tensor_mapping.py 85 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2 glm4-0414 plamo2 granite-hybrid
  13. "embed_tokens", # embeddinggemma
  14. "tok_embeddings", # llama-pth
  15. "embeddings.word_embeddings", # bert nomic-bert
  16. "embeddings.tok_embeddings", # modern-bert
  17. "language_model.embedding.word_embeddings", # persimmon
  18. "wte", # gpt2
  19. "transformer.embd.wte", # phi2
  20. "model.tok_embeddings", # internlm2
  21. "model.embedding", # mamba-qbert
  22. "backbone.embedding", # mamba
  23. "backbone.embeddings", # mamba-hf
  24. "transformer.in_out_embed", # Grok
  25. "embedding.word_embeddings", # chatglm
  26. "transformer.token_embeddings", # openelm
  27. "shared", # t5
  28. "rwkv.embeddings", # rwkv6
  29. "model.embeddings", # rwkv7
  30. "model.word_embeddings", # bailingmoe
  31. "language_model.model.embed_tokens", # llama4
  32. "encoder", # neobert
  33. "model.transformer.wte", # llada
  34. "embed_tokens", # qwen3-embedding
  35. ),
  36. # Token type embeddings
  37. MODEL_TENSOR.TOKEN_TYPES: (
  38. "embeddings.token_type_embeddings", # bert nomic-bert
  39. ),
  40. # Normalization of token embeddings
  41. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  42. "word_embeddings_layernorm", # bloom
  43. "embeddings.LayerNorm", # bert
  44. "embeddings.norm", # modern-bert
  45. "emb_ln", # nomic-bert
  46. "transformer.norm", # openelm
  47. "rwkv.blocks.0.pre_ln", # rwkv
  48. "rwkv.blocks.0.pre_ln", # rwkv6
  49. "model.pre_ln", # rwkv7
  50. "model.layers.0.pre_norm", # rwkv7
  51. "backbone.norm", # wavtokenizer
  52. "model.embedding_norm", # lfm2
  53. ),
  54. # Position embeddings
  55. MODEL_TENSOR.POS_EMBD: (
  56. "transformer.wpe", # gpt2
  57. "embeddings.position_embeddings", # bert
  58. "wpe", # gpt2
  59. ),
  60. # Output
  61. MODEL_TENSOR.OUTPUT: (
  62. "embed_out", # gptneox
  63. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2 phimoe plamo2
  64. "output", # llama-pth bloom internlm2
  65. "word_embeddings_for_head", # persimmon
  66. "lm_head.linear", # phi2
  67. "output_layer", # chatglm
  68. "head", # rwkv
  69. "head.out", # wavtokenizer
  70. "lm_head", # llama4
  71. "model.transformer.ff_out", # llada
  72. "head.decoder", # modern-bert
  73. ),
  74. MODEL_TENSOR.DENSE_2_OUT: (
  75. "dense_2_out", # embeddinggemma
  76. ),
  77. MODEL_TENSOR.DENSE_3_OUT: (
  78. "dense_3_out", # embeddinggemma
  79. ),
  80. # Output norm
  81. MODEL_TENSOR.OUTPUT_NORM: (
  82. "gpt_neox.final_layer_norm", # gptneox
  83. "transformer.ln_f", # gpt2 gpt-j falcon jais exaone
  84. "model.norm", # llama-hf baichuan internlm2 olmoe olmo2 phimoe plamo2
  85. "norm", # llama-pth
  86. "transformer.norm_f", # mpt dbrx
  87. "ln_f", # refact bloom qwen gpt2
  88. "language_model.encoder.final_layernorm", # persimmon
  89. "model.final_layernorm", # persimmon
  90. "lm_head.ln", # phi2
  91. "model.norm_f", # mamba-qbert
  92. "backbone.norm_f", # mamba
  93. "transformer.rms_norm", # Grok
  94. "encoder.final_layernorm", # chatglm
  95. "transformer.norm", # openelm
  96. "model.norm", # nemotron
  97. "rwkv.ln_out", # rwkv6
  98. "model.ln_out", # rwkv7
  99. "backbone.final_layer_norm", # wavtokenizer
  100. "model.norm", # llama4
  101. "model.transformer.ln_f", # llada
  102. "final_norm", # modern-bert
  103. "model.norm", # cogvlm
  104. ),
  105. # Rope frequencies
  106. MODEL_TENSOR.ROPE_FREQS: (
  107. "rope.freqs", # llama-pth
  108. "rotary_pos_emb.inv_freq", # chatglm
  109. ),
  110. MODEL_TENSOR.ROPE_FACTORS_LONG: (),
  111. MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
  112. MODEL_TENSOR.CONV1D: (
  113. "backbone.embed", # roberta
  114. ),
  115. MODEL_TENSOR.V_MM_EMBEDDING: (
  116. "model.embed_vision.embedding", # gemma3n
  117. ),
  118. MODEL_TENSOR.V_MM_HARD_EMB_NORM: (
  119. "model.embed_vision.hard_embedding_norm", # gemma3n
  120. ),
  121. MODEL_TENSOR.V_MM_INP_PROJ: (
  122. "model.embed_vision.embedding_projection", # gemma3n
  123. ),
  124. MODEL_TENSOR.V_MM_SOFT_EMB_NORM: (
  125. "model.embed_vision.soft_embedding_norm", # gemma3n
  126. ),
  127. MODEL_TENSOR.V_ENC_CONV_STEM: (
  128. "model.vision_tower.timm_model.conv_stem.conv", # gemma3n
  129. ),
  130. MODEL_TENSOR.V_ENC_CONV_STEM_NORM: (
  131. "model.vision_tower.timm_model.conv_stem.bn", # gemma3n
  132. ),
  133. MODEL_TENSOR.V_ENC_MSFA_EXP: (
  134. "model.vision_tower.timm_model.msfa.ffn.pw_exp.conv", # gemma3n
  135. ),
  136. MODEL_TENSOR.V_ENC_MSFA_EXP_NORM: (
  137. "model.vision_tower.timm_model.msfa.ffn.pw_exp.bn", # gemma3n
  138. ),
  139. MODEL_TENSOR.V_ENC_MSFA_PROJ: (
  140. "model.vision_tower.timm_model.msfa.ffn.pw_proj.conv", # gemma3n
  141. ),
  142. MODEL_TENSOR.V_ENC_MSFA_PROJ_NORM: (
  143. "model.vision_tower.timm_model.msfa.ffn.pw_proj.bn", # gemma3n
  144. ),
  145. MODEL_TENSOR.V_ENC_MSFA_NORM: (
  146. "model.vision_tower.timm_model.msfa.norm", # gemma3n
  147. ),
  148. }
  149. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  150. # Attention norm
  151. MODEL_TENSOR.ATTN_NORM: (
  152. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  153. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais exaone
  154. "transformer.blocks.{bid}.norm_1", # mpt
  155. "transformer.h.{bid}.input_layernorm", # falcon7b
  156. "h.{bid}.input_layernorm", # bloom
  157. "transformer.h.{bid}.ln_mlp", # falcon40b
  158. "model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe phimoe granite-hybrid
  159. "layers.{bid}.attention_norm", # llama-pth
  160. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  161. "model.layers.{bid}.ln1", # yi
  162. "h.{bid}.ln_1", # gpt2
  163. "transformer.h.{bid}.ln", # phi2
  164. "model.layers.layers.{bid}.norm", # plamo
  165. "model.layers.layers.{bid}.pre_mixer_norm", # plamo2
  166. "model.layers.{bid}.attention_norm", # internlm2
  167. "model.layers.{bid}.norm", # mamba-qbert
  168. "backbone.layers.{bid}.norm", # mamba
  169. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  170. "model.layers.{bid}.pre_attn_norm", # grok-2
  171. "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
  172. "encoder.layers.{bid}.input_layernorm", # chatglm
  173. "transformer.layers.{bid}.attn_norm", # openelm
  174. "rwkv.blocks.{bid}.ln1", # rwkv6
  175. "model.layers.{bid}.ln1", # rwkv7
  176. "model.layers.{bid}.input_layernorm", # llama4
  177. "layers.{bid}.input_layernorm", # embeddinggemma
  178. "transformer_encoder.{bid}.attention_norm", # neobert
  179. "layers.{bid}.attn_norm", # modern-bert
  180. "model.layers.{bid}.operator_norm", # lfm2
  181. "model.transformer.blocks.{bid}.attn_norm", # llada
  182. "layers.{bid}.input_layernorm", # qwen3-embedding
  183. "model.layers.{bid}.attention_layernorm", # apertus
  184. "model.layers.{bid}.pre_attention_layernorm", # kormo
  185. ),
  186. # Attention norm 2
  187. MODEL_TENSOR.ATTN_NORM_2: (
  188. "transformer.h.{bid}.ln_attn", # falcon40b
  189. "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
  190. "rwkv.blocks.{bid}.ln2", # rwkv6
  191. "model.layers.{bid}.ln2", # rwkv7
  192. "model.layers.{bid}.post_attention_layernorm", # cogvlm
  193. ),
  194. # Attention query-key-value
  195. MODEL_TENSOR.ATTN_QKV: (
  196. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  197. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
  198. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  199. "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
  200. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  201. "h.{bid}.self_attention.query_key_value", # bloom
  202. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  203. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  204. "model.layers.{bid}.attention.query_key_value", # bailingmoe2
  205. "h.{bid}.attn.c_attn", # gpt2
  206. "transformer.h.{bid}.mixer.Wqkv", # phi2
  207. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  208. "encoder.layers.{bid}.mixer.Wqkv", # jina
  209. "model.layers.{bid}.self_attn.qkv_proj", # phi3
  210. "model.layers.layers.{bid}.mixer.qkv_proj", # plamo2
  211. "encoder.layers.{bid}.self_attention.query_key_value", # chatglm
  212. "transformer.layers.{bid}.attn.qkv_proj", # openelm
  213. "transformer_encoder.{bid}.qkv", # neobert
  214. "layers.{bid}.attn.Wqkv", # modern-bert
  215. "model.layers.{bid}.self_attn.language_expert_query_key_value", # cogvlm
  216. ),
  217. # Attention query
  218. MODEL_TENSOR.ATTN_Q: (
  219. "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2 phimoe
  220. "layers.{bid}.self_attn.q_proj", # embeddinggemma
  221. "model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom
  222. "layers.{bid}.attention.wq", # llama-pth
  223. "encoder.layer.{bid}.attention.self.query", # bert
  224. "transformer.layer.{bid}.attention.q_lin", # distillbert
  225. "transformer.h.{bid}.attn.q_proj", # gpt-j
  226. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  227. "model.layers.{bid}.attention.wq", # internlm2
