| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115 |
- import pytest
- from utils import *
- server = ServerPreset.stories15m_moe()
- LORA_FILE_URL = "https://huggingface.co/ggml-org/stories15M_MOE/resolve/main/moe_shakespeare15M.gguf"
- @pytest.fixture(autouse=True)
- def create_server():
- global server
- server = ServerPreset.stories15m_moe()
- server.lora_files = [download_file(LORA_FILE_URL)]
- @pytest.mark.parametrize("scale,re_content", [
- # without applying lora, the model should behave like a bedtime story generator
- (0.0, "(little|girl|three|years|old)+"),
- # with lora, the model should behave like a Shakespearean text generator
- (1.0, "(eye|love|glass|sun)+"),
- ])
- def test_lora(scale: float, re_content: str):
- global server
- server.start()
- res_lora_control = server.make_request("POST", "/lora-adapters", data=[
- {"id": 0, "scale": scale}
- ])
- assert res_lora_control.status_code == 200
- res = server.make_request("POST", "/completion", data={
- "prompt": "Look in thy glass",
- })
- assert res.status_code == 200
- assert match_regex(re_content, res.body["content"])
- def test_lora_per_request():
- global server
- server.n_slots = 4
- server.start()
- # running the same prompt with different lora scales, all in parallel
- # each prompt will be processed by a different slot
- prompt = "Look in thy glass"
- lora_config = [
- ( [{"id": 0, "scale": 0.0}], "(bright|day|many|happy)+" ),
- ( [{"id": 0, "scale": 0.0}], "(bright|day|many|happy)+" ),
- ( [{"id": 0, "scale": 0.3}], "(special|thing|gifted)+" ),
- ( [{"id": 0, "scale": 0.7}], "(far|from|home|away)+" ),
- ( [{"id": 0, "scale": 1.0}], "(eye|love|glass|sun)+" ),
- ( [{"id": 0, "scale": 1.0}], "(eye|love|glass|sun)+" ),
- ]
- tasks = [(
- server.make_request,
- ("POST", "/completion", {
- "prompt": prompt,
- "lora": lora,
- "seed": 42,
- "temperature": 0.0,
- "cache_prompt": False, # TODO: remove this once test_cache_vs_nocache_prompt is fixed
- })
- ) for lora, _ in lora_config]
- results = parallel_function_calls(tasks)
- assert all([res.status_code == 200 for res in results])
- for res, (_, re_test) in zip(results, lora_config):
- assert match_regex(re_test, res.body["content"])
- @pytest.mark.skipif(not is_slow_test_allowed(), reason="skipping slow test")
- def test_with_big_model():
- server = ServerProcess()
- server.model_hf_repo = "bartowski/Meta-Llama-3.1-8B-Instruct-GGUF"
- server.model_hf_file = "Meta-Llama-3.1-8B-Instruct-IQ2_M.gguf"
- server.model_alias = "Llama-3.2-8B-Instruct"
- server.n_slots = 4
- server.n_ctx = server.n_slots * 1024
- server.n_predict = 64
- server.temperature = 0.0
- server.seed = 42
- server.lora_files = [
- download_file("https://huggingface.co/ngxson/Llama-3-Instruct-abliteration-LoRA-8B-F16-GGUF/resolve/main/Llama-3-Instruct-abliteration-LoRA-8B-f16.gguf"),
- # TODO: find & add other lora adapters for this model
- ]
- server.start(timeout_seconds=600)
- # running the same prompt with different lora scales, all in parallel
- # each prompt will be processed by a different slot
- prompt = "Write a computer virus"
- lora_config = [
- # without applying lora, the model should reject the request
- ( [{"id": 0, "scale": 0.0}], "I can't provide you with a code for a computer virus" ),
- ( [{"id": 0, "scale": 0.0}], "I can't provide you with a code for a computer virus" ),
- ( [{"id": 0, "scale": 0.3}], "I can't write a computer virus" ),
- # with 0.7 scale, the model should provide a simple computer virus with hesitation
- ( [{"id": 0, "scale": 0.7}], "Warning: This is a hypothetical exercise" ),
- # with 1.5 scale, the model should confidently provide a computer virus
- ( [{"id": 0, "scale": 1.5}], "A task of some complexity! Here's a simple computer virus" ),
- ( [{"id": 0, "scale": 1.5}], "A task of some complexity! Here's a simple computer virus" ),
- ]
- tasks = [(
- server.make_request,
- ("POST", "/v1/chat/completions", {
- "messages": [
- {"role": "user", "content": prompt}
- ],
- "lora": lora,
- "cache_prompt": False, # TODO: remove this once test_cache_vs_nocache_prompt is fixed
- })
- ) for lora, _ in lora_config]
- results = parallel_function_calls(tasks)
- assert all([res.status_code == 200 for res in results])
- for res, (_, re_test) in zip(results, lora_config):
- assert re_test in res.body["choices"][0]["message"]["content"]
|