convert_hf_to_gguf.py 455 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. from gguf.vocab import MistralTokenizerType, MistralVocab
  27. try:
  28. from mistral_common.tokens.tokenizers.base import TokenizerVersion # pyright: ignore[reportMissingImports]
  29. from mistral_common.tokens.tokenizers.multimodal import DATASET_MEAN as _MISTRAL_COMMON_DATASET_MEAN, DATASET_STD as _MISTRAL_COMMON_DATASET_STD # pyright: ignore[reportMissingImports]
  30. from mistral_common.tokens.tokenizers.tekken import Tekkenizer # pyright: ignore[reportMissingImports]
  31. from mistral_common.tokens.tokenizers.sentencepiece import ( # pyright: ignore[reportMissingImports]
  32. SentencePieceTokenizer,
  33. )
  34. _mistral_common_installed = True
  35. _mistral_import_error_msg = ""
  36. except ImportError:
  37. _MISTRAL_COMMON_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
  38. _MISTRAL_COMMON_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
  39. _mistral_common_installed = False
  40. TokenizerVersion = None
  41. Tekkenizer = None
  42. SentencePieceTokenizer = None
  43. _mistral_import_error_msg = (
  44. "Mistral format requires `mistral-common` to be installed. Please run "
  45. "`pip install mistral-common[image,audio]` to install it."
  46. )
  47. logger = logging.getLogger("hf-to-gguf")
  48. ###### MODEL DEFINITIONS ######
  49. class SentencePieceTokenTypes(IntEnum):
  50. NORMAL = 1
  51. UNKNOWN = 2
  52. CONTROL = 3
  53. USER_DEFINED = 4
  54. UNUSED = 5
  55. BYTE = 6
  56. class ModelType(IntEnum):
  57. TEXT = 1
  58. MMPROJ = 2
  59. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  60. class ModelBase:
  61. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  62. ModelType.TEXT: {},
  63. ModelType.MMPROJ: {},
  64. }
  65. dir_model: Path
  66. ftype: gguf.LlamaFileType
  67. fname_out: Path
  68. is_big_endian: bool
  69. endianess: gguf.GGUFEndian
  70. use_temp_file: bool
  71. lazy: bool
  72. dry_run: bool
  73. hparams: dict[str, Any]
  74. model_tensors: dict[str, Callable[[], Tensor]]
  75. gguf_writer: gguf.GGUFWriter
  76. model_name: str | None
  77. metadata_override: Path | None
  78. dir_model_card: Path
  79. remote_hf_model_id: str | None
  80. # subclasses should define this!
  81. model_arch: gguf.MODEL_ARCH
  82. # subclasses should initialize this!
  83. block_count: int
  84. tensor_map: gguf.TensorNameMap
  85. # Mistral format specifics
  86. is_mistral_format: bool = False
  87. disable_mistral_community_chat_template: bool = False
  88. sentence_transformers_dense_modules: bool = False
  89. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  90. use_temp_file: bool = False, eager: bool = False,
  91. metadata_override: Path | None = None, model_name: str | None = None,
  92. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  93. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None,
  94. disable_mistral_community_chat_template: bool = False,
  95. sentence_transformers_dense_modules: bool = False):
  96. if type(self) is ModelBase or \
  97. type(self) is TextModel or \
  98. type(self) is MmprojModel:
  99. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  100. if self.is_mistral_format and not _mistral_common_installed:
  101. raise ImportError(_mistral_import_error_msg)
  102. self.dir_model = dir_model
  103. self.ftype = ftype
  104. self.fname_out = fname_out
  105. self.is_big_endian = is_big_endian
  106. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  107. self.use_temp_file = use_temp_file
  108. self.lazy = not eager or (remote_hf_model_id is not None)
  109. self.dry_run = dry_run
  110. self.remote_hf_model_id = remote_hf_model_id
  111. self.sentence_transformers_dense_modules = sentence_transformers_dense_modules
  112. self.hparams = ModelBase.load_hparams(self.dir_model, self.is_mistral_format) if hparams is None else hparams
  113. self.model_tensors = self.index_tensors(remote_hf_model_id=remote_hf_model_id)
  114. self.metadata_override = metadata_override
  115. self.model_name = model_name
  116. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  117. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  118. if self.ftype == gguf.LlamaFileType.GUESSED:
  119. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  120. _, first_tensor = next(self.get_tensors())
  121. if first_tensor.dtype == torch.float16:
  122. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  123. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  124. else:
  125. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  126. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  127. self.dequant_model()
  128. # Configure GGUF Writer
  129. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  130. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  131. # Mistral specific
  132. self.disable_mistral_community_chat_template = disable_mistral_community_chat_template
  133. @classmethod
  134. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  135. stem, suffix = path.stem, path.suffix
  136. new_name = f"{prefix}{stem}{suffix}"
  137. return path.with_name(new_name)
  138. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  139. key = next((k for k in keys if k in self.hparams), None)
  140. if key is not None:
  141. return self.hparams[key]
  142. if optional:
  143. return None
  144. raise KeyError(f"could not find any of: {keys}")
  145. def index_tensors(self, remote_hf_model_id: str | None = None) -> dict[str, Callable[[], Tensor]]:
  146. tensors: dict[str, Callable[[], Tensor]] = {}
  147. if remote_hf_model_id is not None:
  148. is_safetensors = True
  149. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  150. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  151. for name, remote_tensor in remote_tensors.items():
  152. tensors[name] = lambda r=remote_tensor: LazyTorchTensor.from_remote_tensor(r)
  153. return tensors
  154. prefix = "model" if not self.is_mistral_format else "consolidated"
  155. part_names: list[str] = ModelBase.get_model_part_names(self.dir_model, prefix, ".safetensors")
  156. is_safetensors: bool = len(part_names) > 0
  157. if not is_safetensors:
  158. part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  159. tensor_names_from_index: set[str] = set()
  160. if not self.is_mistral_format:
  161. index_name = "model.safetensors" if is_safetensors else "pytorch_model.bin"
  162. index_name += ".index.json"
  163. index_file = self.dir_model / index_name
  164. if index_file.is_file():
  165. logger.info(f"gguf: loading model weight map from '{index_name}'")
  166. with open(index_file, "r", encoding="utf-8") as f:
  167. index: dict[str, Any] = json.load(f)
  168. weight_map = index.get("weight_map")
  169. if weight_map is None or not isinstance(weight_map, dict):
  170. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  171. tensor_names_from_index.update(weight_map.keys())
  172. else:
  173. weight_map = {}
  174. else:
  175. weight_map = {}
  176. for part_name in part_names:
  177. logger.info(f"gguf: indexing model part '{part_name}'")
  178. ctx: ContextManager[Any]
  179. if is_safetensors:
  180. from safetensors import safe_open
  181. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  182. else:
  183. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  184. with ctx as model_part:
  185. assert model_part is not None
  186. for name in model_part.keys():
  187. if is_safetensors:
  188. if self.lazy:
  189. data = model_part.get_slice(name)
  190. data_gen = lambda data=data: LazyTorchTensor.from_safetensors_slice(data) # noqa: E731
  191. else:
  192. data = model_part.get_tensor(name)
  193. data_gen = lambda data=data: data # noqa: E731
  194. else:
  195. data = model_part[name]
  196. if self.lazy:
  197. data_gen = lambda data=data: LazyTorchTensor.from_eager(data) # noqa: E731
  198. else:
  199. data_gen = lambda data=data: data # noqa: E731
  200. tensors[name] = data_gen
  201. # verify tensor name presence and identify potentially missing files
  202. if len(tensor_names_from_index) > 0:
  203. tensor_names_from_parts = set(tensors.keys())
  204. if len(tensor_names_from_parts.symmetric_difference(tensor_names_from_index)) > 0:
  205. missing = sorted(tensor_names_from_index.difference(tensor_names_from_parts))
  206. extra = sorted(tensor_names_from_parts.difference(tensor_names_from_index))
  207. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  208. if len(extra) == 0 and len(missing_files) > 0:
  209. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  210. f"Missing tensors: {missing}")
  211. else:
  212. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  213. f"Missing tensors: {missing}\n"
  214. f"Extra tensors: {extra}")
  215. return tensors
  216. def dequant_model(self):
  217. tensors_to_remove: list[str] = []
  218. new_tensors: dict[str, Callable[[], Tensor]] = {}
  219. if (quant_config := self.hparams.get("quantization_config")) and isinstance(quant_config, dict):
  220. quant_method = quant_config.get("quant_method")
  221. def dequant_bitnet(weight: Tensor, scale: Tensor) -> Tensor:
  222. weight = weight.view(torch.uint8)
  223. orig_shape = weight.shape
  224. shift = torch.tensor([0, 2, 4, 6], dtype=torch.uint8).reshape((4, *(1 for _ in range(len(orig_shape)))))
  225. data = weight.unsqueeze(0).expand((4, *orig_shape)) >> shift
  226. data = data & 3
  227. data = (data.float() - 1).reshape((orig_shape[0] * 4, *orig_shape[1:]))
  228. # The scale is inverted
  229. return data / scale.float()
  230. def dequant_simple(weight: Tensor, scale: Tensor) -> Tensor:
  231. scale = scale.float()
  232. if (weight_block_size := quant_config.get("weight_block_size")):
  233. # TODO: make sure it's a list of integers
  234. for i, size in enumerate(weight_block_size):
  235. scale = scale.repeat_interleave(size, i)
  236. # unpad the scale (e.g. when the tensor size isn't a multiple of the block size)
  237. scale = scale[tuple(slice(0, size) for size in weight.shape)]
  238. return weight.float() * scale
  239. # ref: https://github.com/ModelCloud/GPTQModel/blob/037c5c0f6c9e33c500d975b038d02e7ca437546d/gptqmodel/nn_modules/qlinear/__init__.py#L437-L476
  240. def dequant_gptq(g_idx: Tensor, qweight: Tensor, qzeros: Tensor, scales: Tensor) -> Tensor:
  241. bits = quant_config["bits"]
  242. assert bits in (2, 3, 4, 8)
  243. assert qweight.dtype == qzeros.dtype
  244. maxq = (2 ** bits) - 1
  245. weight = None
  246. zeros = None
  247. pack_dtype_bits = qweight.dtype.itemsize * 8
  248. if bits in [2, 4, 8]:
  249. pack_factor = pack_dtype_bits // bits
  250. wf = torch.tensor(list(range(0, pack_dtype_bits, bits)), dtype=torch.int32).unsqueeze(0)
  251. if self.lazy:
  252. wf = LazyTorchTensor.from_eager(wf)
  253. zeros = torch.bitwise_right_shift(
  254. qzeros.unsqueeze(2).expand(-1, -1, pack_factor),
  255. wf.unsqueeze(0)
  256. ).to(torch.int16 if bits == 8 else torch.int8)
  257. zeros = torch.bitwise_and(zeros, maxq).reshape(scales.shape)
  258. weight = torch.bitwise_and(
  259. torch.bitwise_right_shift(
  260. qweight.unsqueeze(1).expand(-1, pack_factor, -1),
  261. wf.unsqueeze(-1)
  262. ).to(torch.int16 if bits == 8 else torch.int8),
  263. maxq
  264. )
  265. elif bits == 3:
  266. raise NotImplementedError("3-bit gptq dequantization is not yet implemented")
  267. assert weight is not None
  268. assert zeros is not None
  269. weight = weight.reshape(weight.shape[0] * weight.shape[1], weight.shape[2])
  270. # gptq_v2 doesn't need to offset zeros
  271. if quant_config.get("checkpoint_format", "gptq") == "gptq":
  272. zeros += 1
  273. return (scales[g_idx].float() * (weight - zeros[g_idx]).float()).T
  274. if quant_method == "bitnet":
  275. for name in self.model_tensors.keys():
  276. if name.endswith(".weight_scale"):
  277. weight_name = name.removesuffix("_scale")
  278. w = self.model_tensors[weight_name]
  279. s = self.model_tensors[name]
  280. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_bitnet(w(), s())
  281. tensors_to_remove.append(name)
  282. elif quant_method == "fp8":
  283. for name in self.model_tensors.keys():
  284. if name.endswith(".weight_scale_inv"):
  285. weight_name = name.removesuffix("_scale_inv")
  286. w = self.model_tensors[weight_name]
  287. s = self.model_tensors[name]
  288. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_simple(w(), s())
  289. tensors_to_remove.append(name)
  290. elif quant_method == "gptq":
  291. for name in self.model_tensors.keys():
  292. if name.endswith(".qweight"):
  293. base_name = name.removesuffix(".qweight")
  294. g_idx = self.model_tensors[base_name + ".g_idx"]
  295. qweight = self.model_tensors[base_name + ".qweight"]
  296. qzeros = self.model_tensors[base_name + ".qzeros"]
  297. scales = self.model_tensors[base_name + ".scales"]
  298. new_tensors[base_name + ".weight"] = (
  299. lambda g=g_idx, z=qzeros, w=qweight, s=scales: dequant_gptq(
  300. g(), w(), z(), s()
  301. )
  302. )
  303. tensors_to_remove += [
  304. base_name + n
  305. for n in (
  306. ".g_idx",
  307. ".qzeros",
  308. ".qweight",
  309. ".scales",
  310. )
  311. ]
  312. else:
  313. raise NotImplementedError(f"Quant method is not yet supported: {quant_method!r}")
  314. for name in tensors_to_remove:
  315. if name in self.model_tensors:
  316. del self.model_tensors[name]
  317. for name, value in new_tensors.items():
  318. self.model_tensors[name] = value
  319. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  320. for name, gen in self.model_tensors.items():
  321. yield name, gen()
  322. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  323. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  324. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  325. name: str = gguf.TENSOR_NAMES[key]
  326. if "{bid}" in name:
  327. assert bid is not None
  328. name = name.format(bid=bid)
  329. return name + suffix
  330. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  331. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  332. return False
  333. key_name: str = gguf.TENSOR_NAMES[key]
  334. if "{bid}" in key_name:
  335. if bid is None:
  336. return False
  337. key_name = key_name.format(bid=bid)
  338. else:
  339. if bid is not None:
  340. return False
  341. return name == (key_name + suffix)
  342. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  343. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  344. if new_name is None:
  345. raise ValueError(f"Can not map tensor {name!r}")
  346. return new_name
  347. def set_gguf_parameters(self):
  348. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  349. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  350. del bid # unused
  351. return [(self.map_tensor_name(name), data_torch)]
  352. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  353. del name, new_name, bid, n_dims # unused
  354. return False
  355. # some models need extra generated tensors (like rope_freqs)
  356. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  357. return ()
  358. def prepare_tensors(self):
  359. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  360. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  361. # we don't need these
  362. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  363. continue
  364. old_dtype = data_torch.dtype
  365. # convert any unsupported data types to float32
  366. if data_torch.dtype not in (torch.float16, torch.float32):
  367. data_torch = data_torch.to(torch.float32)
  368. # use the first number-like part of the tensor name as the block id
  369. bid = None
  370. for part in name.split("."):
  371. if part.isdecimal():
  372. bid = int(part)
  373. break
  374. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  375. # TODO: why do we squeeze here?
  376. # data = data_torch.squeeze().numpy()
  377. data = data_torch.numpy()
  378. n_dims = len(data.shape)
  379. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  380. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  381. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  382. data_qtype = gguf.GGMLQuantizationType.F32
  383. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  384. # Some tensor types are always in float32
  385. if data_qtype is False and (
  386. any(
  387. self.match_model_tensor_name(new_name, key, bid)
  388. for key in (
  389. gguf.MODEL_TENSOR.FFN_GATE_INP,
  390. gguf.MODEL_TENSOR.POS_EMBD,
  391. gguf.MODEL_TENSOR.TOKEN_TYPES,
  392. gguf.MODEL_TENSOR.SSM_CONV1D,
  393. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  394. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  395. gguf.MODEL_TENSOR.TIME_MIX_W1,
  396. gguf.MODEL_TENSOR.TIME_MIX_W2,
  397. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  398. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  399. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  400. gguf.MODEL_TENSOR.POSNET_NORM1,
  401. gguf.MODEL_TENSOR.POSNET_NORM2,
  402. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  403. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  404. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  405. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  406. )
  407. )
  408. or not new_name.endswith(".weight")
  409. ):
  410. data_qtype = gguf.GGMLQuantizationType.F32
  411. if data_qtype is False and any(
  412. self.match_model_tensor_name(new_name, key, bid)
  413. for key in (
  414. gguf.MODEL_TENSOR.TOKEN_EMBD,
  415. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  416. gguf.MODEL_TENSOR.OUTPUT,
  417. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  418. gguf.MODEL_TENSOR.LAUREL_L,
  419. gguf.MODEL_TENSOR.LAUREL_R,
  420. )
  421. ):
  422. if self.ftype in (
  423. gguf.LlamaFileType.MOSTLY_TQ1_0,
  424. gguf.LlamaFileType.MOSTLY_TQ2_0,
  425. ):
  426. # TODO: use Q4_K and Q6_K
  427. data_qtype = gguf.GGMLQuantizationType.F16
  428. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  429. if isinstance(data_qtype, bool):
  430. if self.ftype == gguf.LlamaFileType.ALL_F32:
  431. data_qtype = gguf.GGMLQuantizationType.F32
  432. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  433. data_qtype = gguf.GGMLQuantizationType.F16
  434. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  435. data_qtype = gguf.GGMLQuantizationType.BF16
  436. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  437. data_qtype = gguf.GGMLQuantizationType.Q8_0
  438. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  439. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  440. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  441. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  442. else:
  443. raise ValueError(f"Unknown file type: {self.ftype.name}")
  444. try:
  445. data = gguf.quants.quantize(data, data_qtype)
  446. except gguf.QuantError as e:
  447. logger.warning("%s, %s", e, "falling back to F16")
  448. data_qtype = gguf.GGMLQuantizationType.F16
  449. data = gguf.quants.quantize(data, data_qtype)
  450. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  451. # reverse shape to make it similar to the internal ggml dimension order
  452. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  453. # n_dims is implicit in the shape
  454. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  455. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  456. def set_type(self):
  457. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  458. def prepare_metadata(self, vocab_only: bool):
  459. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  460. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  461. # If we are using HF model id, set the metadata name to the model id
  462. if self.remote_hf_model_id:
  463. self.metadata.name = self.remote_hf_model_id
  464. # Fallback to model directory name if metadata name is still missing
  465. if self.metadata.name is None:
  466. self.metadata.name = self.dir_model.name
  467. # Generate parameter weight class (useful for leader boards) if not yet determined
  468. if self.metadata.size_label is None and total_params > 0:
  469. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  470. self.set_type()
  471. logger.info("Set meta model")
  472. self.metadata.set_gguf_meta_model(self.gguf_writer)
  473. logger.info("Set model parameters")
  474. self.set_gguf_parameters()
  475. logger.info("Set model quantization version")
  476. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  477. def write_vocab(self):
  478. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  479. def write(self):
  480. self.prepare_tensors()
  481. self.prepare_metadata(vocab_only=False)
  482. self.gguf_writer.write_header_to_file(path=self.fname_out)
  483. self.gguf_writer.write_kv_data_to_file()
  484. self.gguf_writer.write_tensors_to_file(progress=True)
  485. self.gguf_writer.close()
  486. @staticmethod
  487. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  488. part_names: list[str] = []
  489. for filename in os.listdir(dir_model):
  490. if filename.startswith(prefix) and filename.endswith(suffix):
  491. part_names.append(filename)
  492. part_names.sort()
  493. return part_names
  494. @staticmethod
  495. def load_hparams(dir_model: Path, is_mistral_format: bool):
  496. if is_mistral_format:
  497. with open(dir_model / "params.json", "r", encoding="utf-8") as f:
  498. config = json.load(f)
  499. return config
  500. try:
  501. # for security reason, we don't allow loading remote code by default
  502. # if a model need remote code, we will fallback to config.json
  503. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  504. except Exception as e:
  505. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  506. logger.warning("Trying to load config.json instead")
  507. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  508. config = json.load(f)
  509. if "llm_config" in config:
  510. # rename for InternVL
  511. config["text_config"] = config["llm_config"]
  512. if "thinker_config" in config:
  513. # rename for Qwen2.5-Omni
  514. config["text_config"] = config["thinker_config"]["text_config"]
  515. return config
  516. @classmethod
  517. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  518. assert names
  519. def func(modelcls: AnyModel) -> AnyModel:
  520. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  521. for name in names:
  522. cls._model_classes[model_type][name] = modelcls
  523. return modelcls
  524. return func
  525. @classmethod
  526. def print_registered_models(cls):
  527. for model_type, model_classes in cls._model_classes.items():
  528. logger.error(f"{model_type.name} models:")
  529. for name in sorted(model_classes.keys()):
  530. logger.error(f" - {name}")
  531. @classmethod
  532. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  533. try:
  534. return cls._model_classes[model_type][arch]
  535. except KeyError:
  536. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  537. class TextModel(ModelBase):
  538. model_type = ModelType.TEXT
  539. hf_arch: str
  540. def __init__(self, *args, **kwargs):
  541. super().__init__(*args, **kwargs)
  542. if not self.is_mistral_format:
  543. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  544. else:
  545. self.hf_arch = ""
  546. if "text_config" in self.hparams:
  547. # move the text_config to the root level
  548. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  549. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  550. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  551. @classmethod
  552. def __init_subclass__(cls):
  553. # can't use an abstract property, because overriding it without type errors
  554. # would require using decorated functions instead of simply defining the property
  555. if "model_arch" not in cls.__dict__:
  556. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  557. def set_vocab(self):
  558. self._set_vocab_gpt2()
  559. def prepare_metadata(self, vocab_only: bool):
  560. super().prepare_metadata(vocab_only=vocab_only)
  561. total_params = self.gguf_writer.get_total_parameter_count()[0]
  562. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  563. output_type: str = self.ftype.name.partition("_")[2]
  564. # Filename Output
  565. if self.fname_out.is_dir():
  566. # Generate default filename based on model specification and available metadata
  567. if not vocab_only:
  568. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  569. else:
  570. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  571. # Use the default filename
  572. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  573. else:
  574. # Output path is a custom defined templated filename
  575. # Note: `not is_dir()` is used because `.is_file()` will not detect
  576. # file template strings as it doesn't actually exist as a file
  577. # Process templated file name with the output ftype, useful with the "auto" ftype
  578. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  579. logger.info("Set model tokenizer")
  580. self.set_vocab()
  581. def set_gguf_parameters(self):
  582. self.gguf_writer.add_block_count(self.block_count)
  583. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length"], optional=True)) is not None:
  584. self.gguf_writer.add_context_length(n_ctx)
  585. logger.info(f"gguf: context length = {n_ctx}")
  586. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  587. self.gguf_writer.add_embedding_length(n_embd)
  588. logger.info(f"gguf: embedding length = {n_embd}")
  589. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  590. self.gguf_writer.add_feed_forward_length(n_ff)
  591. logger.info(f"gguf: feed forward length = {n_ff}")
  592. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  593. self.gguf_writer.add_head_count(n_head)
  594. logger.info(f"gguf: head count = {n_head}")
  595. if (n_head_kv := self.find_hparam(["num_key_value_heads", "n_kv_heads"], optional=True)) is not None:
  596. self.gguf_writer.add_head_count_kv(n_head_kv)
  597. logger.info(f"gguf: key-value head count = {n_head_kv}")
  598. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  599. self.gguf_writer.add_rope_freq_base(rope_theta)
  600. logger.info(f"gguf: rope theta = {rope_theta}")
  601. if (f_rms_eps := self.find_hparam(["rms_norm_eps", "norm_eps"], optional=True)) is not None:
  602. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  603. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  604. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  605. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  606. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  607. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  608. self.gguf_writer.add_expert_count(n_experts)
  609. logger.info(f"gguf: expert count = {n_experts}")
  610. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  611. self.gguf_writer.add_expert_used_count(n_experts_used)
  612. logger.info(f"gguf: experts used count = {n_experts_used}")
  613. if (n_expert_groups := self.hparams.get("n_group")) is not None:
  614. self.gguf_writer.add_expert_group_count(n_expert_groups)
  615. logger.info(f"gguf: expert groups count = {n_expert_groups}")
  616. if (n_group_used := self.hparams.get("topk_group")) is not None:
  617. self.gguf_writer.add_expert_group_used_count(n_group_used)
  618. logger.info(f"gguf: expert groups used count = {n_group_used}")
  619. if (head_dim := self.hparams.get("head_dim")) is not None:
  620. self.gguf_writer.add_key_length(head_dim)
  621. self.gguf_writer.add_value_length(head_dim)
  622. self.gguf_writer.add_file_type(self.ftype)
  623. logger.info(f"gguf: file type = {self.ftype}")
  624. def write_vocab(self):
  625. if len(self.gguf_writer.tensors) != 1:
  626. raise ValueError('Splitting the vocabulary is not supported')
  627. self.prepare_metadata(vocab_only=True)
  628. self.gguf_writer.write_header_to_file(path=self.fname_out)
  629. self.gguf_writer.write_kv_data_to_file()
  630. self.gguf_writer.close()
  631. def does_token_look_special(self, token: str | bytes) -> bool:
  632. if isinstance(token, (bytes, bytearray)):
  633. token_text = token.decode(encoding="utf-8")
  634. elif isinstance(token, memoryview):
  635. token_text = token.tobytes().decode(encoding="utf-8")
  636. else:
  637. token_text = token
  638. # Some models mark some added tokens which ought to be control tokens as not special.
