "num_experts_per_tok" in hparams:
  6966. self.model_arch = gguf.MODEL_ARCH.NEMOTRON_H_MOE
  6967. self.is_moe = True
  6968. super().__init__(*args, **kwargs)
  6969. # Save the top-level head_dim for later
  6970. self.head_dim = self.hparams.get("head_dim", self.hparams.get("attention_head_dim"))
  6971. assert self.head_dim is not None, "Could not find the attention head dim in config"
  6972. # Don't use expand to calculate d_inner
  6973. self.d_inner = self.find_hparam(["num_heads"]) * self.d_model
  6974. # Update the ssm / attn / mlp layers
  6975. # M: Mamba2, *: Attention, -: MLP
  6976. # MoE:
  6977. # M: Mamba2, *: Attention, E: Expert
  6978. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  6979. self._ssm_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "M"]
  6980. self._mlp_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == ("E" if self.is_moe else "-")]
  6981. def get_attn_layers(self):
  6982. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  6983. assert len(hybrid_override_pattern) == self.block_count, "Mismatch between hybrid override and num_hidden_layers!"
  6984. return [i for i, val in enumerate(hybrid_override_pattern) if val == "*"]
  6985. def set_gguf_parameters(self):
  6986. super().set_gguf_parameters()
  6987. self.gguf_writer.add_key_length(self.head_dim)
  6988. self.gguf_writer.add_value_length(self.head_dim)
  6989. # Set feed_forward_length
  6990. # NOTE: This will trigger an override warning. This is preferrable to
  6991. # duplicating all the parent logic
  6992. if not self.is_moe:
  6993. n_ff = self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"])
  6994. self.gguf_writer.add_feed_forward_length([
  6995. n_ff if i in self._mlp_layers else 0 for i in range(self.block_count)
  6996. ])
  6997. else:
  6998. moe_intermediate_size = self.hparams["moe_intermediate_size"]
  6999. self.gguf_writer.add_feed_forward_length([
  7000. moe_intermediate_size if i in self._mlp_layers else 0 for i in range(self.block_count)
  7001. ])
  7002. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  7003. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  7004. self.gguf_writer.add_expert_shared_feed_forward_length(self.hparams["moe_shared_expert_intermediate_size"])
  7005. self.gguf_writer.add_expert_count(self.hparams["n_routed_experts"])
  7006. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  7007. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  7008. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  7009. self.gguf_writer.add_expert_group_count(self.hparams["n_group"])
  7010. # number of experts used per token (top-k)
  7011. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  7012. self.gguf_writer.add_expert_used_count(n_experts_used)
  7013. def set_vocab(self):
  7014. super().set_vocab()
  7015. # The tokenizer _does_ add a BOS token (via post_processor type
  7016. # TemplateProcessing) but does not set add_bos_token to true in the
  7017. # config, so we need to explicitly override it here.
  7018. if not self.is_moe:
  7019. self.gguf_writer.add_add_bos_token(True)
  7020. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7021. if self.is_moe and bid is not None:
  7022. if name.endswith("mixer.gate.e_score_correction_bias"):
  7023. new_name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  7024. mapped_name = self.map_tensor_name(new_name)
  7025. return [(mapped_name, data_torch)]
  7026. if name.endswith("mixer.dt_bias"):
  7027. new_name = name.replace("dt_bias", "dt.bias")
  7028. mapped_name = self.map_tensor_name(new_name)
  7029. return [(mapped_name, data_torch)]
  7030. if name.endswith("mixer.conv1d.weight"):
  7031. squeezed_data = data_torch.squeeze()
  7032. mapped_name = self.map_tensor_name(name)
  7033. return [(mapped_name, squeezed_data)]
  7034. if name.endswith("mixer.A_log"):
  7035. transformed_data = -torch.exp(data_torch)
  7036. reshaped_data = transformed_data.squeeze().reshape(-1, 1)
  7037. mapped_name = self.map_tensor_name(name)
  7038. return [(mapped_name, reshaped_data)]
  7039. if name.endswith("mixer.D"):
  7040. reshaped_data = data_torch.squeeze().reshape(-1, 1)
  7041. mapped_name = self.map_tensor_name(name)
  7042. return [(mapped_name, reshaped_data)]
  7043. if name.endswith("mixer.norm.weight"):
  7044. reshaped_data = data_torch.reshape(8, 512)
  7045. mapped_name = self.map_tensor_name(name)
  7046. return [(mapped_name, reshaped_data)]
  7047. if name.find("mixer.experts") != -1:
  7048. n_experts = self.hparams["n_routed_experts"]
  7049. assert bid is not None
  7050. if self._experts is None:
  7051. self._experts = [{} for _ in range(self.block_count)]
  7052. self._experts[bid][name] = data_torch
  7053. if len(self._experts[bid]) >= n_experts * 2:
  7054. # merge the experts into a single tensor
  7055. tensors: list[tuple[str, Tensor]] = []
  7056. for w_name in ["down_proj", "up_proj"]:
  7057. datas: list[Tensor] = []
  7058. for xid in range(n_experts):
  7059. ename = f"backbone.layers.{bid}.mixer.experts.{xid}.{w_name}.weight"
  7060. datas.append(self._experts[bid][ename])
  7061. del self._experts[bid][ename]
  7062. data_torch = torch.stack(datas, dim=0)
  7063. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7064. new_name = self.map_tensor_name(merged_name)
  7065. tensors.append((new_name, data_torch))
  7066. return tensors
  7067. else:
  7068. return []
  7069. return super().modify_tensors(data_torch, name, bid)
  7070. def prepare_tensors(self):
  7071. super().prepare_tensors()
  7072. if self._experts is not None:
  7073. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7074. experts = [k for d in self._experts for k in d.keys()]
  7075. if len(experts) > 0:
  7076. raise ValueError(f"Unprocessed experts: {experts}")
  7077. @ModelBase.register("BailingMoeForCausalLM")
  7078. class BailingMoeModel(TextModel):
  7079. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  7080. def set_vocab(self):
  7081. self._set_vocab_gpt2()
  7082. def set_gguf_parameters(self):
  7083. super().set_gguf_parameters()
  7084. hparams = self.hparams
  7085. if (rope_dim := hparams.get("head_dim")) is None:
  7086. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  7087. self.gguf_writer.add_rope_dimension_count(rope_dim)
  7088. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  7089. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7090. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  7091. self.gguf_writer.add_expert_weights_scale(1.0)
  7092. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7093. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  7094. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  7095. _experts: list[dict[str, Tensor]] | None = None
  7096. @staticmethod
  7097. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  7098. if n_head_kv is not None and n_head != n_head_kv:
  7099. n_head = n_head_kv
  7100. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  7101. .swapaxes(1, 2)
  7102. .reshape(weights.shape))
  7103. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7104. n_head = self.hparams["num_attention_heads"]
  7105. n_kv_head = self.hparams.get("num_key_value_heads")
  7106. n_embd = self.hparams["hidden_size"]
  7107. if (head_dim := self.hparams.get("head_dim")) is None:
  7108. head_dim = n_embd // n_head
  7109. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  7110. if name.endswith("attention.dense.weight"):
  7111. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  7112. elif name.endswith("query_key_value.weight"):
  7113. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  7114. return [
  7115. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  7116. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  7117. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  7118. ]
  7119. elif name.find("mlp.experts") != -1:
  7120. n_experts = self.hparams["num_experts"]
  7121. assert bid is not None
  7122. tensors: list[tuple[str, Tensor]] = []
  7123. if self._experts is None:
  7124. self._experts = [{} for _ in range(self.block_count)]
  7125. self._experts[bid][name] = data_torch
  7126. if len(self._experts[bid]) >= n_experts * 3:
  7127. # merge the experts into a single 3d tensor
  7128. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7129. datas: list[Tensor] = []
  7130. for xid in range(n_experts):
  7131. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7132. datas.append(self._experts[bid][ename])
  7133. del self._experts[bid][ename]
  7134. data_torch = torch.stack(datas, dim=0)
  7135. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7136. new_name = self.map_tensor_name(merged_name)
  7137. tensors.append((new_name, data_torch))
  7138. return tensors
  7139. new_name = self.map_tensor_name(name)
  7140. if new_name == output_name and self.hparams.get("norm_head"):
  7141. data_torch = data_torch.float()
  7142. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  7143. return [(new_name, data_torch)]
  7144. def prepare_tensors(self):
  7145. super().prepare_tensors()
  7146. if self._experts is not None:
  7147. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7148. experts = [k for d in self._experts for k in d.keys()]
  7149. if len(experts) > 0:
  7150. raise ValueError(f"Unprocessed experts: {experts}")
  7151. @ModelBase.register("BailingMoeV2ForCausalLM")
  7152. class BailingMoeV2Model(TextModel):
  7153. model_arch = gguf.MODEL_ARCH.BAILINGMOE2
  7154. def __init__(self, *args, **kwargs):
  7155. super().__init__(*args, **kwargs)
  7156. if nextn_layers := self.hparams.get("num_nextn_predict_layers", 0):
  7157. self.block_count = self.hparams["num_hidden_layers"] + nextn_layers
  7158. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  7159. def set_vocab(self):
  7160. self._set_vocab_gpt2()
  7161. def set_gguf_parameters(self):
  7162. super().set_gguf_parameters()
  7163. hparams = self.hparams
  7164. if (rope_dim := hparams.get("head_dim")) is None:
  7165. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  7166. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  7167. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  7168. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7169. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  7170. self.gguf_writer.add_expert_shared_feed_forward_length(hparams.get("moe_shared_expert_intermediate_size", hparams["moe_intermediate_size"] * hparams["num_shared_experts"]))
  7171. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  7172. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7173. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  7174. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  7175. if (nextn_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  7176. self.gguf_writer.add_nextn_predict_layers(nextn_layers)
  7177. _experts: list[dict[str, Tensor]] | None = None
  7178. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7179. if "mlp.experts" in name:
  7180. n_experts = self.hparams["num_experts"]
  7181. assert bid is not None
  7182. tensors: list[tuple[str, Tensor]] = []
  7183. if self._experts is None:
  7184. self._experts = [{} for _ in range(self.block_count)]
  7185. self._experts[bid][name] = data_torch
  7186. if len(self._experts[bid]) >= n_experts * 3:
  7187. # merge the experts into a single 3d tensor
  7188. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7189. datas: list[Tensor] = []
  7190. for xid in range(n_experts):
  7191. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7192. datas.append(self._experts[bid][ename])
  7193. del self._experts[bid][ename]
  7194. data_torch = torch.stack(datas, dim=0)
  7195. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7196. new_name = self.map_tensor_name(merged_name)
  7197. tensors.append((new_name, data_torch))
  7198. return tensors
  7199. if name.endswith(".expert_bias"):
  7200. name = name.replace(".expert_bias", ".expert_bias.bias")
  7201. return [(self.map_tensor_name(name), data_torch)]
  7202. def prepare_tensors(self):
  7203. super().prepare_tensors()
  7204. if self._experts is not None:
  7205. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7206. experts = [k for d in self._experts for k in d.keys()]
  7207. if len(experts) > 0:
  7208. raise ValueError(f"Unprocessed experts: {experts}")
  7209. @ModelBase.register("GroveMoeForCausalLM", "modeling_grove_moe.GroveMoeForCausalLM")
  7210. class GroveMoeModel(TextModel):
  7211. model_arch = gguf.MODEL_ARCH.GROVEMOE
  7212. def set_gguf_parameters(self):
  7213. super().set_gguf_parameters()
  7214. if (n_experts := self.hparams.get("num_experts")) is not None:
  7215. self.gguf_writer.add_expert_count(n_experts)
  7216. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  7217. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7218. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  7219. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L299
  7220. self.gguf_writer.add_expert_chunk_feed_forward_length(self.hparams.get("head_dim") or 128)
  7221. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L298
  7222. self.gguf_writer.add_experts_per_group(2)
  7223. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L376
  7224. self.gguf_writer.add_expert_group_scale(0.05)
  7225. _experts: list[dict[str, Tensor]] | None = None
  7226. _chunk_experts: list[dict[str, Tensor]] | None = None
  7227. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7228. if name.endswith(".expert_bias"):
  7229. # FIXME?: Unused https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L303
  7230. return []
  7231. # process the experts separately
  7232. if name.find("chunk_experts") != -1:
  7233. n_experts = self.hparams["num_experts"] // 2 # see add_experts_per_group
  7234. assert bid is not None
  7235. if self._chunk_experts is None:
  7236. self._chunk_experts = [{} for _ in range(self.block_count)]
  7237. self._chunk_experts[bid][name] = data_torch
  7238. if len(self._chunk_experts[bid]) >= n_experts * 3:
  7239. tensors: list[tuple[str, Tensor]] = []
  7240. # merge the experts into a single 3d tensor
  7241. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7242. datas: list[Tensor] = []
  7243. for xid in range(n_experts):
  7244. ename = f"model.layers.{bid}.mlp.chunk_experts.{xid}.{w_name}.weight"
  7245. datas.append(self._chunk_experts[bid][ename])
  7246. del self._chunk_experts[bid][ename]
  7247. data_torch = torch.stack(datas, dim=0)
  7248. merged_name = f"model.layers.{bid}.mlp.chunk_experts.{w_name}.weight"
  7249. new_name = self.map_tensor_name(merged_name)
  7250. tensors.append((new_name, data_torch))
  7251. return tensors
  7252. else:
  7253. return []
  7254. elif name.find("experts") != -1:
  7255. n_experts = self.hparams["num_experts"]
  7256. assert bid is not None
  7257. if self._experts is None:
  7258. self._experts = [{} for _ in range(self.block_count)]
  7259. self._experts[bid][name] = data_torch
  7260. if len(self._experts[bid]) >= n_experts * 3:
  7261. tensors: list[tuple[str, Tensor]] = []
  7262. # merge the experts into a single 3d tensor
  7263. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7264. datas: list[Tensor] = []
  7265. for xid in range(n_experts):
  7266. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7267. datas.append(self._experts[bid][ename])
  7268. del self._experts[bid][ename]
  7269. data_torch = torch.stack(datas, dim=0)
  7270. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7271. new_name = self.map_tensor_name(merged_name)
  7272. tensors.append((new_name, data_torch))
  7273. return tensors
  7274. else:
  7275. return []
  7276. return [(self.map_tensor_name(name), data_torch)]
  7277. def prepare_tensors(self):
  7278. super().prepare_tensors()
  7279. if self._chunk_experts is not None:
  7280. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7281. chunk_experts = [k for d in self._chunk_experts for k in d.keys()]
  7282. if len(chunk_experts) > 0:
  7283. raise ValueError(f"Unprocessed adjugate experts: {chunk_experts}")
  7284. if self._experts is not None:
  7285. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7286. experts = [k for d in self._experts for k in d.keys()]
  7287. if len(experts) > 0:
  7288. raise ValueError(f"Unprocessed experts: {experts}")
  7289. @ModelBase.register("ChameleonForConditionalGeneration")
  7290. @ModelBase.register("ChameleonForCausalLM") # obsolete
  7291. class ChameleonModel(TextModel):
  7292. model_arch = gguf.MODEL_ARCH.CHAMELEON
  7293. def set_gguf_parameters(self):
  7294. super().set_gguf_parameters()
  7295. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  7296. def set_vocab(self):
  7297. self._set_vocab_gpt2()
  7298. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7299. # ignore image tokenizer for now
  7300. # TODO: remove this once image support is implemented for Chameleon
  7301. if name.startswith("model.vqmodel"):
  7302. return []
  7303. n_head = self.hparams["num_attention_heads"]
  7304. n_kv_head = self.hparams.get("num_key_value_heads")
  7305. hidden_dim = self.hparams.get("hidden_size")
  7306. if name.endswith(("q_proj.weight", "q_proj.bias")):
  7307. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  7308. if name.endswith(("k_proj.weight", "k_proj.bias")):
  7309. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  7310. if name.endswith(("q_norm.weight", "q_norm.bias")):
  7311. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  7312. if name.endswith(("k_norm.weight", "k_norm.bias")):
  7313. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  7314. return [(self.map_tensor_name(name), data_torch)]
  7315. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  7316. @staticmethod
  7317. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  7318. head_dim = hidden_dim // n_heads
  7319. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  7320. data_torch = data_torch.repeat_interleave(n_heads, 0)
  7321. return data_torch
  7322. @ModelBase.register("UltravoxModel")
  7323. class UltravoxModel(TextModel):
  7324. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  7325. def __init__(self, *args, **kwargs):
  7326. super().__init__(*args, **kwargs)
  7327. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  7328. @ModelBase.register("GlmasrModel")
  7329. class GlmASRWhisperEncoderModel(MmprojModel):
  7330. has_vision_encoder = False
  7331. has_audio_encoder = True
  7332. def __init__(self, *args, **kwargs):
  7333. super().__init__(*args, **kwargs)
  7334. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  7335. self.hparams["hidden_size"] = self.hparams["d_model"]
  7336. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  7337. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  7338. def set_gguf_parameters(self):
  7339. super().set_gguf_parameters()
  7340. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GLMA)
  7341. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  7342. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  7343. self.gguf_writer.add_audio_stack_factor(self.global_config["merge_factor"])
  7344. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7345. if ".conv" in name and ".weight" in name:
  7346. return gguf.GGMLQuantizationType.F16
  7347. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7348. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7349. del bid # unused
  7350. if name.startswith("model.") or name.startswith("lm_head."):
  7351. # skip language model tensors
  7352. return []
  7353. if name.startswith("audio_encoder.whisper."):
  7354. name = name.replace("audio_encoder.whisper.","audio_tower.")
  7355. if "audio_encoder.layer_norm." in name or "audio_encoder.proj." in name:
  7356. name = name.replace("audio_encoder.", "audio_encoder.adapting.")
  7357. if name.startswith("audio_encoder.audio_bos_eos_token."):
  7358. return [(self.map_tensor_name("model.vision.boi"), data_torch[0]), (self.map_tensor_name("model.vision.eoi"), data_torch[1])]
  7359. if name.startswith("audio_encoder.adapting."):
  7360. name = name.replace("audio_encoder.adapting.","audio.multi_modal_projector.")
  7361. if ".layer_norm." in name:
  7362. name = name.replace(".layer_norm.", ".ln_pre.")
  7363. if ".0." in name:
  7364. name = name.replace(".0.", ".linear_1.")
  7365. if ".2." in name:
  7366. name = name.replace(".2.", ".linear_2.")
