| 123456789101112131415161718192021222324252627282930313233 |
- import argparse
- import os
- import torch
- from transformers import AutoModel
- ap = argparse.ArgumentParser()
- ap.add_argument("-m", "--model", help="Path to GLM model")
- args = ap.parse_args()
- # find the model part that includes the the multimodal projector weights
- model = AutoModel.from_pretrained(args.model, trust_remote_code=True, local_files_only=True)
- checkpoint = model.state_dict()
- # get a list of mm tensor names
- mm_tensors = [k for k, v in checkpoint.items() if k.startswith("vision.adapter.")]
- # store these tensors in a new dictionary and torch.save them
- projector = {name: checkpoint[name].float() for name in mm_tensors}
- torch.save(projector, f"{args.model}/glm.projector")
- clip_tensors = [k for k, v in checkpoint.items() if k.startswith("vision.vit.model.vision_model.")]
- if len(clip_tensors) > 0:
- clip = {name.replace("vision.vit.model.", ""): checkpoint[name].float() for name in clip_tensors}
- torch.save(clip, f"{args.model}/glm.clip")
- # added tokens should be removed to be able to convert Mistral models
- if os.path.exists(f"{args.model}/added_tokens.json"):
- with open(f"{args.model}/added_tokens.json", "w") as f:
- f.write("{}\n")
- print("Done!")
- print(f"Now you can convert {args.model} to a regular LLaMA GGUF file.")
- print(f"Also, use {args.model}glm.projector to prepare a glm-encoder.gguf file.")
|