  228. "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
  229. "transformer.h.{bid}.attn.attention.q_proj", # exaone
  230. "model.layers.{bid}.self_attn.q_proj", # llama4
  231. "model.transformer.blocks.{bid}.q_proj", # llada
  232. "layers.{bid}.self_attn.q_proj", # qwen3-embedding
  233. "backbone.layers.{bid}.mixer.q_proj", # nemotron-h
  234. ),
  235. # Attention key
  236. MODEL_TENSOR.ATTN_K: (
  237. "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2 phimoe
  238. "layers.{bid}.self_attn.k_proj", # embeddinggemma
  239. "model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom
  240. "layers.{bid}.attention.wk", # llama-pth
  241. "encoder.layer.{bid}.attention.self.key", # bert
  242. "transformer.layer.{bid}.attention.k_lin", # distillbert
  243. "transformer.h.{bid}.attn.k_proj", # gpt-j
  244. "transformer.h.{bid}.attn.k", # refact
  245. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  246. "model.layers.{bid}.attention.wk", # internlm2
  247. "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
  248. "transformer.h.{bid}.attn.attention.k_proj", # exaone
  249. "model.layers.{bid}.self_attn.k_proj", # llama4
  250. "model.transformer.blocks.{bid}.k_proj", # llada
  251. "layers.{bid}.self_attn.k_proj", # qwen3-embedding
  252. "backbone.layers.{bid}.mixer.k_proj", # nemotron-h
  253. ),
  254. # Attention value
  255. MODEL_TENSOR.ATTN_V: (
  256. "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 phimoe
  257. "layers.{bid}.self_attn.v_proj", # embeddinggemma
  258. "layers.{bid}.attention.wv", # llama-pth
  259. "encoder.layer.{bid}.attention.self.value", # bert
  260. "transformer.layer.{bid}.attention.v_lin", # distillbert
  261. "transformer.h.{bid}.attn.v_proj", # gpt-j
  262. "transformer.h.{bid}.attn.v", # refact
  263. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  264. "model.layers.{bid}.attention.wv", # internlm2
  265. "transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
  266. "transformer.h.{bid}.attn.attention.v_proj", # exaone
  267. "model.layers.{bid}.self_attn.v_proj", # llama4
  268. "model.transformer.blocks.{bid}.v_proj", # llada
  269. "layers.{bid}.self_attn.v_proj", # qwen3-embedding
  270. "backbone.layers.{bid}.mixer.v_proj", # nemotron-h
  271. ),
  272. # Attention output
  273. MODEL_TENSOR.ATTN_OUT: (
  274. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  275. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
  276. "transformer.blocks.{bid}.attn.out_proj", # mpt
  277. "transformer.h.{bid}.self_attention.dense", # falcon
  278. "h.{bid}.self_attention.dense", # bloom
  279. "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 phimoe
  280. "layers.{bid}.self_attn.o_proj", # embeddinggemma
  281. "model.layers.{bid}.self_attn.out_proj", # lfm2
  282. "model.layers.{bid}.self_attn.linear_attn", # deci
  283. "layers.{bid}.attention.wo", # llama-pth
  284. "encoder.layer.{bid}.attention.output.dense", # bert
  285. "layers.{bid}.attn.Wo", # modern-bert
  286. "transformer.layer.{bid}.attention.out_lin", # distillbert
  287. "transformer.h.{bid}.attn.out_proj", # gpt-j
  288. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  289. "model.layers.{bid}.self_attn.dense", # persimmon
  290. "model.layers.{bid}.attention.dense", # bailingmoe2
  291. "h.{bid}.attn.c_proj", # gpt2
  292. "transformer.h.{bid}.mixer.out_proj", # phi2
  293. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  294. "model.layers.layers.{bid}.mixer.o_proj", # plamo2
  295. "model.layers.{bid}.attention.wo", # internlm2
  296. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  297. "encoder.layers.{bid}.mixer.out_proj", # jina
  298. "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
  299. "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
  300. "encoder.layers.{bid}.self_attention.dense", # chatglm
  301. "transformer.layers.{bid}.attn.out_proj", # openelm
  302. "transformer.h.{bid}.attn.attention.out_proj", # exaone
  303. "model.layers.{bid}.self_attn.o_proj", # llama4
  304. "transformer_encoder.{bid}.wo", # neobert
  305. "model.transformer.blocks.{bid}.attn_out", # llada
  306. "layers.{bid}.self_attn.o_proj", # qwen3-embedding
  307. "backbone.layers.{bid}.mixer.o_proj", # nemotron-h
  308. "model.layers.{bid}.self_attn.language_expert_dense", # cogvlm
  309. ),
  310. # Attention output norm
  311. MODEL_TENSOR.ATTN_OUT_NORM: (
  312. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  313. "transformer.layer.{bid}.sa_layer_norm", # distillbert
  314. "encoder.layers.{bid}.norm1", # nomic-bert
  315. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  316. "model.layers.{bid}.post_attn_norm", # grok-2
  317. "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
  318. ),
  319. MODEL_TENSOR.ATTN_POST_NORM: (
  320. "model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2 # ge
  321. "layers.{bid}.post_attention_layernorm", # embeddinggemma
  322. "model.layers.{bid}.post_self_attn_layernorm", # glm-4-0414
  323. "model.layers.layers.{bid}.post_mixer_norm.weight", # plamo2
  324. ),
  325. # Rotary embeddings
  326. MODEL_TENSOR.ATTN_ROT_EMBD: (
  327. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  328. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  329. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  330. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  331. ),
  332. MODEL_TENSOR.ATTN_SINKS: (
  333. "model.layers.{bid}.self_attn.sinks", # openai-moe
  334. "model.layers.{bid}.self_attn.attention_sink_bias", # mimov2
  335. ),
  336. MODEL_TENSOR.ATTN_GATE: (
  337. "model.layers.{bid}.self_attn.gate_proj", # afmoe
  338. ),
  339. # Feed-forward norm
  340. MODEL_TENSOR.FFN_NORM: (
  341. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  342. "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
  343. "h.{bid}.post_attention_layernorm", # bloom
  344. "transformer.blocks.{bid}.norm_2", # mpt
  345. "model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe phimoe
  346. "layers.{bid}.ffn_norm", # llama-pth
  347. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  348. "model.layers.{bid}.ln2", # yi
  349. "h.{bid}.ln_2", # gpt2
  350. "model.layers.{bid}.ffn_norm", # internlm2
  351. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  352. "model.layers.{bid}.pre_moe_norm", # grok-2
  353. "encoder.layers.{bid}.post_attention_layernorm", # chatglm
  354. "transformer.layers.{bid}.ffn_norm", # openelm
  355. "model.layers.{bid}.pre_ff_layernorm", # jamba granite-hybrid
  356. "model.layers.{bid}.pre_moe_layernorm", # mini-jamba
  357. "model.layers.{bid}.post_attention_layernorm", # llama4
  358. "transformer_encoder.{bid}.ffn_norm", # neobert
  359. "model.layers.layers.{bid}.pre_mlp_norm", # plamo2
  360. "model.transformer.blocks.{bid}.ff_norm", # llada
  361. "layers.{bid}.post_attention_layernorm", # qwen3-embedding
  362. "model.layers.{bid}.feedforward_layernorm", # apertus
  363. "model.layers.{bid}.pre_mlp_layernorm", # kormo
  364. "layers.{bid}.mlp_norm" # modern-bert
  365. ),
  366. # Pre feed-forward norm
  367. MODEL_TENSOR.FFN_PRE_NORM: (
  368. "model.layers.{bid}.pre_feedforward_layernorm", # gemma2
  369. "layers.{bid}.pre_feedforward_layernorm", # embeddinggemma
  370. "model.layers.{bid}.pre_ff_layernorm.weight",
  371. "model.layers.{bid}.pre_mlp_layernorm", # afmoe
  372. ),
  373. # Post feed-forward norm
  374. MODEL_TENSOR.FFN_POST_NORM: (
  375. "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
  376. "layers.{bid}.post_feedforward_layernorm", # embeddinggemma
  377. "model.layers.{bid}.post_mlp_layernorm", # glm-4-0414
  378. "model.layers.layers.{bid}.post_mlp_norm.weight", # plamo2
  379. "model.layers.{bid}.feed_forward.up_proj",
  380. "model.layers.{bid}.post_moe_norm", # grok-2
  381. ),
  382. MODEL_TENSOR.FFN_GATE_INP: (
  383. "layers.{bid}.feed_forward.gate", # mixtral
  384. "model.layers.{bid}.block_sparse_moe.gate", # mixtral phimoe
  385. "model.layers.{bid}.mlp.gate", # qwen2moe olmoe
  386. "transformer.decoder_layer.{bid}.router", # Grok
  387. "transformer.blocks.{bid}.ffn.router.layer", # dbrx
  388. "model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
  389. "model.layers.{bid}.feed_forward.router", # llama4 jamba
  390. "encoder.layers.{bid}.mlp.router.layer", # nomic-bert-moe
  391. "model.layers.{bid}.mlp.router", # openai-moe
  392. "model.layers.{bid}.mlp.gate.wg", # hunyuan
  393. "model.layers.{bid}.block_sparse_moe.primary_router", # smallthinker
  394. "model.layers.{bid}.feed_forward.gate", # lfm2moe
  395. "model.layers.{bid}.mlp.router.gate", # afmoe
  396. "layers.{bid}.gate", # mistral-large
  397. "backbone.layers.{bid}.mixer.gate", # nemotron-h-moe
  398. ),
  399. MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
  400. "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
  401. ),
  402. MODEL_TENSOR.FFN_EXP_PROBS_B: (