  7367. if ".proj." in name:
  7368. return []
  7369. if "conv1.bias" in name or "conv2.bias" in name:
  7370. # transpose conv1 and conv2 bias
  7371. data_torch = data_torch.unsqueeze(-1)
  7372. return [(self.map_tensor_name(name), data_torch)]
  7373. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  7374. class WhisperEncoderModel(MmprojModel):
  7375. has_vision_encoder = False # no vision encoder
  7376. has_audio_encoder = True
  7377. def __init__(self, *args, **kwargs):
  7378. super().__init__(*args, **kwargs)
  7379. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  7380. self.hparams["hidden_size"] = self.hparams["d_model"]
  7381. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  7382. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  7383. def set_gguf_parameters(self):
  7384. super().set_gguf_parameters()
  7385. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  7386. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  7387. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  7388. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7389. if ".conv" in name and ".weight" in name:
  7390. return gguf.GGMLQuantizationType.F16
  7391. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7392. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7393. del bid # unused
  7394. if name.startswith("language_model."):
  7395. # skip language model tensors
  7396. return []
  7397. # prevent clash naming with vision tensors
  7398. if name.startswith("multi_modal_projector"):
  7399. name = "audio." + name
  7400. if "conv1.bias" in name or "conv2.bias" in name:
  7401. # transpose conv1 and conv2 bias
  7402. data_torch = data_torch.unsqueeze(-1)
  7403. return [(self.map_tensor_name(name), data_torch)]
  7404. @ModelBase.register("UltravoxModel")
  7405. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  7406. has_vision_encoder = False # no vision encoder
  7407. has_audio_encoder = True
  7408. def set_gguf_parameters(self):
  7409. super().set_gguf_parameters()
  7410. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  7411. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  7412. @ModelBase.register("VoxtralForConditionalGeneration")
  7413. class VoxtralWhisperEncoderModel(WhisperEncoderModel):
  7414. has_vision_encoder = False # no vision encoder
  7415. has_audio_encoder = True
  7416. def set_gguf_parameters(self):
  7417. super().set_gguf_parameters()
  7418. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
  7419. self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
  7420. @ModelBase.register("FalconH1ForCausalLM")
  7421. class FalconH1Model(Mamba2Model):
  7422. model_arch = gguf.MODEL_ARCH.FALCON_H1
  7423. def __init__(self, *args, **kwargs):
  7424. # Set the hparam prefixes for Falcon Mamba2
  7425. self.hparam_prefixes = ["mamba"]
  7426. # Initialize the base Mamba2Model
  7427. super().__init__(*args, **kwargs)
  7428. # Use Llama conversion for attention
  7429. self._transformer_model_class = LlamaModel
  7430. # n_group and d_inner are used during reshape_tensors for mamba2
  7431. self.n_group = self.find_hparam(["n_groups"])
  7432. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  7433. self.d_head = self.find_hparam(["d_head"])
  7434. # Initialize any Falcon Mamba2 specific attributes
  7435. self.has_attention = True # Falcon Mamba2 has attention components
  7436. # Load Falcon-H1 multipliers from hyperparameters
  7437. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  7438. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  7439. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  7440. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  7441. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  7442. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  7443. self.intermediate_size = self.find_hparam(["intermediate_size"])
  7444. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  7445. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  7446. prefixed = []
  7447. for pfx in self.hparam_prefixes:
  7448. prefixed.extend(
  7449. "_".join([pfx, k])
  7450. for k in keys
  7451. )
  7452. keys = list(keys) + prefixed
  7453. return super().find_hparam(keys, *args, **kwargs)
  7454. def set_vocab(self):
  7455. self._set_vocab_gpt2()
  7456. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7457. tensors = list(super().modify_tensors(data_torch, name, bid))
  7458. tensor = tensors[0][1]
  7459. if "down_proj" in name:
  7460. tensor = tensor * self.mlp_multipliers[1]
  7461. elif "gate_proj" in name:
  7462. tensor = tensor * self.mlp_multipliers[0]
  7463. elif "k_proj" in name:
  7464. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  7465. elif "q_proj" in name:
  7466. tensor = tensor * self.attention_in_multiplier
  7467. elif "v_proj" in name:
  7468. tensor = tensor * self.attention_in_multiplier
  7469. elif "o_proj" in name:
  7470. tensor = tensor * self.attention_out_multiplier
  7471. elif "out_proj" in name:
  7472. tensor = tensor * self.ssm_out_multiplier
  7473. elif "in_proj" in name:
  7474. tensor = tensor * self.ssm_in_multiplier
  7475. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  7476. intermediate_size = self.hparams["mamba_d_ssm"]
  7477. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  7478. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  7479. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  7480. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  7481. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  7482. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  7483. elif "lm_head" in name:
  7484. tensor = tensor * self.hparams["lm_head_multiplier"]
  7485. elif "embed_tokens" in name:
  7486. tensor = tensor * self.hparams["embedding_multiplier"]
  7487. elif "mamba.norm" in name:
  7488. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  7489. tensors = [(tensors[0][0], tensor)]
  7490. return tensors
  7491. def set_gguf_parameters(self):
  7492. super().set_gguf_parameters()
  7493. ## General Params ##
  7494. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7495. # Override some Mamba2 defaults
  7496. self.gguf_writer.add_block_count(self.block_count)
  7497. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  7498. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  7499. ## Attention params ##
  7500. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  7501. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  7502. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  7503. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  7504. ## Validation ##
  7505. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  7506. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  7507. # Add any other Falcon Mamba2 specific configuration
  7508. self.gguf_writer.add_rope_freq_base(self.rope_parameters["rope_theta"])
  7509. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  7510. class HunYuanMoEModel(TextModel):
  7511. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  7512. def set_vocab(self):
  7513. from transformers import AutoTokenizer
  7514. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7515. # 1. Get the pre-tokenizer identifier hash
  7516. tokpre = self.get_vocab_base_pre(tokenizer)
  7517. # 2. Reverse-engineer the merges list from mergeable_ranks
  7518. merges = []
  7519. vocab = {}
  7520. mergeable_ranks = tokenizer.mergeable_ranks
  7521. for token, rank in mergeable_ranks.items():
  7522. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7523. if len(token) == 1:
  7524. continue
  7525. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7526. if len(merged) == 2: # todo this is an assert in Qwen, why?
  7527. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7528. # 3. Generate the tokens and toktypes lists
  7529. vocab_size = self.hparams["vocab_size"]
  7530. assert tokenizer.vocab_size == vocab_size
  7531. special_tokens = tokenizer.special_tokens
  7532. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7533. tokens: list[str] = []
  7534. toktypes: list[int] = []
  7535. for i in range(vocab_size):
  7536. if i not in reverse_vocab:
  7537. tokens.append(f"[PAD{i}]")
  7538. toktypes.append(gguf.TokenType.UNUSED)
  7539. else:
  7540. token = reverse_vocab[i]
  7541. tokens.append(token)
  7542. if i in special_tokens.values():
  7543. toktypes.append(gguf.TokenType.CONTROL)
  7544. else:
  7545. toktypes.append(gguf.TokenType.NORMAL)
  7546. # 4. Write all vocab-related fields to the GGUF writer
  7547. self.gguf_writer.add_tokenizer_model("gpt2")
  7548. self.gguf_writer.add_tokenizer_pre(tokpre)
  7549. self.gguf_writer.add_token_list(tokens)
  7550. self.gguf_writer.add_token_types(toktypes)
  7551. self.gguf_writer.add_token_merges(merges)
  7552. # 5. Add special tokens and chat templates
  7553. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7554. special_vocab.add_to_gguf(self.gguf_writer)
  7555. # FIX for BOS token: Overwrite incorrect id read from config.json
  7556. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  7557. def set_gguf_parameters(self):
  7558. super().set_gguf_parameters()
  7559. hparams = self.hparams
  7560. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7561. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  7562. moe_intermediate_size = hparams["moe_intermediate_size"]
  7563. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  7564. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  7565. moe_topk = hparams["moe_topk"]
  7566. assert all(topk == moe_topk[0] for topk in moe_topk)
  7567. self.gguf_writer.add_expert_used_count(moe_topk[0])
  7568. moe_shared_expert = hparams["num_shared_expert"]
  7569. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  7570. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  7571. # Rope
  7572. if self.rope_parameters.get("rope_type") == "dynamic":
  7573. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7574. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7575. alpha = self.rope_parameters.get("alpha", 1000)
  7576. base = self.rope_parameters.get("rope_theta", 10000.0)
  7577. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  7578. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  7579. self.gguf_writer.add_rope_freq_base(scaled_base)
  7580. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7581. self.gguf_writer.add_rope_scaling_factor(1)
  7582. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7583. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7584. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7585. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7586. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7587. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7588. _experts: list[dict[str, Tensor]] | None = None
  7589. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7590. if name == "lm_head.weight":
  7591. if self.hparams.get("tie_word_embeddings", False):
  7592. logger.info("Skipping tied output layer 'lm_head.weight'")
  7593. return []
  7594. if name.find("mlp.experts") != -1:
  7595. n_experts = self.hparams["num_experts"]
  7596. assert bid is not None
  7597. if self._experts is None:
  7598. self._experts = [{} for _ in range(self.block_count)]