  639. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  640. seems_special = token_text in (
  641. "<pad>", # deepseek-coder
  642. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  643. )
  644. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  645. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  646. # TODO: should these be marked as UNUSED instead? (maybe not)
  647. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  648. return seems_special
  649. # used for GPT-2 BPE and WordPiece vocabs
  650. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  651. tokens: list[str] = []
  652. toktypes: list[int] = []
  653. from transformers import AutoTokenizer
  654. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  655. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  656. assert max(tokenizer.vocab.values()) < vocab_size
  657. tokpre = self.get_vocab_base_pre(tokenizer)
  658. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  659. added_vocab = tokenizer.get_added_vocab()
  660. added_tokens_decoder = tokenizer.added_tokens_decoder
  661. for i in range(vocab_size):
  662. if i not in reverse_vocab:
  663. tokens.append(f"[PAD{i}]")
  664. toktypes.append(gguf.TokenType.UNUSED)
  665. else:
  666. token: str = reverse_vocab[i]
  667. if token in added_vocab:
  668. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  669. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  670. if not added_tokens_decoder[i].normalized:
  671. previous_token = token
  672. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  673. if previous_token != token:
  674. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  675. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  676. toktypes.append(gguf.TokenType.CONTROL)
  677. else:
  678. # NOTE: this was added for Gemma.
  679. # Encoding and decoding the tokens above isn't sufficient for this case.
  680. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  681. toktypes.append(gguf.TokenType.USER_DEFINED)
  682. else:
  683. toktypes.append(gguf.TokenType.NORMAL)
  684. tokens.append(token)
  685. return tokens, toktypes, tokpre
  686. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  687. # do not modify it manually!
  688. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  689. # Marker: Start get_vocab_base_pre
  690. def get_vocab_base_pre(self, tokenizer) -> str:
  691. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  692. # is specific for the BPE pre-tokenizer used by the model
  693. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  694. # use in llama.cpp to implement the same pre-tokenizer
  695. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  696. chktok = tokenizer.encode(chktxt)
  697. chkhsh = sha256(str(chktok).encode()).hexdigest()
  698. logger.debug(f"chktok: {chktok}")
  699. logger.debug(f"chkhsh: {chkhsh}")
  700. res = None
  701. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  702. # or pull the latest version of the model from Huggingface
  703. # don't edit the hashes manually!
  704. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  705. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  706. res = "chatglm-bpe"
  707. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  708. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  709. res = "chatglm-bpe"
  710. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  711. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  712. res = "glm4"
  713. if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902":
  714. # ref: https://huggingface.co/zai-org/GLM-4.5-Air
  715. res = "glm4"
  716. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  717. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  718. res = "minerva-7b"
  719. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  720. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  721. res = "hunyuan"
  722. if chkhsh == "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6":
  723. # ref: https://huggingface.co/tencent/Hunyuan-4B-Instruct
  724. res = "hunyuan-dense"
  725. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  726. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  727. res = "falcon-h1"
  728. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  729. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  730. res = "falcon-h1"
  731. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  732. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  733. res = "falcon-h1"
  734. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  735. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  736. res = "falcon-h1"
  737. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  738. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  739. res = "kimi-k2"
  740. if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
  741. # ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
  742. res = "qwen2"
  743. if chkhsh == "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273":
  744. # ref: https://huggingface.co/alvarobartt/grok-2-tokenizer
  745. res = "grok-2"
  746. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  747. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  748. res = "llama-bpe"
  749. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  750. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  751. res = "deepseek-llm"
  752. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  753. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  754. res = "deepseek-coder"
  755. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  756. # ref: https://huggingface.co/tiiuae/falcon-7b
  757. res = "falcon"
  758. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  759. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  760. res = "bert-bge"
  761. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  762. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  763. res = "falcon3"
  764. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  765. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  766. res = "bert-bge-large"
  767. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  768. # ref: https://huggingface.co/mosaicml/mpt-7b
  769. res = "mpt"
  770. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  771. # ref: https://huggingface.co/bigcode/starcoder2-3b
  772. res = "starcoder"
  773. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  774. # ref: https://huggingface.co/openai-community/gpt2
  775. res = "gpt-2"
  776. if chkhsh == "f4f37b6c8eb9ea29b3eac6bb8c8487c5ab7885f8d8022e67edc1c68ce8403e95":
  777. # ref: MiniMax M2 (GPT2Tokenizer) – recognize as GPT-2 BPE pre-tokenizer
  778. res = "gpt-2"
  779. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  780. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  781. res = "stablelm2"
  782. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  783. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  784. res = "refact"
  785. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  786. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  787. res = "command-r"
  788. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  789. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  790. res = "qwen2"
  791. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  792. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  793. res = "olmo"
  794. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  795. # ref: https://huggingface.co/databricks/dbrx-base
  796. res = "dbrx"
  797. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  798. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  799. res = "jina-v1-en"
  800. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  801. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  802. res = "jina-v2-en"
  803. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  804. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  805. res = "jina-v2-es"
  806. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  807. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  808. res = "jina-v2-de"
  809. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  810. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  811. res = "smaug-bpe"
  812. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  813. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  814. res = "poro-chat"
  815. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  816. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  817. res = "jina-v2-code"
  818. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  819. # ref: https://huggingface.co/LumiOpen/Viking-7B
  820. res = "viking"
  821. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  822. # ref: https://huggingface.co/core42/jais-13b
  823. res = "jais"
  824. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  825. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  826. res = "codeshell"
  827. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  828. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  829. res = "tekken"
  830. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  831. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  832. res = "smollm"
  833. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  834. # ref: https://huggingface.co/bigscience/bloom
  835. res = "bloom"
  836. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  837. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  838. res = "gpt3-finnish"
  839. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  840. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  841. res = "exaone"
  842. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  843. # ref: https://huggingface.co/microsoft/phi-2
  844. res = "phi-2"
  845. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  846. # ref: https://huggingface.co/facebook/chameleon-7b
  847. res = "chameleon"
  848. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  849. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  850. res = "roberta-bpe"
  851. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  852. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  853. res = "gigachat"
  854. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  855. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  856. res = "megrez"
  857. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  858. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  859. res = "deepseek-v3"
  860. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  861. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  862. res = "deepseek-r1-qwen"
  863. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  864. # ref: https://huggingface.co/Xenova/gpt-4o
  865. res = "gpt-4o"
  866. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  867. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  868. res = "superbpe"
  869. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  870. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  871. res = "trillion"
  872. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  873. # ref: https://huggingface.co/inclusionAI/Ling-lite
  874. res = "bailingmoe"
  875. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  876. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  877. res = "llama4"
  878. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  879. # ref: https://huggingface.co/mistral-community/pixtral-12b
  880. res = "pixtral"
  881. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  882. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  883. res = "seed-coder"
  884. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  885. # ref: https://huggingface.co/skt/A.X-4.0
  886. res = "a.x-4.0"
  887. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  888. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  889. res = "midm-2.0"
  890. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  891. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  892. res = "lfm2"
  893. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  894. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  895. res = "exaone4"
  896. if chkhsh == "a1e163ecab2e718a4c829d1148b6e86824ec36163bb71941c3dca9cd5ac25756":
  897. # ref: https://huggingface.co/JetBrains/Mellum-4b-base
  898. res = "mellum"
  899. if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206":
  900. # ref: https://huggingface.co/inclusionAI/Ling-mini-base-2.0
  901. res = "bailingmoe2"
  902. if chkhsh == "53e325976a6e142379c19b09afcae354f2f496f147afa8f9e189a33fe4e3024e":
  903. # ref: https://huggingface.co/ibm-granite/granite-docling-258M
  904. res = "granite-docling"
  905. if res is None:
  906. logger.warning("\n")
  907. logger.warning("**************************************************************************************")
  908. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  909. logger.warning("** There are 2 possible reasons for this:")
  910. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  911. logger.warning("** - the pre-tokenization config has changed upstream")
  912. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  913. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  914. logger.warning("**")
  915. logger.warning(f"** chkhsh: {chkhsh}")
  916. logger.warning("**************************************************************************************")
  917. logger.warning("\n")
  918. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  919. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  920. logger.debug(f"chkhsh: {chkhsh}")
  921. return res
  922. # Marker: End get_vocab_base_pre
  923. def _set_vocab_none(self) -> None:
  924. self.gguf_writer.add_tokenizer_model("none")
  925. def _set_vocab_gpt2(self) -> None:
  926. tokens, toktypes, tokpre = self.get_vocab_base()
  927. self.gguf_writer.add_tokenizer_model("gpt2")
  928. self.gguf_writer.add_tokenizer_pre(tokpre)
  929. self.gguf_writer.add_token_list(tokens)
  930. self.gguf_writer.add_token_types(toktypes)
  931. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  932. special_vocab.add_to_gguf(self.gguf_writer)
  933. def _set_vocab_qwen(self):
  934. dir_model = self.dir_model
  935. hparams = self.hparams
  936. tokens: list[str] = []
  937. toktypes: list[int] = []
  938. from transformers import AutoTokenizer
  939. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  940. vocab_size = hparams["vocab_size"]
  941. assert max(tokenizer.get_vocab().values()) < vocab_size
  942. tokpre = self.get_vocab_base_pre(tokenizer)
  943. merges = []
  944. vocab = {}
  945. mergeable_ranks = tokenizer.mergeable_ranks
  946. for token, rank in mergeable_ranks.items():
  947. vocab[QwenModel.token_bytes_to_string(token)] = rank
  948. if len(token) == 1:
  949. continue
  950. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  951. assert len(merged) == 2
  952. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  953. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  954. added_vocab = tokenizer.special_tokens
  955. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  956. for i in range(vocab_size):
  957. if i not in reverse_vocab:
  958. tokens.append(f"[PAD{i}]")
  959. toktypes.append(gguf.TokenType.UNUSED)
  960. elif reverse_vocab[i] in added_vocab:
  961. tokens.append(reverse_vocab[i])
  962. toktypes.append(gguf.TokenType.CONTROL)
  963. else:
  964. tokens.append(reverse_vocab[i])
  965. toktypes.append(gguf.TokenType.NORMAL)
  966. self.gguf_writer.add_tokenizer_model("gpt2")
  967. self.gguf_writer.add_tokenizer_pre(tokpre)
  968. self.gguf_writer.add_token_list(tokens)
  969. self.gguf_writer.add_token_types(toktypes)
  970. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  971. special_vocab.merges = merges
  972. # only add special tokens when they were not already loaded from config.json
  973. if len(special_vocab.special_token_ids) == 0:
  974. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  975. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  976. # this one is usually not in config.json anyway
  977. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  978. special_vocab.add_to_gguf(self.gguf_writer)
  979. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  980. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  981. self.gguf_writer.add_tokenizer_model("llama")
  982. self.gguf_writer.add_tokenizer_pre("default")
  983. self.gguf_writer.add_token_list(tokens)
  984. self.gguf_writer.add_token_scores(scores)
  985. self.gguf_writer.add_token_types(toktypes)
  986. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  987. special_vocab.add_to_gguf(self.gguf_writer)
  988. def _create_vocab_sentencepiece(self):
  989. from sentencepiece import SentencePieceProcessor
  990. tokenizer_path = self.dir_model / 'tokenizer.model'
  991. if not tokenizer_path.is_file():
  992. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  993. tokenizer = SentencePieceProcessor()
  994. tokenizer.LoadFromFile(str(tokenizer_path))
  995. vocab_size = self.find_hparam([
  996. "vocab_size_per_layer_input", # gemma3n
  997. "vocab_size",
  998. ], optional=True) or tokenizer.vocab_size()
  999. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1000. scores: list[float] = [-10000.0] * vocab_size
  1001. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1002. for token_id in range(tokenizer.vocab_size()):
  1003. if token_id >= vocab_size:
  1004. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  1005. break
  1006. piece = tokenizer.IdToPiece(token_id)
  1007. text = piece.encode("utf-8")
  1008. score = tokenizer.GetScore(token_id)
  1009. toktype = SentencePieceTokenTypes.NORMAL
  1010. if tokenizer.IsUnknown(token_id):
  1011. toktype = SentencePieceTokenTypes.UNKNOWN
  1012. elif tokenizer.IsControl(token_id):
  1013. toktype = SentencePieceTokenTypes.CONTROL
  1014. elif tokenizer.IsUnused(token_id):
  1015. toktype = SentencePieceTokenTypes.UNUSED
  1016. elif tokenizer.IsByte(token_id):
  1017. toktype = SentencePieceTokenTypes.BYTE
  1018. tokens[token_id] = text
  1019. scores[token_id] = score
  1020. toktypes[token_id] = toktype
  1021. added_tokens_file = self.dir_model / 'added_tokens.json'
  1022. if added_tokens_file.is_file():
  1023. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1024. added_tokens_json = json.load(f)
  1025. for key in added_tokens_json:
  1026. token_id = added_tokens_json[key]
  1027. if token_id >= vocab_size:
  1028. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1029. continue
  1030. tokens[token_id] = key.encode("utf-8")
  1031. scores[token_id] = -1000.0
  1032. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1033. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1034. if tokenizer_config_file.is_file():
  1035. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1036. tokenizer_config_json = json.load(f)
  1037. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1038. for token_id, token_data in added_tokens_decoder.items():
  1039. token_id = int(token_id)
  1040. token: str = token_data["content"]
  1041. if token_id >= vocab_size:
  1042. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1043. continue
  1044. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1045. if tokens[token_id] != token.encode("utf-8"):
  1046. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  1047. if token_data.get("special") or self.does_token_look_special(token):
  1048. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1049. else:
  1050. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  1051. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1052. scores[token_id] = -1000.0
  1053. tokens[token_id] = token.encode("utf-8")
  1054. if vocab_size > len(tokens):
  1055. pad_count = vocab_size - len(tokens)
  1056. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  1057. for i in range(1, pad_count + 1):
  1058. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  1059. scores.append(-1000.0)
  1060. toktypes.append(SentencePieceTokenTypes.UNUSED)
  1061. return tokens, scores, toktypes
  1062. def _set_vocab_llama_hf(self):
  1063. vocab = gguf.LlamaHfVocab(self.dir_model)
  1064. tokens = []
  1065. scores = []
  1066. toktypes = []
  1067. for text, score, toktype in vocab.all_tokens():
  1068. tokens.append(text)
  1069. scores.append(score)
  1070. toktypes.append(toktype)
  1071. assert len(tokens) == vocab.vocab_size
  1072. self.gguf_writer.add_tokenizer_model("llama")
  1073. self.gguf_writer.add_tokenizer_pre("default")
  1074. self.gguf_writer.add_token_list(tokens)
  1075. self.gguf_writer.add_token_scores(scores)
  1076. self.gguf_writer.add_token_types(toktypes)
  1077. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1078. special_vocab.add_to_gguf(self.gguf_writer)
  1079. def _set_vocab_rwkv_world(self):
  1080. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  1081. vocab_size = self.hparams.get("vocab_size", 65536)
  1082. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  1083. toktypes: list[int] = [gguf.TokenType.CONTROL]
  1084. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  1085. lines = f.readlines()
  1086. for line in lines:
  1087. parts = line.split(' ')
  1088. assert len(parts) >= 3
  1089. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  1090. token = token.encode("utf-8") if isinstance(token, str) else token
  1091. assert isinstance(token, bytes)
  1092. assert len(token) == token_len
  1093. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  1094. tokens.append(token_text.encode("utf-8"))
  1095. toktypes.append(gguf.TokenType.NORMAL)
  1096. remainder = vocab_size - len(tokens)
  1097. assert remainder >= 0
  1098. for i in range(len(tokens), vocab_size):
  1099. tokens.append(f"[PAD{i}]".encode("utf-8"))
  1100. toktypes.append(gguf.TokenType.UNUSED)
  1101. self.gguf_writer.add_tokenizer_model("rwkv")
  1102. self.gguf_writer.add_token_list(tokens)
  1103. self.gguf_writer.add_token_types(toktypes)
  1104. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  1105. if special_vocab.chat_template is None:
  1106. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  1107. if template_path.is_file():
  1108. with open(template_path, "r", encoding="utf-8") as f:
  1109. template = f.read()
  1110. else:
  1111. template = "rwkv-world"
  1112. special_vocab.chat_template = template
  1113. # hack: Add '\n\n' as the EOT token to make it chat normally
  1114. special_vocab._set_special_token("eot", 261)
  1115. # hack: Override these as they have already been set (incorrectly)
  1116. special_vocab.special_token_ids["bos"] = 0
  1117. special_vocab.special_token_ids["eos"] = 0
  1118. special_vocab.add_to_gguf(self.gguf_writer)
  1119. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  1120. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  1121. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1122. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  1123. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  1124. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1125. assert field # tokenizer model
  1126. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  1127. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  1128. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  1129. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1130. assert field # token list
  1131. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1132. if model_name == "llama-spm":
  1133. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  1134. assert field # token scores
  1135. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1136. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1137. assert field # token types
  1138. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1139. if model_name != "llama-spm":
  1140. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1141. assert field # token merges
  1142. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1143. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  1144. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1145. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  1146. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1147. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  1148. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1149. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  1150. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  1151. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  1152. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  1153. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  1154. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  1155. def _try_set_pooling_type(self) -> None:
  1156. # get pooling path
  1157. pooling_path = None
  1158. module_path = self.dir_model / "modules.json"
  1159. if module_path.is_file():
  1160. with open(module_path, encoding="utf-8") as f:
  1161. modules = json.load(f)
  1162. for mod in modules:
  1163. if mod["type"] == "sentence_transformers.models.Pooling":
  1164. pooling_path = mod["path"]
  1165. break
  1166. # get pooling type
  1167. if pooling_path is not None:
  1168. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1169. pooling = json.load(f)
  1170. if pooling["pooling_mode_mean_tokens"]:
  1171. pooling_type = gguf.PoolingType.MEAN
  1172. elif pooling["pooling_mode_cls_token"]:
  1173. pooling_type = gguf.PoolingType.CLS
  1174. elif pooling["pooling_mode_lasttoken"]:
  1175. pooling_type = gguf.PoolingType.LAST
  1176. else:
  1177. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  1178. self.gguf_writer.add_pooling_type(pooling_type)
  1179. def _set_vocab_interns1(self):
  1180. tokens: list[str] = []
  1181. toktypes: list[int] = []
  1182. from transformers import AutoTokenizer
  1183. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  1184. vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
  1185. vocab_size = self.hparams.get("vocab_size", len(vocab))
  1186. assert max(vocab.values()) < vocab_size
  1187. tokpre = self.get_vocab_base_pre(tokenizer)
  1188. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
  1189. added_vocab = tokenizer.get_added_vocab()
  1190. added_tokens_decoder = tokenizer.added_tokens_decoder
  1191. for i in range(vocab_size):
  1192. if i not in reverse_vocab:
  1193. tokens.append(f"[PAD{i}]")
  1194. toktypes.append(gguf.TokenType.UNUSED)
  1195. else:
  1196. token: str = reverse_vocab[i]
  1197. if token in added_vocab:
  1198. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  1199. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  1200. if not added_tokens_decoder[i].normalized:
  1201. previous_token = token
  1202. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  1203. if previous_token != token:
  1204. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  1205. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  1206. toktypes.append(gguf.TokenType.CONTROL)
  1207. else:
  1208. toktypes.append(gguf.TokenType.USER_DEFINED)
  1209. else:
  1210. toktypes.append(gguf.TokenType.NORMAL)
  1211. tokens.append(token)
  1212. self.gguf_writer.add_tokenizer_model("gpt2")
  1213. self.gguf_writer.add_tokenizer_pre(tokpre)
  1214. self.gguf_writer.add_token_list(tokens)
  1215. self.gguf_writer.add_token_types(toktypes)
  1216. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1217. special_vocab._set_special_token("bos", 151643)
  1218. special_vocab.add_to_gguf(self.gguf_writer)
  1219. class MmprojModel(ModelBase):
  1220. model_type = ModelType.MMPROJ
  1221. model_arch = gguf.MODEL_ARCH.MMPROJ
  1222. preprocessor_config: dict[str, Any]
  1223. global_config: dict[str, Any]
  1224. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]
  1225. has_vision_encoder: bool = True # by default
  1226. has_audio_encoder: bool = False
  1227. # for models having multiple encoders, we need to separate their hparams
  1228. hparams_vision: dict[str, Any] | None = None
  1229. hparams_audio: dict[str, Any] | None = None
  1230. def __init__(self, *args, **kwargs):
  1231. super().__init__(*args, **kwargs)
  1232. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1233. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1234. # get n_embd of the text model
  1235. if not self.is_mistral_format:
  1236. if "text_config" not in self.hparams:
  1237. self.hparams["text_config"] = {}
  1238. if "audio_config" not in self.hparams:
  1239. self.hparams["audio_config"] = {}
  1240. text_config = {**self.hparams, **self.hparams["text_config"]}
  1241. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1242. else:
  1243. text_config = {
  1244. k: v for k, v in self.hparams.items() if k not in ["vision_encoder", "audio_encoder"]
  1245. }
  1246. self.n_embd_text = text_config.get("hidden_dim", 0)
  1247. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1248. # move vision config to the top level, while preserving the original hparams in global_config
  1249. import copy
  1250. self.global_config = copy.deepcopy(self.hparams)
  1251. self.hparams_vision = self.get_vision_config()
  1252. self.hparams_audio = self.get_audio_config()
  1253. if self.hparams_vision is None and self.hparams_audio is None:
  1254. raise ValueError("vision_config / audio_config not found in hparams")
  1255. # for compat with vision-only models
  1256. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1257. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1258. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1259. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1260. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1261. # load preprocessor config
  1262. self.preprocessor_config = {}
  1263. if not self.is_mistral_format:
  1264. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  1265. self.preprocessor_config = json.load(f)
  1266. def get_vision_config(self) -> dict[str, Any] | None:
  1267. config_name = "vision_config" if not self.is_mistral_format else "vision_encoder"
  1268. return self.global_config.get(config_name)
  1269. def get_audio_config(self) -> dict[str, Any] | None:
  1270. return self.global_config.get("audio_config")
  1271. def set_type(self):
  1272. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1273. def prepare_metadata(self, vocab_only: bool):
  1274. super().prepare_metadata(vocab_only=vocab_only)
  1275. output_type: str = self.ftype.name.partition("_")[2]
  1276. if self.fname_out.is_dir():
  1277. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=output_type, model_type=None)
  1278. self.fname_out = self.fname_out / f"mmproj-{fname_default}.gguf"
  1279. else:
  1280. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  1281. def set_gguf_parameters(self):
  1282. self.gguf_writer.add_file_type(self.ftype)
  1283. if self.has_vision_encoder:
  1284. self.gguf_writer.add_clip_has_vision_encoder(True)
  1285. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1286. # vision config
  1287. self.image_size = self.find_vparam(["image_size"])
  1288. self.gguf_writer.add_vision_image_size(self.image_size)
  1289. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1290. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1291. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1292. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1293. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads"]))
  1294. # preprocessor config
  1295. image_mean = _MISTRAL_COMMON_DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"]
  1296. image_std = _MISTRAL_COMMON_DATASET_STD if self.is_mistral_format else self.preprocessor_config["image_std"]
  1297. self.gguf_writer.add_vision_image_mean(image_mean)
  1298. self.gguf_writer.add_vision_image_std(image_std)
  1299. if self.has_audio_encoder:
  1300. self.gguf_writer.add_clip_has_audio_encoder(True)
  1301. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1302. # audio config
  1303. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1304. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1305. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1306. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1307. if not self.has_vision_encoder and not self.has_audio_encoder:
  1308. raise ValueError("MmprojModel must have either vision or audio encoder")
  1309. def write_vocab(self):
  1310. raise ValueError("MmprojModel does not support vocab writing")
  1311. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1312. assert self.hparams_vision is not None
  1313. return self._find_param(self.hparams_vision, keys, optional)
  1314. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1315. assert self.hparams_audio is not None
  1316. return self._find_param(self.hparams_audio, keys, optional)
  1317. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1318. key = next((k for k in keys if k in obj), None)
  1319. if key is not None:
  1320. return obj[key]
  1321. if optional:
  1322. return None
  1323. raise KeyError(f"could not find any of: {keys}")
  1324. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1325. del bid, name, n_dims # unused
  1326. if ".patch_embd.weight" in new_name:
  1327. return gguf.GGMLQuantizationType.F16 if self.ftype == gguf.LlamaFileType.MOSTLY_F16 else gguf.GGMLQuantizationType.F32
  1328. return False
  1329. @ModelBase.register("GPTNeoXForCausalLM")
  1330. class GPTNeoXModel(TextModel):
  1331. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1332. def set_gguf_parameters(self):
  1333. block_count = self.hparams["num_hidden_layers"]
  1334. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1335. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1336. self.gguf_writer.add_block_count(block_count)
  1337. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1338. self.gguf_writer.add_rope_dimension_count(
  1339. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1340. )
  1341. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1342. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1343. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1344. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1345. del bid # unused
  1346. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1347. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1348. tensors: list[tuple[str, Tensor]] = []
  1349. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1350. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1351. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1352. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1353. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1354. data_torch = torch.cat(
  1355. (
  1356. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1357. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1358. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1359. ),
  1360. dim=0,
  1361. )
  1362. logger.info("re-format attention.linear_qkv.weight")
  1363. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1364. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1365. data_torch = torch.cat(
  1366. (
  1367. qkv_bias[:, 0, :].reshape((n_embed,)),
  1368. qkv_bias[:, 1, :].reshape((n_embed,)),
  1369. qkv_bias[:, 2, :].reshape((n_embed,)),
  1370. ),
  1371. dim=0,
  1372. )
  1373. logger.info("re-format attention.linear_qkv.bias")
  1374. tensors.append((self.map_tensor_name(name), data_torch))
  1375. return tensors
  1376. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1377. class BloomModel(TextModel):
  1378. model_arch = gguf.MODEL_ARCH.BLOOM
  1379. def set_gguf_parameters(self):
  1380. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1381. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1382. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1383. self.gguf_writer.add_embedding_length(n_embed)
  1384. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1385. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1386. self.gguf_writer.add_head_count(n_head)
  1387. self.gguf_writer.add_head_count_kv(n_head)
  1388. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1389. self.gguf_writer.add_file_type(self.ftype)
  1390. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1391. del bid # unused
  1392. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1393. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1394. name = re.sub(r'transformer\.', '', name)
  1395. tensors: list[tuple[str, Tensor]] = []
  1396. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1397. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1398. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1399. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1400. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1401. data_torch = torch.cat(
  1402. (
  1403. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1404. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1405. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1406. ),
  1407. dim=0,
  1408. )
  1409. logger.info("re-format attention.linear_qkv.weight")
  1410. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1411. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1412. data_torch = torch.cat(
  1413. (
  1414. qkv_bias[:, 0, :].reshape((n_embed,)),
  1415. qkv_bias[:, 1, :].reshape((n_embed,)),
  1416. qkv_bias[:, 2, :].reshape((n_embed,)),
  1417. ),
  1418. dim=0,
  1419. )
  1420. logger.info("re-format attention.linear_qkv.bias")
  1421. tensors.append((self.map_tensor_name(name), data_torch))
  1422. return tensors
  1423. @ModelBase.register("MPTForCausalLM")
  1424. class MPTModel(TextModel):
  1425. model_arch = gguf.MODEL_ARCH.MPT
  1426. def set_vocab(self):
  1427. try:
  1428. self._set_vocab_gpt2()
  1429. except Exception:
  1430. # Fallback for SEA-LION model
  1431. self._set_vocab_sentencepiece()
  1432. self.gguf_writer.add_add_bos_token(False)
  1433. self.gguf_writer.add_pad_token_id(3)
  1434. self.gguf_writer.add_eos_token_id(1)
  1435. self.gguf_writer.add_unk_token_id(0)
  1436. def set_gguf_parameters(self):
  1437. block_count = self.hparams["n_layers"]
  1438. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1439. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1440. self.gguf_writer.add_block_count(block_count)
  1441. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1442. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1443. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1444. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1445. self.gguf_writer.add_layer_norm_eps(1e-5)
  1446. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1447. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1448. if self.hparams["attn_config"]["alibi"]:
  1449. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1450. else:
  1451. self.gguf_writer.add_max_alibi_bias(0.0)
  1452. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1453. del bid # unused
  1454. if "scales" in name:
  1455. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1456. new_name = new_name.replace("scales", "act.scales")
  1457. else:
  1458. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1459. return [(new_name, data_torch)]
  1460. @ModelBase.register("OrionForCausalLM")
  1461. class OrionModel(TextModel):
  1462. model_arch = gguf.MODEL_ARCH.ORION
  1463. def set_vocab(self):
  1464. self._set_vocab_sentencepiece()
  1465. def set_gguf_parameters(self):
  1466. block_count = self.hparams["num_hidden_layers"]
  1467. head_count = self.hparams["num_attention_heads"]
  1468. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1469. ctx_length = 0
  1470. if "max_sequence_length" in self.hparams:
  1471. ctx_length = self.hparams["max_sequence_length"]
  1472. elif "max_position_embeddings" in self.hparams:
  1473. ctx_length = self.hparams["max_position_embeddings"]
  1474. elif "model_max_length" in self.hparams:
  1475. ctx_length = self.hparams["model_max_length"]
  1476. else:
  1477. raise ValueError("gguf: can not find ctx length parameter.")