  403. "model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3 dots1
  404. "model.layers.{bid}.mlp.moe_statics.e_score_correction", # ernie4.5-moe
  405. "model.layers.{bid}.mlp.gate.expert_bias", # bailingmoe2
  406. "model.layers.{bid}.mlp.expert_bias", # afmoe
  407. "model.layers.{bid}.feed_forward.expert_bias", # lfm2moe
  408. "model.layers.{bid}.block_sparse_moe.e_score_correction", # minimax-m2
  409. "backbone.layers.{bid}.mixer.gate.e_score_correction", # nemotron-h-moe
  410. "model.layers.{bid}.mlp.e_score_correction", # exaone-moe
  411. ),
  412. # Feed-forward up
  413. MODEL_TENSOR.FFN_UP: (
  414. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  415. "transformer.h.{bid}.mlp.c_fc", # gpt2 jais
  416. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  417. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  418. "h.{bid}.mlp.dense_h_to_4h", # bloom
  419. "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2
  420. "layers.{bid}.mlp.up_proj", # embeddinggemma
  421. "layers.{bid}.feed_forward.w3", # llama-pth
  422. "encoder.layer.{bid}.intermediate.dense", # bert
  423. "layers.{bid}.mlp.Wi", # modern-bert
  424. "transformer.layer.{bid}.ffn.lin1", # distillbert
  425. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  426. "transformer.h.{bid}.mlp.linear_3", # refact
  427. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  428. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  429. "transformer.h.{bid}.mlp.w1", # qwen
  430. "h.{bid}.mlp.c_fc", # gpt2
  431. "transformer.h.{bid}.mlp.fc1", # phi2
  432. "model.layers.{bid}.mlp.fc1", # phi2
  433. "model.layers.{bid}.mlp.gate_up_proj", # phi3 glm-4-0414
  434. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  435. "model.layers.layers.{bid}.mlp.gate_up_proj", # plamo2
  436. "model.layers.{bid}.feed_forward.w3", # internlm2
  437. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  438. "encoder.layers.{bid}.mlp.fc1", # nomic-bert-moe
  439. "model.layers.{bid}.mlp.c_fc", # starcoder2
  440. "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2 (split up/gate, no longer used)
  441. "encoder.layer.{bid}.mlp.gated_layers", # jina-bert-v2 (GEGLU)
  442. "encoder.layer.{bid}.mlp.up_gated_layer", # jina-v2-code (GEGLU)
  443. "model.layers.{bid}.residual_mlp.w3", # arctic
  444. "encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
  445. "transformer.h.{bid}.mlp.c_fc_1", # exaone
  446. "model.layers.{bid}.feed_forward.up_proj", # llama4 jamba granite-hybrid
  447. "transformer_encoder.{bid}.ffn.w12", # neobert
  448. "model.layers.{bid}.block_sparse_moe.up", # smallthinker
  449. "model.transformer.blocks.{bid}.up_proj", # llada
  450. "layers.{bid}.mlp.up_proj", # qwen3-embedding
  451. "backbone.layers.{bid}.mixer.up_proj", # nemotron-h
  452. "model.layers.{bid}.mlp.language_mlp.up_proj", # cogvlm
  453. ),
  454. MODEL_TENSOR.FFN_UP_EXP: (
  455. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  456. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  457. "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
  458. "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged) ernie4.5-moe, nemotron-h-moe (merged)
  459. "model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
  460. "model.layers.{bid}.feed_forward.experts.up_proj", # llama4
  461. "encoder.layers.{bid}.mlp.experts.mlp.w1", # nomic-bert-moe
  462. "model.layers.{bid}.block_sparse_moe.experts.up", # smallthinker
  463. ),
  464. MODEL_TENSOR.FFN_UP_SHEXP: (
  465. "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
  466. "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek deepseek2
  467. "model.layers.{bid}.feed_forward.shared_expert.up_proj", # llama4
  468. "model.layers.{bid}.feed_forward.down_proj",
  469. "model.layers.{bid}.mlp.shared_mlp.up_proj", # hunyuan
  470. "layers.{bid}.shared_experts.w3", # mistral-large
  471. "backbone.layers.{bid}.mixer.shared_experts.up_proj", # nemotron-h-moe
  472. ),
  473. MODEL_TENSOR.FFN_UP_CHEXP: (
  474. "model.layers.{bid}.mlp.chunk_experts.up_proj", # grovemoe
  475. ),
  476. # AWQ-activation gate
  477. MODEL_TENSOR.FFN_ACT: (
  478. "transformer.blocks.{bid}.ffn.act", # mpt
  479. ),
  480. # Feed-forward gate
  481. MODEL_TENSOR.FFN_GATE: (
  482. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2
  483. "layers.{bid}.mlp.gate_proj", # embeddinggemma
  484. "layers.{bid}.feed_forward.w1", # llama-pth
  485. "transformer.h.{bid}.mlp.w2", # qwen
  486. "transformer.h.{bid}.mlp.c_fc2", # jais
  487. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  488. "model.layers.{bid}.feed_forward.w1", # internlm2
  489. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  490. "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2 (split up/gate, no longer used)
  491. "transformer.h.{bid}.mlp.linear_1", # refact
  492. "model.layers.{bid}.residual_mlp.w1", # arctic
  493. "transformer.h.{bid}.mlp.c_fc_0", # exaone
  494. "model.layers.{bid}.feed_forward.gate_proj", # llama4 jamba granite-hybrid
  495. "model.transformer.blocks.{bid}.ff_proj", # llada
  496. "layers.{bid}.mlp.gate_proj", # qwen3-embedding
  497. "model.layers.{bid}.mlp.language_mlp.gate_proj", # cogvlm
  498. ),
  499. MODEL_TENSOR.FFN_GATE_EXP: (
  500. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  501. "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
  502. "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
  503. "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  504. "model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged)
  505. "model.layers.{bid}.feed_forward.experts.gate_proj", # llama4
  506. "model.layers.{bid}.block_sparse_moe.experts.gate", # smallthinker
  507. ),
  508. MODEL_TENSOR.FFN_GATE_SHEXP: (
  509. "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
  510. "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek deepseek2
  511. "model.layers.{bid}.feed_forward.shared_expert.gate_proj", # llama4
  512. "model.layers.{bid}.mlp.shared_mlp.gate_proj", # hunyuan
  513. "layers.{bid}.shared_experts.w1", # mistral-large
  514. ),
  515. MODEL_TENSOR.FFN_GATE_CHEXP: (
  516. "model.layers.{bid}.mlp.chunk_experts.gate_proj", # grovemoe
  517. ),
  518. # Feed-forward down
  519. MODEL_TENSOR.FFN_DOWN: (
  520. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  521. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
  522. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  523. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  524. "h.{bid}.mlp.dense_4h_to_h", # bloom
  525. "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2
  526. "layers.{bid}.mlp.down_proj", # embeddinggemma
  527. "layers.{bid}.feed_forward.w2", # llama-pth
  528. "encoder.layer.{bid}.output.dense", # bert
  529. "layers.{bid}.mlp.Wo", # modern-bert
  530. "transformer.layer.{bid}.ffn.lin2", # distillbert
  531. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  532. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  533. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  534. "h.{bid}.mlp.c_proj", # gpt2
  535. "transformer.h.{bid}.mlp.fc2", # phi2
  536. "model.layers.{bid}.mlp.fc2", # phi2
  537. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  538. "model.layers.{bid}.feed_forward.w2", # internlm2
  539. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  540. "model.layers.{bid}.mlp.c_proj", # starcoder2
  541. "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
  542. "transformer.layers.{bid}.ffn.proj_2", # openelm
  543. "model.layers.{bid}.residual_mlp.w2", # arctic
  544. "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
  545. "encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
  546. "model.layers.h.{bid}.mlp.c_proj", # exaone
  547. "model.layers.{bid}.feed_forward.down_proj", # llama4 jamba granite-hybrid
  548. "transformer_encoder.{bid}.ffn.w3", # neobert
  549. "model.layers.{bid}.block_sparse_moe.down", # smallthinker
  550. "model.transformer.blocks.{bid}.ff_out", # llada
  551. "layers.{bid}.mlp.down_proj", # qwen3-embedding
  552. "backbone.layers.{bid}.mixer.down_proj", # nemotron-h
  553. "model.layers.{bid}.mlp.language_mlp.down_proj", # cogvlm
  554. ),
  555. MODEL_TENSOR.FFN_DOWN_EXP: (
  556. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  557. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  558. "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
  559. "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged) ernie4.5-moe nemotron-h-moe (merged)
  560. "model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
  561. "model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged)
  562. "model.layers.{bid}.feed_forward.experts.down_proj", # llama4
  563. "encoder.layers.{bid}.mlp.experts.mlp.w2", # nomic-bert-moe
  564. "model.layers.{bid}.block_sparse_moe.experts.down", # smallthinker
  565. ),
  566. MODEL_TENSOR.FFN_DOWN_SHEXP: (
  567. "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