  7599. self._experts[bid][name] = data_torch
  7600. if len(self._experts[bid]) >= n_experts * 3:
  7601. # merge the experts into a single 3d tensor
  7602. tensors: list[tuple[str, Tensor]] = []
  7603. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7604. datas: list[Tensor] = []
  7605. for xid in range(n_experts):
  7606. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7607. datas.append(self._experts[bid][ename])
  7608. del self._experts[bid][ename]
  7609. data_torch = torch.stack(datas, dim=0)
  7610. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7611. new_name = self.map_tensor_name(merged_name)
  7612. tensors.append((new_name, data_torch))
  7613. return tensors
  7614. else:
  7615. return []
  7616. return [(self.map_tensor_name(name), data_torch)]
  7617. def prepare_tensors(self):
  7618. super().prepare_tensors()
  7619. if self._experts is not None:
  7620. experts = [k for d in self._experts for k in d.keys()]
  7621. if len(experts) > 0:
  7622. raise ValueError(f"Unprocessed experts: {experts}")
  7623. @ModelBase.register("LLaDAMoEModel", "LLaDAMoEModelLM")
  7624. class LLaDAMoEModel(TextModel):
  7625. model_arch = gguf.MODEL_ARCH.LLADA_MOE
  7626. def set_gguf_parameters(self):
  7627. super().set_gguf_parameters()
  7628. if (n_experts := self.hparams.get("num_experts")) is not None:
  7629. self.gguf_writer.add_expert_count(n_experts)
  7630. if (expert_intermediate_size := self.hparams.get("expert_intermediate_size")) is not None:
  7631. self.gguf_writer.add_expert_feed_forward_length(expert_intermediate_size)
  7632. # number of experts used per token (top-k)
  7633. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  7634. self.gguf_writer.add_expert_used_count(n_experts_used)
  7635. self.gguf_writer.add_mask_token_id(156895)
  7636. self.gguf_writer.add_causal_attention(False)
  7637. self.gguf_writer.add_diffusion_shift_logits(False)
  7638. _experts: list[dict[str, Tensor]] | None = None
  7639. # Copied from: Qwen2MoeModel
  7640. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7641. # process the experts separately
  7642. if name.find("experts") != -1:
  7643. n_experts = self.hparams["num_experts"]
  7644. assert bid is not None
  7645. if self._experts is None:
  7646. self._experts = [{} for _ in range(self.block_count)]
  7647. self._experts[bid][name] = data_torch
  7648. if len(self._experts[bid]) >= n_experts * 3:
  7649. tensors: list[tuple[str, Tensor]] = []
  7650. # merge the experts into a single 3d tensor
  7651. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7652. datas: list[Tensor] = []
  7653. for xid in range(n_experts):
  7654. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7655. datas.append(self._experts[bid][ename])
  7656. del self._experts[bid][ename]
  7657. data_torch = torch.stack(datas, dim=0)
  7658. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7659. new_name = self.map_tensor_name(merged_name)
  7660. tensors.append((new_name, data_torch))
  7661. return tensors
  7662. else:
  7663. return []
  7664. return [(self.map_tensor_name(name), data_torch)]
  7665. # Copied from: Qwen2MoeModel
  7666. def prepare_tensors(self):
  7667. super().prepare_tensors()
  7668. if self._experts is not None:
  7669. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7670. experts = [k for d in self._experts for k in d.keys()]
  7671. if len(experts) > 0:
  7672. raise ValueError(f"Unprocessed experts: {experts}")
  7673. @ModelBase.register("HunYuanDenseV1ForCausalLM")
  7674. class HunYuanModel(TextModel):
  7675. model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
  7676. def set_vocab(self):
  7677. if (self.dir_model / "tokenizer.json").is_file():
  7678. self._set_vocab_gpt2()
  7679. else:
  7680. from transformers import AutoTokenizer
  7681. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7682. # 1. Get the pre-tokenizer identifier hash
  7683. tokpre = self.get_vocab_base_pre(tokenizer)
  7684. # 2. Reverse-engineer the merges list from mergeable_ranks
  7685. merges = []
  7686. vocab = {}
  7687. mergeable_ranks = tokenizer.mergeable_ranks
  7688. for token, rank in mergeable_ranks.items():
  7689. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7690. if len(token) == 1:
  7691. continue
  7692. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7693. if len(merged) == 2:
  7694. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7695. # 3. Generate the tokens and toktypes lists
  7696. vocab_size = self.hparams["vocab_size"]
  7697. assert tokenizer.vocab_size == vocab_size
  7698. special_tokens = tokenizer.special_tokens
  7699. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7700. tokens: list[str] = []
  7701. toktypes: list[int] = []
  7702. for i in range(vocab_size):
  7703. if i not in reverse_vocab:
  7704. tokens.append(f"[PAD{i}]")
  7705. toktypes.append(gguf.TokenType.UNUSED)
  7706. else:
  7707. token = reverse_vocab[i]
  7708. tokens.append(token)
  7709. if i in special_tokens.values():
  7710. toktypes.append(gguf.TokenType.CONTROL)
  7711. else:
  7712. toktypes.append(gguf.TokenType.NORMAL)
  7713. # 4. Write all vocab-related fields to the GGUF writer
  7714. self.gguf_writer.add_tokenizer_model("gpt2")
  7715. self.gguf_writer.add_tokenizer_pre(tokpre)
  7716. self.gguf_writer.add_token_list(tokens)
  7717. self.gguf_writer.add_token_types(toktypes)
  7718. self.gguf_writer.add_token_merges(merges)
  7719. # 5. Add special tokens and chat templates
  7720. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7721. special_vocab.add_to_gguf(self.gguf_writer)
  7722. # FIX for BOS token: Overwrite incorrect id read from config.json
  7723. if self.hparams['hidden_size'] == 4096:
  7724. self.gguf_writer.add_bos_token_id(127958) # only for 7b dense, fix <|bos|> token
  7725. def set_gguf_parameters(self):
  7726. super().set_gguf_parameters()
  7727. hparams = self.hparams
  7728. # Rope
  7729. if self.rope_parameters.get("rope_type") == "dynamic":
  7730. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7731. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7732. alpha = self.rope_parameters.get("alpha", 50)
  7733. base = self.rope_parameters.get("rope_theta", 10000.0)
  7734. dim = hparams["head_dim"]
  7735. scaled_base = base * (alpha ** (dim / (dim - 2)))
  7736. self.gguf_writer.add_rope_freq_base(scaled_base)
  7737. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7738. self.gguf_writer.add_rope_scaling_factor(1)
  7739. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7740. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7741. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7742. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7743. assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7744. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7745. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7746. if name == "lm_head.weight":
  7747. if self.hparams.get("tie_word_embeddings", False):
  7748. logger.info("Skipping tied output layer 'lm_head.weight'")
  7749. return []
  7750. return [(self.map_tensor_name(name), data_torch)]
  7751. @ModelBase.register("SmolLM3ForCausalLM")
  7752. class SmolLM3Model(LlamaModel):
  7753. model_arch = gguf.MODEL_ARCH.SMOLLM3
  7754. @ModelBase.register("GptOssForCausalLM")
  7755. class GptOssModel(TextModel):
  7756. model_arch = gguf.MODEL_ARCH.GPT_OSS
  7757. # TODO: remove once MXFP4 is supported more generally
  7758. def dequant_model(self):
  7759. quant_config = self.hparams.get("quantization_config")
  7760. if quant_config is not None and quant_config.get("quant_method") == "mxfp4":
  7761. return
  7762. return super().dequant_model()
  7763. def transform_nibble_layout(self, tensor):
  7764. assert tensor.dtype == torch.uint8
  7765. assert tensor.shape[-1] == 16
  7766. # swap nibbles
  7767. t_lo = tensor & 0x0F
  7768. t_hi = tensor & 0xF0
  7769. t_swapped = (t_lo << 4) | (t_hi >> 4)
  7770. tensor = t_swapped
  7771. # transform aaaa...bbbb... to abababab...
  7772. blk_a, blk_b = tensor.chunk(2, dim=-1)
  7773. # get a_
  7774. blk_a0 = (blk_a & 0xF0).view(-1, 1)
  7775. blk_a1 = (blk_a << 4).view(-1, 1)
  7776. blk_a = torch.stack((blk_a0, blk_a1), dim=2).view(tensor.shape)
  7777. # get _b
  7778. blk_b0 = (blk_b >> 4).view(-1, 1)
  7779. blk_b1 = (blk_b & 0x0F).view(-1, 1)
  7780. blk_b = torch.stack((blk_b0, blk_b1), dim=2).view(tensor.shape)
  7781. # swap once more
  7782. out = blk_a | blk_b
  7783. out_h = out & 0xF0
  7784. out_l = out & 0x0F
  7785. out = (out_h >> 4) | (out_l << 4)
  7786. return out
  7787. def repack_mxfp4(self, new_name: str, blocks: Tensor, scales: Tensor):
  7788. assert blocks.dtype == torch.uint8
  7789. assert scales.dtype == torch.uint8
  7790. scales = scales.unsqueeze(-1)
  7791. assert len(blocks.shape) == 4
  7792. assert len(scales.shape) == 4
  7793. blocks = self.transform_nibble_layout(blocks)
  7794. new_data = torch.concat((scales, blocks), dim=-1)
  7795. new_shape = [new_data.shape[0], new_data.shape[1], new_data.shape[2] * 32]
  7796. logger.info(f"Repacked {new_name} with shape {new_shape} and quantization MXFP4")
  7797. # flatten last dim
  7798. new_data = new_data.view(new_data.shape[0], new_data.shape[1], new_data.shape[2] * new_data.shape[3])
  7799. new_data = new_data.numpy()
  7800. self.gguf_writer.add_tensor(new_name, new_data, raw_dtype=gguf.GGMLQuantizationType.MXFP4)
  7801. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  7802. blocks0: Tensor = torch.zeros(1)
  7803. blocks1: Tensor = torch.zeros(1)
  7804. # we assume that tensors are loaded in the correct order
  7805. for name, data_torch in self.get_tensors():
  7806. if "mlp.experts.down_proj_blocks" in name:
  7807. blocks0 = data_torch
  7808. elif "mlp.experts.down_proj_scales" in name:
  7809. new_name = self.map_tensor_name(name.replace("_scales", ".weight"))
  7810. self.repack_mxfp4(new_name, blocks0, data_torch)
  7811. elif "mlp.experts.gate_up_proj_blocks" in name:
  7812. blocks0, blocks1 = data_torch[:, ::2, :, :], data_torch[:, 1::2, :, :]
  7813. elif "mlp.experts.gate_up_proj_scales" in name:
  7814. scales0, scales1 = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7815. new_name_gate = self.map_tensor_name(name.replace("gate_up_proj_scales", "gate_proj.weight"))
  7816. new_name_up = self.map_tensor_name(name.replace("gate_up_proj_scales", "up_proj.weight"))
  7817. self.repack_mxfp4(new_name_gate, blocks0, scales0)
  7818. self.repack_mxfp4(new_name_up, blocks1, scales1)
  7819. return []
  7820. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7821. del bid # unused
  7822. if "sinks" in name:
  7823. name += ".weight"
  7824. # correct naming for down_proj
  7825. if "down_proj" in name:
  7826. if name.endswith("_bias"):
  7827. name = name.replace("down_proj_bias", "down_proj.bias")
  7828. elif "_blocks" not in name and "_scales" not in name:
  7829. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7830. name = name.replace("down_proj", "down_proj.weight")
  7831. data_torch = data_torch.transpose(-1, -2)
  7832. else:
  7833. # otherwise, it should already be repacked to ggml MXFP4 format
  7834. return []
  7835. # split the gate_up into gate and up
  7836. if "gate_up_proj" in name:
  7837. if name.endswith("_bias"):