  1478. self.gguf_writer.add_file_type(self.ftype)
  1479. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1480. self.gguf_writer.add_context_length(ctx_length)
  1481. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1482. self.gguf_writer.add_block_count(block_count)
  1483. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1484. self.gguf_writer.add_head_count(head_count)
  1485. self.gguf_writer.add_head_count_kv(head_count_kv)
  1486. # note: config provides rms norm but it is actually layer norm
  1487. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1488. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1489. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1490. class BaichuanModel(TextModel):
  1491. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1492. def set_vocab(self):
  1493. self._set_vocab_sentencepiece()
  1494. def set_gguf_parameters(self):
  1495. block_count = self.hparams["num_hidden_layers"]
  1496. head_count = self.hparams["num_attention_heads"]
  1497. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1498. ctx_length = 0
  1499. if "max_sequence_length" in self.hparams:
  1500. ctx_length = self.hparams["max_sequence_length"]
  1501. elif "max_position_embeddings" in self.hparams:
  1502. ctx_length = self.hparams["max_position_embeddings"]
  1503. elif "model_max_length" in self.hparams:
  1504. ctx_length = self.hparams["model_max_length"]
  1505. else:
  1506. raise ValueError("gguf: can not find ctx length parameter.")
  1507. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1508. self.gguf_writer.add_context_length(ctx_length)
  1509. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1510. self.gguf_writer.add_block_count(block_count)
  1511. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1512. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1513. self.gguf_writer.add_head_count(head_count)
  1514. self.gguf_writer.add_head_count_kv(head_count_kv)
  1515. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1516. self.gguf_writer.add_file_type(self.ftype)
  1517. rope_scaling = self.hparams.get("rope_scaling") or {}
  1518. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1519. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1520. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1521. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1522. head_count = self.hparams["num_attention_heads"]
  1523. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1524. tensors: list[tuple[str, Tensor]] = []
  1525. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1526. logger.info(f"Unpacking and permuting layer {bid}")
  1527. tensors = [
  1528. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1529. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1530. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1531. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1532. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1533. self._reverse_hf_part(data_torch, 2)),
  1534. ]
  1535. else:
  1536. tensors = [(self.map_tensor_name(name), data_torch)]
  1537. return tensors
  1538. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1539. if n_kv_head is not None and n_head != n_kv_head:
  1540. n_head //= n_kv_head
  1541. return (
  1542. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1543. .swapaxes(1, 2)
  1544. .reshape(weights.shape)
  1545. )
  1546. def _reverse_hf_permute_part(
  1547. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1548. ) -> Tensor:
  1549. r = weights.shape[0] // 3
  1550. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1551. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1552. r = weights.shape[0] // 3
  1553. return weights[r * n_part:r * n_part + r, ...]
  1554. @ModelBase.register("XverseForCausalLM")
  1555. class XverseModel(TextModel):
  1556. model_arch = gguf.MODEL_ARCH.XVERSE
  1557. def set_vocab(self):
  1558. assert (self.dir_model / "tokenizer.json").is_file()
  1559. dir_model = self.dir_model
  1560. hparams = self.hparams
  1561. tokens: list[bytes] = []
  1562. toktypes: list[int] = []
  1563. from transformers import AutoTokenizer
  1564. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1565. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1566. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1567. # because vocab_size is the count of items, and indexes start at 0.
  1568. max_vocab_index = max(tokenizer.get_vocab().values())
  1569. if max_vocab_index >= vocab_size:
  1570. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1571. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1572. added_vocab = tokenizer.get_added_vocab()
  1573. for token_id in range(vocab_size):
  1574. token_text = reverse_vocab[token_id].encode('utf-8')
  1575. # replace "\x00" to string with length > 0
  1576. if token_text == b"\x00":
  1577. toktype = gguf.TokenType.BYTE # special
  1578. token_text = f"<{token_text}>".encode('utf-8')
  1579. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1580. toktype = gguf.TokenType.BYTE # special
  1581. elif reverse_vocab[token_id] in added_vocab:
  1582. if tokenizer.added_tokens_decoder[token_id].special:
  1583. toktype = gguf.TokenType.CONTROL
  1584. else:
  1585. toktype = gguf.TokenType.USER_DEFINED
  1586. else:
  1587. toktype = gguf.TokenType.NORMAL
  1588. tokens.append(token_text)
  1589. toktypes.append(toktype)
  1590. self.gguf_writer.add_tokenizer_model("llama")
  1591. self.gguf_writer.add_tokenizer_pre("default")
  1592. self.gguf_writer.add_token_list(tokens)
  1593. self.gguf_writer.add_token_types(toktypes)
  1594. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1595. special_vocab.add_to_gguf(self.gguf_writer)
  1596. def set_gguf_parameters(self):
  1597. block_count = self.hparams["num_hidden_layers"]
  1598. head_count = self.hparams["num_attention_heads"]
  1599. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1600. ctx_length = 0
  1601. if "max_sequence_length" in self.hparams:
  1602. ctx_length = self.hparams["max_sequence_length"]
  1603. elif "max_position_embeddings" in self.hparams:
  1604. ctx_length = self.hparams["max_position_embeddings"]
  1605. elif "model_max_length" in self.hparams:
  1606. ctx_length = self.hparams["model_max_length"]
  1607. else:
  1608. raise ValueError("gguf: can not find ctx length parameter.")
  1609. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1610. self.gguf_writer.add_context_length(ctx_length)
  1611. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1612. self.gguf_writer.add_block_count(block_count)
  1613. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1614. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1615. self.gguf_writer.add_head_count(head_count)
  1616. self.gguf_writer.add_head_count_kv(head_count_kv)
  1617. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1618. self.gguf_writer.add_file_type(self.ftype)
  1619. rope_scaling = self.hparams.get("rope_scaling") or {}
  1620. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1621. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1622. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1623. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1624. del bid # unused
  1625. head_count = self.hparams["num_attention_heads"]
  1626. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1627. # HF models permute some of the tensors, so we need to undo that
  1628. if name.endswith("q_proj.weight"):
  1629. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1630. if name.endswith("k_proj.weight"):
  1631. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1632. return [(self.map_tensor_name(name), data_torch)]
  1633. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1634. if n_kv_head is not None and n_head != n_kv_head:
  1635. n_head //= n_kv_head
  1636. return (
  1637. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1638. .swapaxes(1, 2)
  1639. .reshape(weights.shape)
  1640. )
  1641. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1642. class FalconModel(TextModel):
  1643. model_arch = gguf.MODEL_ARCH.FALCON
  1644. def set_gguf_parameters(self):
  1645. block_count = self.hparams.get("num_hidden_layers")
  1646. if block_count is None:
  1647. block_count = self.hparams["n_layer"] # old name
  1648. n_head = self.hparams.get("num_attention_heads")
  1649. if n_head is None:
  1650. n_head = self.hparams["n_head"] # old name
  1651. n_head_kv = self.hparams.get("num_kv_heads")
  1652. if n_head_kv is None:
  1653. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1654. self.gguf_writer.add_context_length(2048) # not in config.json
  1655. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1656. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1657. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1658. self.gguf_writer.add_block_count(block_count)
  1659. self.gguf_writer.add_head_count(n_head)
  1660. self.gguf_writer.add_head_count_kv(n_head_kv)
  1661. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1662. self.gguf_writer.add_file_type(self.ftype)
  1663. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1664. del bid # unused
  1665. # QKV tensor transform
  1666. # The original query_key_value tensor contains n_head_kv "kv groups",
  1667. # each consisting of n_head/n_head_kv query weights followed by one key
  1668. # and one value weight (shared by all query heads in the kv group).
  1669. # This layout makes it a big pain to work with in GGML.
  1670. # So we rearrange them here,, so that we have n_head query weights
  1671. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1672. # in contiguous fashion.
  1673. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1674. if "query_key_value" in name:
  1675. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1676. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1677. head_dim = self.hparams["hidden_size"] // n_head
  1678. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1679. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1680. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1681. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1682. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1683. return [(self.map_tensor_name(name), data_torch)]
  1684. @ModelBase.register("GPTBigCodeForCausalLM")
  1685. class StarCoderModel(TextModel):
  1686. model_arch = gguf.MODEL_ARCH.STARCODER
  1687. def set_gguf_parameters(self):
  1688. block_count = self.hparams["n_layer"]
  1689. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1690. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1691. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1692. self.gguf_writer.add_block_count(block_count)
  1693. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1694. self.gguf_writer.add_head_count_kv(1)
  1695. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1696. self.gguf_writer.add_file_type(self.ftype)
  1697. @ModelBase.register("GPTRefactForCausalLM")
  1698. class RefactModel(TextModel):
  1699. model_arch = gguf.MODEL_ARCH.REFACT
  1700. def set_vocab(self):
  1701. super().set_vocab()
  1702. # TODO: how to determine special FIM tokens automatically?
  1703. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1704. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1705. special_vocab._set_special_token("prefix", 1)
  1706. special_vocab._set_special_token("suffix", 3)
  1707. special_vocab._set_special_token("middle", 2)
  1708. special_vocab.chat_template = None # do not add it twice
  1709. special_vocab.add_to_gguf(self.gguf_writer)
  1710. def set_gguf_parameters(self):
  1711. hidden_dim = self.hparams["n_embd"]
  1712. inner_dim = 4 * hidden_dim
  1713. hidden_dim = int(2 * inner_dim / 3)
  1714. multiple_of = 256
  1715. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1716. block_count = self.hparams["n_layer"]
  1717. # refact uses Alibi. So this is from config.json which might be used by training.
  1718. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1719. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1720. self.gguf_writer.add_feed_forward_length(ff_dim)
  1721. self.gguf_writer.add_block_count(block_count)
  1722. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1723. self.gguf_writer.add_head_count_kv(1)
  1724. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1725. self.gguf_writer.add_file_type(self.ftype)
  1726. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1727. hidden_dim = self.hparams["n_embd"]
  1728. inner_dim = 4 * hidden_dim
  1729. hidden_dim = int(2 * inner_dim / 3)
  1730. multiple_of = 256
  1731. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1732. n_head = self.hparams["n_head"]
  1733. n_head_kv = 1
  1734. head_dim = self.hparams["n_embd"] // n_head
  1735. tensors: list[tuple[str, Tensor]] = []
  1736. if bid is not None:
  1737. if name == f"transformer.h.{bid}.attn.kv.weight":
  1738. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1739. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1740. elif name == f"transformer.h.{bid}.attn.q.weight":
  1741. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1742. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1743. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1744. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1745. if len(tensors) == 0:
  1746. tensors.append((self.map_tensor_name(name), data_torch))
  1747. return tensors
  1748. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1749. class StableLMModel(TextModel):
  1750. model_arch = gguf.MODEL_ARCH.STABLELM
  1751. def set_vocab(self):
  1752. if (self.dir_model / "tokenizer.json").is_file():
  1753. self._set_vocab_gpt2()
  1754. else:
  1755. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1756. self._set_vocab_qwen()
  1757. def set_gguf_parameters(self):
  1758. hparams = self.hparams
  1759. block_count = hparams["num_hidden_layers"]
  1760. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1761. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1762. self.gguf_writer.add_block_count(block_count)
  1763. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1764. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1765. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1766. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1767. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1768. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1769. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1770. self.gguf_writer.add_file_type(self.ftype)
  1771. _q_norms: list[dict[str, Tensor]] | None = None
  1772. _k_norms: list[dict[str, Tensor]] | None = None
  1773. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1774. n_head = self.hparams["num_attention_heads"]
  1775. n_kv_head = self.hparams["num_key_value_heads"]
  1776. if name.find("q_layernorm.norms") != -1:
  1777. assert bid is not None
  1778. if self._q_norms is None:
  1779. self._q_norms = [{} for _ in range(self.block_count)]
  1780. self._q_norms[bid][name] = data_torch
  1781. if len(self._q_norms[bid]) >= n_head:
  1782. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1783. else:
  1784. return []
  1785. if name.find("k_layernorm.norms") != -1:
  1786. assert bid is not None
  1787. if self._k_norms is None:
  1788. self._k_norms = [{} for _ in range(self.block_count)]
  1789. self._k_norms[bid][name] = data_torch
  1790. if len(self._k_norms[bid]) >= n_kv_head:
  1791. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1792. else:
  1793. return []
  1794. return [(self.map_tensor_name(name), data_torch)]
  1795. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1796. datas: list[Tensor] = []
  1797. # extract the norms in order
  1798. for xid in range(n_head):
  1799. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1800. datas.append(norms[ename])
  1801. del norms[ename]
  1802. data_torch = torch.stack(datas, dim=0)
  1803. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1804. new_name = self.map_tensor_name(merged_name)
  1805. return [(new_name, data_torch)]
  1806. def prepare_tensors(self):
  1807. super().prepare_tensors()
  1808. if self._q_norms is not None or self._k_norms is not None:
  1809. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1810. norms = (
  1811. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1812. ) + (
  1813. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1814. )
  1815. if len(norms) > 0:
  1816. raise ValueError(f"Unprocessed norms: {norms}")
  1817. @ModelBase.register(
  1818. "LLaMAForCausalLM",
  1819. "LlamaForCausalLM",
  1820. "MistralForCausalLM",
  1821. "MixtralForCausalLM",
  1822. "VLlama3ForCausalLM",
  1823. "LlavaForConditionalGeneration",
  1824. "VoxtralForConditionalGeneration",
  1825. "LlamaModel")
  1826. class LlamaModel(TextModel):
  1827. model_arch = gguf.MODEL_ARCH.LLAMA
  1828. undo_permute = True
  1829. def __init__(self, *args, **kwargs):
  1830. super().__init__(*args, **kwargs)
  1831. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1832. if self.hf_arch == "VLlama3ForCausalLM":
  1833. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1834. def _set_vocab_mistral(self):
  1835. if not _mistral_common_installed:
  1836. raise ImportError(_mistral_import_error_msg)
  1837. vocab = MistralVocab(self.dir_model)
  1838. logger.info(
  1839. f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
  1840. )
  1841. self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
  1842. tokens = []
  1843. scores = []
  1844. toktypes = []
  1845. for text, score, toktype in vocab.all_tokens():
  1846. tokens.append(text)
  1847. scores.append(score)
  1848. toktypes.append(toktype)
  1849. assert len(tokens) == vocab.vocab_size, (
  1850. f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
  1851. )
  1852. if vocab.tokenizer_type == MistralTokenizerType.tekken:
  1853. self.gguf_writer.add_tokenizer_pre("tekken")
  1854. self.gguf_writer.add_token_merges(
  1855. vocab.extract_vocab_merges_from_model()
  1856. )
  1857. logger.info(
  1858. f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
  1859. )
  1860. self.gguf_writer.add_bos_token_id(vocab.bos_id)
  1861. self.gguf_writer.add_eos_token_id(vocab.eos_id)
  1862. self.gguf_writer.add_unk_token_id(vocab.unk_id)
  1863. self.gguf_writer.add_pad_token_id(vocab.pad_id)
  1864. self.gguf_writer.add_token_list(tokens)
  1865. self.gguf_writer.add_token_scores(scores)
  1866. self.gguf_writer.add_token_types(toktypes)
  1867. self.gguf_writer.add_vocab_size(vocab.vocab_size)
  1868. self.gguf_writer.add_add_bos_token(True)
  1869. self.gguf_writer.add_add_eos_token(False)
  1870. template_dir = Path(__file__).parent / "models/templates/"
  1871. if not self.is_mistral_format or not self.disable_mistral_community_chat_template:
  1872. # Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
  1873. if self.is_mistral_format:
  1874. logger.info(
  1875. "Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
  1876. "Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
  1877. )
  1878. template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
  1879. self.gguf_writer.add_chat_template(template)
  1880. else:
  1881. logger.info("Not using a Mistral community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
  1882. def set_vocab(self):
  1883. if self.is_mistral_format:
  1884. return self._set_vocab_mistral()
  1885. path_tekken_json = self.dir_model / "tekken.json"
  1886. path_tokenizer_json = self.dir_model / "tokenizer.json"
  1887. if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
  1888. self._set_vocab_mistral()
  1889. try:
  1890. self._set_vocab_sentencepiece()
  1891. except FileNotFoundError:
  1892. try:
  1893. self._set_vocab_llama_hf()
  1894. except (FileNotFoundError, TypeError):
  1895. # Llama 3
  1896. self._set_vocab_gpt2()
  1897. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1898. if self.hparams.get("vocab_size", 32000) == 32016:
  1899. special_vocab = gguf.SpecialVocab(
  1900. self.dir_model, load_merges=False,
  1901. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1902. )
  1903. special_vocab._set_special_token("prefix", 32007)
  1904. special_vocab._set_special_token("suffix", 32008)
  1905. special_vocab._set_special_token("middle", 32009)
  1906. special_vocab._set_special_token("eot", 32010)
  1907. special_vocab.add_to_gguf(self.gguf_writer)
  1908. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1909. if tokenizer_config_file.is_file():
  1910. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1911. tokenizer_config_json = json.load(f)
  1912. if "add_prefix_space" in tokenizer_config_json:
  1913. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1914. # Apply to granite small models only
  1915. if self.hparams.get("vocab_size", 32000) == 49152:
  1916. self.gguf_writer.add_add_bos_token(False)
  1917. def set_gguf_parameters(self):
  1918. super().set_gguf_parameters()
  1919. hparams = self.hparams
  1920. if not self.is_mistral_format:
  1921. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1922. if (rope_dim := hparams.get("head_dim")) is None:
  1923. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1924. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1925. rope_scaling = self.hparams.get("rope_scaling") or {}
  1926. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1927. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1928. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1929. @staticmethod
  1930. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1931. if n_head_kv is not None and n_head != n_head_kv:
  1932. n_head = n_head_kv
  1933. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1934. .swapaxes(1, 2)
  1935. .reshape(weights.shape))
  1936. _experts: list[dict[str, Tensor]] | None = None
  1937. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1938. n_head = self.find_hparam(["n_heads", "num_attention_heads"])
  1939. n_kv_head = self.find_hparam(["n_kv_heads", "num_key_value_heads"])
  1940. vision_prefixes = [
  1941. "vision_encoder.",
  1942. "vision_language_adapter.",
  1943. "patch_merger.",
  1944. "pre_mm_projector_norm",
  1945. ]
  1946. is_multimodal_tensor = "vision_tower" in name \
  1947. or "vision_model" in name \
  1948. or "audio_tower" in name \
  1949. or "model.connector" in name \
  1950. or "multi_modal_projector" in name \
  1951. or any(
  1952. name.startswith(prefix)
  1953. for prefix in vision_prefixes
  1954. )
  1955. if is_multimodal_tensor:
  1956. return [] # skip vision tensors
  1957. elif self.hf_arch == "LlamaModel":
  1958. name = "model." + name
  1959. elif name.startswith("model.text_model"):
  1960. name = name.replace("text_model.", "") # for SmolVLM
  1961. elif name.startswith("language_model."):
  1962. name = name.replace("language_model.", "") # for the rest
  1963. if self.undo_permute:
  1964. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1965. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1966. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1967. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1968. # process the experts separately
  1969. if name.find("block_sparse_moe.experts") != -1:
  1970. n_experts = self.hparams["num_local_experts"]
  1971. assert bid is not None
  1972. if self._experts is None:
  1973. self._experts = [{} for _ in range(self.block_count)]
  1974. self._experts[bid][name] = data_torch
  1975. if len(self._experts[bid]) >= n_experts * 3:
  1976. tensors: list[tuple[str, Tensor]] = []
  1977. # merge the experts into a single 3d tensor
  1978. for wid in ["w1", "w2", "w3"]:
  1979. datas: list[Tensor] = []
  1980. for xid in range(n_experts):
  1981. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1982. datas.append(self._experts[bid][ename])
  1983. del self._experts[bid][ename]
  1984. data_torch = torch.stack(datas, dim=0)
  1985. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1986. new_name = self.map_tensor_name(merged_name)
  1987. tensors.append((new_name, data_torch))
  1988. return tensors
  1989. else:
  1990. return []
  1991. return [(self.map_tensor_name(name), data_torch)]
  1992. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1993. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1994. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1995. base = self.hparams.get("rope_theta", 10000.0)
  1996. if (dim := self.hparams.get("head_dim")) is None:
  1997. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1998. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1999. factor = rope_scaling.get("factor", 8.0)
  2000. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  2001. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  2002. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2003. low_freq_wavelen = old_context_len / low_freq_factor
  2004. high_freq_wavelen = old_context_len / high_freq_factor
  2005. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  2006. rope_factors = []
  2007. for freq in freqs:
  2008. wavelen = 2 * math.pi / freq
  2009. if wavelen < high_freq_wavelen:
  2010. rope_factors.append(1)
  2011. elif wavelen > low_freq_wavelen:
  2012. rope_factors.append(factor)
  2013. else:
  2014. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2015. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2016. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2017. def prepare_tensors(self):
  2018. super().prepare_tensors()
  2019. if self._experts is not None:
  2020. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2021. experts = [k for d in self._experts for k in d.keys()]
  2022. if len(experts) > 0:
  2023. raise ValueError(f"Unprocessed experts: {experts}")
  2024. @ModelBase.register("ArceeForCausalLM")
  2025. class ArceeModel(LlamaModel):
  2026. model_arch = gguf.MODEL_ARCH.ARCEE
  2027. def set_gguf_parameters(self):
  2028. super().set_gguf_parameters()
  2029. self._try_set_pooling_type()
  2030. rope_scaling = self.hparams.get("rope_scaling") or {}
  2031. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2032. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2033. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2034. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2035. @ModelBase.register(
  2036. "LlavaForConditionalGeneration", # pixtral
  2037. "Mistral3ForConditionalGeneration", # mistral small 3.1
  2038. )
  2039. class LlavaVisionModel(MmprojModel):
  2040. img_break_tok_id = -1
  2041. def __init__(self, *args, **kwargs):
  2042. super().__init__(*args, **kwargs)
  2043. if self.hparams.get("model_type") == "pixtral":
  2044. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  2045. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  2046. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  2047. elif self.is_mistral_format:
  2048. # hparams is already vision config here so norm_eps is only defined in global_config.