  568. "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek deepseek2
  569. "model.layers.{bid}.feed_forward.shared_expert.down_proj", # llama4
  570. "model.layers.{bid}.shared_mlp.output_linear", # granitemoe
  571. "model.layers.{bid}.mlp.shared_mlp.down_proj", # hunyuan
  572. "layers.{bid}.shared_experts.w2", # mistral-large
  573. "backbone.layers.{bid}.mixer.shared_experts.down_proj", # nemotron-h-moe
  574. ),
  575. MODEL_TENSOR.FFN_DOWN_CHEXP: (
  576. "model.layers.{bid}.mlp.chunk_experts.down_proj", # grovemoe
  577. ),
  578. MODEL_TENSOR.ATTN_Q_NORM: (
  579. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  580. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  581. "model.layers.{bid}.self_attn.query_layernorm", # hunyuan
  582. "model.layers.{bid}.attention.query_layernorm", # bailingmoe2
  583. "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2
  584. "layers.{bid}.self_attn.q_norm", # embeddinggemma
  585. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  586. "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
  587. "transformer.layers.{bid}.attn.q_norm", # openelm
  588. "model.layers.layers.{bid}.mixer.q", # plamo2
  589. "model.layers.layers.{bid}.mixer.q_norm", # plamo3
  590. "layers.{bid}.self_attn.q_norm", # qwen3-embedding
  591. "model.layers.{bid}.attention.query_layernorm", # apertus
  592. ),
  593. MODEL_TENSOR.ATTN_K_NORM: (
  594. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  595. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  596. "model.layers.{bid}.self_attn.key_layernorm", # hunyuan
  597. "model.layers.{bid}.attention.key_layernorm", # bailingmoe2
  598. "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2
  599. "layers.{bid}.self_attn.k_norm", # embeddinggemma
  600. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  601. "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
  602. "transformer.layers.{bid}.attn.k_norm", # openelm
  603. "model.layers.layers.{bid}.mixer.k", # plamo2
  604. "model.layers.layers.{bid}.mixer.k_norm", # plamo3
  605. "layers.{bid}.self_attn.k_norm", # qwen3-embedding
  606. "model.layers.{bid}.attention.key_layernorm", # apertus
  607. ),
  608. MODEL_TENSOR.ROPE_FREQS: (
  609. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  610. ),
  611. MODEL_TENSOR.LAYER_OUT_NORM: (
  612. "encoder.layer.{bid}.output.LayerNorm", # bert
  613. "transformer.layer.{bid}.output_layer_norm", # distillbert
  614. "encoder.layers.{bid}.norm2", # nomic-bert
  615. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  616. "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
  617. "encoder.layer.{bid}.layer_norm_2", # jina-v2-code
  618. "model.layers.{bid}.final_layernorm", # bailingmoe2
  619. ),
  620. MODEL_TENSOR.PER_LAYER_TOKEN_EMBD: (
  621. "model.embed_tokens_per_layer", # gemma3n
  622. ),
  623. MODEL_TENSOR.PER_LAYER_MODEL_PROJ: (
  624. "model.per_layer_model_projection", # gemma3n
  625. ),
  626. MODEL_TENSOR.PER_LAYER_PROJ_NORM: (
  627. "model.per_layer_projection_norm", # gemma3n
  628. ),
  629. MODEL_TENSOR.ALTUP_PROJ: (
  630. "model.altup_projections", # gemma3n
  631. ),
  632. MODEL_TENSOR.ALTUP_UNEMBD_PROJ: (
  633. "model.altup_unembed_projections", # gemma3n
  634. ),
  635. MODEL_TENSOR.PER_LAYER_INP_GATE: (
  636. "model.layers.{bid}.per_layer_input_gate", # gemma3n
  637. ),
  638. MODEL_TENSOR.PER_LAYER_PROJ: (
  639. "model.layers.{bid}.per_layer_projection", # gemma3n
  640. ),
  641. MODEL_TENSOR.PER_LAYER_POST_NORM: (
  642. "model.layers.{bid}.post_per_layer_input_norm", # gemma3n
  643. ),
  644. MODEL_TENSOR.ALTUP_CORRECT_COEF: (
  645. "model.layers.{bid}.altup.correction_coefs", # gemma3n
  646. ),
  647. MODEL_TENSOR.ALTUP_CORRECT_SCALE: (
  648. "model.layers.{bid}.altup.correct_output_scale", # gemma3n
  649. ),
  650. MODEL_TENSOR.ALTUP_PREDICT_COEF: (
  651. "model.layers.{bid}.altup.prediction_coefs", # gemma3n
  652. ),
  653. MODEL_TENSOR.ALTUP_ROUTER: (
  654. "model.layers.{bid}.altup.modality_router", # gemma3n
  655. ),
  656. MODEL_TENSOR.ALTUP_ROUTER_NORM: (
  657. "model.layers.{bid}.altup.router_norm", # gemma3n
  658. ),
  659. MODEL_TENSOR.LAUREL_L: (
  660. "model.layers.{bid}.laurel.linear_left", # gemma3n
  661. ),
  662. MODEL_TENSOR.LAUREL_R: (
  663. "model.layers.{bid}.laurel.linear_right", # gemma3n
  664. ),
  665. MODEL_TENSOR.LAUREL_POST_NORM: (
  666. "model.layers.{bid}.laurel.post_laurel_norm", # gemma3n
  667. ),
  668. MODEL_TENSOR.SSM_IN: (
  669. "model.layers.{bid}.in_proj", # mamba-hf
  670. "backbone.layers.{bid}.mixer.in_proj", # mamba
  671. "model.layers.{bid}.mamba.in_proj", # jamba falcon-h1 granite-hybrid
  672. "model.layers.layers.{bid}.mixer.in_proj", # plamo2
  673. "model.layers.{bid}.linear_attn.in_proj_qkvz", # qwen3next
  674. ),
  675. MODEL_TENSOR.SSM_CONV1D: (
  676. "model.layers.{bid}.conv1d", # mamba-hf
  677. "backbone.layers.{bid}.mixer.conv1d", # mamba
  678. "model.layers.{bid}.mamba.conv1d", # jamba falcon-h1 granite-hybrid
  679. "model.layers.layers.{bid}.mixer.conv1d", # plamo2
  680. "model.layers.{bid}.linear_attn.conv1d", # qwen3next
  681. ),
  682. MODEL_TENSOR.SSM_X: (
  683. "model.layers.{bid}.x_proj", # mamba-hf
  684. "backbone.layers.{bid}.mixer.x_proj", # mamba
  685. "model.layers.{bid}.mamba.x_proj", # jamba
  686. "model.layers.layers.{bid}.mixer.bcdt_proj", # plamo2
  687. ),
  688. MODEL_TENSOR.SSM_DT: (
  689. "model.layers.{bid}.dt_proj", # mamba-hf
  690. "backbone.layers.{bid}.mixer.dt_proj", # mamba
  691. "model.layers.{bid}.mamba.dt_proj", # jamba falcon-h1 granite-hybrid
  692. "model.layers.layers.{bid}.mixer.dt_proj", # plamo2
  693. "model.layers.{bid}.linear_attn.dt_proj", # qwen3next
  694. "backbone.layers.{bid}.mixer.dt", # nemotron-h-moe
  695. ),
  696. MODEL_TENSOR.SSM_DT_NORM: (
  697. "model.layers.layers.{bid}.mixer.dt_norm.weight", # plamo2
  698. "model.layers.{bid}.mamba.dt_layernorm", # jamba
  699. ),
  700. MODEL_TENSOR.SSM_A: (
  701. "model.layers.{bid}.A_log", # mamba-hf
  702. "backbone.layers.{bid}.mixer.A_log", # mamba
  703. "model.layers.{bid}.mamba.A_log", # jamba falcon-h1 granite-hybrid
  704. "model.layers.layers.{bid}.mixer.A_log", # plamo2
  705. "model.layers.{bid}.linear_attn.A_log", # qwen3next
  706. ),
  707. MODEL_TENSOR.SSM_B_NORM: (
  708. "model.layers.{bid}.mamba.b_layernorm", # jamba
  709. "model.layers.{bid}.mamba.B_layernorm", # mini-jamba
  710. "model.layers.layers.{bid}.mixer.B_norm.weight", # plamo2
  711. ),
  712. MODEL_TENSOR.SSM_C_NORM: (
  713. "model.layers.{bid}.mamba.c_layernorm", # jamba
  714. "model.layers.{bid}.mamba.C_layernorm", # mini-jamba
  715. "model.layers.layers.{bid}.mixer.C_norm.weight", # plamo2
  716. ),
  717. MODEL_TENSOR.SSM_D: (
  718. "model.layers.{bid}.D", # mamba-hf
  719. "backbone.layers.{bid}.mixer.D", # mamba
  720. "model.layers.{bid}.mamba.D", # jamba falcon-h1 granite-hybrid
  721. "model.layers.layers.{bid}.mixer.D", # plamo2
  722. ),
  723. MODEL_TENSOR.SSM_NORM: (
  724. "model.layers.{bid}.mamba.norm", # falcon-h1 granite-hybrid
  725. "model.layers.{bid}.linear_attn.norm", # qwen3next
  726. "backbone.layers.{bid}.mixer.norm", # mamba2
  727. ),
  728. MODEL_TENSOR.SSM_OUT: (
  729. "model.layers.{bid}.out_proj", # mamba-hf
  730. "backbone.layers.{bid}.mixer.out_proj", # mamba
  731. "model.layers.{bid}.mamba.out_proj", # jamba falcon-h1 granite-hybrid
  732. "model.layers.{bid}.linear_attn.out_proj", # qwen3next
  733. "model.layers.layers.{bid}.mixer.out_proj", # plamo2
  734. ),
  735. MODEL_TENSOR.SSM_BETA_ALPHA: (
  736. "model.layers.{bid}.linear_attn.in_proj_ba", # qwen3next
  737. ),
  738. MODEL_TENSOR.TIME_MIX_W0: (
  739. "model.layers.{bid}.attention.w0", # rwkv7
  740. ),
  741. MODEL_TENSOR.TIME_MIX_W1: (
  742. "rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv6
  743. "model.layers.{bid}.self_attn.time_maa_w1", # rwkv6qwen2
  744. "model.layers.{bid}.attention.w1", # rwkv7
  745. ),
  746. MODEL_TENSOR.TIME_MIX_W2: (
  747. "rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv6
  748. "model.layers.{bid}.self_attn.time_maa_w2", # rwkv6qwen2
  749. "model.layers.{bid}.attention.w2", # rwkv7
  750. ),
  751. MODEL_TENSOR.TIME_MIX_A0: (
  752. "model.layers.{bid}.attention.a0", # rwkv7
  753. ),
  754. MODEL_TENSOR.TIME_MIX_A1: (
  755. "model.layers.{bid}.attention.a1", # rwkv7
  756. ),
  757. MODEL_TENSOR.TIME_MIX_A2: (
  758. "model.layers.{bid}.attention.a2", # rwkv7
  759. ),
  760. MODEL_TENSOR.TIME_MIX_V0: (
  761. "model.layers.{bid}.attention.v0", # rwkv7
  762. ),
  763. MODEL_TENSOR.TIME_MIX_V1: (
  764. "model.layers.{bid}.attention.v1", # rwkv7
  765. ),
  766. MODEL_TENSOR.TIME_MIX_V2: (
  767. "model.layers.{bid}.attention.v2", # rwkv7
  768. ),
  769. MODEL_TENSOR.TIME_MIX_G1: (
  770. "model.layers.{bid}.attention.g1", # rwkv7
  771. ),
  772. MODEL_TENSOR.TIME_MIX_G2: (
  773. "model.layers.{bid}.attention.g2", # rwkv7
