| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114 |
- #include "models.h"
- ggml_cgraph * clip_graph_minicpmv::build() {
- GGML_ASSERT(model.class_embedding == nullptr);
- const int n_pos = n_patches;
- const int n_embd_proj = n_mmproj_embd;
- // position embeddings for the projector (not for ViT)
- // see: https://huggingface.co/openbmb/MiniCPM-o-2_6/blob/main/resampler.py#L70
- // base frequency omega
- ggml_tensor * omega = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, n_embd_proj / 4);
- ggml_set_name(omega, "omega");
- ggml_set_input(omega);
- // 2D input positions (using float for sinusoidal embeddings)
- ggml_tensor * pos_h = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_pos);
- ggml_set_name(pos_h, "pos_h");
- ggml_set_input(pos_h);
- ggml_tensor * pos_w = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_pos);
- ggml_set_name(pos_w, "pos_w");
- ggml_set_input(pos_w);
- // for selecting learned pos embd, used by ViT
- struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
- ggml_set_name(positions, "positions");
- ggml_set_input(positions);
- ggml_tensor * learned_pos_embd = ggml_get_rows(ctx0, model.position_embeddings, positions);
- ggml_tensor * inp = build_inp();
- ggml_tensor * embeddings = build_vit(
- inp, n_pos,
- NORM_TYPE_NORMAL,
- hparams.ffn_op,
- learned_pos_embd,
- nullptr);
- // resampler projector (it is just another transformer)
- ggml_tensor * q = model.mm_model_query;
- ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
- // norm
- q = build_norm(q, model.mm_model_ln_q_w, model.mm_model_ln_q_b, NORM_TYPE_NORMAL, eps, -1);
- v = build_norm(v, model.mm_model_ln_kv_w, model.mm_model_ln_kv_b, NORM_TYPE_NORMAL, eps, -1);
- // calculate sinusoidal pos embd
- ggml_tensor * pos_embed = nullptr;
- {
- // outer product
- ggml_tensor * omega_b = ggml_repeat_4d(ctx0, omega, omega->ne[0], n_pos, 1, 1); // n_pos rows
- ggml_tensor * theta_x = ggml_mul(ctx0, omega_b, pos_w);
- ggml_tensor * theta_y = ggml_mul(ctx0, omega_b, pos_h);
- // sin and cos
- ggml_tensor * pos_embd_x = ggml_concat(
- ctx0,
- ggml_sin(ctx0, theta_x),
- ggml_cos(ctx0, theta_x),
- 0 // concat on first dim
- );
- ggml_tensor * pos_embd_y = ggml_concat(
- ctx0,
- ggml_sin(ctx0, theta_y),
- ggml_cos(ctx0, theta_y),
- 0 // concat on first dim
- );
- pos_embed = ggml_concat(ctx0, pos_embd_x, pos_embd_y, 0);
- }
- // k = v + pos_embed
- ggml_tensor * k = ggml_add(ctx0, v, pos_embed);
- // attention
- {
- const int d_head = 128;
- int n_head = n_embd_proj/d_head;
- // Use actual config value if available, otherwise fall back to hardcoded values
- int num_query = hparams.minicpmv_query_num;
- ggml_tensor * Q = ggml_add(ctx0,
- ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q),
- model.mm_model_attn_q_b);
- ggml_tensor * K = ggml_add(ctx0,
- ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k),
- model.mm_model_attn_k_b);
- ggml_tensor * V = ggml_add(ctx0,
- ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v),
- model.mm_model_attn_v_b);
- Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_query);
- K = ggml_reshape_3d(ctx0, K, d_head, n_head, n_pos);
- V = ggml_reshape_3d(ctx0, V, d_head, n_head, n_pos);
- cb(Q, "resampler_Q", -1);
- cb(K, "resampler_K", -1);
- cb(V, "resampler_V", -1);
- float resampler_kq_scale = 1.0f/ sqrtf(float(d_head));
- embeddings = build_attn(
- model.mm_model_attn_o_w,
- model.mm_model_attn_o_b,
- Q, K, V, nullptr, resampler_kq_scale, -1);
- cb(embeddings, "resampler_attn_out", -1);
- }
- // layernorm
- embeddings = build_norm(embeddings, model.mm_model_ln_post_w, model.mm_model_ln_post_b, NORM_TYPE_NORMAL, eps, -1);
- // projection
- embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
- // build the graph
- ggml_build_forward_expand(gf, embeddings);
- return gf;
- }
|