  2049. self.hparams["norm_eps"] = self.global_config.get("norm_eps", None)
  2050. assert self.hparams["norm_eps"] is not None, "norm_eps not found in params.json"
  2051. self.img_break_tok_id = self.find_vparam(["image_break_token_id"])
  2052. else:
  2053. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  2054. logger.info(f"Image break token id: {self.img_break_tok_id}")
  2055. def get_token_id(self, token: str) -> int:
  2056. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2057. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2058. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  2059. for id_, token_data in added_tokens_decoder.items():
  2060. if token_data["content"] == token:
  2061. return int(id_)
  2062. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  2063. def set_gguf_parameters(self):
  2064. super().set_gguf_parameters()
  2065. hparams = self.hparams
  2066. if hparams.get("model_type") == "pixtral":
  2067. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  2068. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2069. # hidden_act
  2070. if hparams["hidden_act"] == "silu":
  2071. self.gguf_writer.add_vision_use_silu(True)
  2072. elif hparams["hidden_act"] == "gelu":
  2073. self.gguf_writer.add_vision_use_gelu(True)
  2074. else:
  2075. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2076. # spatial_merge_size
  2077. if "spatial_merge_size" in self.global_config:
  2078. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  2079. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2080. del bid # unused
  2081. n_head = (
  2082. self.hparams["num_attention_heads"] if not self.is_mistral_format else self.find_vparam(["num_attention_heads"])
  2083. )
  2084. n_kv_head = n_head
  2085. valid_prefixes = (
  2086. "multi_modal_projector.",
  2087. "vision_tower.",
  2088. "vision_encoder.",
  2089. "vision_language_adapter.",
  2090. "patch_merger.",
  2091. "pre_mm_projector_norm",
  2092. )
  2093. if any(name.startswith(prefix) for prefix in valid_prefixes):
  2094. # process vision tensors
  2095. if name.endswith(("q_proj.weight", "q_proj.bias")) and not self.is_mistral_format:
  2096. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2097. if name.endswith(("k_proj.weight", "k_proj.bias")) and not self.is_mistral_format:
  2098. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2099. return [(self.map_tensor_name(name), data_torch)]
  2100. embed_key = "embed_tokens.weight" if not self.is_mistral_format else "tok_embeddings.weight"
  2101. if self.img_break_tok_id > 0 and embed_key in name:
  2102. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  2103. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  2104. img_break_embd = data_torch[self.img_break_tok_id]
  2105. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  2106. return [(self.map_tensor_name(name), img_break_embd)]
  2107. return [] # skip other tensors
  2108. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  2109. class SmolVLMModel(MmprojModel):
  2110. def __init__(self, *args, **kwargs):
  2111. super().__init__(*args, **kwargs)
  2112. if self.hparams["model_type"] == "smolvlm_vision":
  2113. # fix for SmolVLM2, missing some keys in config.json
  2114. # default values are taken from transformers code
  2115. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  2116. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  2117. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  2118. def set_gguf_parameters(self):
  2119. super().set_gguf_parameters()
  2120. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  2121. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  2122. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  2123. self.gguf_writer.add_vision_use_gelu(True)
  2124. # Add the preprocessor longest edge size
  2125. preproc_image_size = self.preprocessor_config.get("size", {}).get("longest_edge", self.image_size)
  2126. self.gguf_writer.add_vision_preproc_image_size(preproc_image_size)
  2127. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2128. if ".embeddings." in name:
  2129. return gguf.GGMLQuantizationType.F32
  2130. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2131. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2132. del bid # unused
  2133. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  2134. if is_vision_tensor:
  2135. return [(self.map_tensor_name(name), data_torch)]
  2136. return [] # skip other tensors
  2137. @ModelBase.register(
  2138. "Llama4ForConditionalGeneration",
  2139. "Llama4ForCausalLM",
  2140. )
  2141. class Llama4Model(LlamaModel):
  2142. model_arch = gguf.MODEL_ARCH.LLAMA4
  2143. undo_permute = False
  2144. def __init__(self, *args, **kwargs):
  2145. super().__init__(*args, **kwargs)
  2146. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  2147. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  2148. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  2149. def set_vocab(self):
  2150. self._set_vocab_gpt2()
  2151. def set_gguf_parameters(self):
  2152. super().set_gguf_parameters()
  2153. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  2154. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  2155. if "layer_types" in self.hparams:
  2156. if all(lt == "full_attention" for lt in self.hparams["layer_types"]):
  2157. # all layers are full attention (for MobileLLM), disable swa
  2158. self.gguf_writer.add_sliding_window(0)
  2159. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2160. if name.startswith("language_model."):
  2161. name = name.replace("language_model.", "")
  2162. # split the gate_up into gate and up
  2163. if "gate_up_proj" in name:
  2164. name_up = name.replace("gate_up_proj", "up_proj.weight")
  2165. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  2166. dim_half = data_torch.shape[-1] // 2
  2167. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  2168. return [
  2169. (self.map_tensor_name(name_gate), gate_proj_weight),
  2170. (self.map_tensor_name(name_up), up_proj_weight)
  2171. ]
  2172. if name.endswith("down_proj"):
  2173. name += ".weight"
  2174. data_torch = data_torch.transpose(-1, -2)
  2175. if "multi_modal_projector" in name or "vision_model" in name:
  2176. return []
  2177. return super().modify_tensors(data_torch, name, bid)
  2178. @ModelBase.register("Llama4ForConditionalGeneration")
  2179. class Llama4VisionModel(MmprojModel):
  2180. def set_gguf_parameters(self):
  2181. super().set_gguf_parameters()
  2182. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  2183. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  2184. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  2185. assert self.hparams["hidden_act"] == "gelu"
  2186. self.gguf_writer.add_vision_use_gelu(True)
  2187. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2188. del bid # unused
  2189. if "multi_modal_projector" in name or "vision_model" in name:
  2190. # process vision tensors
  2191. if "positional_embedding_vlm" in name and ".weight" not in name:
  2192. name += ".weight"
  2193. if "multi_modal_projector.linear_1" in name:
  2194. # despite the name with number postfix, this is a single fully connected layer
  2195. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  2196. return [(self.map_tensor_name(name), data_torch)]
  2197. return []
  2198. @ModelBase.register("Mistral3ForConditionalGeneration")
  2199. class Mistral3Model(LlamaModel):
  2200. model_arch = gguf.MODEL_ARCH.LLAMA
  2201. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2202. name = name.replace("language_model.", "")
  2203. if "multi_modal_projector" in name or "vision_tower" in name:
  2204. return []
  2205. return super().modify_tensors(data_torch, name, bid)
  2206. @ModelBase.register("DeciLMForCausalLM")
  2207. class DeciModel(TextModel):
  2208. model_arch = gguf.MODEL_ARCH.DECI
  2209. @staticmethod
  2210. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  2211. # DeciLM-specific code
  2212. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  2213. return DeciModel._find_multiple(intermediate_size, 256)
  2214. @staticmethod
  2215. def _find_multiple(n: int, k: int) -> int:
  2216. # DeciLM-specific code
  2217. if n % k == 0:
  2218. return n
  2219. return n + k - (n % k)
  2220. def __init__(self, *args, **kwargs):
  2221. super().__init__(*args, **kwargs)
  2222. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2223. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  2224. assert self.block_count == len(_block_configs)
  2225. self._num_kv_heads = list()
  2226. self._num_heads = list()
  2227. _ffn_multipliers = list()
  2228. # ***linear attention layer***
  2229. # if n_heads_in_group is None and replace_with_linear is True
  2230. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  2231. # ***attention-free layer***
  2232. # if n_heads_in_group is None and replace_with_linear is False
  2233. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  2234. # ***normal attention-layer***
  2235. # if n_heads_in_group is not None, then
  2236. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  2237. # _num_heads[il] is num_attention_head
  2238. # ***dummy layer*** for nemotron 253B
  2239. # if n_heads_in_group is None and ffn_mult is None
  2240. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  2241. for il in range(len(_block_configs)):
  2242. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  2243. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  2244. self._num_kv_heads.append(0)
  2245. self._num_heads.append(self.hparams["num_attention_heads"])
  2246. else:
  2247. self._num_kv_heads.append(0)
  2248. self._num_heads.append(0)
  2249. else:
  2250. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  2251. self._num_heads.append(self.hparams["num_attention_heads"])
  2252. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  2253. _ffn_multipliers.append(0.0)
  2254. else:
  2255. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  2256. assert self.block_count == len(self._num_kv_heads)
  2257. assert self.block_count == len(self._num_heads)
  2258. assert self.block_count == len(_ffn_multipliers)
  2259. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2260. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  2261. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  2262. self._ffn_dims: list[int] = [
  2263. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  2264. for multiplier in _ffn_multipliers
  2265. ]
  2266. def set_vocab(self):
  2267. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  2268. # eos_token from '|eot_id|' to '|end_of_text|'
  2269. if self.hparams.get("vocab_size", 128256) == 128256:
  2270. tokens, toktypes, tokpre = self.get_vocab_base()
  2271. self.gguf_writer.add_tokenizer_model("gpt2")
  2272. self.gguf_writer.add_tokenizer_pre(tokpre)
  2273. self.gguf_writer.add_token_list(tokens)
  2274. self.gguf_writer.add_token_types(toktypes)
  2275. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  2276. special_vocab.add_to_gguf(self.gguf_writer)
  2277. else:
  2278. # DeciLM-7B
  2279. self._set_vocab_llama_hf()
  2280. def set_gguf_parameters(self):
  2281. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2282. assert self.block_count == len(self._num_kv_heads)
  2283. assert self.block_count == len(self._num_heads)
  2284. assert self.block_count == len(self._ffn_dims)
  2285. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  2286. self.gguf_writer.add_rope_freq_base(rope_theta)
  2287. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2288. self.gguf_writer.add_head_count(self._num_heads)
  2289. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2290. self.gguf_writer.add_block_count(self.block_count)
  2291. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2292. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2293. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2294. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2295. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2296. self.gguf_writer.add_file_type(self.ftype)
  2297. else: # DeciLM-7B
  2298. super().set_gguf_parameters()
  2299. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  2300. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  2301. assert self.block_count == len(self._num_kv_heads)
  2302. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2303. hparams = self.hparams
  2304. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2305. if (rope_dim := hparams.get("head_dim")) is None:
  2306. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2307. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2308. rope_scaling = self.hparams.get("rope_scaling") or {}
  2309. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2310. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2311. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2312. @staticmethod
  2313. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2314. if n_head_kv is not None and n_head != n_head_kv:
  2315. n_head = n_head_kv
  2316. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2317. .swapaxes(1, 2)
  2318. .reshape(weights.shape))
  2319. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2320. n_head = self.hparams["num_attention_heads"]
  2321. if bid is not None:
  2322. if "num_key_value_heads_per_layer" in self.hparams:
  2323. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  2324. elif "block_configs" in self.hparams:
  2325. n_kv_head = self._num_kv_heads[bid]
  2326. n_head = self._num_heads[bid]
  2327. else:
  2328. n_kv_head = self.hparams.get("num_key_value_heads")
  2329. else:
  2330. n_kv_head = self.hparams.get("num_key_value_heads")
  2331. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2332. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  2333. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2334. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  2335. return [(self.map_tensor_name(name), data_torch)]
  2336. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2337. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  2338. if rope_scaling.get("rope_type", '').lower() == "llama3":
  2339. base = self.hparams.get("rope_theta", 10000.0)
  2340. if (dim := self.hparams.get("head_dim")) is None:
  2341. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2342. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2343. factor = rope_scaling.get("factor", 8.0)
  2344. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  2345. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  2346. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2347. low_freq_wavelen = old_context_len / low_freq_factor
  2348. high_freq_wavelen = old_context_len / high_freq_factor
  2349. assert low_freq_wavelen != high_freq_wavelen
  2350. rope_factors = []
  2351. for freq in freqs:
  2352. wavelen = 2 * math.pi / freq
  2353. if wavelen < high_freq_wavelen:
  2354. rope_factors.append(1)
  2355. elif wavelen > low_freq_wavelen:
  2356. rope_factors.append(factor)
  2357. else:
  2358. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2359. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2360. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2361. def prepare_tensors(self):
  2362. super().prepare_tensors()
  2363. @ModelBase.register("BitnetForCausalLM")
  2364. class BitnetModel(TextModel):
  2365. model_arch = gguf.MODEL_ARCH.BITNET
  2366. def set_vocab(self):
  2367. self._set_vocab_sentencepiece()
  2368. def set_gguf_parameters(self):
  2369. super().set_gguf_parameters()
  2370. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2371. self.gguf_writer.add_rope_scaling_factor(1.0)
  2372. def weight_quant(self, weight: Tensor) -> Tensor:
  2373. dtype = weight.dtype
  2374. weight = weight.float()
  2375. scale = weight.abs().mean().clamp(min=1e-5)
  2376. iscale = 1 / scale
  2377. # TODO: multiply by the scale directly instead of inverting it twice
  2378. # (this is also unnecessarily doubly inverted upstream)
  2379. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2380. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2381. return result.type(dtype)
  2382. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2383. new_name = self.map_tensor_name(name)
  2384. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2385. gguf.MODEL_TENSOR.ATTN_Q,
  2386. gguf.MODEL_TENSOR.ATTN_K,
  2387. gguf.MODEL_TENSOR.ATTN_V,
  2388. gguf.MODEL_TENSOR.ATTN_OUT,
  2389. gguf.MODEL_TENSOR.FFN_UP,
  2390. gguf.MODEL_TENSOR.FFN_DOWN,
  2391. gguf.MODEL_TENSOR.FFN_GATE,
  2392. ]):
  2393. # transform weight into 1/0/-1 (in fp32)
  2394. data_torch = self.weight_quant(data_torch)
  2395. yield (new_name, data_torch)
  2396. @ModelBase.register("GrokForCausalLM", "Grok1ForCausalLM")
  2397. class GrokModel(TextModel):
  2398. model_arch = gguf.MODEL_ARCH.GROK
  2399. def set_vocab(self):
  2400. if (self.dir_model / 'tokenizer.model').is_file():
  2401. self._set_vocab_sentencepiece()
  2402. return
  2403. if not (self.dir_model / 'tokenizer.json').is_file() or not (self.dir_model / 'chat_template.jinja').is_file():
  2404. logger.error('Error: Missing vocab and chat template, download files from https://huggingface.co/alvarobartt/grok-2-tokenizer')
  2405. sys.exit(1)
  2406. self._set_vocab_gpt2()
  2407. def __init__(self, *args, **kwargs):
  2408. super().__init__(*args, **kwargs)
  2409. def set_gguf_parameters(self):
  2410. super().set_gguf_parameters()
  2411. self.gguf_writer.add_attn_logit_softcapping(self.hparams.get("attn_logit_softcapping", 30.0))
  2412. self.gguf_writer.add_router_logit_softcapping(self.hparams.get("router_logit_softcapping", 30.0))
  2413. if (final_logit_softcap := self.hparams.get("final_logit_softcapping")):
  2414. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  2415. if (rope_dim := self.hparams.get("head_dim")) is None:
  2416. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2417. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2418. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2419. # Treat "original" as "yarn", seems to have been a mistake
  2420. if self.hparams.get("rope_type") in ("yarn", "original"):
  2421. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2422. self.gguf_writer.add_rope_scaling_factor(self.hparams["scaling_factor"])
  2423. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["original_max_position_embeddings"])
  2424. self.gguf_writer.add_rope_scaling_yarn_ext_factor(self.hparams["extrapolation_factor"])
  2425. self.gguf_writer.add_rope_scaling_yarn_attn_factor(self.hparams["attn_factor"])
  2426. self.gguf_writer.add_rope_scaling_yarn_beta_fast(self.hparams["beta_fast"])
  2427. self.gguf_writer.add_rope_scaling_yarn_beta_slow(self.hparams["beta_slow"])
  2428. if temp_len := self.hparams.get("attn_temperature_len"):
  2429. self.gguf_writer.add_attn_temperature_length(temp_len)
  2430. self.gguf_writer.add_attn_output_scale(self.hparams.get("attn_output_multiplier", rope_dim**-0.5))
  2431. self.gguf_writer.add_embedding_scale(self.hparams["embedding_multiplier_scale"])
  2432. self.gguf_writer.add_logit_scale(self.hparams["output_multiplier_scale"])
  2433. _experts: list[dict[str, list[Tensor]]] | None = None
  2434. _cur_expert = ""
  2435. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2436. tensors: list[tuple[str, Tensor]] = []
  2437. is_expert = ".moe." in name or ".block_sparse_moe.experts." in name
  2438. if not is_expert:
  2439. tensors.append((self.map_tensor_name(name), data_torch))
  2440. # process the experts separately
  2441. if is_expert or self._cur_expert:
  2442. n_experts = self.hparams["num_local_experts"]
  2443. assert bid is not None
  2444. if self._experts is None:
  2445. self._experts = [{} for _ in range(self.block_count)]
  2446. # concatenate split tensors
  2447. if name in self._experts[bid]:
  2448. self._cur_expert = name
  2449. self._experts[bid][name].append(data_torch)
  2450. return []
  2451. elif is_expert:
  2452. self._cur_expert = name
  2453. self._experts[bid][name] = [data_torch]
  2454. return []
  2455. else:
  2456. self._cur_expert = ""
  2457. for bid in range(self.block_count):
  2458. if len(self._experts[bid]) >= n_experts * 3:
  2459. # merge the experts into a single 3d tensor
  2460. for wid in [("linear", "w1", 0), ("linear_1", "w2", 1), ("linear_v", "w3", 0)]:
  2461. datas: list[Tensor] = []
  2462. for xid in range(n_experts):
  2463. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid[0]}.weight"
  2464. if ename not in self._experts[bid]:
  2465. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid[1]}.weight"
  2466. tensor_list = self._experts[bid][ename]
  2467. datas.append(torch.cat(tensor_list, dim=wid[2]) if len(tensor_list) > 1 else tensor_list[0])
  2468. del self._experts[bid][ename]
  2469. data_torch = torch.stack(datas, dim=0)
  2470. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid[0]}.weight"
  2471. new_name = self.map_tensor_name(merged_name)
  2472. yield (new_name, data_torch)
  2473. yield from tensors
  2474. @ModelBase.register("DbrxForCausalLM")
  2475. class DbrxModel(TextModel):
  2476. model_arch = gguf.MODEL_ARCH.DBRX
  2477. def set_gguf_parameters(self):
  2478. ffn_config = self.hparams["ffn_config"]
  2479. attn_config = self.hparams["attn_config"]
  2480. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  2481. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2482. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2483. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2484. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2485. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2486. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2487. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2488. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2489. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2490. self.gguf_writer.add_layer_norm_eps(1e-5)
  2491. self.gguf_writer.add_file_type(self.ftype)
  2492. logger.info(f"gguf: file type = {self.ftype}")
  2493. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2494. del bid # unused
  2495. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2496. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2497. n_embd = self.hparams["d_model"]
  2498. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2499. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2500. # But llama.cpp moe graph works differently
  2501. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2502. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2503. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2504. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2505. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2506. experts = False
  2507. for exp_tensor_name in exp_tensor_names.keys():
  2508. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2509. experts = True
  2510. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2511. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2512. data_torch = data_torch.permute(*permute_tensor)
  2513. break
  2514. # map tensor names
  2515. # In MoE models the ffn tensors are typically most of the model weights,
  2516. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2517. # Every other model has the weight names ending in .weight,
  2518. # let's assume that is the convention which is not the case for dbrx:
  2519. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2520. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2521. return [(new_name, data_torch)]
  2522. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2523. del name, new_name, bid # unused
  2524. return n_dims > 1
  2525. @ModelBase.register("MiniCPMForCausalLM")
  2526. class MiniCPMModel(TextModel):
  2527. model_arch = gguf.MODEL_ARCH.MINICPM
  2528. def set_gguf_parameters(self):
  2529. super().set_gguf_parameters()
  2530. embedding_scale = float(self.hparams["scale_emb"])
  2531. self.gguf_writer.add_embedding_scale(embedding_scale)
  2532. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2533. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2534. self.gguf_writer.add_residual_scale(residual_scale)
  2535. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2536. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2537. self.gguf_writer.add_logit_scale(logit_scale)
  2538. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2539. rope_scaling = self.hparams.get("rope_scaling") or {}
  2540. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
  2541. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  2542. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  2543. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2544. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2545. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2546. if rope_scaling is not None:
  2547. long_factors = rope_scaling.get('long_factor', None)
  2548. short_factors = rope_scaling.get('short_factor', None)
  2549. if long_factors is None or short_factors is None:
  2550. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2551. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2552. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2553. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2554. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2555. def set_vocab(self):
  2556. self._set_vocab_sentencepiece()
  2557. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2558. del bid # unused
  2559. n_head = self.hparams["num_attention_heads"]
  2560. n_kv_head = self.hparams.get("num_key_value_heads")
  2561. # HF models permute some of the tensors, so we need to undo that
  2562. if name.endswith(("q_proj.weight")):
  2563. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2564. if name.endswith(("k_proj.weight")):
  2565. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2566. return [(self.map_tensor_name(name), data_torch)]
  2567. @ModelBase.register("MiniCPM3ForCausalLM")
  2568. class MiniCPM3Model(TextModel):
  2569. model_arch = gguf.MODEL_ARCH.MINICPM3
  2570. def set_gguf_parameters(self):
  2571. hparams = self.hparams
  2572. self.gguf_writer.add_file_type(self.ftype)
  2573. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2574. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2575. self.gguf_writer.add_block_count(self.block_count)
  2576. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2577. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2578. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2579. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2580. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2581. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2582. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2583. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2584. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2585. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2586. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2587. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2588. if rope_scaling is not None:
  2589. rope_dims = self.hparams["qk_rope_head_dim"]
  2590. long_factors = rope_scaling.get('long_factor', None)
  2591. short_factors = rope_scaling.get('short_factor', None)
  2592. if long_factors is None or short_factors is None:
  2593. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2594. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2595. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2596. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2597. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2598. def set_vocab(self):
  2599. self._set_vocab_sentencepiece()
  2600. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2601. if n_kv_head is not None and n_head != n_kv_head:
  2602. n_head //= n_kv_head
  2603. return (
  2604. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2605. .swapaxes(1, 2)
  2606. .reshape(weights.shape)
  2607. )
  2608. @ModelBase.register("QWenLMHeadModel")
  2609. class QwenModel(TextModel):
  2610. model_arch = gguf.MODEL_ARCH.QWEN
  2611. @staticmethod
  2612. def token_bytes_to_string(b):
  2613. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2614. byte_encoder = bytes_to_unicode()
  2615. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2616. @staticmethod
  2617. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2618. parts = [bytes([b]) for b in token]
  2619. while True:
  2620. min_idx = None
  2621. min_rank = None
  2622. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2623. rank = mergeable_ranks.get(pair[0] + pair[1])
  2624. if rank is not None and (min_rank is None or rank < min_rank):
  2625. min_idx = i
  2626. min_rank = rank
  2627. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2628. break
  2629. assert min_idx is not None
  2630. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2631. return parts
  2632. def set_vocab(self):
  2633. self._set_vocab_qwen()
  2634. def set_gguf_parameters(self):