  7838. name_up = name.replace("gate_up_proj_bias", "up_proj.bias")
  7839. name_gate = name.replace("gate_up_proj_bias", "gate_proj.bias")
  7840. gate_proj_bias, up_proj_bias = data_torch[..., ::2], data_torch[..., 1::2]
  7841. return [
  7842. (self.map_tensor_name(name_gate), gate_proj_bias),
  7843. (self.map_tensor_name(name_up), up_proj_bias)
  7844. ]
  7845. elif "_blocks" not in name and "_scales" not in name:
  7846. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7847. name_up = name.replace("gate_up_proj", "up_proj.weight")
  7848. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  7849. data_torch = data_torch.transpose(-1, -2)
  7850. gate_proj_weight, up_proj_weight = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7851. return [
  7852. (self.map_tensor_name(name_gate), gate_proj_weight),
  7853. (self.map_tensor_name(name_up), up_proj_weight)
  7854. ]
  7855. else:
  7856. # otherwise, it should already be repacked to ggml MXFP4 format
  7857. return []
  7858. return [(self.map_tensor_name(name), data_torch)]
  7859. def set_vocab(self):
  7860. self._set_vocab_gpt2()
  7861. def set_gguf_parameters(self):
  7862. super().set_gguf_parameters()
  7863. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  7864. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size"])
  7865. @ModelBase.register("Lfm2ForCausalLM", "LFM2ForCausalLM")
  7866. class LFM2Model(TextModel):
  7867. model_arch = gguf.MODEL_ARCH.LFM2
  7868. def _add_feed_forward_length(self):
  7869. ff_dim = self.hparams["block_ff_dim"]
  7870. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  7871. ff_dim = self.hparams["block_ff_dim"]
  7872. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  7873. multiple_of = self.hparams["block_multiple_of"]
  7874. if auto_adjust_ff_dim:
  7875. ff_dim = int(2 * ff_dim / 3)
  7876. # custom dim factor multiplier
  7877. if ffn_dim_multiplier is not None:
  7878. ff_dim = int(ffn_dim_multiplier * ff_dim)
  7879. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  7880. self.gguf_writer.add_feed_forward_length(ff_dim)
  7881. def set_gguf_parameters(self):
  7882. # set num_key_value_heads only for attention layers
  7883. self.hparams["num_key_value_heads"] = [
  7884. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  7885. for layer_type in self.hparams["layer_types"]
  7886. ]
  7887. super().set_gguf_parameters()
  7888. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7889. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  7890. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  7891. self._add_feed_forward_length()
  7892. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7893. if self._is_vision_tensor(name) or self._is_audio_tensor(name):
  7894. # skip multimodal tensors
  7895. return []
  7896. name = name.replace("language_model.", "") # vision
  7897. name = name.replace("lfm.", "model.") # audio
  7898. # conv op requires 2d tensor
  7899. if 'conv.conv' in name:
  7900. data_torch = data_torch.squeeze(1)
  7901. return [(self.map_tensor_name(name), data_torch)]
  7902. def _is_vision_tensor(self, name: str) -> bool:
  7903. return "vision_tower" in name or "multi_modal_projector" in name
  7904. def _is_audio_tensor(self, name: str):
  7905. return any(p in name for p in ["audio", "codebook", "conformer", "depth_embedding", "depthformer", "depth_linear"])
  7906. @ModelBase.register("Lfm2MoeForCausalLM")
  7907. class LFM2MoeModel(TextModel):
  7908. model_arch = gguf.MODEL_ARCH.LFM2MOE
  7909. def set_gguf_parameters(self):
  7910. # set num_key_value_heads only for attention layers
  7911. self.hparams["num_key_value_heads"] = [
  7912. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  7913. for layer_type in self.hparams["layer_types"]
  7914. ]
  7915. super().set_gguf_parameters()
  7916. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  7917. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  7918. self.gguf_writer.add_leading_dense_block_count(self.hparams["num_dense_layers"])
  7919. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  7920. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7921. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  7922. # cache for experts weights for merging
  7923. _experts_cache: dict[int, dict[str, Tensor]] = {}
  7924. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7925. # conv op requires 2d tensor
  7926. if 'conv.conv' in name:
  7927. data_torch = data_torch.squeeze(1)
  7928. if name.endswith(".expert_bias"):
  7929. name = name.replace(".expert_bias", ".expert_bias.bias")
  7930. # merge expert weights
  7931. if 'experts' in name:
  7932. n_experts = self.hparams["num_experts"]
  7933. assert bid is not None
  7934. expert_cache = self._experts_cache.setdefault(bid, {})
  7935. expert_cache[name] = data_torch
  7936. expert_weights = ["w1", "w2", "w3"]
  7937. # not enough expert weights to merge
  7938. if len(expert_cache) < n_experts * len(expert_weights):
  7939. return []
  7940. tensors: list[tuple[str, Tensor]] = []
  7941. for w_name in expert_weights:
  7942. datas: list[Tensor] = []
  7943. for xid in range(n_experts):
  7944. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{w_name}.weight"
  7945. datas.append(expert_cache[ename])
  7946. del expert_cache[ename]
  7947. data_torch = torch.stack(datas, dim=0)
  7948. merged_name = f"layers.{bid}.feed_forward.experts.{w_name}.weight"
  7949. new_name = self.map_tensor_name(merged_name)
  7950. tensors.append((new_name, data_torch))
  7951. del self._experts_cache[bid]
  7952. return tensors
  7953. return [(self.map_tensor_name(name), data_torch)]
  7954. def prepare_tensors(self):
  7955. super().prepare_tensors()
  7956. assert not self._experts_cache
  7957. @ModelBase.register("Lfm2VlForConditionalGeneration")
  7958. class LFM2VLModel(MmprojModel):
  7959. def __init__(self, *args, **kwargs):
  7960. super().__init__(*args, **kwargs)
  7961. assert self.hparams_vision is not None
  7962. # TODO(tarek): for dynamic resolution image_size is not specified, setting here for compatibility
  7963. self.hparams_vision["image_size"] = 256
  7964. def set_gguf_parameters(self):
  7965. super().set_gguf_parameters()
  7966. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2)
  7967. self.gguf_writer.add_vision_attention_layernorm_eps(self.find_vparam(["layer_norm_eps"]))
  7968. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("downsample_factor", 2))
  7969. self.gguf_writer.add_vision_use_gelu(True)
  7970. # python notation, e.g. for vision_feature_layer == -1, we pick last layer -> vision_feature_layers_to_drop = 0
  7971. vision_feature_layers_to_drop = -(self.global_config.get("vision_feature_layer", -1) + 1)
  7972. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys) - vision_feature_layers_to_drop)
  7973. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7974. del bid # unused
  7975. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7976. if is_vision_tensor:
  7977. # remove "model." prefix
  7978. name = name.replace("model.vision_tower.", "vision_tower.")
  7979. name = name.replace("model.multi_modal_projector.", "multi_modal_projector.")
  7980. if "patch_embedding.weight" in name:
  7981. data_torch = data_torch.view(data_torch.shape[0], 16, 16, 3).permute(0, 3, 1, 2)
  7982. return [(self.map_tensor_name(name), data_torch)]
  7983. return [] # skip other tensors
  7984. @ModelBase.register("Lfm2AudioForConditionalGeneration")
  7985. class LFM2AudioModel(MmprojModel):
  7986. has_vision_encoder = False
  7987. has_audio_encoder = True
  7988. model_name = "Lfm2AudioEncoder"
  7989. _batch_norm_tensors: list[dict[str, Tensor]] | None = None
  7990. def get_audio_config(self) -> dict[str, Any] | None:
  7991. return self.global_config.get("encoder")
  7992. def set_gguf_parameters(self):
  7993. assert self.hparams_audio is not None
  7994. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  7995. self.hparams_audio["intermediate_size"] = self.hparams_audio["d_model"]
  7996. self.hparams_audio["num_attention_heads"] = self.hparams_audio["n_heads"]
  7997. super().set_gguf_parameters()
  7998. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2A)
  7999. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["feat_in"])
  8000. self.gguf_writer.add_audio_attention_layernorm_eps(1e-5)
  8001. def tensor_force_quant(self, name, new_name, bid, n_dims):
  8002. if ".conv" in name and ".weight" in name:
  8003. return gguf.GGMLQuantizationType.F32
  8004. return super().tensor_force_quant(name, new_name, bid, n_dims)
  8005. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8006. # skip language model tensors
  8007. if name.startswith("lfm."):
  8008. return []
  8009. # for training only
  8010. if any(p in name for p in ["audio_loss_weight"]):
  8011. return []
  8012. # for audio output
  8013. if any(p in name for p in ["codebook_offsets", "depth_embeddings", "depth_linear", "depthformer"]):
  8014. return []
  8015. # fold running_mean, running_var and eps into weight and bias for batch_norm
  8016. if "batch_norm" in name:
  8017. if self._batch_norm_tensors is None:
  8018. self._batch_norm_tensors = [{} for _ in range(self.block_count)]
  8019. assert bid is not None
  8020. self._batch_norm_tensors[bid][name] = data_torch
  8021. if len(self._batch_norm_tensors[bid]) < 5:
  8022. return []
  8023. weight = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.weight"]
  8024. bias = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.bias"]
  8025. running_mean = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.running_mean"]
  8026. running_var = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.running_var"]
  8027. eps = 1e-5 # default value
  8028. a = weight / torch.sqrt(running_var + eps)
  8029. b = bias - running_mean * a
  8030. return [
  8031. (self.map_tensor_name(f"conformer.layers.{bid}.conv.batch_norm.weight"), a),
  8032. (self.map_tensor_name(f"conformer.layers.{bid}.conv.batch_norm.bias"), b),
  8033. ]
  8034. # reshape conv weights
  8035. if name.startswith("conformer.pre_encode.conv.") and name.endswith(".bias"):
  8036. data_torch = data_torch[:, None, None]
  8037. if "conv.depthwise_conv" in name and name.endswith(".weight"):
  8038. assert data_torch.shape[1] == 1
  8039. data_torch = data_torch.reshape(data_torch.shape[0], data_torch.shape[2])
  8040. if "conv.pointwise_conv" in name and name.endswith(".weight"):
  8041. assert data_torch.shape[2] == 1
  8042. data_torch = data_torch.reshape(data_torch.shape[0], data_torch.shape[1])
  8043. return [(self.map_tensor_name(name), data_torch)]
  8044. @ModelBase.register("SmallThinkerForCausalLM")
  8045. class SmallThinkerModel(TextModel):
  8046. model_arch = gguf.MODEL_ARCH.SMALLTHINKER
  8047. def set_gguf_parameters(self):
  8048. super().set_gguf_parameters()
  8049. if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
  8050. self.gguf_writer.add_expert_count(n_experts)
  8051. if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
  8052. self.gguf_writer.add_expert_used_count(n_experts_used)
  8053. if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
  8054. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  8055. self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