  774. ),
  775. MODEL_TENSOR.TIME_MIX_K_K: (
  776. "model.layers.{bid}.attention.k_k", # rwkv7
  777. ),
  778. MODEL_TENSOR.TIME_MIX_K_A: (
  779. "model.layers.{bid}.attention.k_a", # rwkv7
  780. ),
  781. MODEL_TENSOR.TIME_MIX_R_K: (
  782. "model.layers.{bid}.attention.r_k", # rwkv7
  783. ),
  784. MODEL_TENSOR.TIME_MIX_LERP_X: (
  785. "rwkv.blocks.{bid}.attention.time_maa_x", # rwkv6
  786. "model.layers.{bid}.self_attn.time_maa_x", # rwkv6qwen2
  787. ),
  788. MODEL_TENSOR.TIME_MIX_LERP_K: (
  789. "rwkv.blocks.{bid}.attention.time_maa_k", # rwkv6
  790. "model.layers.{bid}.self_attn.time_maa_k", # rwkv6qwen2
  791. ),
  792. MODEL_TENSOR.TIME_MIX_LERP_V: (
  793. "rwkv.blocks.{bid}.attention.time_maa_v", # rwkv6
  794. "model.layers.{bid}.self_attn.time_maa_v", # rwkv6qwen2
  795. ),
  796. MODEL_TENSOR.TIME_MIX_LERP_R: (
  797. "rwkv.blocks.{bid}.attention.time_maa_r", # rwkv6
  798. "model.layers.{bid}.self_attn.time_maa_r", # rwkv6qwen2
  799. ),
  800. MODEL_TENSOR.TIME_MIX_LERP_G: (
  801. "rwkv.blocks.{bid}.attention.time_maa_g", # rwkv6
  802. "model.layers.{bid}.self_attn.time_maa_g", # rwkv6qwen2
  803. ),
  804. MODEL_TENSOR.TIME_MIX_LERP_W: (
  805. "rwkv.blocks.{bid}.attention.time_maa_w", # rwkv6
  806. "model.layers.{bid}.self_attn.time_maa_w", # rwkv6qwen2
  807. ),
  808. MODEL_TENSOR.TIME_MIX_FIRST: (
  809. "rwkv.blocks.{bid}.attention.time_faaaa", # rwkv6
  810. ),
  811. MODEL_TENSOR.TIME_MIX_DECAY: (
  812. "rwkv.blocks.{bid}.attention.time_decay", # rwkv6
  813. "model.layers.{bid}.self_attn.time_decay", # rwkv6qwen2
  814. ),
  815. MODEL_TENSOR.TIME_MIX_DECAY_W1: (
  816. "rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv6
  817. "model.layers.{bid}.self_attn.time_decay_w1", # rwkv6qwen2
  818. ),
  819. MODEL_TENSOR.TIME_MIX_DECAY_W2: (
  820. "rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv6
  821. "model.layers.{bid}.self_attn.time_decay_w2", # rwkv6qwen2
  822. ),
  823. MODEL_TENSOR.TIME_MIX_KEY: (
  824. "rwkv.blocks.{bid}.attention.key", # rwkv6
  825. "model.layers.{bid}.self_attn.k_proj", # rwkv6qwen2
  826. "model.layers.{bid}.attention.key", # rwkv7
  827. "model.layers.{bid}.attention.k_proj", # rwkv7
  828. ),
  829. MODEL_TENSOR.TIME_MIX_VALUE: (
  830. "rwkv.blocks.{bid}.attention.value", # rwkv6
  831. "model.layers.{bid}.self_attn.v_proj", # rwkv6qwen2
  832. "model.layers.{bid}.attention.value", # rwkv7
  833. "model.layers.{bid}.attention.v_proj", # rwkv7
  834. ),
  835. MODEL_TENSOR.TIME_MIX_RECEPTANCE: (
  836. "rwkv.blocks.{bid}.attention.receptance", # rwkv6
  837. "model.layers.{bid}.self_attn.q_proj", # rwkv6qwen2
  838. "model.layers.{bid}.attention.receptance", # rwkv7
  839. "model.layers.{bid}.attention.r_proj", # rwkv7
  840. ),
  841. MODEL_TENSOR.TIME_MIX_GATE: (
  842. "rwkv.blocks.{bid}.attention.gate", # rwkv6
  843. "model.layers.{bid}.self_attn.gate", # rwkv6qwen2
  844. ),
  845. MODEL_TENSOR.TIME_MIX_LN: (
  846. "rwkv.blocks.{bid}.attention.ln_x", # rwkv6
  847. "model.layers.{bid}.attention.ln_x" # rwkv7
  848. ),
  849. MODEL_TENSOR.TIME_MIX_OUTPUT: (
  850. "rwkv.blocks.{bid}.attention.output", # rwkv6
  851. "model.layers.{bid}.self_attn.o_proj", # rwkv6qwen2
  852. "model.layers.{bid}.attention.output", # rwkv7
  853. "model.layers.{bid}.attention.o_proj", # rwkv7
  854. ),
  855. MODEL_TENSOR.CHANNEL_MIX_LERP_K: (
  856. "rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv6
  857. "model.layers.{bid}.feed_forward.x_k", # rwkv7
  858. ),
  859. MODEL_TENSOR.CHANNEL_MIX_LERP_R: (
  860. "rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv6
  861. ),
  862. MODEL_TENSOR.CHANNEL_MIX_KEY: (
  863. "rwkv.blocks.{bid}.feed_forward.key", # rwkv6
  864. "model.layers.{bid}.feed_forward.key", # rwkv7
  865. ),
  866. MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: (
  867. "rwkv.blocks.{bid}.feed_forward.receptance", # rwkv6
  868. ),
  869. MODEL_TENSOR.CHANNEL_MIX_VALUE: (
  870. "rwkv.blocks.{bid}.feed_forward.value", # rwkv6
  871. "model.layers.{bid}.feed_forward.value", # rwkv7
  872. ),
  873. MODEL_TENSOR.ATTN_Q_A: (
  874. "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
  875. "layers.{bid}.attention.wq_a", # mistral-large
  876. ),
  877. MODEL_TENSOR.ATTN_Q_B: (
  878. "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
  879. "layers.{bid}.attention.wq_b", # mistral-large
  880. ),
  881. MODEL_TENSOR.ATTN_KV_A_MQA: (
  882. "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
  883. "layers.{bid}.attention.wkv_a_with_mqa", # mistral-large
  884. ),
  885. MODEL_TENSOR.ATTN_KV_B: (
  886. "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
  887. ),
  888. MODEL_TENSOR.ATTN_K_B: (
  889. "model.layers.{bid}.self_attn.k_b_proj", # deepseek2
  890. "layers.{bid}.attention.k_b_proj", # mistral-large
  891. ),
  892. MODEL_TENSOR.ATTN_V_B: (
  893. "model.layers.{bid}.self_attn.v_b_proj", # deepseek2
  894. "layers.{bid}.attention.v_b_proj", # mistral-large
  895. ),
  896. MODEL_TENSOR.ATTN_Q_A_NORM: (
  897. "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
  898. "layers.{bid}.attention.q_a_norm", # mistral-large
  899. ),
  900. MODEL_TENSOR.ATTN_KV_A_NORM: (
  901. "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
  902. "layers.{bid}.attention.kv_a_norm", # mistral-large
  903. ),
  904. MODEL_TENSOR.ATTN_SUB_NORM: (
  905. "model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
  906. ),
  907. MODEL_TENSOR.FFN_SUB_NORM: (
  908. "model.layers.{bid}.mlp.ffn_layernorm", # bitnet
  909. ),
  910. MODEL_TENSOR.DEC_ATTN_NORM: (
  911. "decoder.block.{bid}.layer.0.layer_norm", # t5
  912. ),
  913. MODEL_TENSOR.DEC_ATTN_Q: (
  914. "decoder.block.{bid}.layer.0.SelfAttention.q", # t5
  915. ),
  916. MODEL_TENSOR.DEC_ATTN_K: (
  917. "decoder.block.{bid}.layer.0.SelfAttention.k", # t5
  918. ),
  919. MODEL_TENSOR.DEC_ATTN_V: (
  920. "decoder.block.{bid}.layer.0.SelfAttention.v", # t5
  921. ),
  922. MODEL_TENSOR.DEC_ATTN_OUT: (
  923. "decoder.block.{bid}.layer.0.SelfAttention.o", # t5
  924. ),
  925. MODEL_TENSOR.DEC_ATTN_REL_B: (
  926. "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  927. ),
  928. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
  929. "decoder.block.{bid}.layer.1.layer_norm", # t5
  930. ),
  931. MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
  932. "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
  933. ),
  934. MODEL_TENSOR.DEC_CROSS_ATTN_K: (
  935. "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
  936. ),
  937. MODEL_TENSOR.DEC_CROSS_ATTN_V: (
  938. "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
  939. ),
  940. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
  941. "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
  942. ),
  943. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
  944. "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
  945. ),
  946. MODEL_TENSOR.DEC_FFN_NORM: (
  947. "decoder.block.{bid}.layer.2.layer_norm", # t5
  948. ),
  949. MODEL_TENSOR.DEC_FFN_GATE: (
  950. "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
  951. ),
  952. MODEL_TENSOR.DEC_FFN_UP: (
  953. "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
  954. "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
  955. ),
  956. MODEL_TENSOR.DEC_FFN_DOWN: (
  957. "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
  958. ),
  959. MODEL_TENSOR.DEC_OUTPUT_NORM: (
  960. "decoder.final_layer_norm", # t5
  961. ),
  962. MODEL_TENSOR.ENC_ATTN_NORM: (
  963. "encoder.block.{bid}.layer.0.layer_norm", # t5
  964. ),
  965. MODEL_TENSOR.ENC_ATTN_Q: (
  966. "encoder.block.{bid}.layer.0.SelfAttention.q", # t5
  967. ),
  968. MODEL_TENSOR.ENC_ATTN_K: (
  969. "encoder.block.{bid}.layer.0.SelfAttention.k", # t5
  970. ),
  971. MODEL_TENSOR.ENC_ATTN_V: (
  972. "encoder.block.{bid}.layer.0.SelfAttention.v", # t5
  973. ),
  974. MODEL_TENSOR.ENC_ATTN_OUT: (
  975. "encoder.block.{bid}.layer.0.SelfAttention.o", # t5
  976. ),
  977. MODEL_TENSOR.ENC_ATTN_REL_B: (
  978. "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  979. ),
  980. MODEL_TENSOR.ENC_FFN_NORM: (
  981. "encoder.block.{bid}.layer.1.layer_norm", # t5
  982. ),
  983. MODEL_TENSOR.ENC_FFN_GATE: (
  984. "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
  985. ),
  986. MODEL_TENSOR.ENC_FFN_UP: (
  987. "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
  988. "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
  989. ),
  990. MODEL_TENSOR.ENC_FFN_DOWN: (
  991. "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
  992. ),
  993. MODEL_TENSOR.VISEXP_UP: (
  994. "model.layers.{bid}.mlp.vision_mlp.up_proj", # cogvlm
  995. ),
  996. MODEL_TENSOR.VISEXP_GATE: (
  997. "model.layers.{bid}.mlp.vision_mlp.gate_proj", # cogvlm
  998. ),
  999. MODEL_TENSOR.VISEXP_DOWN: (
  1000. "model.layers.{bid}.mlp.vision_mlp.down_proj", # cogvlm
  1001. ),
  1002. MODEL_TENSOR.VISEXP_ATTN_OUT: (