  2635. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2636. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2637. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2638. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2639. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2640. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2641. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2642. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2643. self.gguf_writer.add_file_type(self.ftype)
  2644. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
  2645. class Qwen2Model(TextModel):
  2646. model_arch = gguf.MODEL_ARCH.QWEN2
  2647. def set_vocab(self):
  2648. try:
  2649. self._set_vocab_sentencepiece()
  2650. except FileNotFoundError:
  2651. self._set_vocab_gpt2()
  2652. def set_gguf_parameters(self):
  2653. super().set_gguf_parameters()
  2654. self._try_set_pooling_type()
  2655. rope_scaling = self.hparams.get("rope_scaling") or {}
  2656. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2657. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2658. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2659. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2660. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2661. if self.hf_arch == "Qwen2Model":
  2662. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2663. if "language_model." in name:
  2664. name = name.replace("language_model.", "") # for InternVL
  2665. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2666. or name.startswith("vision_model") or name.startswith("audio_tower") \
  2667. or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  2668. # skip vision and audio tensors
  2669. return []
  2670. yield from super().modify_tensors(data_torch, name, bid)
  2671. @ModelBase.register("DreamModel")
  2672. class DreamModel(TextModel):
  2673. model_arch = gguf.MODEL_ARCH.DREAM
  2674. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2675. tokens: list[str] = []
  2676. toktypes: list[int] = []
  2677. from transformers import AutoTokenizer
  2678. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2679. vocab_dict = tokenizer.get_vocab()
  2680. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2681. assert max(vocab_dict.values()) < vocab_size
  2682. tokpre = self.get_vocab_base_pre(tokenizer)
  2683. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2684. added_vocab = tokenizer.get_added_vocab()
  2685. for i in range(vocab_size):
  2686. if i not in reverse_vocab:
  2687. tokens.append(f"[PAD{i}]")
  2688. toktypes.append(gguf.TokenType.UNUSED)
  2689. elif reverse_vocab[i] in added_vocab:
  2690. tokens.append(reverse_vocab[i])
  2691. # Check if it's a special token - treat special tokens as CONTROL tokens
  2692. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2693. if tokenizer.added_tokens_decoder[i].special:
  2694. toktypes.append(gguf.TokenType.CONTROL)
  2695. else:
  2696. toktypes.append(gguf.TokenType.USER_DEFINED)
  2697. else:
  2698. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2699. toktypes.append(gguf.TokenType.CONTROL)
  2700. else:
  2701. tokens.append(reverse_vocab[i])
  2702. toktypes.append(gguf.TokenType.NORMAL)
  2703. return tokens, toktypes, tokpre
  2704. def set_vocab(self):
  2705. try:
  2706. self._set_vocab_sentencepiece()
  2707. except FileNotFoundError:
  2708. self._set_vocab_gpt2()
  2709. def set_gguf_parameters(self):
  2710. super().set_gguf_parameters()
  2711. self._try_set_pooling_type()
  2712. # Dream models use non-causal attention for diffusion
  2713. self.gguf_writer.add_causal_attention(False)
  2714. # Handle RoPE scaling similar to Qwen2
  2715. rope_scaling = self.hparams.get("rope_scaling") or {}
  2716. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2717. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2718. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2719. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2720. # Add Dream-specific parameters
  2721. mask_token_id = self.hparams.get("mask_token_id")
  2722. if mask_token_id is not None:
  2723. self.gguf_writer.add_mask_token_id(mask_token_id)
  2724. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2725. # Dream model tensors should be mapped directly since it's the base model
  2726. yield from super().modify_tensors(data_torch, name, bid)
  2727. @ModelBase.register("LLaDAModelLM")
  2728. class LLaDAModel(TextModel):
  2729. model_arch = gguf.MODEL_ARCH.LLADA
  2730. undo_permute = True
  2731. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2732. tokens: list[str] = []
  2733. toktypes: list[int] = []
  2734. from transformers import AutoTokenizer
  2735. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2736. vocab_dict = tokenizer.get_vocab()
  2737. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2738. assert max(vocab_dict.values()) < vocab_size
  2739. tokpre = self.get_vocab_base_pre(tokenizer)
  2740. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2741. added_vocab = tokenizer.get_added_vocab()
  2742. for i in range(vocab_size):
  2743. if i not in reverse_vocab:
  2744. tokens.append(f"[PAD{i}]")
  2745. toktypes.append(gguf.TokenType.UNUSED)
  2746. elif reverse_vocab[i] in added_vocab:
  2747. tokens.append(reverse_vocab[i])
  2748. # Check if it's a special token - treat special tokens as CONTROL tokens
  2749. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2750. if tokenizer.added_tokens_decoder[i].special:
  2751. toktypes.append(gguf.TokenType.CONTROL)
  2752. else:
  2753. toktypes.append(gguf.TokenType.USER_DEFINED)
  2754. else:
  2755. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2756. toktypes.append(gguf.TokenType.CONTROL)
  2757. else:
  2758. tokens.append(reverse_vocab[i])
  2759. toktypes.append(gguf.TokenType.NORMAL)
  2760. return tokens, toktypes, tokpre
  2761. def set_vocab(self):
  2762. self._set_vocab_gpt2()
  2763. # LLaDA specific parameters
  2764. self.gguf_writer.add_add_bos_token(True)
  2765. def set_gguf_parameters(self):
  2766. super().set_gguf_parameters()
  2767. self._try_set_pooling_type()
  2768. # Add parameters similar to LlamaModel
  2769. hparams = self.hparams
  2770. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2771. if (rope_dim := hparams.get("head_dim")) is None:
  2772. n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
  2773. rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
  2774. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2775. # Set context length for LLaDA
  2776. context_length = self.hparams.get("max_sequence_length", 4096)
  2777. self.gguf_writer.add_context_length(context_length)
  2778. # Set embedding length (dimension size)
  2779. embedding_length = self.hparams.get("d_model", 4096)
  2780. self.gguf_writer.add_embedding_length(embedding_length)
  2781. # Set feed forward length (MLP hidden size)
  2782. feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
  2783. self.gguf_writer.add_feed_forward_length(feed_forward_length)
  2784. # LLaDA models use non-causal attention for diffusion, similar to Dream
  2785. self.gguf_writer.add_causal_attention(False)
  2786. # LLaDA models don't shift their logits
  2787. self.gguf_writer.add_diffusion_shift_logits(False)
  2788. @staticmethod
  2789. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2790. if n_head_kv is not None and n_head != n_head_kv:
  2791. n_head = n_head_kv
  2792. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2793. .swapaxes(1, 2)
  2794. .reshape(weights.shape))
  2795. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2796. n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
  2797. n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
  2798. if self.undo_permute:
  2799. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2800. data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
  2801. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2802. data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
  2803. # LLaDA model tensors should be mapped directly since it's the base model
  2804. yield from super().modify_tensors(data_torch, name, bid)
  2805. @ModelBase.register("Ernie4_5_ForCausalLM", "Ernie4_5ForCausalLM")
  2806. class Ernie4_5Model(TextModel):
  2807. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  2808. def set_vocab(self):
  2809. self._set_vocab_sentencepiece()
  2810. def set_gguf_parameters(self):
  2811. super().set_gguf_parameters()
  2812. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2813. num_heads = self.hparams["num_attention_heads"]
  2814. num_kv_heads = self.hparams["num_key_value_heads"]
  2815. if (head_dim := self.hparams.get("head_dim")) is None:
  2816. head_dim = self.hparams["hidden_size"] // num_heads
  2817. if "ernie." in name:
  2818. name = name.replace("ernie.", "model.")
  2819. # split the qkv weights
  2820. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  2821. if "qkv_proj" in name:
  2822. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  2823. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  2824. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  2825. total_q_dim = num_heads * head_dim
  2826. total_k_dim = num_kv_heads * head_dim
  2827. total_v_dim = num_kv_heads * head_dim
  2828. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  2829. return [
  2830. (self.map_tensor_name(name_q), q_proj_weight),
  2831. (self.map_tensor_name(name_k), k_proj_weight),
  2832. (self.map_tensor_name(name_v), v_proj_weight)
  2833. ]
  2834. # split the up_gate_proj into gate and up
  2835. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  2836. if "up_gate_proj" in name:
  2837. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  2838. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  2839. dim_half = data_torch.shape[0] // 2
  2840. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  2841. return [
  2842. (self.map_tensor_name(name_gate), gate_proj_weight),
  2843. (self.map_tensor_name(name_up), up_proj_weight)
  2844. ]
  2845. return [(self.map_tensor_name(name), data_torch)]
  2846. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  2847. class Ernie4_5MoeModel(Ernie4_5Model):
  2848. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  2849. _experts: list[dict[str, Tensor]] | None = None
  2850. def __init__(self, *args, **kwargs):
  2851. super().__init__(*args, **kwargs)
  2852. self._experts = [{} for _ in range(self.block_count)]
  2853. def set_gguf_parameters(self):
  2854. super().set_gguf_parameters()
  2855. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  2856. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  2857. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  2858. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  2859. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2860. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2861. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  2862. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  2863. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  2864. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  2865. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2866. # Modify correction bias name as in DeepseekV2
  2867. if name.endswith("e_score_correction_bias"):
  2868. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  2869. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  2870. match = re.match(r"model.mtp_block.(\d+)", name)
  2871. if match:
  2872. return []
  2873. # skip all other MTP tensors for now
  2874. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  2875. if match:
  2876. return []
  2877. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  2878. if match:
  2879. return []
  2880. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  2881. if match:
  2882. return []
  2883. # process the experts separately
  2884. if name.find("mlp.experts") != -1:
  2885. n_experts = self.hparams["moe_num_experts"]
  2886. assert bid is not None
  2887. if self._experts is None:
  2888. self._experts = [{} for _ in range(self.block_count)]
  2889. self._experts[bid][name] = data_torch
  2890. if len(self._experts[bid]) >= n_experts * 3:
  2891. tensors: list[tuple[str, Tensor]] = []
  2892. # merge the experts into a single 3d tensor
  2893. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2894. datas: list[Tensor] = []
  2895. for xid in range(n_experts):
  2896. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2897. datas.append(self._experts[bid][ename_to_retrieve])
  2898. del self._experts[bid][ename_to_retrieve]
  2899. data_torch = torch.stack(datas, dim=0)
  2900. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2901. new_name = self.map_tensor_name(merged_name)
  2902. tensors.append((new_name, data_torch))
  2903. return tensors
  2904. else:
  2905. return []
  2906. return [(self.map_tensor_name(name), data_torch)]
  2907. def prepare_tensors(self):
  2908. super().prepare_tensors()
  2909. if self._experts is not None:
  2910. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2911. experts = [k for d in self._experts for k in d.keys()]
  2912. if len(experts) > 0:
  2913. raise ValueError(f"Unprocessed experts: {experts}")
  2914. @ModelBase.register(
  2915. "Qwen2VLModel",
  2916. "Qwen2VLForConditionalGeneration",
  2917. "Qwen2_5_VLForConditionalGeneration",
  2918. "Qwen2_5OmniModel",
  2919. )
  2920. class Qwen2VLModel(TextModel):
  2921. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2922. def set_gguf_parameters(self):
  2923. super().set_gguf_parameters()
  2924. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2925. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2926. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2927. def set_vocab(self):
  2928. try:
  2929. self._set_vocab_sentencepiece()
  2930. except FileNotFoundError:
  2931. self._set_vocab_gpt2()
  2932. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2933. del bid # unused
  2934. if name.startswith("thinker."):
  2935. name = name.replace("thinker.", "")
  2936. if name.startswith("visual") or name.startswith("audio") or \
  2937. name.startswith("talker") or name.startswith("token2wav"):
  2938. # skip multimodal tensors
  2939. return []
  2940. return [(self.map_tensor_name(name), data_torch)]
  2941. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2942. class Qwen2VLVisionModel(MmprojModel):
  2943. def __init__(self, *args, **kwargs):
  2944. super().__init__(*args, **kwargs)
  2945. assert self.hparams_vision is not None
  2946. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  2947. # rename config.json values
  2948. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  2949. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  2950. if "embed_dim" in self.hparams_vision: # qwen2vl
  2951. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  2952. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  2953. def set_gguf_parameters(self):
  2954. super().set_gguf_parameters()
  2955. assert self.hparams_vision is not None
  2956. hparams = self.hparams_vision
  2957. model_type = self.global_config['model_type']
  2958. if model_type == 'qwen2_vl':
  2959. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  2960. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  2961. if model_type == 'qwen2_5_omni':
  2962. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  2963. else:
  2964. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  2965. self.gguf_writer.add_vision_use_silu(True)
  2966. # find n_wa_pattern (window attention pattern)
  2967. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  2968. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  2969. n_wa_pattern = fullatt_block_indexes[0] + 1
  2970. # validate n_wa_pattern
  2971. for i in range(1, len(fullatt_block_indexes)):
  2972. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  2973. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  2974. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  2975. else:
  2976. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  2977. # default values below are taken from HF tranformers code
  2978. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  2979. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2980. if ".position_embd." in new_name:
  2981. return gguf.GGMLQuantizationType.F32
  2982. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2983. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2984. del bid # unused
  2985. if name.startswith("visual."):
  2986. # process visual tensors
  2987. # split QKV tensors if needed
  2988. if ".qkv." in name:
  2989. if data_torch.ndim == 2: # weight
  2990. c3, _ = data_torch.shape
  2991. else: # bias
  2992. c3 = data_torch.shape[0]
  2993. assert c3 % 3 == 0
  2994. c = c3 // 3
  2995. wq = data_torch[:c]
  2996. wk = data_torch[c: c * 2]
  2997. wv = data_torch[c * 2:]
  2998. return [
  2999. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  3000. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  3001. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  3002. ]
  3003. elif 'patch_embed.proj.weight' in name:
  3004. # split Conv3D into Conv2Ds
  3005. c1, c2, kt, kh, kw = data_torch.shape
  3006. del c1, c2, kh, kw # unused
  3007. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  3008. return [
  3009. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  3010. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3011. ]
  3012. else:
  3013. return [(self.map_tensor_name(name), data_torch)]
  3014. return [] # skip other tensors
  3015. @ModelBase.register("Qwen2_5OmniModel")
  3016. class Qwen25OmniModel(Qwen2VLVisionModel):
  3017. has_vision_encoder = True
  3018. has_audio_encoder = True
  3019. def __init__(self, *args, **kwargs):
  3020. super().__init__(*args, **kwargs)
  3021. assert self.hparams_audio is not None
  3022. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  3023. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  3024. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  3025. def set_gguf_parameters(self):
  3026. super().set_gguf_parameters()
  3027. assert self.hparams_audio is not None
  3028. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  3029. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  3030. def get_vision_config(self) -> dict[str, Any] | None:
  3031. return self.global_config["thinker_config"].get("vision_config")
  3032. def get_audio_config(self) -> dict[str, Any] | None:
  3033. return self.global_config["thinker_config"].get("audio_config")
  3034. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3035. # SinusoidsPositionEmbedding
  3036. assert self.hparams_audio is not None
  3037. max_timescale = 10000
  3038. length = 1500
  3039. channels = self.hparams_audio["hidden_size"]
  3040. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  3041. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  3042. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  3043. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  3044. yield ("audio_tower.embed_positions.weight", pos_embd)
  3045. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3046. if ".conv" in name and ".weight" in name:
  3047. return gguf.GGMLQuantizationType.F16
  3048. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3049. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3050. if name.startswith("thinker."):
  3051. name = name.replace("thinker.", "")
  3052. if name.startswith("audio_tower"):
  3053. # process audio tensors
  3054. if "conv1.bias" in name or "conv2.bias" in name:
  3055. # transpose conv1 and conv2 bias
  3056. data_torch = data_torch.unsqueeze(-1)
  3057. if "audio_bos_eos_token" in name:
  3058. # this tensor is left unused in transformers code
  3059. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  3060. return []
  3061. return [(self.map_tensor_name(name), data_torch)]
  3062. return super().modify_tensors(data_torch, name, bid)
  3063. @ModelBase.register("InternVisionModel")
  3064. class InternVisionModel(MmprojModel):
  3065. def set_gguf_parameters(self):
  3066. assert self.hparams_vision is not None
  3067. if isinstance(self.hparams_vision['image_size'], list):
  3068. self.hparams_vision['image_size'] = self.hparams_vision['image_size'][0]
  3069. if isinstance(self.hparams_vision['patch_size'], list):
  3070. self.hparams_vision['patch_size'] = self.hparams_vision['patch_size'][0]
  3071. super().set_gguf_parameters()
  3072. hparams = self.hparams
  3073. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  3074. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  3075. # hidden_act
  3076. if hparams["hidden_act"] == "silu":
  3077. self.gguf_writer.add_vision_use_silu(True)
  3078. elif hparams["hidden_act"] == "gelu":
  3079. self.gguf_writer.add_vision_use_gelu(True)
  3080. else:
  3081. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  3082. # downsample_ratio
  3083. downsample_ratio = self.global_config.get("downsample_ratio")
  3084. assert downsample_ratio is not None
  3085. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  3086. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3087. if ".position_embd." in new_name:
  3088. return gguf.GGMLQuantizationType.F32
  3089. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3090. def _mapping_interns1_name(self, name):
  3091. names_map = {
  3092. "model.multi_modal_projector.layer_norm.bias": "mlp1.0.bias",
  3093. "model.multi_modal_projector.layer_norm.weight": "mlp1.0.weight",
  3094. "model.multi_modal_projector.linear_1.bias": "mlp1.1.bias",
  3095. "model.multi_modal_projector.linear_1.weight": "mlp1.1.weight",
  3096. "model.multi_modal_projector.linear_2.bias": "mlp1.3.bias",
  3097. "model.multi_modal_projector.linear_2.weight": "mlp1.3.weight",
  3098. }
  3099. if name in names_map:
  3100. name = names_map[name]
  3101. return name
  3102. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3103. del bid # unused
  3104. vision_prefix = ['vision_model', 'mlp', 'model.vision_tower', 'model.multi_modal_projector']
  3105. # deal with intern-s1 special case
  3106. name = self._mapping_interns1_name(name)
  3107. if any([name.startswith(prefix) for prefix in vision_prefix]):
  3108. # process visual tensors
  3109. # correct name
  3110. if name.startswith("vision_model"):
  3111. name = "vision_tower." + name
  3112. if (".ls" in name or ".lambda_" in name or "position_embedding" in name) and not name.endswith(".weight"):
  3113. name += ".weight"
  3114. # split QKV tensors if needed
  3115. if ".qkv." in name:
  3116. if data_torch.ndim == 2: # weight
  3117. c3, _ = data_torch.shape
  3118. else: # bias
  3119. c3 = data_torch.shape[0]
  3120. assert c3 % 3 == 0
  3121. c = c3 // 3
  3122. wq = data_torch[:c]
  3123. wk = data_torch[c: c * 2]
  3124. wv = data_torch[c * 2:]
  3125. return [
  3126. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  3127. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  3128. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  3129. ]
  3130. return [(self.map_tensor_name(name), data_torch)]
  3131. return [] # skip other tensors
  3132. @ModelBase.register("WavTokenizerDec")
  3133. class WavTokenizerDecModel(TextModel):
  3134. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  3135. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3136. del bid # unused
  3137. if \
  3138. name.endswith("codebook.cluster_size") or \
  3139. name.endswith("codebook.embed_avg") or \
  3140. name.endswith("codebook.inited"):
  3141. logger.debug(f"Skipping {name!r}")
  3142. return []
  3143. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  3144. return [(self.map_tensor_name(name), data_torch)]
  3145. def set_vocab(self):
  3146. self._set_vocab_none()
  3147. def set_gguf_parameters(self):
  3148. super().set_gguf_parameters()
  3149. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  3150. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  3151. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  3152. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  3153. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  3154. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  3155. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  3156. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  3157. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  3158. self.gguf_writer.add_causal_attention(False)
  3159. @ModelBase.register("Qwen2MoeForCausalLM")
  3160. class Qwen2MoeModel(TextModel):
  3161. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  3162. def set_gguf_parameters(self):
  3163. super().set_gguf_parameters()
  3164. if (n_experts := self.hparams.get("num_experts")) is not None:
  3165. self.gguf_writer.add_expert_count(n_experts)
  3166. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3167. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3168. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  3169. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  3170. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  3171. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  3172. # YaRN is not enabled by default
  3173. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  3174. rope_scaling = self.hparams.get("rope_scaling") or {}
  3175. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  3176. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  3177. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3178. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  3179. _experts: list[dict[str, Tensor]] | None = None
  3180. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3181. # process the experts separately
  3182. name = name.replace("language_model.", "") # InternVL
  3183. if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  3184. # skip visual tensors
  3185. return []
  3186. if name.find("experts") != -1:
  3187. n_experts = self.hparams["num_experts"]
  3188. assert bid is not None
  3189. if self._experts is None:
  3190. self._experts = [{} for _ in range(self.block_count)]
  3191. self._experts[bid][name] = data_torch
  3192. if len(self._experts[bid]) >= n_experts * 3:
  3193. tensors: list[tuple[str, Tensor]] = []
  3194. # merge the experts into a single 3d tensor
  3195. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3196. datas: list[Tensor] = []
  3197. for xid in range(n_experts):
  3198. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3199. datas.append(self._experts[bid][ename])
  3200. del self._experts[bid][ename]
  3201. data_torch = torch.stack(datas, dim=0)
  3202. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3203. new_name = self.map_tensor_name(merged_name)
  3204. tensors.append((new_name, data_torch))
  3205. return tensors
  3206. else:
  3207. return []
  3208. return [(self.map_tensor_name(name), data_torch)]
  3209. def prepare_tensors(self):
  3210. super().prepare_tensors()
  3211. if self._experts is not None:
  3212. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3213. experts = [k for d in self._experts for k in d.keys()]
  3214. if len(experts) > 0:
  3215. raise ValueError(f"Unprocessed experts: {experts}")
  3216. @ModelBase.register("Qwen3ForCausalLM")
  3217. class Qwen3Model(Qwen2Model):
  3218. model_arch = gguf.MODEL_ARCH.QWEN3
  3219. # extra logic for rerank models
  3220. is_rerank: bool = False
  3221. is_tied_embeddings: bool = False
  3222. token_false_id: int | None = None
  3223. token_true_id: int | None = None
  3224. def __init__(self, *args, **kwargs):
  3225. super().__init__(*args, **kwargs)
  3226. # track for intern-s1-mini
  3227. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  3228. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3229. # a bit hacky, but currently the only way to detect if this is a rerank model
  3230. # ref: https://huggingface.co/Qwen/Qwen3-Reranker-0.6B
  3231. readme_path = self.dir_model / "README.md"
  3232. readme_text = ""
  3233. if readme_path.exists():
  3234. with readme_path.open("r", encoding="utf-8") as f:
  3235. readme_text = f.read()
  3236. if "# Qwen3-Reranker" in readme_text:
  3237. self._find_rerank_config()
  3238. def set_vocab(self):
  3239. # deal with intern-s1-mini
  3240. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3241. self._set_vocab_interns1()
  3242. return
  3243. super().set_vocab()
  3244. def _find_rerank_config(self):
  3245. from transformers import AutoTokenizer
  3246. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3247. self.is_rerank = True
  3248. self.is_tied_embeddings = self.hparams.get("tie_word_embeddings", False)
  3249. self.token_false_id = tokenizer.convert_tokens_to_ids("no")
  3250. self.token_true_id = tokenizer.convert_tokens_to_ids("yes")
  3251. self.sep_token_id = tokenizer.convert_tokens_to_ids("|")
  3252. assert self.token_false_id is not None and self.token_true_id is not None
  3253. def set_gguf_parameters(self):
  3254. super().set_gguf_parameters()
  3255. if self.is_rerank:
  3256. self.gguf_writer.add_pooling_type(gguf.PoolingType.RANK)
  3257. self.gguf_writer.add_classifier_output_labels(["yes", "no"])
  3258. self.gguf_writer.add_chat_template([{
  3259. "name": "rerank",