  8056. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  8057. if (self.hparams.get('moe_primary_router_apply_softmax')):
  8058. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  8059. else:
  8060. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  8061. sliding_window_layout = self.hparams.get("sliding_window_layout")
  8062. if sliding_window_layout:
  8063. for i in sliding_window_layout:
  8064. if i != 0:
  8065. sliding_window = self.hparams.get("sliding_window_size")
  8066. if sliding_window:
  8067. self.gguf_writer.add_sliding_window(sliding_window)
  8068. break
  8069. _experts: list[dict[str, Tensor]] | None = None
  8070. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8071. # process the experts separately
  8072. if name.find("experts") != -1:
  8073. n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
  8074. assert bid is not None
  8075. if self._experts is None:
  8076. self._experts = [{} for _ in range(self.block_count)]
  8077. self._experts[bid][name] = data_torch
  8078. if len(self._experts[bid]) >= n_experts * 3:
  8079. tensors: list[tuple[str, Tensor]] = []
  8080. # merge the experts into a single 3d tensor
  8081. for w_name in ["down", "gate", "up"]:
  8082. datas: list[Tensor] = []
  8083. for xid in range(n_experts):
  8084. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  8085. datas.append(self._experts[bid][ename])
  8086. del self._experts[bid][ename]
  8087. data_torch = torch.stack(datas, dim=0)
  8088. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  8089. new_name = self.map_tensor_name(merged_name)
  8090. tensors.append((new_name, data_torch))
  8091. return tensors
  8092. else:
  8093. return []
  8094. return [(self.map_tensor_name(name), data_torch)]
  8095. def prepare_tensors(self):
  8096. super().prepare_tensors()
  8097. if self._experts is not None:
  8098. # flatten `list[dict[str, Tensor]]` into `list[str]`
  8099. experts = [k for d in self._experts for k in d.keys()]
  8100. if len(experts) > 0:
  8101. raise ValueError(f"Unprocessed experts: {experts}")
  8102. @ModelBase.register("ApertusForCausalLM")
  8103. class ApertusModel(LlamaModel):
  8104. model_arch = gguf.MODEL_ARCH.APERTUS
  8105. undo_permute = False
  8106. _alpha_n = {}
  8107. _alpha_p = {}
  8108. _beta = {}
  8109. _eps = {}
  8110. def modify_tensors(self, data_torch, name, bid):
  8111. # Handle xIELU activation parameters
  8112. n_layers = self.hparams["num_hidden_layers"]
  8113. if name.endswith(".act_fn.alpha_n"):
  8114. self._alpha_n[bid] = data_torch.to("cpu").float().item()
  8115. if (len(self._alpha_n) == n_layers):
  8116. self.gguf_writer.add_xielu_alpha_n([self._alpha_n[k] for k in sorted(self._alpha_n)])
  8117. return []
  8118. if name.endswith(".act_fn.alpha_p"):
  8119. self._alpha_p[bid] = data_torch.to("cpu").float().item()
  8120. if (len(self._alpha_p) == n_layers):
  8121. self.gguf_writer.add_xielu_alpha_p([self._alpha_p[k] for k in sorted(self._alpha_p)])
  8122. return []
  8123. if name.endswith(".act_fn.beta"):
  8124. self._beta[bid] = data_torch.to("cpu").float().item()
  8125. if (len(self._beta) == n_layers):
  8126. self.gguf_writer.add_xielu_beta([self._beta[k] for k in sorted(self._beta)])
  8127. return []
  8128. if name.endswith(".act_fn.eps"):
  8129. self._eps[bid] = data_torch.to("cpu").float().item()
  8130. if (len(self._eps) == n_layers):
  8131. self.gguf_writer.add_xielu_eps([self._eps[k] for k in sorted(self._eps)])
  8132. return []
  8133. return super().modify_tensors(data_torch, name, bid)
  8134. class MistralModel(LlamaModel):
  8135. model_arch = gguf.MODEL_ARCH.MISTRAL3
  8136. model_name = "Mistral"
  8137. hf_arch = ""
  8138. is_mistral_format = True
  8139. undo_permute = False
  8140. def __init__(self, *args, **kwargs):
  8141. super().__init__(*args, **kwargs)
  8142. # for compatibility, we use LLAMA arch for older models
  8143. # TODO: remove this once everyone migrates to newer version of llama.cpp
  8144. if "llama_4_scaling" not in self.hparams:
  8145. self.model_arch = gguf.MODEL_ARCH.LLAMA
  8146. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
  8147. self.gguf_writer.add_architecture()
  8148. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  8149. def dequant_model(self):
  8150. # transform quantization config into HF format
  8151. quant_config = self.hparams.get("quantization")
  8152. if quant_config is not None:
  8153. assert quant_config["qformat_weight"] == "fp8_e4m3"
  8154. self.hparams["quantization_config"] = {
  8155. "activation_scheme": "static",
  8156. "quant_method": "fp8",
  8157. "weight_block_size": None,
  8158. }
  8159. return super().dequant_model()
  8160. @staticmethod
  8161. def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool):
  8162. assert TokenizerVersion is not None and Tekkenizer is not None and SentencePieceTokenizer is not None, _mistral_import_error_msg
  8163. assert isinstance(vocab.tokenizer, (Tekkenizer, SentencePieceTokenizer)), (
  8164. f"Expected Tekkenizer or SentencePieceTokenizer, got {type(vocab.tokenizer)}"
  8165. )
  8166. if vocab.tokenizer.version == TokenizerVersion.v1:
  8167. return "mistral-v1"
  8168. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.spm:
  8169. return "mistral-v3"
  8170. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  8171. return "mistral-v3-tekken"
  8172. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.spm:
  8173. return "mistral-v7"
  8174. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  8175. return "mistral-v7-tekken"
  8176. elif vocab.tokenizer.version == TokenizerVersion.v11:
  8177. template_file = "Mistral-Small-3.2-24B-Instruct-2506.jinja"
  8178. elif vocab.tokenizer.version == TokenizerVersion.v13:
  8179. template_file = "unsloth-mistral-Devstral-Small-2507.jinja"
  8180. else:
  8181. err_message = f"Unknown tokenizer type: {vocab.tokenizer_type} and version {vocab.tokenizer.version}"
  8182. if is_mistral_format:
  8183. err_message += (
  8184. " . Please pass --disable-mistral-community-chat-template argument to the CLI "
  8185. "if you want to skip this error and use the Mistral official `mistral-common` pre-processing library."
  8186. )
  8187. raise ValueError(err_message)
  8188. template_path = templates_dir / template_file
  8189. if not template_path.exists():
  8190. raise FileNotFoundError(f"Template file not found: {template_path}")
  8191. with open(template_path, "r", encoding="utf-8") as f:
  8192. template = f.read()
  8193. return template
  8194. def set_gguf_parameters(self):
  8195. super().set_gguf_parameters()
  8196. MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
  8197. @staticmethod
  8198. def set_mistral_config(gguf_writer: gguf.GGUFWriter, hparams: dict):
  8199. if "yarn" in hparams:
  8200. yarn_params = hparams["yarn"]
  8201. gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  8202. gguf_writer.add_rope_scaling_factor(yarn_params["factor"])
  8203. gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_params["beta"])
  8204. gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_params["alpha"])
  8205. gguf_writer.add_rope_scaling_yarn_log_mul(1.0) # mscale_all_dim
  8206. gguf_writer.add_rope_scaling_orig_ctx_len(yarn_params["original_max_position_embeddings"])
  8207. if "llama_4_scaling" in hparams:
  8208. gguf_writer.add_attn_temperature_scale(hparams["llama_4_scaling"]["beta"])
  8209. class MistralMoeModel(DeepseekV2Model):
  8210. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  8211. model_name = "Mistral"
  8212. hf_arch = ""
  8213. is_mistral_format = True
  8214. def __init__(self, *args, **kwargs):
  8215. super().__init__(*args, **kwargs)
  8216. logger.info("Using MistralMoeModel")
  8217. # remap hparams from Mistral MoE format to DeepseekV2 format
  8218. # we do this way to be able to reuse DeepseekV2Model set_gguf_parameters logic
  8219. # ref: https://github.com/vllm-project/vllm/blob/b294e28db2c5dee61bc25157664edcada8b90b31/vllm/transformers_utils/configs/mistral.py
  8220. config = self.hparams
  8221. # Mistral key -> HF key
  8222. config_mapping = {
  8223. "dim": "hidden_size",
  8224. "norm_eps": "rms_norm_eps",
  8225. "n_kv_heads": "num_key_value_heads",
  8226. "n_layers": "num_hidden_layers",
  8227. "n_heads": "num_attention_heads",
  8228. "hidden_dim": "intermediate_size",
  8229. }
  8230. # HF key -> (Mistral key, default value)
  8231. top_level_mapping_with_default = {
  8232. "model_type": ("model_type", "transformer"),
  8233. "hidden_act": ("activation", "silu"),
  8234. "tie_word_embeddings": ("tied_embeddings", False),
  8235. "max_seq_len": ("max_seq_len", config.get("max_position_embeddings", 128_000)),
  8236. "max_position_embeddings": ("max_position_embeddings", 128_000),
  8237. }
  8238. # mapping top-level keys
  8239. for key, new_key in config_mapping.items():
  8240. if key in config:
  8241. config[new_key] = config[key]
  8242. for new_key, (key, default_value) in top_level_mapping_with_default.items():
  8243. config[new_key] = config.get(key, default_value)
  8244. # mapping MoE-specific keys
  8245. moe_config_map = {
  8246. "route_every_n": "moe_layer_freq",
  8247. "first_k_dense_replace": "first_k_dense_replace",
  8248. "num_experts_per_tok": "num_experts_per_tok",
  8249. "num_experts": "n_routed_experts",
  8250. "expert_hidden_dim": "moe_intermediate_size",
  8251. "routed_scale": "routed_scaling_factor",
  8252. "num_shared_experts": "n_shared_experts",
  8253. "num_expert_groups": "n_group",
  8254. "num_expert_groups_per_tok": "topk_group",
  8255. }
  8256. moe = config["moe"]
  8257. for key, new_key in moe_config_map.items():
  8258. if key in moe:
  8259. config[new_key] = moe[key]
  8260. # provide missing values
  8261. config["topk_method"] = None
  8262. config["norm_topk_prob"] = True
  8263. config["scoring_func"] = "softmax"
  8264. def set_vocab(self):
  8265. self._set_vocab_mistral()
  8266. def set_gguf_parameters(self):
  8267. super().set_gguf_parameters()
  8268. MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
  8269. yarn_params = self.hparams["yarn"]
  8270. self.gguf_writer.add_attn_temperature_length(yarn_params["original_max_position_embeddings"])
  8271. # [TAG_DEEPSEEK2_YARN_LOG_MUL_FIX]
  8272. # note: for legacy reasons, this is not consistent with the other usages of self.gguf_writer.add_rope_scaling_yarn_log_mul
  8273. # ref https://github.com/ggml-org/llama.cpp/pull/17945
  8274. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1) # mscale_all_dim * 0.1
  8275. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  8276. if name.startswith("vision_") or name.startswith("patch_merger.") or "mm_projector" in name:
  8277. return []
  8278. # rename certain tensors so that we can reuse DeepseekV2Model modify_tensors logic
  8279. if name.endswith(".qscale_act"):
  8280. name = name.replace(".qscale_act", ".input_scale")
  8281. if name.endswith(".qscale_weight"):
  8282. name = name.replace(".qscale_weight", ".weight_scale")
  8283. if ".wkv_b." in name:
  8284. name = name.replace(".wkv_b.", ".kv_b_proj.")
  8285. if ".experts." in name:
  8286. name = name.replace(".experts.", ".mlp.experts.")
  8287. name = name.replace(".w1.", ".gate_proj.")
  8288. name = name.replace(".w2.", ".down_proj.")
  8289. name = name.replace(".w3.", ".up_proj.")