  1003. "model.layers.{bid}.self_attn.vision_expert_dense", # cogvlm
  1004. ),
  1005. MODEL_TENSOR.VISEXP_ATTN_QKV: (
  1006. "model.layers.{bid}.self_attn.vision_expert_query_key_value", # cogvlm
  1007. ),
  1008. ############################################################################
  1009. # TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg
  1010. MODEL_TENSOR.ENC_OUTPUT_NORM: (
  1011. "encoder.final_layer_norm", # t5
  1012. "layer_norm", # neobert
  1013. ),
  1014. MODEL_TENSOR.CLS: (
  1015. "classifier", # jina
  1016. "classifier.dense", # roberta
  1017. "pre_classifier", # distillbert
  1018. "dense", # neobert
  1019. "head.dense", # modern-bert
  1020. ),
  1021. MODEL_TENSOR.CLS_OUT: (
  1022. "classifier.out_proj", # roberta
  1023. ),
  1024. #############################################################################
  1025. MODEL_TENSOR.CONVNEXT_DW: (
  1026. "backbone.convnext.{bid}.dwconv", # wavtokenizer
  1027. ),
  1028. MODEL_TENSOR.CONVNEXT_NORM: (
  1029. "backbone.convnext.{bid}.norm", # wavtokenizer
  1030. ),
  1031. MODEL_TENSOR.CONVNEXT_PW1: (
  1032. "backbone.convnext.{bid}.pwconv1", # wavtokenizer
  1033. ),
  1034. MODEL_TENSOR.CONVNEXT_PW2: (
  1035. "backbone.convnext.{bid}.pwconv2", # wavtokenizer
  1036. ),
  1037. MODEL_TENSOR.CONVNEXT_GAMMA: (
  1038. "backbone.convnext.{bid}.gamma", # wavtokenizer
  1039. ),
  1040. MODEL_TENSOR.POSNET_CONV1: (
  1041. "backbone.posnet.{bid}.conv1", # wavtokenizer
  1042. ),
  1043. MODEL_TENSOR.POSNET_CONV2: (
  1044. "backbone.posnet.{bid}.conv2", # wavtokenizer
  1045. ),
  1046. MODEL_TENSOR.POSNET_NORM: (
  1047. "backbone.posnet.{bid}.norm", # wavtokenizer
  1048. ),
  1049. MODEL_TENSOR.POSNET_NORM1: (
  1050. "backbone.posnet.{bid}.norm1", # wavtokenizer
  1051. ),
  1052. MODEL_TENSOR.POSNET_NORM2: (
  1053. "backbone.posnet.{bid}.norm2", # wavtokenizer
  1054. ),
  1055. MODEL_TENSOR.POSNET_ATTN_NORM: (
  1056. "backbone.posnet.{bid}.norm", # wavtokenizer
  1057. ),
  1058. MODEL_TENSOR.POSNET_ATTN_Q: (
  1059. "backbone.posnet.{bid}.q", # wavtokenizer
  1060. ),
  1061. MODEL_TENSOR.POSNET_ATTN_K: (
  1062. "backbone.posnet.{bid}.k", # wavtokenizer
  1063. ),
  1064. MODEL_TENSOR.POSNET_ATTN_V: (
  1065. "backbone.posnet.{bid}.v", # wavtokenizer
  1066. ),
  1067. MODEL_TENSOR.POSNET_ATTN_OUT: (
  1068. "backbone.posnet.{bid}.proj_out", # wavtokenizer
  1069. ),
  1070. MODEL_TENSOR.SHORTCONV_CONV: (
  1071. "model.layers.{bid}.conv.conv",
  1072. ),
  1073. MODEL_TENSOR.SHORTCONV_INPROJ: (
  1074. "model.layers.{bid}.conv.in_proj",
  1075. ),
  1076. MODEL_TENSOR.SHORTCONV_OUTPROJ: (
  1077. "model.layers.{bid}.conv.out_proj",
  1078. ),
  1079. #############################################################################
  1080. ## Vision encoder
  1081. MODEL_TENSOR.V_MMPROJ: (
  1082. "multi_modal_projector.linear_{bid}",
  1083. "visual.merger.mlp.{bid}", # qwen2vl
  1084. "merger.mlp.{bid}",
  1085. ),
  1086. MODEL_TENSOR.V_MMPROJ_FC: (
  1087. "model.connector.modality_projection.proj", # SmolVLM
  1088. "model.vision.linear_proj.linear_proj", # cogvlm
  1089. "visual.merger.proj", # glm4v
  1090. ),
  1091. MODEL_TENSOR.V_MMPROJ_MLP: (
  1092. "model.mm_projector.mlp.mlp.{bid}",
  1093. "vision_model.vision_adapter.mlp.fc{bid}", # llama 4
  1094. "mlp1.{bid}", # InternVL
  1095. "model.aligner.fc1.hidden_layers.{bid}", # Janus Pro
  1096. ),
  1097. MODEL_TENSOR.V_MMPROJ_PEG: (
  1098. "model.mm_projector.peg.peg.{bid}",
  1099. ),
  1100. MODEL_TENSOR.V_ENC_EMBD_CLS: (
  1101. "vision_tower.vision_model.embeddings.class_embedding",
  1102. "model.vision_tower.embeddings.cls_token", # Intern-S1
  1103. "vision_model.class_embedding", # llama 4
  1104. "model.vision.patch_embedding.cls_embedding", # cogvlm
  1105. ),
  1106. MODEL_TENSOR.V_ENC_EMBD_PATCH: (
  1107. "vision_tower.vision_model.embeddings.patch_embedding",
  1108. "model.vision_tower.embeddings.patch_embeddings.projection", # Intern-S1
  1109. "vpm.embeddings.patch_embedding",
  1110. "model.vision_model.embeddings.patch_embedding", # SmolVLM
  1111. "vision_tower.patch_conv", # pixtral-hf
  1112. "vision_encoder.patch_conv", # pixtral
  1113. "vision_model.patch_embedding.linear", # llama 4
  1114. "visual.patch_embed.proj", # qwen2vl
  1115. "vision_tower.patch_embed.proj", # kimi-vl
  1116. "model.vision.patch_embedding.proj", # cogvlm
  1117. "siglip2.vision_model.embeddings.patch_embedding",
  1118. ),
  1119. MODEL_TENSOR.V_ENC_EMBD_NORM: (
  1120. "visual.post_conv_layernorm", # glm4v
  1121. ),
  1122. MODEL_TENSOR.V_ENC_EMBD_POS: (
  1123. "vision_tower.vision_model.embeddings.position_embedding",
  1124. "model.vision_tower.embeddings.position_embeddings", # Intern-S1
  1125. "vpm.embeddings.position_embedding",
  1126. "model.vision_model.embeddings.position_embedding", # SmolVLM
  1127. "vision_model.positional_embedding_vlm", # llama 4
  1128. "vision_tower.patch_embed.pos_emb", # kimi-vl
  1129. "visual.pos_embed", # qwen3vl
  1130. "model.vision.patch_embedding.position_embedding", # cogvlm
  1131. "visual.embeddings.position_embedding", # glm4v
  1132. ),
  1133. MODEL_TENSOR.V_ENC_ATTN_QKV: (
  1134. "visual.blocks.{bid}.attn.qkv", # qwen3vl
  1135. "model.vision.transformer.layers.{bid}.attention.query_key_value", # cogvlm
  1136. ),
  1137. MODEL_TENSOR.V_ENC_ATTN_Q: (
  1138. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.q_proj",
  1139. "model.vision_tower.encoder.layer.{bid}.attention.q_proj", # Intern-S1
  1140. "vpm.encoder.layers.{bid}.self_attn.q_proj",
  1141. "model.vision_model.encoder.layers.{bid}.self_attn.q_proj", # SmolVLM
  1142. "vision_model.model.layers.{bid}.self_attn.q_proj", # llama4
  1143. "vision_tower.transformer.layers.{bid}.attention.q_proj", # pixtral-hf
  1144. "vision_encoder.transformer.layers.{bid}.attention.wq", # pixtral
  1145. "visual.blocks.{bid}.attn.q", # qwen2vl, generated
  1146. "vision_tower.encoder.blocks.{bid}.wq", # kimi-vl, generated
  1147. "siglip2.vision_model.encoder.layers.{bid}.self_attn.q_proj", # youtuvl
  1148. ),
  1149. MODEL_TENSOR.V_ENC_ATTN_Q_NORM: (
  1150. "vision_tower.vision_model.encoder.layers.{bid}.attn.q_norm", # InternVL
  1151. "model.vision_tower.encoder.layer.{bid}.attention.q_norm", # Intern-S1
  1152. ),
  1153. MODEL_TENSOR.V_ENC_ATTN_K: (
  1154. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.k_proj",
  1155. "model.vision_tower.encoder.layer.{bid}.attention.k_proj", # Intern-S1
  1156. "vpm.encoder.layers.{bid}.self_attn.k_proj",
  1157. "model.vision_model.encoder.layers.{bid}.self_attn.k_proj", # SmolVLM
  1158. "vision_model.model.layers.{bid}.self_attn.k_proj", # llama4
  1159. "vision_tower.transformer.layers.{bid}.attention.k_proj", # pixtral-hf
  1160. "vision_encoder.transformer.layers.{bid}.attention.wk", # pixtral
  1161. "visual.blocks.{bid}.attn.k", # qwen2vl, generated
  1162. "vision_tower.encoder.blocks.{bid}.wk", # kimi-vl, generated
  1163. "siglip2.vision_model.encoder.layers.{bid}.self_attn.k_proj",
  1164. ),
  1165. MODEL_TENSOR.V_ENC_ATTN_K_NORM: (
  1166. "vision_tower.vision_model.encoder.layers.{bid}.attn.k_norm", # InternVL
  1167. "model.vision_tower.encoder.layer.{bid}.attention.k_norm", # Intern-S1
  1168. ),
  1169. MODEL_TENSOR.V_ENC_ATTN_V: (
  1170. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.v_proj",
  1171. "model.vision_tower.encoder.layer.{bid}.attention.v_proj", # Intern-S1
  1172. "vpm.encoder.layers.{bid}.self_attn.v_proj",
  1173. "model.vision_model.encoder.layers.{bid}.self_attn.v_proj", # SmolVLM
  1174. "vision_model.model.layers.{bid}.self_attn.v_proj", # llama4
  1175. "vision_tower.transformer.layers.{bid}.attention.v_proj", # pixtral-hf
  1176. "vision_encoder.transformer.layers.{bid}.attention.wv", # pixtral
  1177. "visual.blocks.{bid}.attn.v", # qwen2vl, generated
  1178. "vision_tower.encoder.blocks.{bid}.wv", # kimi-vl, generated
  1179. "siglip2.vision_model.encoder.layers.{bid}.self_attn.v_proj",
  1180. ),
  1181. MODEL_TENSOR.V_ENC_INPUT_NORM: (
  1182. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm1",
  1183. "vision_tower.vision_model.encoder.layers.{bid}.norm1", # InternVL
  1184. "model.vision_tower.encoder.layer.{bid}.layernorm_before", # Intern-S1
  1185. "vpm.encoder.layers.{bid}.layer_norm1",
  1186. "model.vision_model.encoder.layers.{bid}.layer_norm1", # SmolVLM
  1187. "vision_tower.transformer.layers.{bid}.attention_norm", # pixtral-hf
  1188. "vision_encoder.transformer.layers.{bid}.attention_norm", # pixtral
  1189. "vision_model.model.layers.{bid}.input_layernorm", # llama4
  1190. "visual.blocks.{bid}.norm1", # qwen2vl
  1191. "vision_tower.encoder.blocks.{bid}.norm0", # kimi-vl (norm0/norm1)
  1192. "model.vision.transformer.layers.{bid}.input_layernorm", # cogvlm
  1193. "siglip2.vision_model.encoder.layers.{bid}.layer_norm1",
  1194. ),
  1195. MODEL_TENSOR.V_ENC_ATTN_O: (
  1196. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.out_proj",
