| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081 |
- #include "models.h"
- ggml_cgraph * clip_graph_siglip::build() {
- ggml_tensor * inp = build_inp();
- ggml_tensor * learned_pos_embd = model.position_embeddings;
- if (proj_type == PROJECTOR_TYPE_LFM2) {
- learned_pos_embd = resize_position_embeddings();
- }
- ggml_tensor * cur = build_vit(
- inp, n_patches,
- NORM_TYPE_NORMAL,
- hparams.ffn_op,
- learned_pos_embd,
- nullptr);
- if (proj_type == PROJECTOR_TYPE_GEMMA3) {
- const int batch_size = 1;
- GGML_ASSERT(n_patches_x == n_patches_y);
- const int patches_per_image = n_patches_x;
- const int kernel_size = hparams.n_merge;
- cur = ggml_transpose(ctx0, cur);
- cur = ggml_cont_4d(ctx0, cur, patches_per_image, patches_per_image, n_embd, batch_size);
- // doing a pool2d to reduce the number of output tokens
- cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
- cur = ggml_reshape_3d(ctx0, cur, cur->ne[0] * cur->ne[0], n_embd, batch_size);
- cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
- // apply norm before projection
- cur = ggml_rms_norm(ctx0, cur, eps);
- cur = ggml_mul(ctx0, cur, model.mm_soft_emb_norm_w);
- // apply projection
- cur = ggml_mul_mat(ctx0,
- ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
- cur);
- } else if (proj_type == PROJECTOR_TYPE_IDEFICS3) {
- // pixel_shuffle
- // https://github.com/huggingface/transformers/blob/0a950e0bbe1ed58d5401a6b547af19f15f0c195e/src/transformers/models/idefics3/modeling_idefics3.py#L578
- const int scale_factor = model.hparams.n_merge;
- cur = build_patch_merge_permute(cur, scale_factor);
- cur = ggml_mul_mat(ctx0, model.projection, cur);
- } else if (proj_type == PROJECTOR_TYPE_LFM2) {
- // pixel unshuffle block
- const int scale_factor = model.hparams.n_merge;
- cur = build_patch_merge_permute(cur, scale_factor);
- // projection
- cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm
- cur = ggml_mul(ctx0, cur, model.mm_input_norm_w);
- cur = ggml_add(ctx0, cur, model.mm_input_norm_b);
- cur = build_ffn(cur,
- model.mm_1_w, model.mm_1_b,
- nullptr, nullptr,
- model.mm_2_w, model.mm_2_b,
- FFN_GELU,
- -1);
- } else if (proj_type == PROJECTOR_TYPE_JANUS_PRO) {
- cur = build_ffn(cur,
- model.mm_0_w, model.mm_0_b,
- nullptr, nullptr,
- model.mm_1_w, model.mm_1_b,
- hparams.ffn_op,
- -1);
- } else {
- GGML_ABORT("SigLIP: Unsupported projector type");
- }
- // build the graph
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
|