  8290. name = "model." + name
  8291. return super().modify_tensors(data_torch, name, bid)
  8292. class PixtralModel(LlavaVisionModel):
  8293. model_name = "Pixtral"
  8294. hf_arch = ""
  8295. is_mistral_format = True
  8296. def set_gguf_parameters(self):
  8297. super().set_gguf_parameters()
  8298. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  8299. self.gguf_writer.add_vision_attention_layernorm_eps(
  8300. self.find_hparam(["norm_eps"])
  8301. )
  8302. self.gguf_writer.add_rope_freq_base(self.find_vparam(["rope_theta"]))
  8303. self.gguf_writer.add_vision_use_silu(True)
  8304. # spatial_merge_size
  8305. if self.find_vparam(["mm_projector_id"]) == "patch_merge":
  8306. self.gguf_writer.add_vision_spatial_merge_size(
  8307. self.find_vparam(["spatial_merge_size"])
  8308. )
  8309. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  8310. if name == "vision_language_adapter.w_in.weight":
  8311. return "mm.1.weight"
  8312. elif name == "vision_language_adapter.w_out.weight":
  8313. return "mm.2.weight"
  8314. return super().map_tensor_name(name, try_suffixes)
  8315. @ModelBase.register("LightOnOCRForConditionalGeneration")
  8316. class LightOnOCRVisionModel(LlavaVisionModel):
  8317. is_mistral_format = False
  8318. use_break_tok = False
  8319. def set_gguf_parameters(self):
  8320. super().set_gguf_parameters()
  8321. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LIGHTONOCR)
  8322. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  8323. name = name.replace("model.vision_encoder.", "vision_tower.")
  8324. name = name.replace("model.vision_projection.", "multi_modal_projector.")
  8325. return super().modify_tensors(data_torch, name, bid)
  8326. @ModelBase.register("KimiVLForConditionalGeneration")
  8327. class KimiVLModel(MmprojModel):
  8328. def __init__(self, *args, **kwargs):
  8329. super().__init__(*args, **kwargs)
  8330. assert self.hparams_vision is not None
  8331. self.hparams_vision["image_size"] = 64 * 14 # for compatibility
  8332. def set_gguf_parameters(self):
  8333. super().set_gguf_parameters()
  8334. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.KIMIVL)
  8335. self.gguf_writer.add_vision_use_gelu(True)
  8336. self.gguf_writer.add_vision_projector_scale_factor(2)
  8337. # eps is the same as pytorch's default value
  8338. assert self.hparams_vision is not None
  8339. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-5))
  8340. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8341. del bid # unused
  8342. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  8343. if is_vision_tensor:
  8344. if "pos_emb.weight" in name:
  8345. data_torch = data_torch.view(data_torch.shape[0] * data_torch.shape[1], data_torch.shape[2])
  8346. elif "wqkv" in name:
  8347. split_dim = 0 if "weight" in name else -1
  8348. wq, wk, wv = data_torch.chunk(3, dim=split_dim)
  8349. return [
  8350. (self.map_tensor_name(name.replace("wqkv", "wq")), wq),
  8351. (self.map_tensor_name(name.replace("wqkv", "wk")), wk),
  8352. (self.map_tensor_name(name.replace("wqkv", "wv")), wv)
  8353. ]
  8354. return [(self.map_tensor_name(name), data_torch)]
  8355. return [] # skip other tensors
  8356. @ModelBase.register("CogVLMForCausalLM")
  8357. class CogVLMVisionModel(MmprojModel):
  8358. def set_gguf_parameters(self):
  8359. super().set_gguf_parameters()
  8360. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-6))
  8361. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.COGVLM)
  8362. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8363. del bid # unused
  8364. if not name.startswith("model.vision."):
  8365. return []
  8366. return [(self.map_tensor_name(name), data_torch)]
  8367. @ModelBase.register("CogVLMForCausalLM")
  8368. class CogVLMModel(LlamaModel):
  8369. model_arch = gguf.MODEL_ARCH.COGVLM
  8370. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8371. del bid # unused
  8372. # block vision tensors
  8373. if name.startswith("model.vision."):
  8374. return []
  8375. return [(self.map_tensor_name(name), data_torch)]
  8376. @ModelBase.register("JanusForConditionalGeneration")
  8377. class JanusProModel(LlamaModel):
  8378. model_arch = gguf.MODEL_ARCH.LLAMA # reuse Llama arch
  8379. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8380. # Skip vision, aligner, and generation tensors
  8381. skip_prefixes = (
  8382. 'model.vision_model.',
  8383. 'model.aligner.',
  8384. 'model.vqmodel.',
  8385. 'model.generation_embeddings.',
  8386. 'model.generation_aligner.',
  8387. 'model.generation_head.',
  8388. )
  8389. if name.startswith(skip_prefixes):
  8390. return []
  8391. if name.startswith('model.language_model.'):
  8392. name = name.replace('model.language_model.', 'model.')
  8393. elif name.startswith('language_model.'):
  8394. name = name.replace('language_model.', '')
  8395. return super().modify_tensors(data_torch, name, bid)
  8396. @ModelBase.register("JanusForConditionalGeneration")
  8397. class JanusProVisionModel(MmprojModel):
  8398. def __init__(self, *args, **kwargs):
  8399. super().__init__(*args, **kwargs)
  8400. assert self.hparams_vision is not None
  8401. if "intermediate_size" not in self.hparams_vision:
  8402. mlp_ratio = self.hparams_vision.get("mlp_ratio")
  8403. hidden_size = self.hparams_vision.get("hidden_size")
  8404. if mlp_ratio is not None and hidden_size is not None:
  8405. self.hparams_vision["intermediate_size"] = int(round(hidden_size * mlp_ratio))
  8406. def set_gguf_parameters(self):
  8407. super().set_gguf_parameters()
  8408. assert self.hparams_vision is not None
  8409. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.JANUS_PRO)
  8410. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-6))
  8411. hidden_act = str(self.hparams_vision.get("hidden_act", "")).lower()
  8412. if hidden_act == "gelu":
  8413. self.gguf_writer.add_vision_use_gelu(True)
  8414. elif hidden_act == "silu":
  8415. self.gguf_writer.add_vision_use_silu(True)
  8416. def _map_aligner_tensor(self, data_torch: Tensor, name: str) -> Iterable[tuple[str, Tensor]]:
  8417. """Map aligner tensors to projector format"""
  8418. suffix = ".bias" if name.endswith(".bias") else ".weight"
  8419. if name.startswith("model.aligner."):
  8420. local_name = name[len("model.aligner."):]
  8421. elif name.startswith("aligner."):
  8422. local_name = name[len("aligner."):]
  8423. else:
  8424. raise ValueError(f"Unsupported Janus aligner prefix: {name}")
  8425. if local_name.startswith("fc1."):
  8426. mm_index = 0
  8427. elif local_name.startswith("hidden_layers."):
  8428. parts = local_name.split(".", 2)
  8429. if len(parts) < 3:
  8430. raise ValueError(f"Unexpected Janus aligner tensor name: {name}")
  8431. mm_index = int(parts[1]) + 1
  8432. else:
  8433. raise ValueError(f"Unsupported Janus aligner tensor: {name}")
  8434. tensor_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, mm_index, suffix=suffix)
  8435. return [(tensor_name, data_torch)]
  8436. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8437. del bid # unused
  8438. # Skip language model tensors as they will be handled by `JanusProModel`
  8439. if name.startswith(('model.language_model.', 'language_model.')):
  8440. return []
  8441. # Skip generation-related components
  8442. skip_generation_prefixes = (
  8443. 'model.vqmodel.',
  8444. 'vqmodel.',
  8445. 'model.generation_embeddings.',
  8446. 'generation_embeddings.',
  8447. 'model.generation_aligner.',
  8448. 'generation_aligner.',
  8449. 'model.generation_head.',
  8450. 'generation_head.',
  8451. )
  8452. if name.startswith(skip_generation_prefixes):
  8453. return []
  8454. # Handle aligner tensors
  8455. if name.startswith(('model.aligner.', 'aligner.')):
  8456. return list(self._map_aligner_tensor(data_torch, name))
  8457. # Handle vision tensors
  8458. if name.startswith(('model.vision_model.', 'vision_model.')):
  8459. return [(self.map_tensor_name(name), data_torch)]
  8460. return []
  8461. ###### CONVERSION LOGIC ######
  8462. # tree of lazy tensors
  8463. class LazyTorchTensor(gguf.LazyBase):
  8464. _tensor_type = torch.Tensor
  8465. # to keep the type-checker happy
  8466. dtype: torch.dtype
  8467. shape: torch.Size
  8468. # only used when converting a torch.Tensor to a np.ndarray
  8469. _dtype_map: dict[torch.dtype, type] = {
  8470. torch.float16: np.float16,
  8471. torch.float32: np.float32,
  8472. torch.uint8: np.uint8,
  8473. }
  8474. # only used when byteswapping data. Only correct size is needed
  8475. _dtype_byteswap_map: dict[torch.dtype, type] = {
  8476. torch.float64: np.float64,
  8477. torch.float32: np.float32,
  8478. torch.bfloat16: np.float16,
  8479. torch.float16: np.float16,
  8480. torch.int64: np.int64,
  8481. torch.uint64: np.uint64,
  8482. torch.int32: np.int32,
  8483. torch.uint32: np.uint32,
  8484. torch.int16: np.int16,
  8485. torch.uint16: np.uint16,
  8486. torch.int8: np.int8,
  8487. torch.uint8: np.uint8,
  8488. torch.bool: np.uint8,
  8489. torch.float8_e4m3fn: np.uint8,
  8490. torch.float8_e5m2: np.uint8,
  8491. }
  8492. # used for safetensors slices
  8493. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  8494. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  8495. _dtype_str_map: dict[str, torch.dtype] = {
  8496. "F64": torch.float64,
  8497. "F32": torch.float32,
  8498. "BF16": torch.bfloat16,
  8499. "F16": torch.float16,
  8500. # "U64": torch.uint64,
  8501. "I64": torch.int64,
  8502. # "U32": torch.uint32,
  8503. "I32": torch.int32,
  8504. # "U16": torch.uint16,
  8505. "I16": torch.int16,
  8506. "U8": torch.uint8,
  8507. "I8": torch.int8,
  8508. "BOOL": torch.bool,
  8509. "F8_E4M3": torch.float8_e4m3fn,
  8510. "F8_E5M2": torch.float8_e5m2,
  8511. }
  8512. def numpy(self) -> gguf.LazyNumpyTensor:
  8513. dtype = self._dtype_map[self.dtype]
  8514. return gguf.LazyNumpyTensor(
  8515. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  8516. args=(self,),
  8517. func=(lambda s: s.numpy())
  8518. )
  8519. @classmethod
  8520. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  8521. return torch.empty(size=shape, dtype=dtype, device="meta")
  8522. @classmethod
  8523. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  8524. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  8525. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  8526. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[...] if len(s.get_shape()) == 0 else s[:])
  8527. return cast(torch.Tensor, lazy)
  8528. @classmethod
  8529. def from_local_tensor(cls, t: gguf.utility.LocalTensor) -> Tensor:
  8530. def load_tensor(tensor: gguf.utility.LocalTensor) -> Tensor:
  8531. def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
  8532. if sys.byteorder == 'big':
  8533. # switch data back to big endian
  8534. tensor = tensor.view(dtype).byteswap(inplace=False)