  1197. "vision_tower.vision_model.encoder.layers.{bid}.attn.proj", # InternVL
  1198. "model.vision_tower.encoder.layer.{bid}.attention.projection_layer", # Intern-S1
  1199. "vpm.encoder.layers.{bid}.self_attn.out_proj",
  1200. "model.vision_model.encoder.layers.{bid}.self_attn.out_proj", # SmolVLM
  1201. "model.vision_model.encoder.layers.{bid}.self_attn.projection_layer", # Janus Pro
  1202. "vision_model.model.layers.{bid}.self_attn.o_proj", # llama4
  1203. "vision_tower.transformer.layers.{bid}.attention.o_proj", # pixtral-hf
  1204. "vision_encoder.transformer.layers.{bid}.attention.wo", # pixtral
  1205. "visual.blocks.{bid}.attn.proj", # qwen2vl
  1206. "vision_tower.encoder.blocks.{bid}.wo", # kimi-vl
  1207. "model.vision.transformer.layers.{bid}.attention.dense", # cogvlm
  1208. "siglip2.vision_model.encoder.layers.{bid}.self_attn.out_proj", # youtuvl
  1209. ),
  1210. MODEL_TENSOR.V_ENC_POST_ATTN_NORM: (
  1211. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm2",
  1212. "vision_tower.vision_model.encoder.layers.{bid}.norm2", # InternVL
  1213. "model.vision_tower.encoder.layer.{bid}.layernorm_after", # Intern-S1
  1214. "vpm.encoder.layers.{bid}.layer_norm2",
  1215. "model.vision_model.encoder.layers.{bid}.layer_norm2", # SmolVLM
  1216. "vision_model.model.layers.{bid}.post_attention_layernorm", # llama4
  1217. "vision_tower.transformer.layers.{bid}.ffn_norm", # pixtral-hf
  1218. "vision_encoder.transformer.layers.{bid}.ffn_norm", # pixtral
  1219. "visual.blocks.{bid}.norm2", # qwen2vl
  1220. "vision_tower.encoder.blocks.{bid}.norm1", # kimi-vl (norm0/norm1)
  1221. "model.vision.transformer.layers.{bid}.post_attention_layernorm", # cogvlm
  1222. "siglip2.vision_model.encoder.layers.{bid}.layer_norm2",
  1223. ),
  1224. MODEL_TENSOR.V_ENC_FFN_UP: (
  1225. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc1",
  1226. "model.vision_tower.encoder.layer.{bid}.mlp.fc1", # Intern-S1
  1227. "vpm.encoder.layers.{bid}.mlp.fc1",
  1228. "model.vision_model.encoder.layers.{bid}.mlp.fc1", # SmolVLM, gemma3
  1229. "vision_tower.transformer.layers.{bid}.feed_forward.up_proj", # pixtral-hf
  1230. "vision_encoder.transformer.layers.{bid}.feed_forward.w3", # pixtral
  1231. "vision_model.model.layers.{bid}.mlp.fc1", # llama4
  1232. "visual.blocks.{bid}.mlp.fc1", # qwen2vl
  1233. "visual.blocks.{bid}.mlp.up_proj", # qwen2.5vl
  1234. "visual.blocks.{bid}.mlp.linear_fc1", # qwen3vl
  1235. "vision_tower.encoder.blocks.{bid}.mlp.fc0", # kimi-vl (fc0/fc1)
  1236. "model.vision.transformer.layers.{bid}.mlp.fc1", # cogvlm
  1237. "siglip2.vision_model.encoder.layers.{bid}.mlp.fc1",
  1238. ),
  1239. MODEL_TENSOR.V_ENC_FFN_GATE: (
  1240. "vision_tower.transformer.layers.{bid}.feed_forward.gate_proj", # pixtral-hf
  1241. "vision_encoder.transformer.layers.{bid}.feed_forward.w1", # pixtral
  1242. "visual.blocks.{bid}.mlp.gate_proj", # qwen2.5vl
  1243. ),
  1244. MODEL_TENSOR.V_ENC_FFN_DOWN: (
  1245. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc2",
  1246. "model.vision_tower.encoder.layer.{bid}.mlp.fc2", # Intern-S1
  1247. "vpm.encoder.layers.{bid}.mlp.fc2",
  1248. "model.vision_model.encoder.layers.{bid}.mlp.fc2", # SmolVLM, gemma3
  1249. "vision_tower.transformer.layers.{bid}.feed_forward.down_proj", # pixtral-hf
  1250. "vision_encoder.transformer.layers.{bid}.feed_forward.w2", # pixtral
  1251. "vision_model.model.layers.{bid}.mlp.fc2", # llama4
  1252. "visual.blocks.{bid}.mlp.fc2", # qwen2vl
  1253. "visual.blocks.{bid}.mlp.down_proj", # qwen2.5vl
  1254. "visual.blocks.{bid}.mlp.linear_fc2", # qwen3vl
  1255. "vision_tower.encoder.blocks.{bid}.mlp.fc1", # kimi-vl (fc0/fc1)
  1256. "model.vision.transformer.layers.{bid}.mlp.fc2", # cogvlm
  1257. "siglip2.vision_model.encoder.layers.{bid}.mlp.fc2",
  1258. ),
  1259. MODEL_TENSOR.V_LAYER_SCALE_1: (
  1260. "vision_tower.vision_model.encoder.layers.{bid}.ls1", # InternVL
  1261. "model.vision_tower.encoder.layer.{bid}.lambda_1", # Intern-S1
  1262. ),
  1263. MODEL_TENSOR.V_LAYER_SCALE_2: (
  1264. "vision_tower.vision_model.encoder.layers.{bid}.ls2", # InternVL
  1265. "model.vision_tower.encoder.layer.{bid}.lambda_2", # Intern-S1
  1266. ),
  1267. MODEL_TENSOR.V_PRE_NORM: (
  1268. "vision_tower.vision_model.pre_layrnorm",
  1269. "vision_tower.ln_pre", # pixtral-hf
  1270. "vision_encoder.ln_pre", # pixtral
  1271. "vision_model.layernorm_pre", # llama4
  1272. ),
  1273. MODEL_TENSOR.V_POST_NORM: (
  1274. "vision_tower.vision_model.post_layernorm",
  1275. "model.vision_model.post_layernorm", # SmolVLM
  1276. "vision_model.layernorm_post", # llama4
  1277. "visual.merger.ln_q", # qwen2vl
  1278. "vision_tower.encoder.final_layernorm", # kimi-vl
  1279. "visual.post_layernorm", # glm4v
  1280. "siglip2.vision_model.post_layernorm",
  1281. ),
  1282. MODEL_TENSOR.V_MM_POST_NORM: (
  1283. "visual.merger.post_projection_norm", # glm4v
  1284. ),
  1285. MODEL_TENSOR.V_MM_INP_PROJ: (
  1286. "multi_modal_projector.mm_input_projection",
  1287. ),
  1288. MODEL_TENSOR.V_MM_INP_NORM: (
  1289. "multi_modal_projector.norm",
  1290. "multi_modal_projector.layer_norm",
  1291. "multi_modal_projector.pre_norm",
  1292. "pre_mm_projector_norm",
  1293. "model.vision.linear_proj.norm1", # cogvlm
  1294. "merger.ln_q",
  1295. ),
  1296. MODEL_TENSOR.V_MM_SOFT_EMB_NORM: (
  1297. "multi_modal_projector.mm_soft_emb_norm",
  1298. ),
  1299. MODEL_TENSOR.V_RESMPL_POS_EMBD_K: (
  1300. "resampler.pos_embed_k",
  1301. ),
  1302. MODEL_TENSOR.V_RESMPL_ATTN_Q: (
  1303. "resampler.attn.in_proj_q", # tensor generated from resampler.attn.in_proj
  1304. ),
  1305. MODEL_TENSOR.V_RESMPL_ATTN_K: (
  1306. "resampler.attn.in_proj_k", # tensor generated from resampler.attn.in_proj
  1307. ),
  1308. MODEL_TENSOR.V_RESMPL_ATTN_V: (
  1309. "resampler.attn.in_proj_v", # tensor generated from resampler.attn.in_proj
  1310. ),
  1311. MODEL_TENSOR.V_RESMPL_ATTN_OUT: (
  1312. "resampler.attn.out_proj",
  1313. ),
  1314. MODEL_TENSOR.V_RESMPL_KV: (
  1315. "resampler.kv_proj",
  1316. ),
  1317. MODEL_TENSOR.V_RESMPL_POST_NORM: (
  1318. "resampler.ln_post",
  1319. ),
  1320. MODEL_TENSOR.V_RESMPL_KV_NORM: (
  1321. "resampler.ln_kv",
  1322. ),
  1323. MODEL_TENSOR.V_RESMPL_Q_NORM: (
  1324. "resampler.ln_q",
  1325. ),
  1326. MODEL_TENSOR.V_RESMPL_PROJ: (
  1327. "resampler.proj",
  1328. ),
  1329. MODEL_TENSOR.V_RESMPL_QUERY: (
  1330. "resampler.query",
  1331. ),
  1332. MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK: (
  1333. "v.token_embd.img_break", # for pixtral, this is a generated vector
  1334. ),
  1335. MODEL_TENSOR.V_MM_PATCH_MERGER: (
  1336. "multi_modal_projector.patch_merger.merging_layer", # mistral small 3.1 - hf
  1337. "patch_merger.merging_layer", # mistral
  1338. "visual.downsample", # glm4v
  1339. ),
  1340. MODEL_TENSOR.V_DS_NORM: (
  1341. "model.visual.deepstack_merger_list.{bid}.norm", # deepstack in qwen3vl
  1342. ),
  1343. MODEL_TENSOR.V_DS_FC1: (
  1344. "model.visual.deepstack_merger_list.{bid}.linear_fc1", # deepstack in qwen3vl
  1345. ),
  1346. MODEL_TENSOR.V_DS_FC2: (
  1347. "model.visual.deepstack_merger_list.{bid}.linear_fc2", # deepstack in qwen3vl
  1348. ),
  1349. MODEL_TENSOR.V_MM_POST_FC_NORM: (
  1350. "model.vision.linear_proj.norm1", # cogvlm
  1351. ),
  1352. MODEL_TENSOR.V_MM_UP: (
  1353. "model.vision.linear_proj.dense_h_to_4h", # cogvlm
  1354. "visual.merger.up_proj", # glm4v
  1355. ),
  1356. MODEL_TENSOR.V_MM_DOWN: (
  1357. "model.vision.linear_proj.dense_4h_to_h", # cogvlm
  1358. "visual.merger.down_proj", # glm4v
  1359. ),
  1360. MODEL_TENSOR.V_MM_GATE: (
  1361. "model.vision.linear_proj.gate_proj", # cogvlm
  1362. "visual.merger.gate_proj", # glm4v
  1363. ),
  1364. MODEL_TENSOR.V_TOK_BOI: (
  1365. "model.vision.boi", # cogvlm
  1366. ),
  1367. MODEL_TENSOR.V_TOK_EOI: (
  1368. "model.vision.eoi", # cogvlm
  1369. ),
  1370. # audio (mtmd)
  1371. MODEL_TENSOR.A_ENC_EMBD_POS: (
  1372. "audio_tower.embed_positions", # ultravox
  1373. "audio_embedding.embedding", # lfm2
  1374. ),
  1375. MODEL_TENSOR.A_ENC_EMBD_NORM: (
  1376. "audio_embedding.embedding_norm", # lfm2
  1377. ),
  1378. MODEL_TENSOR.A_ENC_EMBD_TO_LOGITS: (
  1379. "audio_embedding.to_logits", # lfm2
  1380. ),
  1381. MODEL_TENSOR.A_ENC_CONV1D: (
  1382. "audio_tower.conv{bid}", # ultravox
  1383. "conformer.pre_encode.conv.{bid}", # lfm2
  1384. "model.audio_tower.subsample_conv_projection.conv_{bid}.conv", # gemma3n
  1385. ),
  1386. MODEL_TENSOR.A_ENC_CONV1D_NORM: (
  1387. "model.audio_tower.subsample_conv_projection.conv_{bid}.norm", # gemma3n
  1388. ),
  1389. MODEL_TENSOR.A_PRE_NORM: (),
  1390. MODEL_TENSOR.A_POST_NORM: (
  1391. "audio_tower.layer_norm", # ultravox
  1392. "audio_tower.ln_post", # qwen2omni
  1393. ),
  1394. MODEL_TENSOR.A_ENC_ATTN_Q: (
  1395. "audio_tower.layers.{bid}.self_attn.q_proj", # ultravox