  3260. "template": "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n"
  3261. "<|im_start|>user\n<Instruct>: Given a web search query, retrieve relevant passages that answer the query\n<Query>: {query}\n<Document>: {document}<|im_end|>\n"
  3262. "<|im_start|>assistant\n<think>\n\n</think>\n\n"
  3263. }])
  3264. def _get_cls_out_tensor(self, data_torch: Tensor) -> Tensor:
  3265. # extract "yes" and "no" tokens from the output lm_head tensor
  3266. false_row = data_torch[self.token_false_id]
  3267. true_row = data_torch[self.token_true_id]
  3268. return torch.stack([true_row, false_row], dim=0)
  3269. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3270. if self.is_rerank:
  3271. is_tied_head = self.is_tied_embeddings and "embed_tokens" in name
  3272. is_real_head = not self.is_tied_embeddings and "lm_head" in name
  3273. if is_tied_head or is_real_head:
  3274. cls_out_head = (
  3275. gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.CLS_OUT] + ".weight",
  3276. self._get_cls_out_tensor(data_torch),
  3277. )
  3278. if is_tied_head:
  3279. embed = (self.map_tensor_name(name), data_torch)
  3280. return [cls_out_head, embed]
  3281. if is_real_head:
  3282. return [cls_out_head]
  3283. return super().modify_tensors(data_torch, name, bid)
  3284. @ModelBase.register("Qwen3MoeForCausalLM")
  3285. class Qwen3MoeModel(Qwen2MoeModel):
  3286. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  3287. def __init__(self, *args, **kwargs):
  3288. super().__init__(*args, **kwargs)
  3289. hparams = ModelBase.load_hparams(self.dir_model, False)
  3290. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3291. def set_vocab(self):
  3292. # deal with intern-s1
  3293. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3294. self._set_vocab_interns1()
  3295. return
  3296. super().set_vocab()
  3297. @ModelBase.register("GPT2LMHeadModel")
  3298. class GPT2Model(TextModel):
  3299. model_arch = gguf.MODEL_ARCH.GPT2
  3300. def set_gguf_parameters(self):
  3301. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  3302. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  3303. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3304. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3305. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3306. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3307. self.gguf_writer.add_file_type(self.ftype)
  3308. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3309. del bid # unused
  3310. tensors: list[tuple[str, Tensor]] = []
  3311. # we don't need these
  3312. if name.endswith((".attn.bias", ".attn.masked_bias")):
  3313. return tensors
  3314. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  3315. data_torch = data_torch.transpose(1, 0)
  3316. new_name = self.map_tensor_name(name)
  3317. tensors.append((new_name, data_torch))
  3318. return tensors
  3319. @ModelBase.register("MiniMaxM2ForCausalLM", "MiniMaxM2MiniForCausalLM")
  3320. class MiniMaxM2Model(TextModel):
  3321. model_arch = gguf.MODEL_ARCH.MINIMAX_M2
  3322. _experts: list[dict[str, Tensor]] | None = None
  3323. def set_vocab(self):
  3324. # Try SentencePiece, then Llama-HF, then GPT2 (merges+vocab)
  3325. try:
  3326. self._set_vocab_sentencepiece()
  3327. except FileNotFoundError:
  3328. try:
  3329. self._set_vocab_llama_hf()
  3330. except FileNotFoundError:
  3331. self._set_vocab_gpt2()
  3332. tokenizer_config_file = self.dir_model / "tokenizer_config.json"
  3333. if tokenizer_config_file.is_file():
  3334. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3335. tokenizer_config_json = json.load(f)
  3336. if "add_prefix_space" in tokenizer_config_json:
  3337. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  3338. def set_gguf_parameters(self):
  3339. hparams = self.hparams
  3340. block_count = hparams["num_hidden_layers"]
  3341. n_embd = hparams["hidden_size"]
  3342. n_head = hparams["num_attention_heads"]
  3343. n_head_kv = hparams["num_key_value_heads"]
  3344. # MiniMax M2 uses partial RoPE: head_dim=128 but only rotary_dim=64 gets RoPE applied
  3345. rope_dim = hparams.get("rotary_dim", n_embd // n_head)
  3346. # MiniMax M2 expert FFN uses intermediate_size (1536), NOT mlp_intermediate_size (8192)
  3347. # mlp_intermediate_size in config.json is misleading/unused
  3348. n_ff = hparams.get("intermediate_size", 8192)
  3349. self.gguf_writer.add_block_count(block_count)
  3350. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3351. self.gguf_writer.add_embedding_length(n_embd)
  3352. self.gguf_writer.add_feed_forward_length(n_ff)
  3353. self.gguf_writer.add_head_count(n_head)
  3354. self.gguf_writer.add_head_count_kv(n_head_kv)
  3355. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  3356. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3357. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 10000.0))
  3358. self.gguf_writer.add_file_type(self.ftype)
  3359. if hparams.get("num_local_experts", 0) > 0:
  3360. self.gguf_writer.add_expert_count(hparams["num_local_experts"])
  3361. self.gguf_writer.add_expert_used_count(hparams["num_experts_per_tok"])
  3362. self.gguf_writer.add_expert_feed_forward_length(n_ff)
  3363. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  3364. if hparams.get("use_qk_norm", False):
  3365. self.gguf_writer.add_bool(gguf.Keys.Attention.QK_NORM.format(arch=self.gguf_writer.arch), True)
  3366. if (eps := hparams.get("attention_qk_norm_eps")) is not None:
  3367. self.gguf_writer.add_float32(gguf.Keys.Attention.QK_NORM_EPS.format(arch=self.gguf_writer.arch), eps)
  3368. # Set head dimensions explicitly (critical for GQA models with head_dim != n_embd/n_head)
  3369. head_dim = hparams.get("head_dim", hparams["hidden_size"] // hparams["num_attention_heads"])
  3370. self.gguf_writer.add_uint32(gguf.Keys.Attention.KEY_LENGTH.format(arch=self.gguf_writer.arch), head_dim)
  3371. self.gguf_writer.add_uint32(gguf.Keys.Attention.VALUE_LENGTH.format(arch=self.gguf_writer.arch), head_dim)
  3372. def prepare_metadata(self, vocab_only: bool):
  3373. super().prepare_metadata(vocab_only=vocab_only)
  3374. # Override size label to '230x10B' format (total params in 10B × active 10B)
  3375. total_params = self.gguf_writer.get_total_parameter_count()[0]
  3376. total_b = int(round(total_params / 1e10) * 10) # round to nearest 10B
  3377. size_label = f"{total_b}x10B"
  3378. self.gguf_writer.add_size_label(size_label)
  3379. # Force GPT-2 style BPE pre-tokenizer for MiniMax M2
  3380. def get_vocab_base_pre(self, tokenizer) -> str: # type: ignore[override]
  3381. return "gpt-2"
  3382. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3383. del bid, n_dims
  3384. if name.endswith(""):
  3385. return False
  3386. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3387. def _flush_experts(self, bid: int, n_experts: int) -> Iterable[tuple[str, Tensor]]:
  3388. assert self._experts is not None
  3389. tensors: list[tuple[str, Tensor]] = []
  3390. buckets = self._experts[bid]
  3391. def _stack(prefix: str) -> Tensor:
  3392. parts: list[Tensor] = []
  3393. for xid in range(n_experts):
  3394. key = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{prefix}.weight"
  3395. parts.append(buckets[key])
  3396. del buckets[key]
  3397. # torch dims: [n_expert, rows, cols]
  3398. return torch.stack(parts, dim=0)
  3399. # Provide torch dims so GGUF/ggml (which reverses dims) ends up with:
  3400. # gate/up -> [n_embd, n_ff, n_expert], down -> [n_ff, n_embd, n_expert]
  3401. # w1, w3 in HF are typically [n_ff, n_embd]; w2 is [n_embd, n_ff].
  3402. gate = _stack("w1") # [n_expert, n_ff, n_embd]
  3403. up = _stack("w3") # [n_expert, n_ff, n_embd]
  3404. down = _stack("w2") # [n_expert, n_embd, n_ff]
  3405. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate))
  3406. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up))
  3407. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN_EXP, bid), down))
  3408. return tensors
  3409. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3410. # Skip FP8 quantization scale tensors - they will be handled separately if needed
  3411. if "weight_scale_inv" in name:
  3412. return []
  3413. # MoE experts aggregation
  3414. if name.find("block_sparse_moe.experts") != -1:
  3415. assert bid is not None
  3416. n_experts = self.hparams["num_local_experts"]
  3417. if self._experts is None:
  3418. self._experts = [{} for _ in range(self.block_count)]
  3419. self._experts[bid][name] = data_torch
  3420. if len(self._experts[bid]) >= n_experts * 3:
  3421. return self._flush_experts(bid, n_experts)
  3422. return []
  3423. if name.endswith("e_score_correction_bias"):
  3424. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  3425. return [(self.map_tensor_name(name), data_torch)]
  3426. def prepare_tensors(self):
  3427. super().prepare_tensors()
  3428. if self._experts is not None:
  3429. leftovers = [k for d in self._experts for k in d.keys()]
  3430. if leftovers:
  3431. raise ValueError(f"Unprocessed experts: {leftovers}")
  3432. @ModelBase.register("PhiForCausalLM")
  3433. class Phi2Model(TextModel):
  3434. model_arch = gguf.MODEL_ARCH.PHI2
  3435. def set_gguf_parameters(self):
  3436. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  3437. rot_pct = self.find_hparam(["partial_rotary_factor"])
  3438. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3439. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3440. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  3441. self.gguf_writer.add_embedding_length(n_embd)
  3442. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  3443. self.gguf_writer.add_block_count(block_count)
  3444. self.gguf_writer.add_head_count(n_head)
  3445. self.gguf_writer.add_head_count_kv(n_head)
  3446. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  3447. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3448. self.gguf_writer.add_file_type(self.ftype)
  3449. self.gguf_writer.add_add_bos_token(False)
  3450. @ModelBase.register("Phi3ForCausalLM")
  3451. class Phi3MiniModel(TextModel):
  3452. model_arch = gguf.MODEL_ARCH.PHI3
  3453. def set_vocab(self):
  3454. # Phi-4 model uses GPT2Tokenizer
  3455. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3456. if tokenizer_config_file.is_file():
  3457. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3458. tokenizer_config_json = json.load(f)
  3459. tokenizer_class = tokenizer_config_json['tokenizer_class']
  3460. if tokenizer_class == 'GPT2Tokenizer':
  3461. return self._set_vocab_gpt2()
  3462. from sentencepiece import SentencePieceProcessor
  3463. tokenizer_path = self.dir_model / 'tokenizer.model'
  3464. if not tokenizer_path.is_file():
  3465. raise ValueError(f'Error: Missing {tokenizer_path}')
  3466. tokenizer = SentencePieceProcessor()
  3467. tokenizer.LoadFromFile(str(tokenizer_path))
  3468. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3469. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3470. scores: list[float] = [-10000.0] * vocab_size
  3471. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3472. for token_id in range(tokenizer.vocab_size()):
  3473. piece = tokenizer.IdToPiece(token_id)
  3474. text = piece.encode("utf-8")
  3475. score = tokenizer.GetScore(token_id)
  3476. toktype = SentencePieceTokenTypes.NORMAL
  3477. if tokenizer.IsUnknown(token_id):
  3478. toktype = SentencePieceTokenTypes.UNKNOWN
  3479. elif tokenizer.IsControl(token_id):
  3480. toktype = SentencePieceTokenTypes.CONTROL
  3481. elif tokenizer.IsUnused(token_id):
  3482. toktype = SentencePieceTokenTypes.UNUSED
  3483. elif tokenizer.IsByte(token_id):
  3484. toktype = SentencePieceTokenTypes.BYTE
  3485. tokens[token_id] = text
  3486. scores[token_id] = score
  3487. toktypes[token_id] = toktype
  3488. added_tokens_file = self.dir_model / 'added_tokens.json'
  3489. if added_tokens_file.is_file():
  3490. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3491. added_tokens_json = json.load(f)
  3492. for key in added_tokens_json:
  3493. token_id = added_tokens_json[key]
  3494. if token_id >= vocab_size:
  3495. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3496. continue
  3497. tokens[token_id] = key.encode("utf-8")
  3498. scores[token_id] = -1000.0
  3499. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3500. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3501. if tokenizer_config_file.is_file():
  3502. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3503. tokenizer_config_json = json.load(f)
  3504. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3505. for token_id, foken_data in added_tokens_decoder.items():
  3506. token_id = int(token_id)
  3507. token = foken_data["content"].encode("utf-8")
  3508. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3509. if tokens[token_id] != token:
  3510. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3511. tokens[token_id] = token
  3512. scores[token_id] = -1000.0
  3513. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3514. if foken_data.get("special"):
  3515. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3516. tokenizer_file = self.dir_model / 'tokenizer.json'
  3517. if tokenizer_file.is_file():
  3518. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3519. tokenizer_json = json.load(f)
  3520. added_tokens = tokenizer_json.get("added_tokens", [])
  3521. for foken_data in added_tokens:
  3522. token_id = int(foken_data["id"])
  3523. token = foken_data["content"].encode("utf-8")
  3524. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3525. if tokens[token_id] != token:
  3526. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3527. tokens[token_id] = token
  3528. scores[token_id] = -1000.0
  3529. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3530. if foken_data.get("special"):
  3531. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3532. self.gguf_writer.add_tokenizer_model("llama")
  3533. self.gguf_writer.add_tokenizer_pre("default")
  3534. self.gguf_writer.add_token_list(tokens)
  3535. self.gguf_writer.add_token_scores(scores)
  3536. self.gguf_writer.add_token_types(toktypes)
  3537. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3538. special_vocab.add_to_gguf(self.gguf_writer)
  3539. def set_gguf_parameters(self):
  3540. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  3541. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3542. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3543. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  3544. rms_eps = self.find_hparam(["rms_norm_eps"])
  3545. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3546. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3547. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3548. rope_dims = int(rot_pct * n_embd) // n_head
  3549. self.gguf_writer.add_context_length(max_pos_embds)
  3550. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  3551. self.gguf_writer.add_embedding_length(n_embd)
  3552. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  3553. self.gguf_writer.add_block_count(block_count)
  3554. self.gguf_writer.add_head_count(n_head)
  3555. self.gguf_writer.add_head_count_kv(n_head_kv)
  3556. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  3557. self.gguf_writer.add_rope_dimension_count(rope_dims)
  3558. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  3559. self.gguf_writer.add_file_type(self.ftype)
  3560. sliding_window = self.hparams.get("sliding_window")
  3561. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  3562. if sliding_window is None:
  3563. sliding_window = 0
  3564. self.gguf_writer.add_sliding_window(sliding_window)
  3565. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3566. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3567. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3568. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3569. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3570. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3571. rope_dims = int(rot_pct * n_embd) // n_head
  3572. # write rope scaling for long context (128k) model
  3573. rope_scaling = self.find_hparam(['rope_scaling'], True)
  3574. if rope_scaling is None:
  3575. return
  3576. scale = max_pos_embds / orig_max_pos_embds
  3577. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  3578. if len(rope_scaling_type) == 0:
  3579. raise KeyError('Missing the required key rope_scaling.type')
  3580. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  3581. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  3582. elif rope_scaling_type == 'yarn':
  3583. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  3584. else:
  3585. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  3586. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  3587. long_factors = rope_scaling.get('long_factor', None)
  3588. short_factors = rope_scaling.get('short_factor', None)
  3589. if long_factors is None or short_factors is None:
  3590. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  3591. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  3592. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  3593. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  3594. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  3595. @ModelBase.register("PhiMoEForCausalLM")
  3596. class PhiMoeModel(Phi3MiniModel):
  3597. model_arch = gguf.MODEL_ARCH.PHIMOE
  3598. _experts: list[dict[str, Tensor]] | None = None
  3599. def set_gguf_parameters(self):
  3600. super().set_gguf_parameters()
  3601. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  3602. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  3603. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3604. # process the experts separately
  3605. if name.find("block_sparse_moe.experts") != -1:
  3606. n_experts = self.hparams["num_local_experts"]
  3607. assert bid is not None
  3608. if self._experts is None:
  3609. self._experts = [{} for _ in range(self.block_count)]
  3610. self._experts[bid][name] = data_torch
  3611. if len(self._experts[bid]) >= n_experts * 3:
  3612. tensors: list[tuple[str, Tensor]] = []
  3613. # merge the experts into a single 3d tensor
  3614. for w_name in ["w1", "w2", "w3"]:
  3615. datas: list[Tensor] = []
  3616. for xid in range(n_experts):
  3617. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  3618. datas.append(self._experts[bid][ename])
  3619. del self._experts[bid][ename]
  3620. data_torch = torch.stack(datas, dim=0)
  3621. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  3622. new_name = self.map_tensor_name(merged_name)
  3623. tensors.append((new_name, data_torch))
  3624. return tensors
  3625. else:
  3626. return []
  3627. return [(self.map_tensor_name(name), data_torch)]
  3628. def prepare_tensors(self):
  3629. super().prepare_tensors()
  3630. if self._experts is not None:
  3631. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3632. experts = [k for d in self._experts for k in d.keys()]
  3633. if len(experts) > 0:
  3634. raise ValueError(f"Unprocessed experts: {experts}")
  3635. @ModelBase.register("PlamoForCausalLM")
  3636. class PlamoModel(TextModel):
  3637. model_arch = gguf.MODEL_ARCH.PLAMO
  3638. def set_vocab(self):
  3639. self._set_vocab_sentencepiece()
  3640. def set_gguf_parameters(self):
  3641. hparams = self.hparams
  3642. block_count = hparams["num_hidden_layers"]
  3643. self.gguf_writer.add_context_length(4096) # not in config.json
  3644. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3645. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3646. self.gguf_writer.add_block_count(block_count)
  3647. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3648. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  3649. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  3650. self.gguf_writer.add_file_type(self.ftype)
  3651. def shuffle_attn_q_weight(self, data_torch):
  3652. assert data_torch.size() == (5120, 5120)
  3653. data_torch = data_torch.reshape(8, 5, 128, 5120)
  3654. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  3655. data_torch = torch.reshape(data_torch, (5120, 5120))
  3656. return data_torch
  3657. def shuffle_attn_output_weight(self, data_torch):
  3658. assert data_torch.size() == (5120, 5120)
  3659. data_torch = data_torch.reshape(5120, 8, 5, 128)
  3660. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  3661. data_torch = torch.reshape(data_torch, (5120, 5120))
  3662. return data_torch
  3663. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3664. del bid # unused
  3665. new_name = self.map_tensor_name(name)
  3666. # shuffle for broadcasting of gqa in ggml_mul_mat
  3667. if new_name.endswith("attn_q.weight"):
  3668. data_torch = self.shuffle_attn_q_weight(data_torch)
  3669. elif new_name.endswith("attn_output.weight"):
  3670. data_torch = self.shuffle_attn_output_weight(data_torch)
  3671. return [(new_name, data_torch)]
  3672. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  3673. class Plamo2Model(TextModel):
  3674. model_arch = gguf.MODEL_ARCH.PLAMO2
  3675. def set_vocab(self):
  3676. # PLaMo 2 uses a custom tokenizer with a .jsonl file
  3677. # We need to handle this specially
  3678. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  3679. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  3680. if not tokenizer_jsonl_path.is_file():
  3681. raise FileNotFoundError(f"PLaMo 2 tokenizer file not found: {tokenizer_jsonl_path}")
  3682. # Load tokenizer config
  3683. with open(tokenizer_config_path, 'r', encoding='utf-8') as f:
  3684. tokenizer_config = json.load(f)
  3685. # Load tokens from JSONL file (actually a list format)
  3686. tokens = []
  3687. scores = []
  3688. toktypes = []
  3689. with open(tokenizer_jsonl_path, 'r', encoding='utf-8') as f:
  3690. for line_num, line in enumerate(f):
  3691. if line.strip():
  3692. token_data = json.loads(line)
  3693. # Format: [token, score, type, ?, ?, ?, ?]
  3694. token = token_data[0].encode("utf-8")
  3695. score = float(token_data[1])
  3696. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  3697. tokens.append(token)
  3698. scores.append(score)
  3699. # Map token type strings to GGUF token types
  3700. if token_type_str == "UNKNOWN":
  3701. toktypes.append(gguf.TokenType.UNKNOWN)
  3702. elif token_type_str == "CONTROL":
  3703. toktypes.append(gguf.TokenType.CONTROL)
  3704. elif token_type_str == "BYTE":
  3705. toktypes.append(gguf.TokenType.BYTE)
  3706. else:
  3707. # Check for PLaMo-2 special tokens
  3708. token_str = token_data[0]
  3709. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  3710. toktypes.append(gguf.TokenType.CONTROL)
  3711. else:
  3712. toktypes.append(gguf.TokenType.NORMAL)
  3713. vocab_size = self.hparams["vocab_size"]
  3714. if vocab_size > len(tokens):
  3715. pad_count = vocab_size - len(tokens)
  3716. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3717. for i in range(1, pad_count + 1):
  3718. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3719. scores.append(-1000.0)
  3720. toktypes.append(gguf.TokenType.UNUSED)
  3721. # Use "plamo2" tokenizer type for PLaMo-2's custom Aho-Corasick tokenizer
  3722. self.gguf_writer.add_tokenizer_model("plamo2")
  3723. self.gguf_writer.add_tokenizer_pre("default")
  3724. self.gguf_writer.add_token_list(tokens)
  3725. self.gguf_writer.add_token_scores(scores)
  3726. self.gguf_writer.add_token_types(toktypes)
  3727. # Add special tokens from config
  3728. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  3729. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  3730. self.gguf_writer.add_bos_token_id(token_id)
  3731. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  3732. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  3733. self.gguf_writer.add_eos_token_id(token_id)
  3734. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  3735. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  3736. self.gguf_writer.add_pad_token_id(token_id)
  3737. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  3738. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  3739. self.gguf_writer.add_sep_token_id(token_id)
  3740. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  3741. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  3742. self.gguf_writer.add_unk_token_id(token_id)
  3743. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  3744. self.gguf_writer.add_eot_token_id(4)
  3745. self.gguf_writer.add_add_space_prefix(False)
  3746. def set_gguf_parameters(self):
  3747. hparams = self.hparams
  3748. block_count = hparams["num_hidden_layers"]
  3749. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3750. # Which layers are Mamba layers
  3751. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  3752. # This logic matches modeling_plamo.py's is_mamba function
  3753. mamba_step = hparams.get("mamba_step", 2)
  3754. mamba_enabled = hparams.get("mamba_enabled", True)
  3755. num_key_value_heads = []
  3756. num_attention_heads = []
  3757. if mamba_enabled:
  3758. for i in range(block_count):
  3759. if block_count <= (mamba_step // 2):
  3760. # use attention in last layer
  3761. is_mamba = (i != block_count - 1)
  3762. else:
  3763. is_mamba = (i % mamba_step) != (mamba_step // 2)
  3764. if is_mamba:
  3765. num_key_value_heads.append(0)
  3766. num_attention_heads.append(0)
  3767. else:
  3768. num_key_value_heads.append(hparams.get("num_key_value_heads", 4))
  3769. num_attention_heads.append(hparams.get("num_attention_heads", 32))
  3770. if num_key_value_heads and num_attention_heads:
  3771. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  3772. self.gguf_writer.add_head_count(num_attention_heads)
  3773. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  3774. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  3775. self.gguf_writer.add_key_length(hparams.get("hidden_size_per_head", 128))
  3776. self.gguf_writer.add_value_length(hparams.get("hidden_size_per_head", 128))
  3777. self.gguf_writer.add_block_count(block_count)
  3778. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  3779. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 10000))
  3780. # Mamba parameters
  3781. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  3782. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  3783. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  3784. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  3785. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  3786. self.gguf_writer.add_ssm_group_count(0)
  3787. # MLP feed forward parameters (for attention layers)
  3788. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
  3789. self.gguf_writer.add_file_type(self.ftype)
  3790. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3791. del bid # unused
  3792. if name.endswith(".A_log"):
  3793. data_torch = -torch.exp(data_torch)
  3794. elif name.endswith(".dt_bias"):
  3795. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3796. elif name.endswith(".dt_norm_weight"):
  3797. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  3798. elif name.endswith(".B_norm_weight"):
  3799. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  3800. elif name.endswith(".C_norm_weight"):
  3801. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  3802. elif name.endswith(".k_weight"):
  3803. name = name.rpartition(".k_weight")[0] + ".k.weight"
  3804. elif name.endswith(".q_weight"):
  3805. name = name.rpartition(".q_weight")[0] + ".q.weight"
  3806. elif name.endswith(".conv1d.weight"):
  3807. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  3808. assert data_torch.ndim == 2
  3809. elif name.endswith(".pre_mixer_norm.weight"):
  3810. data_torch += 1.0
  3811. elif name.endswith(".post_mixer_norm.weight"):
  3812. data_torch += 1.0 / 5
  3813. elif name.endswith(".pre_mlp_norm.weight"):
  3814. data_torch += 1.0
  3815. elif name.endswith(".post_mlp_norm.weight"):
  3816. data_torch += 1.0 / (5**1.5)
  3817. elif name.endswith(".norm.weight"):
  3818. data_torch += 1.0
  3819. new_name = self.map_tensor_name(name)
  3820. return [(new_name, data_torch)]
  3821. @ModelBase.register("CodeShellForCausalLM")
  3822. class CodeShellModel(TextModel):
  3823. model_arch = gguf.MODEL_ARCH.CODESHELL
  3824. def set_gguf_parameters(self):
  3825. block_count = self.hparams["n_layer"]
  3826. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3827. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3828. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3829. self.gguf_writer.add_block_count(block_count)
  3830. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3831. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  3832. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3833. self.gguf_writer.add_file_type(self.ftype)
  3834. self.gguf_writer.add_rope_freq_base(10000.0)
  3835. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3836. self.gguf_writer.add_rope_scaling_factor(1.0)
  3837. @ModelBase.register("InternLM2ForCausalLM")
  3838. class InternLM2Model(TextModel):
  3839. model_arch = gguf.MODEL_ARCH.INTERNLM2
  3840. def set_vocab(self):
  3841. # (TODO): Is there a better way?