  8535. return tensor
  8536. dtype = cls._dtype_str_map[tensor.dtype]
  8537. numpy_dtype = cls._dtype_byteswap_map[dtype]
  8538. return torch.from_numpy(byteswap_tensor(tensor.mmap_bytes(), numpy_dtype)).view(dtype).reshape(tensor.shape)
  8539. dtype = cls._dtype_str_map[t.dtype]
  8540. shape = t.shape
  8541. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(t,), func=lambda r: load_tensor(r))
  8542. return cast(torch.Tensor, lazy)
  8543. @classmethod
  8544. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  8545. def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
  8546. if sys.byteorder == 'big':
  8547. # switch data back to big endian
  8548. tensor = tensor.view(dtype).byteswap(inplace=False)
  8549. return tensor
  8550. dtype = cls._dtype_str_map[remote_tensor.dtype]
  8551. numpy_dtype = cls._dtype_byteswap_map[dtype]
  8552. shape = remote_tensor.shape
  8553. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  8554. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.from_numpy(byteswap_tensor(np.frombuffer(r.data(), dtype=numpy_dtype), numpy_dtype)).view(dtype).reshape(shape))
  8555. return cast(torch.Tensor, lazy)
  8556. @classmethod
  8557. def __torch_function__(cls, func, types, args=(), kwargs=None):
  8558. del types # unused
  8559. if kwargs is None:
  8560. kwargs = {}
  8561. if func is torch.Tensor.numpy:
  8562. return args[0].numpy()
  8563. return cls._wrap_fn(func)(*args, **kwargs)
  8564. def parse_args() -> argparse.Namespace:
  8565. parser = argparse.ArgumentParser(
  8566. description="Convert a huggingface model to a GGML compatible file")
  8567. parser.add_argument(
  8568. "--vocab-only", action="store_true",
  8569. help="extract only the vocab",
  8570. )
  8571. parser.add_argument(
  8572. "--outfile", type=Path,
  8573. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  8574. )
  8575. parser.add_argument(
  8576. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  8577. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  8578. )
  8579. parser.add_argument(
  8580. "--bigendian", action="store_true",
  8581. help="model is executed on big endian machine",
  8582. )
  8583. parser.add_argument(
  8584. "model", type=str,
  8585. help="directory containing model file or huggingface repository ID (if --remote)",
  8586. nargs="?",
  8587. )
  8588. parser.add_argument(
  8589. "--use-temp-file", action="store_true",
  8590. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  8591. )
  8592. parser.add_argument(
  8593. "--no-lazy", action="store_true",
  8594. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  8595. )
  8596. parser.add_argument(
  8597. "--model-name", type=str, default=None,
  8598. help="name of the model",
  8599. )
  8600. parser.add_argument(
  8601. "--verbose", action="store_true",
  8602. help="increase output verbosity",
  8603. )
  8604. parser.add_argument(
  8605. "--split-max-tensors", type=int, default=0,
  8606. help="max tensors in each split",
  8607. )
  8608. parser.add_argument(
  8609. "--split-max-size", type=str, default="0",
  8610. help="max size per split N(M|G)",
  8611. )
  8612. parser.add_argument(
  8613. "--dry-run", action="store_true",
  8614. help="only print out a split plan and exit, without writing any new files",
  8615. )
  8616. parser.add_argument(
  8617. "--no-tensor-first-split", action="store_true",
  8618. help="do not add tensors to the first split (disabled by default)"
  8619. )
  8620. parser.add_argument(
  8621. "--metadata", type=Path,
  8622. help="Specify the path for an authorship metadata override file"
  8623. )
  8624. parser.add_argument(
  8625. "--print-supported-models", action="store_true",
  8626. help="Print the supported models"
  8627. )
  8628. parser.add_argument(
  8629. "--remote", action="store_true",
  8630. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  8631. )
  8632. parser.add_argument(
  8633. "--mmproj", action="store_true",
  8634. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  8635. )
  8636. parser.add_argument(
  8637. "--mistral-format", action="store_true",
  8638. help="Whether the model is stored following the Mistral format.",
  8639. )
  8640. parser.add_argument(
  8641. "--disable-mistral-community-chat-template", action="store_true",
  8642. help=(
  8643. "Whether to disable usage of Mistral community chat templates. If set, use the Mistral official `mistral-common` library for tokenization and detokenization of Mistral models. "
  8644. "Using `mistral-common` ensure correctness and zero-day support of tokenization for models converted from the Mistral format but requires to manually setup the tokenization server."
  8645. )
  8646. )
  8647. parser.add_argument(
  8648. "--sentence-transformers-dense-modules", action="store_true",
  8649. help=("Whether to include sentence-transformers dense modules."
  8650. "It can be used for sentence-transformers models, like google/embeddinggemma-300m"
  8651. "Default these modules are not included.")
  8652. )
  8653. args = parser.parse_args()
  8654. if not args.print_supported_models and args.model is None:
  8655. parser.error("the following arguments are required: model")
  8656. return args
  8657. def split_str_to_n_bytes(split_str: str) -> int:
  8658. if split_str.endswith("K"):
  8659. n = int(split_str[:-1]) * 1000
  8660. elif split_str.endswith("M"):
  8661. n = int(split_str[:-1]) * 1000 * 1000
  8662. elif split_str.endswith("G"):
  8663. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  8664. elif split_str.isnumeric():
  8665. n = int(split_str)
  8666. else:
  8667. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  8668. if n < 0:
  8669. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  8670. return n
  8671. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  8672. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  8673. # maybe we should fallback to text model's arch in that case, since not many models have both
  8674. text_config = hparams.get("text_config", {})
  8675. vision_config = hparams.get("vision_config", {})
  8676. arch = None
  8677. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  8678. arch = arches[0]
  8679. elif "ssm_cfg" in hparams:
  8680. # For non-hf Mamba and Mamba2 models
  8681. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  8682. # if "architectures" is found in the sub-config, use that instead
  8683. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  8684. arch = text_config["architectures"][0]
  8685. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  8686. arch = vision_config["architectures"][0]
  8687. if arch is None:
  8688. raise ValueError("Failed to detect model architecture")
  8689. return arch
  8690. def main() -> None:
  8691. args = parse_args()
  8692. if args.print_supported_models:
  8693. logger.error("Supported models:")
  8694. ModelBase.print_registered_models()
  8695. sys.exit(0)
  8696. if args.verbose:
  8697. logging.basicConfig(level=logging.DEBUG)
  8698. else:
  8699. logging.basicConfig(level=logging.INFO)
  8700. if args.remote:
  8701. hf_repo_id = args.model
  8702. from huggingface_hub import snapshot_download
  8703. allowed_patterns = ["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"]
  8704. if args.sentence_transformers_dense_modules:
  8705. # include sentence-transformers dense modules safetensors files
  8706. allowed_patterns.append("*.safetensors")
  8707. local_dir = snapshot_download(
  8708. repo_id=hf_repo_id,
  8709. allow_patterns=allowed_patterns)
  8710. dir_model = Path(local_dir)
  8711. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  8712. else:
  8713. hf_repo_id = None
  8714. dir_model = Path(args.model)
  8715. if not dir_model.is_dir():
  8716. logger.error(f'Error: {dir_model} is not a directory')
  8717. sys.exit(1)
  8718. ftype_map: dict[str, gguf.LlamaFileType] = {
  8719. "f32": gguf.LlamaFileType.ALL_F32,
  8720. "f16": gguf.LlamaFileType.MOSTLY_F16,
  8721. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  8722. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  8723. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  8724. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  8725. "auto": gguf.LlamaFileType.GUESSED,
  8726. }
  8727. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  8728. if args.use_temp_file and is_split:
  8729. logger.error("Error: Cannot use temp file when splitting")
  8730. sys.exit(1)
  8731. if args.outfile is not None:
  8732. fname_out = args.outfile
  8733. elif hf_repo_id:
  8734. # if remote, use the model ID as the output file name
  8735. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  8736. else:
  8737. fname_out = dir_model
  8738. logger.info(f"Loading model: {dir_model.name}")
  8739. is_mistral_format = args.mistral_format
  8740. if is_mistral_format and not _mistral_common_installed:
  8741. raise ImportError(_mistral_import_error_msg)
  8742. disable_mistral_community_chat_template = args.disable_mistral_community_chat_template
  8743. with torch.inference_mode():
  8744. output_type = ftype_map[args.outtype]
  8745. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  8746. hparams = ModelBase.load_hparams(dir_model, is_mistral_format)
  8747. if not is_mistral_format:
  8748. model_architecture = get_model_architecture(hparams, model_type)
  8749. logger.info(f"Model architecture: {model_architecture}")
  8750. try:
  8751. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  8752. except NotImplementedError:
  8753. logger.error(f"Model {model_architecture} is not supported")
  8754. sys.exit(1)
  8755. elif args.mmproj:
  8756. assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
  8757. model_class = PixtralModel
  8758. elif "moe" in hparams:
  8759. model_class = MistralMoeModel
  8760. else:
  8761. model_class = MistralModel
  8762. model_instance = model_class(dir_model, output_type, fname_out,
  8763. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  8764. eager=args.no_lazy,
  8765. metadata_override=args.metadata, model_name=args.model_name,
  8766. split_max_tensors=args.split_max_tensors,
  8767. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  8768. small_first_shard=args.no_tensor_first_split,
  8769. remote_hf_model_id=hf_repo_id, disable_mistral_community_chat_template=disable_mistral_community_chat_template,
  8770. sentence_transformers_dense_modules=args.sentence_transformers_dense_modules
  8771. )
  8772. if args.vocab_only:
  8773. logger.info("Exporting model vocab...")
  8774. model_instance.write_vocab()
  8775. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  8776. else:
  8777. logger.info("Exporting model...")
  8778. model_instance.write()
  8779. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  8780. logger.info(f"Model successfully exported to {out_path}")
  8781. if __name__ == '__main__':
  8782. main()