  1396. "conformer.layers.{bid}.self_attn.linear_q", # lfm2
  1397. "conformer.layers.{bid}.attention.attn.q_proj", # gemma3n
  1398. ),
  1399. MODEL_TENSOR.A_ENC_ATTN_K: (
  1400. "audio_tower.layers.{bid}.self_attn.k_proj", # ultravox
  1401. "conformer.layers.{bid}.self_attn.linear_k", # lfm2
  1402. "conformer.layers.{bid}.attention.attn.k_proj", # gemma3n
  1403. ),
  1404. MODEL_TENSOR.A_ENC_ATTN_V: (
  1405. "audio_tower.layers.{bid}.self_attn.v_proj", # ultravox
  1406. "conformer.layers.{bid}.self_attn.linear_v", # lfm2
  1407. "conformer.layers.{bid}.attention.attn.v_proj", # gemma3n
  1408. ),
  1409. MODEL_TENSOR.A_ENC_PER_DIM_SCALE: (
  1410. "conformer.layers.{bid}.attention.attn.per_dim_scale", # gemma3n
  1411. ),
  1412. MODEL_TENSOR.A_ENC_LAYER_PRE_NORM: (
  1413. "conformer.layers.{bid}.norm", # gemma3n
  1414. ),
  1415. MODEL_TENSOR.A_ENC_INPUT_NORM: (
  1416. "audio_tower.layers.{bid}.self_attn_layer_norm", # ultravox
  1417. "conformer.layers.{bid}.norm_self_att", # lfm2
  1418. "conformer.layers.{bid}.attention.pre_attn_norm", # gemma3n
  1419. ),
  1420. MODEL_TENSOR.A_ENC_OUTPUT: (
  1421. "audio_tower.layers.{bid}.self_attn.out_proj", # ultravox
  1422. "conformer.layers.{bid}.self_attn.linear_out", # lfm2
  1423. "conformer.layers.{bid}.attention.post", # gemma3n
  1424. ),
  1425. MODEL_TENSOR.A_ENC_OUTPUT_NORM: (
  1426. "audio_tower.layers.{bid}.final_layer_norm", # ultravox
  1427. "conformer.layers.{bid}.norm_out", # lfm2
  1428. "conformer.layers.{bid}.attention.post_norm", # gemma3n
  1429. ),
  1430. MODEL_TENSOR.A_ENC_FFN_NORM: (
  1431. "conformer.layers.{bid}.norm_feed_forward1", # lfm2
  1432. "conformer.layers.{bid}.ffw_layer_start.pre_layer_norm", # gemma3n
  1433. ),
  1434. MODEL_TENSOR.A_ENC_FFN_POST_NORM: (
  1435. "conformer.layers.{bid}.ffw_layer_start.post_layer_norm", # gemma3n
  1436. ),
  1437. MODEL_TENSOR.A_ENC_FFN_SCALE: (
  1438. "conformer.layers.{bid}.ffw_layer_start.post_layer_scale", # gemma3n
  1439. ),
  1440. MODEL_TENSOR.A_ENC_FFN_UP: (
  1441. "audio_tower.layers.{bid}.fc1", # ultravox
  1442. "conformer.layers.{bid}.feed_forward1.linear1", # lfm2
  1443. "conformer.layers.{bid}.ffw_layer_start.ffw_layer_1", # gemma3n
  1444. ),
  1445. MODEL_TENSOR.A_ENC_FFN_GATE: (),
  1446. MODEL_TENSOR.A_ENC_FFN_DOWN: (
  1447. "audio_tower.layers.{bid}.fc2", # ultravox
  1448. "conformer.layers.{bid}.feed_forward1.linear2", # lfm2
  1449. "conformer.layers.{bid}.ffw_layer_start.ffw_layer_2", # gemma3n
  1450. ),
  1451. MODEL_TENSOR.A_ENC_FFN_UP_1: (
  1452. "conformer.layers.{bid}.feed_forward2.linear1", # lfm2
  1453. "conformer.layers.{bid}.ffw_layer_end.ffw_layer_1", # gemma3n
  1454. ),
  1455. MODEL_TENSOR.A_ENC_FFN_DOWN_1: (
  1456. "conformer.layers.{bid}.feed_forward2.linear2", # lfm2
  1457. "conformer.layers.{bid}.ffw_layer_end.ffw_layer_2", # gemma3n
  1458. ),
  1459. MODEL_TENSOR.A_ENC_FFN_NORM_1: (
  1460. "conformer.layers.{bid}.norm_feed_forward2", # lfm2
  1461. "conformer.layers.{bid}.ffw_layer_end.pre_layer_norm", # gemma3n
  1462. ),
  1463. MODEL_TENSOR.A_ENC_FFN_POST_NORM_1: (
  1464. "conformer.layers.{bid}.ffw_layer_end.post_layer_norm", # gemma3n
  1465. ),
  1466. MODEL_TENSOR.A_ENC_FFN_SCALE_1: (
  1467. "conformer.layers.{bid}.ffw_layer_end.post_layer_scale", # gemma3n
  1468. ),
  1469. MODEL_TENSOR.A_ENC_LINEAR_POS: (
  1470. "conformer.layers.{bid}.self_attn.linear_pos", # lfm2
  1471. "conformer.layers.{bid}.attention.attn.relative_position_embedding.pos_proj", # gemma3n
  1472. ),
  1473. MODEL_TENSOR.A_ENC_POS_BIAS_U: (
  1474. "conformer.layers.{bid}.self_attn.pos_bias_u", # lfm2
  1475. ),
  1476. MODEL_TENSOR.A_ENC_POS_BIAS_V: (
  1477. "conformer.layers.{bid}.self_attn.pos_bias_v", # lfm2
  1478. ),
  1479. MODEL_TENSOR.A_ENC_OUT: (
  1480. "conformer.pre_encode.out", # lfm2
  1481. "model.audio_tower.subsample_conv_projection.input_proj_linear", # gemma3n
  1482. ),
  1483. # note: some tensors below has "audio." pseudo-prefix, to prevent conflicts with vision tensors
  1484. # this prefix is added in the conversion code in modify_tensors()
  1485. MODEL_TENSOR.A_MMPROJ: (
  1486. "audio.multi_modal_projector.linear_{bid}", # ultravox
  1487. "audio_adapter.model.{bid}" # lfm2
  1488. ),
  1489. MODEL_TENSOR.A_MMPROJ_FC: (
  1490. "audio.multi_modal_projector.linear", # qwen2audio
  1491. "audio_tower.proj", # qwen2omni
  1492. ),
  1493. MODEL_TENSOR.A_MM_NORM_PRE: (
  1494. "audio.multi_modal_projector.ln_pre", # ultravox
  1495. ),
  1496. MODEL_TENSOR.A_MM_NORM_MID: (
  1497. "audio.multi_modal_projector.ln_mid", # ultravox
  1498. ),
  1499. MODEL_TENSOR.A_ENC_CONV_DW: (
  1500. "conformer.layers.{bid}.conv.depthwise_conv", # lfm2
  1501. "conformer.layers.{bid}.lconv1d.depthwise_conv1d", # gemma3n
  1502. ),
  1503. MODEL_TENSOR.A_ENC_CONV_NORM: (
  1504. "conformer.layers.{bid}.conv.batch_norm", # lfm2
  1505. "conformer.layers.{bid}.lconv1d.pre_layer_norm", # gemma3n
  1506. ),
  1507. MODEL_TENSOR.A_ENC_CONV_PW1: (
  1508. "conformer.layers.{bid}.conv.pointwise_conv1", # lfm2
  1509. "conformer.layers.{bid}.lconv1d.linear_start", # gemma3n
  1510. ),
  1511. MODEL_TENSOR.A_ENC_CONV_PW2: (
  1512. "conformer.layers.{bid}.conv.pointwise_conv2", # lfm2
  1513. "conformer.layers.{bid}.lconv1d.linear_end", # gemma3n
  1514. ),
  1515. MODEL_TENSOR.A_ENC_NORM_CONV: (
  1516. "conformer.layers.{bid}.norm_conv", # lfm2
  1517. "conformer.layers.{bid}.lconv1d.conv_norm", # gemma3n
  1518. ),
  1519. MODEL_TENSOR.A_MM_EMBEDDING: (
  1520. "model.embed_audio.embedding", # gemma3n
  1521. ),
  1522. MODEL_TENSOR.A_MM_HARD_EMB_NORM: (
  1523. "model.embed_audio.hard_embedding_norm", # gemma3n
  1524. ),
  1525. MODEL_TENSOR.A_MM_INP_PROJ: (
  1526. "model.embed_audio.embedding_projection", # gemma3n
  1527. ),
  1528. MODEL_TENSOR.A_MM_SOFT_EMB_NORM: (
  1529. "model.embed_audio.soft_embedding_norm", # gemma3n
  1530. ),
  1531. # NextN/MTP tensors
  1532. MODEL_TENSOR.NEXTN_EH_PROJ: (
  1533. "model.layers.{bid}.eh_proj",
  1534. ),
  1535. MODEL_TENSOR.NEXTN_EMBED_TOKENS: (
  1536. "model.layers.{bid}.embed_tokens",
  1537. ),
  1538. MODEL_TENSOR.NEXTN_ENORM: (
  1539. "model.layers.{bid}.enorm",
  1540. ),
  1541. MODEL_TENSOR.NEXTN_HNORM: (
  1542. "model.layers.{bid}.hnorm",
  1543. ),
  1544. MODEL_TENSOR.NEXTN_SHARED_HEAD_HEAD: (
  1545. "model.layers.{bid}.shared_head.head",
  1546. ),
  1547. MODEL_TENSOR.NEXTN_SHARED_HEAD_NORM: (
  1548. "model.layers.{bid}.shared_head.norm",
  1549. ),
  1550. }
  1551. # architecture-specific block mappings
  1552. arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
  1553. MODEL_ARCH.ARCTIC: {
  1554. MODEL_TENSOR.FFN_NORM: (
  1555. "model.layers.{bid}.residual_layernorm",
  1556. ),
  1557. MODEL_TENSOR.FFN_NORM_EXP: (
  1558. "model.layers.{bid}.post_attention_layernorm",
  1559. ),
  1560. },
  1561. }
  1562. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  1563. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  1564. self.mapping = {}
  1565. for tensor, keys in self.mappings_cfg.items():
  1566. if tensor not in MODEL_TENSORS[arch]:
  1567. continue
  1568. tensor_name = TENSOR_NAMES[tensor]
  1569. self.mapping[tensor_name] = (tensor, tensor_name)
  1570. for key in keys:
  1571. self.mapping[key] = (tensor, tensor_name)
  1572. if arch in self.arch_block_mappings_cfg:
  1573. self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
  1574. for bid in range(n_blocks):
  1575. for tensor, keys in self.block_mappings_cfg.items():
  1576. if tensor not in MODEL_TENSORS[arch]:
  1577. continue
  1578. tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
  1579. self.mapping[tensor_name] = (tensor, tensor_name)
  1580. for key in keys:
  1581. key = key.format(bid = bid)
  1582. self.mapping[key] = (tensor, tensor_name)
  1583. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  1584. result = self.mapping.get(key)
  1585. if result is not None:
  1586. return result
  1587. for suffix in try_suffixes:
  1588. if key.endswith(suffix):
  1589. result = self.mapping.get(key[:-len(suffix)])
  1590. if result is not None:
  1591. return result[0], result[1] + suffix
  1592. return None
  1593. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  1594. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1595. if result is None:
  1596. return None
  1597. return result[1]
  1598. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  1599. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1600. if result is None:
  1601. return None
  1602. return result[0]
  1603. def __getitem__(self, key: str) -> str:
  1604. try:
  1605. return self.mapping[key][1]
  1606. except KeyError:
  1607. raise KeyError(key)
  1608. def __contains__(self, key: str) -> bool:
  1609. return key in self.mapping
  1610. def __repr__(self) -> str:
  1611. return repr(self.mapping)
  1612. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  1613. return TensorNameMap(arch, n_blocks)