  3842. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  3843. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  3844. # recognized as an empty string in C++.
  3845. from sentencepiece import SentencePieceProcessor
  3846. from sentencepiece import sentencepiece_model_pb2 as model
  3847. tokenizer_path = self.dir_model / 'tokenizer.model'
  3848. tokens: list[bytes] = []
  3849. scores: list[float] = []
  3850. toktypes: list[int] = []
  3851. if not tokenizer_path.is_file():
  3852. logger.error(f'Error: Missing {tokenizer_path}')
  3853. sys.exit(1)
  3854. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3855. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3856. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3857. tokenizer = SentencePieceProcessor()
  3858. tokenizer.LoadFromFile(str(tokenizer_path))
  3859. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3860. for token_id in range(vocab_size):
  3861. piece = tokenizer.IdToPiece(token_id)
  3862. text = piece.encode("utf-8")
  3863. score = tokenizer.GetScore(token_id)
  3864. if text == b"\x00":
  3865. # (TODO): fixme
  3866. # Hack here and replace the \x00 characters.
  3867. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  3868. text = "🐉".encode("utf-8")
  3869. toktype = SentencePieceTokenTypes.NORMAL
  3870. if tokenizer.IsUnknown(token_id):
  3871. toktype = SentencePieceTokenTypes.UNKNOWN
  3872. elif tokenizer.IsControl(token_id):
  3873. toktype = SentencePieceTokenTypes.CONTROL
  3874. elif tokenizer.IsUnused(token_id):
  3875. toktype = SentencePieceTokenTypes.UNUSED
  3876. elif tokenizer.IsByte(token_id):
  3877. toktype = SentencePieceTokenTypes.BYTE
  3878. # take care of ununsed raw token
  3879. if piece.startswith('[UNUSED'):
  3880. toktype = SentencePieceTokenTypes.UNUSED
  3881. tokens.append(text)
  3882. scores.append(score)
  3883. toktypes.append(toktype)
  3884. added_tokens_file = self.dir_model / 'added_tokens.json'
  3885. if added_tokens_file.is_file():
  3886. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3887. added_tokens_json = json.load(f)
  3888. for key in added_tokens_json:
  3889. tokens.append(key.encode("utf-8"))
  3890. scores.append(-1000.0)
  3891. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  3892. chat_eos_token = '<|im_end|>'
  3893. chat_eos_token_id = None
  3894. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3895. if tokenizer_config_file.is_file():
  3896. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3897. tokenizer_config_json = json.load(f)
  3898. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3899. for token_id, foken_data in added_tokens_decoder.items():
  3900. token_id = int(token_id)
  3901. token = foken_data["content"]
  3902. if token == chat_eos_token:
  3903. chat_eos_token_id = token_id
  3904. token = token.encode("utf-8")
  3905. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3906. if tokens[token_id] != token:
  3907. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3908. tokens[token_id] = token
  3909. scores[token_id] = -1000.0
  3910. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3911. if foken_data.get("special"):
  3912. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3913. tokenizer_file = self.dir_model / 'tokenizer.json'
  3914. if tokenizer_file.is_file():
  3915. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3916. tokenizer_json = json.load(f)
  3917. added_tokens = tokenizer_json.get("added_tokens", [])
  3918. for foken_data in added_tokens:
  3919. token_id = int(foken_data["id"])
  3920. token = foken_data["content"]
  3921. if token == chat_eos_token:
  3922. chat_eos_token_id = token_id
  3923. token = token.encode("utf-8")
  3924. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3925. if tokens[token_id] != token:
  3926. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3927. tokens[token_id] = token
  3928. scores[token_id] = -1000.0
  3929. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3930. if foken_data.get("special"):
  3931. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3932. self.gguf_writer.add_tokenizer_model("llama")
  3933. self.gguf_writer.add_tokenizer_pre("default")
  3934. self.gguf_writer.add_token_list(tokens)
  3935. self.gguf_writer.add_token_scores(scores)
  3936. self.gguf_writer.add_token_types(toktypes)
  3937. self.gguf_writer.add_add_space_prefix(add_prefix)
  3938. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3939. old_eos = special_vocab.special_token_ids["eos"]
  3940. if chat_eos_token_id is not None:
  3941. # For the chat model, we replace the eos with '<|im_end|>'.
  3942. # TODO: this is a hack, should be fixed
  3943. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  3944. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  3945. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  3946. " in chat mode so that the conversation can end normally.")
  3947. special_vocab.add_to_gguf(self.gguf_writer)
  3948. def set_gguf_parameters(self):
  3949. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  3950. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  3951. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  3952. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  3953. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  3954. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  3955. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3956. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  3957. self.gguf_writer.add_file_type(self.ftype)
  3958. rope_scaling = self.hparams.get("rope_scaling") or {}
  3959. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3960. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3961. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3962. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3963. num_heads = self.hparams["num_attention_heads"]
  3964. num_kv_heads = self.hparams["num_key_value_heads"]
  3965. n_embd = self.hparams["hidden_size"]
  3966. q_per_kv = num_heads // num_kv_heads
  3967. head_dim = n_embd // num_heads
  3968. num_groups = num_heads // q_per_kv
  3969. name = name.replace("language_model.", "") # InternVL
  3970. if name.startswith("mlp") or name.startswith("vision_model"):
  3971. # skip visual tensors
  3972. return []
  3973. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  3974. qkv = data_torch
  3975. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  3976. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  3977. # The model weights of q and k equire additional reshape.
  3978. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  3979. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  3980. v = v.reshape((-1, v.shape[-1]))
  3981. return [
  3982. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  3983. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  3984. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  3985. ]
  3986. else:
  3987. return [(self.map_tensor_name(name), data_torch)]
  3988. @ModelBase.register("InternLM3ForCausalLM")
  3989. class InternLM3Model(TextModel):
  3990. model_arch = gguf.MODEL_ARCH.LLAMA
  3991. def set_vocab(self):
  3992. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  3993. self.gguf_writer.add_tokenizer_model("llama")
  3994. self.gguf_writer.add_tokenizer_pre("default")
  3995. self.gguf_writer.add_token_list(tokens)
  3996. self.gguf_writer.add_token_scores(scores)
  3997. self.gguf_writer.add_token_types(toktypes)
  3998. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3999. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4000. if tokenizer_config_file.is_file():
  4001. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4002. tokenizer_config_json = json.load(f)
  4003. if "add_prefix_space" in tokenizer_config_json:
  4004. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  4005. if "added_tokens_decoder" in tokenizer_config_json:
  4006. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  4007. if token_data.get("special"):
  4008. token_id = int(token_id)
  4009. token = token_data["content"]
  4010. special_vocab._set_special_token(token, token_id)
  4011. # update eos token
  4012. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  4013. special_vocab.special_token_ids["eos"] = token_id
  4014. special_vocab.add_to_gguf(self.gguf_writer)
  4015. def set_gguf_parameters(self):
  4016. super().set_gguf_parameters()
  4017. hparams = self.hparams
  4018. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4019. if (rope_dim := hparams.get("head_dim")) is None:
  4020. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4021. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4022. rope_scaling = self.hparams.get("rope_scaling") or {}
  4023. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  4024. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4025. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4026. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4027. n_head = self.hparams["num_attention_heads"]
  4028. n_kv_head = self.hparams.get("num_key_value_heads")
  4029. name = name.replace("language_model.", "") # InternVL
  4030. if name.startswith("mlp") or name.startswith("vision_model"):
  4031. # skip visual tensors
  4032. return []
  4033. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4034. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4035. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4036. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4037. return [(self.map_tensor_name(name), data_torch)]
  4038. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  4039. class BertModel(TextModel):
  4040. model_arch = gguf.MODEL_ARCH.BERT
  4041. def __init__(self, *args, **kwargs):
  4042. super().__init__(*args, **kwargs)
  4043. self.vocab_size = None
  4044. if cls_out_labels := self.hparams.get("id2label"):
  4045. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  4046. # Remove dummy labels added by AutoConfig
  4047. cls_out_labels = None
  4048. self.cls_out_labels = cls_out_labels
  4049. def set_gguf_parameters(self):
  4050. super().set_gguf_parameters()
  4051. self.gguf_writer.add_causal_attention(False)
  4052. self._try_set_pooling_type()
  4053. if self.cls_out_labels:
  4054. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  4055. def set_vocab(self):
  4056. tokens, toktypes, tokpre = self.get_vocab_base()
  4057. self.vocab_size = len(tokens)
  4058. # we need this to validate the size of the token_type embeddings
  4059. # though currently we are passing all zeros to the token_type embeddings
  4060. # "Sequence A" or "Sequence B"
  4061. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4062. # convert to phantom space vocab
  4063. def phantom(tok):
  4064. if tok.startswith("[") and tok.endswith("]"):
  4065. return tok
  4066. if tok.startswith("##"):
  4067. return tok[2:]
  4068. return "\u2581" + tok
  4069. tokens = list(map(phantom, tokens))
  4070. # add vocab to gguf
  4071. self.gguf_writer.add_tokenizer_model("bert")
  4072. self.gguf_writer.add_tokenizer_pre(tokpre)
  4073. self.gguf_writer.add_token_list(tokens)
  4074. self.gguf_writer.add_token_types(toktypes)
  4075. # handle special tokens
  4076. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4077. special_vocab.add_to_gguf(self.gguf_writer)
  4078. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4079. del bid # unused
  4080. if name.startswith("bert."):
  4081. name = name[5:]
  4082. if name.endswith(".gamma"):
  4083. name = name[:-6] + ".weight"
  4084. if name.endswith(".beta"):
  4085. name = name[:-5] + ".bias"
  4086. # we are only using BERT for embeddings so we don't need the pooling layer
  4087. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  4088. return [] # we don't need these
  4089. if name.startswith("cls.predictions"):
  4090. return []
  4091. if name.startswith("cls.seq_relationship"):
  4092. return []
  4093. if self.cls_out_labels:
  4094. # For BertForSequenceClassification (direct projection layer)
  4095. if name == "classifier.weight":
  4096. name = "classifier.out_proj.weight"
  4097. if name == "classifier.bias":
  4098. name = "classifier.out_proj.bias"
  4099. return [(self.map_tensor_name(name), data_torch)]
  4100. def _xlmroberta_tokenizer_init(self) -> None:
  4101. # we need the pad_token_id to know how to chop down position_embd matrix
  4102. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4103. self._position_offset = 1 + pad_token_id
  4104. if "max_position_embeddings" in self.hparams:
  4105. self.hparams["max_position_embeddings"] -= self._position_offset
  4106. else:
  4107. self._position_offset = None
  4108. def _xlmroberta_set_vocab(self) -> None:
  4109. # to avoid TypeError: Descriptors cannot be created directly
  4110. # exception when importing sentencepiece_model_pb2
  4111. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4112. from sentencepiece import SentencePieceProcessor
  4113. from sentencepiece import sentencepiece_model_pb2 as model
  4114. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  4115. tokenizer_json = {}
  4116. tokenizer_config_json = {}
  4117. if not tokenizer_path.is_file():
  4118. tokenizer_path = self.dir_model / 'tokenizer.json'
  4119. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  4120. if not tokenizer_path.is_file():
  4121. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4122. from base64 import b64decode
  4123. from transformers import AutoTokenizer
  4124. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  4125. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  4126. tokenizer_json = json.load(fp)
  4127. if tokenizer_config_path.is_file():
  4128. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  4129. tokenizer_config_json = json.load(fp)
  4130. add_prefix = tokenizer.add_prefix_space
  4131. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  4132. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  4133. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  4134. else:
  4135. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4136. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4137. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4138. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4139. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4140. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4141. tokenizer = SentencePieceProcessor()
  4142. tokenizer.LoadFromFile(str(tokenizer_path))
  4143. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  4144. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4145. scores: list[float] = [-10000.0] * vocab_size
  4146. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4147. if isinstance(tokenizer, SentencePieceProcessor):
  4148. for token_id in range(tokenizer.vocab_size()):
  4149. piece = tokenizer.IdToPiece(token_id)
  4150. text = piece.encode("utf-8")
  4151. score = tokenizer.GetScore(token_id)
  4152. toktype = SentencePieceTokenTypes.NORMAL
  4153. if tokenizer.IsUnknown(token_id):
  4154. toktype = SentencePieceTokenTypes.UNKNOWN
  4155. elif tokenizer.IsControl(token_id):
  4156. toktype = SentencePieceTokenTypes.CONTROL
  4157. elif tokenizer.IsUnused(token_id):
  4158. toktype = SentencePieceTokenTypes.UNUSED
  4159. elif tokenizer.IsByte(token_id):
  4160. toktype = SentencePieceTokenTypes.BYTE
  4161. tokens[token_id] = text
  4162. scores[token_id] = score
  4163. toktypes[token_id] = toktype
  4164. else:
  4165. added_vocab = tokenizer.get_added_vocab()
  4166. unk_token = tokenizer_config_json.get("unk_token")
  4167. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  4168. for token_id in range(tokenizer.vocab_size):
  4169. piece = tokenizer._convert_id_to_token(token_id)
  4170. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  4171. text = piece.encode("utf-8")
  4172. score = tokenizer_json["model"]["vocab"][token_id][1]
  4173. toktype = SentencePieceTokenTypes.NORMAL
  4174. if token_id == unk_token_id:
  4175. toktype = SentencePieceTokenTypes.UNKNOWN
  4176. elif token_id in tokenizer.all_special_ids:
  4177. toktype = SentencePieceTokenTypes.CONTROL
  4178. elif token_id in added_vocab.values():
  4179. toktype = SentencePieceTokenTypes.USER_DEFINED
  4180. # No reliable way to detect this, but jina doesn't have any
  4181. # elif tokenizer.IsByte(token_id):
  4182. # toktype = SentencePieceTokenTypes.BYTE
  4183. tokens[token_id] = text
  4184. scores[token_id] = score
  4185. toktypes[token_id] = toktype
  4186. if isinstance(tokenizer, SentencePieceProcessor):
  4187. # realign tokens (see HF tokenizer code)
  4188. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  4189. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  4190. toktypes = [
  4191. SentencePieceTokenTypes.CONTROL,
  4192. SentencePieceTokenTypes.CONTROL,
  4193. SentencePieceTokenTypes.CONTROL,
  4194. SentencePieceTokenTypes.UNKNOWN,
  4195. ] + toktypes[3:-1]
  4196. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  4197. # Add mask token missing from sentencepiece.bpe.model
  4198. tokens[250001] = b'<mask>'
  4199. scores[250001] = 0.0
  4200. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  4201. self.gguf_writer.add_tokenizer_model("t5")
  4202. self.gguf_writer.add_tokenizer_pre("default")
  4203. self.gguf_writer.add_token_list(tokens)
  4204. self.gguf_writer.add_token_scores(scores)
  4205. self.gguf_writer.add_token_types(toktypes)
  4206. self.gguf_writer.add_add_space_prefix(add_prefix)
  4207. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4208. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4209. if precompiled_charsmap:
  4210. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4211. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4212. special_vocab.add_to_gguf(self.gguf_writer)
  4213. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  4214. class DistilBertModel(BertModel):
  4215. model_arch = gguf.MODEL_ARCH.BERT
  4216. def set_gguf_parameters(self):
  4217. self.gguf_writer.add_layer_norm_eps(1e-12)
  4218. logger.info("gguf: layer norm epsilon = 1e-12")
  4219. super().set_gguf_parameters()
  4220. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4221. if name.startswith("distilbert."):
  4222. name = name[11:]
  4223. # These layers act as MLM head, so we don't need them
  4224. if name.startswith("vocab_"):
  4225. return []
  4226. return super().modify_tensors(data_torch, name, bid)
  4227. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  4228. class RobertaModel(BertModel):
  4229. model_arch = gguf.MODEL_ARCH.BERT
  4230. def __init__(self, *args, **kwargs):
  4231. super().__init__(*args, **kwargs)
  4232. # we need the pad_token_id to know how to chop down position_embd matrix
  4233. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4234. self._position_offset = 1 + pad_token_id
  4235. if "max_position_embeddings" in self.hparams:
  4236. self.hparams["max_position_embeddings"] -= self._position_offset
  4237. else:
  4238. self._position_offset = None
  4239. def set_vocab(self):
  4240. """Support BPE tokenizers for roberta models"""
  4241. bpe_tok_path = self.dir_model / "tokenizer.json"
  4242. if bpe_tok_path.exists():
  4243. self._set_vocab_gpt2()
  4244. # we need this to validate the size of the token_type embeddings
  4245. # though currently we are passing all zeros to the token_type embeddings
  4246. # "Sequence A" or "Sequence B"
  4247. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4248. else:
  4249. return super().set_vocab()
  4250. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4251. # if name starts with "roberta.", remove the prefix
  4252. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4253. if name.startswith("roberta."):
  4254. name = name[8:]
  4255. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4256. if name == "embeddings.position_embeddings.weight":
  4257. if self._position_offset is not None:
  4258. data_torch = data_torch[self._position_offset:,:]
  4259. return super().modify_tensors(data_torch, name, bid)
  4260. @ModelBase.register("NomicBertModel")
  4261. class NomicBertModel(BertModel):
  4262. model_arch = gguf.MODEL_ARCH.BERT
  4263. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4264. hparams = kwargs.pop("hparams", None)
  4265. if hparams is None:
  4266. hparams = ModelBase.load_hparams(dir_model, False)
  4267. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  4268. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  4269. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4270. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  4271. if self._tokenizer_is_xlmroberta:
  4272. self._xlmroberta_tokenizer_init()
  4273. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  4274. if npos == 8192 and mtp == 2048:
  4275. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  4276. elif npos == 2048 and mtp == 2048:
  4277. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  4278. else:
  4279. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  4280. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  4281. # this doesn't do anything in the HF version
  4282. assert self.hparams["causal"] is False
  4283. # no bias tensors unless MoE
  4284. assert self.hparams["qkv_proj_bias"] == self.is_moe
  4285. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  4286. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  4287. # norm at end of layer
  4288. assert self.hparams["prenorm"] is False
  4289. # standard RoPE
  4290. assert self.hparams["rotary_emb_fraction"] == 1.0
  4291. assert self.hparams["rotary_emb_interleaved"] is False
  4292. assert self.hparams["rotary_emb_scale_base"] is None
  4293. def set_vocab(self) -> None:
  4294. if self._tokenizer_is_xlmroberta:
  4295. return self._xlmroberta_set_vocab()
  4296. return super().set_vocab()
  4297. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  4298. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  4299. if "mlp.experts.bias" in name:
  4300. return [] # Explicitly return an empty list.
  4301. if "mlp.experts.mlp.w1" in name:
  4302. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4303. name += ".weight"
  4304. if "mlp.experts.mlp.w2" in name:
  4305. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4306. data_torch = data_torch.transpose(1, 2)
  4307. name += ".weight"
  4308. return [(self.map_tensor_name(name), data_torch)]
  4309. def set_gguf_parameters(self):
  4310. super().set_gguf_parameters()
  4311. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  4312. if self.is_moe:
  4313. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  4314. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4315. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  4316. def _is_tokenizer_xlmroberta(self) -> bool:
  4317. with open(self.dir_model / "tokenizer.json") as f:
  4318. tokenizer_json = json.load(f)
  4319. toktyp = tokenizer_json["model"]["type"]
  4320. if toktyp == "Unigram":
  4321. return True
  4322. if toktyp == "WordPiece":
  4323. return False
  4324. raise ValueError(f"unknown tokenizer: {toktyp}")
  4325. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  4326. class NeoBert(BertModel):
  4327. model_arch = gguf.MODEL_ARCH.NEO_BERT
  4328. def set_gguf_parameters(self):
  4329. super().set_gguf_parameters()
  4330. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  4331. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  4332. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  4333. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4334. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  4335. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  4336. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  4337. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  4338. def modify_tensors(self, data_torch, name, bid):
  4339. if name.startswith("decoder."):
  4340. return []
  4341. if name.startswith("model."):
  4342. name = name[6:]
  4343. return super().modify_tensors(data_torch, name, bid)
  4344. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  4345. class XLMRobertaModel(BertModel):
  4346. model_arch = gguf.MODEL_ARCH.BERT
  4347. _lora_files = {}
  4348. _lora_names = []
  4349. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4350. hparams = kwargs.pop("hparams", None)
  4351. if hparams is None:
  4352. hparams = ModelBase.load_hparams(dir_model, False)
  4353. if lora_names := hparams.get("lora_adaptations"):
  4354. self._lora_names = lora_names
  4355. self.model_arch = gguf.MODEL_ARCH.JINA_BERT_V3
  4356. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4357. self._xlmroberta_tokenizer_init()
  4358. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4359. if self._lora_names:
  4360. for name in self._lora_names:
  4361. fname = self.add_prefix_to_filename(self.fname_out, f"lora-{name}-")
  4362. self._lora_files[name] = gguf.GGUFWriter(fname, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file, dry_run=self.dry_run)
  4363. return super().generate_extra_tensors()
  4364. def set_type(self):
  4365. for lora_writer in self._lora_files.values():
  4366. lora_writer.add_type(gguf.GGUFType.ADAPTER)
  4367. lora_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
  4368. super().set_type()
  4369. def set_vocab(self):
  4370. self._xlmroberta_set_vocab()
  4371. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4372. # if name starts with "roberta.", remove the prefix
  4373. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4374. if name.startswith("roberta."):
  4375. name = name[8:]
  4376. # jina-embeddings-v3
  4377. if ".parametrizations." in name:
  4378. name = name.replace(".parametrizations.", ".")
  4379. if name.endswith(".original"):
  4380. name = name[:-9]
  4381. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4382. if name == "embeddings.position_embeddings.weight":
  4383. if self._position_offset is not None:
  4384. data_torch = data_torch[self._position_offset:,:]
  4385. if name.endswith(".0.lora_A") or name.endswith(".0.lora_B"):
  4386. if name.startswith("pooler.dense"):
  4387. return []
  4388. num_loras = data_torch.size(0)
  4389. assert num_loras == len(self._lora_names)
  4390. # Split out each LoRA in their own GGUF
  4391. for i, lora_writer in enumerate(self._lora_files.values()):
  4392. new_name = self.map_tensor_name(name[:-9]) + name[-7:].lower()
  4393. data = data_torch[i, :, :]
  4394. # Transpose/flip token_embd/types into correct shape
  4395. if new_name == "token_embd.weight.lora_b":
  4396. data = data.T
  4397. elif new_name.startswith("token_types.weight."):
  4398. new_name = new_name[:-1] + ("a" if new_name[-1:] == "b" else "b")
  4399. lora_writer.add_tensor(new_name, data.float().numpy(), raw_dtype=gguf.GGMLQuantizationType.F32)
  4400. return []
  4401. return super().modify_tensors(data_torch, name, bid)
  4402. def set_gguf_parameters(self):
  4403. super().set_gguf_parameters()
  4404. # jina-embeddings-v3
  4405. if rotary_emb_base := self.hparams.get("rotary_emb_base"):
  4406. self.gguf_writer.add_rope_freq_base(rotary_emb_base)
  4407. lora_alpha = self.hparams.get("lora_alpha")
  4408. if lora_prompt_prefixes := self.hparams.get("task_instructions"):
  4409. assert self._lora_files and all(lora_name in lora_prompt_prefixes for lora_name in self._lora_files.keys())
  4410. for lora_name, lora_writer in self._lora_files.items():
  4411. lora_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, lora_alpha if lora_alpha is not None else 1.0)
  4412. lora_writer.add_string(gguf.Keys.Adapter.LORA_TASK_NAME, lora_name)
  4413. if lora_prompt_prefixes:
  4414. lora_writer.add_string(gguf.Keys.Adapter.LORA_PROMPT_PREFIX, lora_prompt_prefixes[lora_name])
  4415. def write(self):
  4416. super().write()
  4417. for lora_writer in self._lora_files.values():
  4418. lora_writer.write_header_to_file()
  4419. lora_writer.write_kv_data_to_file()
  4420. lora_writer.write_tensors_to_file(progress=True)
  4421. lora_writer.close()
  4422. @ModelBase.register("GemmaForCausalLM")
  4423. class GemmaModel(TextModel):
  4424. model_arch = gguf.MODEL_ARCH.GEMMA
  4425. def set_vocab(self):
  4426. self._set_vocab_sentencepiece()
  4427. # TODO: these special tokens should be exported only for the CodeGemma family
  4428. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  4429. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  4430. special_vocab._set_special_token("prefix", 67)
  4431. special_vocab._set_special_token("suffix", 69)
  4432. special_vocab._set_special_token("middle", 68)
  4433. special_vocab._set_special_token("fsep", 70)
  4434. special_vocab._set_special_token("eot", 107)
  4435. special_vocab.chat_template = None # do not add it twice
  4436. special_vocab.add_to_gguf(self.gguf_writer)
  4437. self.gguf_writer.add_add_space_prefix(False)
  4438. def set_gguf_parameters(self):
  4439. hparams = self.hparams
  4440. block_count = hparams["num_hidden_layers"]
  4441. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4442. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4443. self.gguf_writer.add_block_count(block_count)
  4444. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4445. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4446. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4447. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4448. self.gguf_writer.add_key_length(hparams["head_dim"])
  4449. self.gguf_writer.add_value_length(hparams["head_dim"])
  4450. self.gguf_writer.add_file_type(self.ftype)
  4451. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4452. del bid # unused
  4453. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4454. # To prevent errors, skip loading lm_head.weight.
  4455. if name == "lm_head.weight":
  4456. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4457. return []
  4458. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4459. if name.endswith("norm.weight"):
  4460. data_torch = data_torch + 1
  4461. return [(self.map_tensor_name(name), data_torch)]
  4462. @ModelBase.register("Gemma2ForCausalLM")
  4463. class Gemma2Model(TextModel):
  4464. model_arch = gguf.MODEL_ARCH.GEMMA2
  4465. def set_vocab(self):
  4466. self._set_vocab_sentencepiece()
  4467. self.gguf_writer.add_add_space_prefix(False)
  4468. def set_gguf_parameters(self):
  4469. hparams = self.hparams
  4470. block_count = hparams["num_hidden_layers"]
  4471. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4472. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4473. self.gguf_writer.add_block_count(block_count)
  4474. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4475. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4476. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4477. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4478. self.gguf_writer.add_key_length(hparams["head_dim"])
  4479. self.gguf_writer.add_value_length(hparams["head_dim"])
  4480. self.gguf_writer.add_file_type(self.ftype)
  4481. self.gguf_writer.add_attn_logit_softcapping(
  4482. self.hparams["attn_logit_softcapping"]
  4483. )
  4484. self.gguf_writer.add_final_logit_softcapping(
  4485. self.hparams["final_logit_softcapping"]
  4486. )
  4487. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4488. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4489. del bid # unused
  4490. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4491. # To prevent errors, skip loading lm_head.weight.
  4492. if name == "lm_head.weight":
  4493. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4494. return []
  4495. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4496. if name.endswith("norm.weight"):
  4497. data_torch = data_torch + 1
  4498. return [(self.map_tensor_name(name), data_torch)]
  4499. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  4500. class Gemma3Model(TextModel):
  4501. model_arch = gguf.MODEL_ARCH.GEMMA3
  4502. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  4503. def set_vocab(self):
  4504. self._set_vocab_sentencepiece()
  4505. self.gguf_writer.add_add_space_prefix(False)
  4506. def set_gguf_parameters(self):
  4507. hparams = self.hparams
  4508. block_count = hparams["num_hidden_layers"]
  4509. # some default values are not specified in the hparams
  4510. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  4511. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4512. self.gguf_writer.add_block_count(block_count)
  4513. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4514. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  4515. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  4516. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  4517. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  4518. self.gguf_writer.add_file_type(self.ftype)
  4519. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  4520. # attn_logit_softcapping is removed in Gemma3
  4521. assert hparams.get("attn_logit_softcapping") is None
  4522. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  4523. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  4524. if hparams.get("rope_scaling") is not None:
  4525. assert hparams["rope_scaling"]["rope_type"] == "linear"
  4526. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  4527. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4528. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  4529. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4530. del bid # unused
  4531. if "language_model." in name:
  4532. name = name.replace("language_model.", "")
  4533. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4534. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4535. return [] # skip vision tensors
  4536. # remove OOV (out-of-vocabulary) rows in token_embd
  4537. if "embed_tokens.weight" in name:
  4538. vocab = self._create_vocab_sentencepiece()
  4539. tokens = vocab[0]
  4540. data_torch = data_torch[:len(tokens)]
  4541. # ref code in Gemma3RMSNorm
  4542. # output = output * (1.0 + self.weight.float())
  4543. # note: this is not the case on gemma3n
  4544. if name.endswith("norm.weight"):
  4545. data_torch = data_torch + self.norm_shift
  4546. return [(self.map_tensor_name(name), data_torch)]
  4547. @ModelBase.register("Gemma3TextModel")
  4548. class EmbeddingGemma(Gemma3Model):
  4549. model_arch = gguf.MODEL_ARCH.GEMMA_EMBEDDING
  4550. module_paths = []
  4551. dense_features_dims = {}
  4552. def __init__(self, *args, **kwargs):
  4553. super().__init__(*args, **kwargs)
  4554. if self.sentence_transformers_dense_modules:
  4555. # read modules.json to determine if model has Dense layers
  4556. modules_file = self.dir_model / "modules.json"
  4557. if modules_file.is_file():
  4558. with open(modules_file, encoding="utf-8") as modules_json_file:
  4559. mods = json.load(modules_json_file)
  4560. for mod in mods:
  4561. if mod["type"] == "sentence_transformers.models.Dense":
  4562. mod_path = mod["path"]
  4563. # check if model.safetensors file for Dense layer exists
  4564. model_tensors_file = self.dir_model / mod_path / "model.safetensors"
  4565. if model_tensors_file.is_file():
  4566. self.module_paths.append(mod_path)
  4567. # read config.json of the Dense layer to get in/out features
  4568. mod_conf_file = self.dir_model / mod_path / "config.json"
  4569. if mod_conf_file.is_file():
  4570. with open(mod_conf_file, encoding="utf-8") as mod_conf_json_file:
  4571. mod_conf = json.load(mod_conf_json_file)
  4572. # hparams dense_2_feat_out and dense_3_feat_in are required when loading model's dense weights
  4573. prefix = self._get_dense_prefix(mod_path)
  4574. if mod_conf["in_features"] is not None and mod_conf["out_features"] is not None:
  4575. self.dense_features_dims[prefix] = (mod_conf["in_features"], mod_conf["out_features"])
  4576. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4577. from safetensors.torch import load_file
  4578. module_paths = list(self.module_paths)
  4579. for i, module_path in enumerate(module_paths):
  4580. tensors_file = self.dir_model / module_path / "model.safetensors"
  4581. local_tensors = load_file(tensors_file)
  4582. tensor_name = self._get_dense_prefix(module_path)
  4583. for name, local_tensor in local_tensors.items():
  4584. if not name.endswith(".weight"):
  4585. continue
  4586. orig_name = name.replace("linear", tensor_name)
  4587. name = self.map_tensor_name(orig_name)
  4588. yield name, local_tensor.clone()
  4589. @staticmethod
  4590. def _get_dense_prefix(module_path) -> str:
  4591. """Get the tensor name prefix for the Dense layer from module path."""
  4592. tensor_name = "dense_2" if module_path == "2_Dense" else "dense_3"
  4593. return tensor_name
  4594. def set_gguf_parameters(self):
  4595. super().set_gguf_parameters()
  4596. # Override the sliding window size as it gets adjusted by the Gemma3TextConfig
  4597. # constructor. We want to use the value from the original model's config.json.
  4598. # ref: https://github.com/huggingface/transformers/pull/40700
  4599. with open(self.dir_model / "config.json", "r", encoding="utf-8") as f:
  4600. config = json.load(f)
  4601. orig_sliding_window = config.get("sliding_window")
  4602. if orig_sliding_window is None:
  4603. raise ValueError("sliding_window not found in model config - this is required for the model")
  4604. logger.info(f"Using original sliding_window from config: {orig_sliding_window} "
  4605. f"instead of {self.hparams['sliding_window']}")
  4606. self.gguf_writer.add_sliding_window(orig_sliding_window)
  4607. if self.sentence_transformers_dense_modules:
  4608. for dense, dims in self.dense_features_dims.items():
  4609. logger.info(f"Setting dense layer {dense} in/out features to {dims}")
  4610. self.gguf_writer.add_dense_features_dims(dense, dims[0], dims[1])
  4611. self._try_set_pooling_type()
  4612. @ModelBase.register("Gemma3ForConditionalGeneration")
  4613. class Gemma3VisionModel(MmprojModel):
  4614. def set_gguf_parameters(self):
  4615. super().set_gguf_parameters()
  4616. hparams = self.hparams
  4617. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  4618. # default values below are taken from HF tranformers code
  4619. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  4620. self.gguf_writer.add_vision_use_gelu(True)
  4621. # calculate proj_scale_factor (used by tinygemma3 test model)
  4622. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  4623. n_per_side = int(image_seq_length ** 0.5)
  4624. image_size = self.hparams["image_size"]
  4625. patch_size = self.hparams["patch_size"]
  4626. proj_scale_factor = (image_size // patch_size) // n_per_side
  4627. if proj_scale_factor > 0 and proj_scale_factor != 4:
  4628. # we only need to write this if it's not the default value
  4629. # in this case, we are converting a test model
  4630. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  4631. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4632. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  4633. if "input_projection" in name:
  4634. return gguf.GGMLQuantizationType.F16
  4635. if ".embeddings." in name:
  4636. return gguf.GGMLQuantizationType.F32
  4637. return super().tensor_force_quant(name, new_name, bid, n_dims)
  4638. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4639. del bid # unused
  4640. if "vision_model.head." in name:
  4641. return [] # skip redundant tensors for tinygemma3
  4642. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4643. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4644. # process vision tensors
  4645. name = name.replace("_weight", ".weight")
  4646. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  4647. # the other norm values are part of SigLIP model, and they are already correct
  4648. # ref code: Gemma3RMSNorm
  4649. if "soft_emb_norm.weight" in name:
  4650. logger.info(f"Correcting norm value for '{name}'")
  4651. data_torch = data_torch + 1
  4652. return [(self.map_tensor_name(name), data_torch)]
  4653. return [] # skip other tensors
  4654. @ModelBase.register("Gemma3nForConditionalGeneration")
  4655. class Gemma3NModel(Gemma3Model):
  4656. model_arch = gguf.MODEL_ARCH.GEMMA3N
  4657. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  4658. _altup_proj: list[Tensor] = []
  4659. _altup_unembd: list[Tensor] = []
  4660. def __init__(self, *args, **kwargs):
  4661. super().__init__(*args, **kwargs)
  4662. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  4663. self._altup_proj = [
  4664. torch.Tensor(), # to be replaced
  4665. torch.Tensor(), # to be replaced
  4666. torch.Tensor(), # to be replaced
  4667. ]
  4668. self._altup_unembd = [
  4669. torch.Tensor(), # to be replaced
  4670. torch.Tensor(), # to be replaced
  4671. torch.Tensor(), # to be replaced
  4672. ]
  4673. def set_vocab(self):
  4674. super().set_vocab()
  4675. def set_gguf_parameters(self):
  4676. super().set_gguf_parameters()
  4677. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  4678. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  4679. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  4680. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  4681. activation_sparsity_scale = []
  4682. for s in self.hparams["activation_sparsity_pattern"]:
  4683. normal_dist = torch.distributions.normal.Normal(0, 1)
  4684. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  4685. activation_sparsity_scale.append(std_multiplier.item())
  4686. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  4687. sliding_window_pattern = []
  4688. for t in self.hparams["layer_types"]:
  4689. sliding_window_pattern.append(t == "sliding_attention")
  4690. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  4691. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  4692. has_all = all(m.numel() > 0 for m in matrices)
  4693. if not has_all:
  4694. return None
  4695. else:
  4696. return torch.stack(matrices, dim=0)
  4697. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4698. if name.endswith("_scale"):
  4699. name = name + ".weight"
  4700. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  4701. if "language_model." not in name:
  4702. return [] # skip non-language model tensors
  4703. if "altup_unembed_projections" in name:
  4704. data_torch = data_torch.to(device="cpu")
  4705. if ".0." in name:
  4706. self._altup_unembd[0] = data_torch
  4707. elif ".1." in name:
  4708. self._altup_unembd[1] = data_torch
  4709. elif ".2." in name:
  4710. self._altup_unembd[2] = data_torch
  4711. else:
  4712. raise ValueError(f"Unknown name: {name}")
  4713. out = self._stack_matrices(self._altup_unembd)
  4714. if out is not None:
  4715. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  4716. else:
  4717. return []
  4718. if "altup_projections" in name:
  4719. data_torch = data_torch.to(device="cpu")
  4720. if ".0." in name:
  4721. self._altup_proj[0] = data_torch
  4722. elif ".1." in name:
  4723. self._altup_proj[1] = data_torch
  4724. elif ".2." in name:
  4725. self._altup_proj[2] = data_torch
  4726. else:
  4727. raise ValueError(f"Unknown name: {name}")
  4728. out = self._stack_matrices(self._altup_proj)
  4729. if out is not None:
  4730. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  4731. else:
  4732. return []
  4733. return super().modify_tensors(data_torch, name, bid)
  4734. @ModelBase.register("Starcoder2ForCausalLM")
  4735. class StarCoder2Model(TextModel):
  4736. model_arch = gguf.MODEL_ARCH.STARCODER2
  4737. @ModelBase.register("Rwkv6ForCausalLM")
  4738. class Rwkv6Model(TextModel):
  4739. model_arch = gguf.MODEL_ARCH.RWKV6
  4740. def set_vocab(self):
  4741. self._set_vocab_rwkv_world()
  4742. def set_gguf_parameters(self):
  4743. block_count = self.hparams["num_hidden_layers"]
  4744. head_size = self.hparams["head_size"]
  4745. hidden_size = self.hparams["hidden_size"]
  4746. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4747. rescale_every_n_layers = self.hparams["rescale_every"]
  4748. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  4749. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  4750. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  4751. # RWKV isn't context limited
  4752. self.gguf_writer.add_context_length(1048576)
  4753. self.gguf_writer.add_embedding_length(hidden_size)
  4754. self.gguf_writer.add_block_count(block_count)
  4755. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4756. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  4757. self.gguf_writer.add_wkv_head_size(head_size)
  4758. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4759. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4760. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4761. self.gguf_writer.add_file_type(self.ftype)
  4762. # required by llama.cpp, unused
  4763. self.gguf_writer.add_head_count(0)
  4764. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4765. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4766. new_name = self.map_tensor_name(name)
  4767. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4768. new_name += ".weight"
  4769. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  4770. data_torch = data_torch.transpose(0, 1)
  4771. if new_name.endswith("time_mix_w2.weight"):
  4772. data_torch = data_torch.permute(0, 2, 1)
  4773. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  4774. data_torch = data_torch.squeeze()
  4775. try:
  4776. rescale_every_n_layers = self.hparams["rescale_every"]
  4777. if rescale_every_n_layers > 0:
  4778. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  4779. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  4780. except KeyError:
  4781. pass
  4782. # concat time_mix_lerp weights to reduce some cpu overhead
  4783. # also reduces the number of tensors in the model
  4784. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  4785. try:
  4786. self.lerp_weights[bid][new_name] = data_torch
  4787. except KeyError:
  4788. self.lerp_weights[bid] = {new_name: data_torch}
  4789. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  4790. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4791. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  4792. yield (new_name, data)
  4793. return
  4794. yield (new_name, data_torch)
  4795. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  4796. class RWKV6Qwen2Model(Rwkv6Model):
  4797. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  4798. def set_vocab(self):
  4799. try:
  4800. self._set_vocab_sentencepiece()
  4801. except FileNotFoundError:
  4802. self._set_vocab_gpt2()
  4803. def set_gguf_parameters(self):
  4804. block_count = self.hparams["num_hidden_layers"]
  4805. num_attention_heads = self.hparams["num_attention_heads"]
  4806. num_key_value_heads = self.hparams["num_key_value_heads"]
  4807. hidden_size = self.hparams["hidden_size"]
  4808. head_size = hidden_size // num_attention_heads
  4809. rms_norm_eps = self.hparams["rms_norm_eps"]
  4810. intermediate_size = self.hparams["intermediate_size"]
  4811. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  4812. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  4813. # RWKV isn't context limited
  4814. self.gguf_writer.add_context_length(1048576)
  4815. self.gguf_writer.add_embedding_length(hidden_size)
  4816. self.gguf_writer.add_block_count(block_count)
  4817. self.gguf_writer.add_wkv_head_size(head_size)
  4818. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4819. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4820. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4821. self.gguf_writer.add_file_type(self.ftype)
  4822. # special parameters for time_mixing in RWKV6QWEN2
  4823. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4824. self.gguf_writer.add_token_shift_count(1)
  4825. # RWKV6QWEN2 use grouped key/value like GQA
  4826. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  4827. # required by llama.cpp, unused
  4828. self.gguf_writer.add_head_count(0)
  4829. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4830. for new_name, data in super().modify_tensors(data_torch, name, bid):
  4831. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  4832. data = data.view(5, -1, data.shape[-1])
  4833. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  4834. # permute them here to avoid code changes
  4835. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  4836. if "w2" in new_name:
  4837. data = data.view(5, -1, data.shape[-1])
  4838. yield (new_name, data)
  4839. continue
  4840. yield (new_name, data)
  4841. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  4842. class Rwkv7Model(TextModel):
  4843. model_arch = gguf.MODEL_ARCH.RWKV7
  4844. def set_vocab(self):
  4845. self._set_vocab_rwkv_world()
  4846. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  4847. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  4848. def set_gguf_parameters(self):
  4849. block_count = self.hparams["num_hidden_layers"]
  4850. try:
  4851. head_size = self.hparams["head_size"]
  4852. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4853. except KeyError:
  4854. head_size = self.hparams["head_dim"]
  4855. layer_norm_eps = self.hparams["norm_eps"]
  4856. hidden_size = self.hparams["hidden_size"]
  4857. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  4858. # ICLR: In-Context-Learning-Rate
  4859. try:
  4860. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4861. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4862. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4863. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4864. except KeyError:
  4865. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4866. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4867. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4868. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4869. # RWKV isn't context limited
  4870. self.gguf_writer.add_context_length(1048576)
  4871. self.gguf_writer.add_embedding_length(hidden_size)
  4872. self.gguf_writer.add_block_count(block_count)
  4873. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4874. self.gguf_writer.add_wkv_head_size(head_size)
  4875. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4876. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4877. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4878. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4879. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4880. self.gguf_writer.add_file_type(self.ftype)
  4881. # required by llama.cpp, unused
  4882. self.gguf_writer.add_head_count(0)
  4883. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4884. lora_needs_transpose: bool = True
  4885. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4886. # unify tensor names here to make life easier
  4887. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  4888. name = name.replace("self_attn", "attention").replace("attn", "attention")
  4889. name = name.replace("time_mixer.", "")
  4890. # lora layer names in fla-hub's impl
  4891. if "_lora.lora" in name:
  4892. self.lora_needs_transpose = False
  4893. name = name.replace("_lora.lora.0.weight", "1.weight")
  4894. name = name.replace("_lora.lora.2.weight", "2.weight")
  4895. name = name.replace("_lora.lora.2.bias", "0.weight")
  4896. name = name.replace("feed_forward_norm", "ln2")
  4897. name = name.replace("g_norm", "ln_x")
  4898. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  4899. # some models have dummy v0/v1/v2 on first layer while others don't
  4900. # ignore them all since they are not used
  4901. return
  4902. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  4903. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  4904. if bid is not None and "attention.x_" in name:
  4905. if "attention.x_x" in name:
  4906. # already concatenated
  4907. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4908. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  4909. yield (new_name, data)
  4910. else:
  4911. try:
  4912. self.lerp_weights[bid][name] = data_torch
  4913. except KeyError:
  4914. self.lerp_weights[bid] = {name: data_torch}
  4915. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  4916. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4917. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  4918. yield (new_name, data)
  4919. return
  4920. else:
  4921. data_torch = data_torch.squeeze()
  4922. new_name = self.map_tensor_name(name)
  4923. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4924. new_name += ".weight"
  4925. if self.lora_needs_transpose and any(
  4926. new_name.endswith(t) for t in [
  4927. "time_mix_w1.weight", "time_mix_w2.weight",
  4928. "time_mix_a1.weight", "time_mix_a2.weight",
  4929. "time_mix_v1.weight", "time_mix_v2.weight",
  4930. "time_mix_g1.weight", "time_mix_g2.weight",
  4931. ]
  4932. ):
  4933. data_torch = data_torch.transpose(0, 1)
  4934. if 'r_k' in new_name:
  4935. data_torch = data_torch.flatten()
  4936. if bid == 0 and "time_mix_a" in new_name:
  4937. # dummy v0/v1/v2 on first layer
  4938. # easist way to make llama happy
  4939. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  4940. yield (new_name, data_torch)
  4941. @ModelBase.register("RwkvHybridForCausalLM")
  4942. class ARwkv7Model(Rwkv7Model):
  4943. model_arch = gguf.MODEL_ARCH.ARWKV7
  4944. def set_vocab(self):
  4945. try:
  4946. self._set_vocab_sentencepiece()
  4947. except FileNotFoundError:
  4948. self._set_vocab_gpt2()
  4949. def set_gguf_parameters(self):
  4950. block_count = self.hparams["num_hidden_layers"]
  4951. hidden_size = self.hparams["hidden_size"]
  4952. head_size = self.hparams["head_size"]
  4953. rms_norm_eps = self.hparams["rms_norm_eps"]
  4954. intermediate_size = self.hparams["intermediate_size"]
  4955. wkv_has_gate = self.hparams["wkv_has_gate"]
  4956. assert self.hparams["wkv_version"] == 7
  4957. # ICLR: In-Context-Learning-Rate
  4958. lora_rank_decay = 64
  4959. lora_rank_iclr = 64
  4960. lora_rank_value_residual_mix = 32
  4961. lora_rank_gate = 128 if wkv_has_gate else 0
  4962. # RWKV isn't context limited
  4963. self.gguf_writer.add_context_length(1048576)
  4964. self.gguf_writer.add_embedding_length(hidden_size)
  4965. self.gguf_writer.add_block_count(block_count)
  4966. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4967. self.gguf_writer.add_wkv_head_size(head_size)
  4968. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4969. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4970. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4971. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4972. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4973. self.gguf_writer.add_file_type(self.ftype)
  4974. self.gguf_writer.add_token_shift_count(1)
  4975. # required by llama.cpp, unused
  4976. self.gguf_writer.add_head_count(0)
  4977. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  4978. class MambaModel(TextModel):
  4979. model_arch = gguf.MODEL_ARCH.MAMBA
  4980. def __init__(self, dir_model: Path, *args, **kwargs):
  4981. # Avoid using AutoConfig for hparams
  4982. hparams = kwargs.pop("hparams", None)
  4983. if hparams is None:
  4984. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4985. hparams = json.load(f)
  4986. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4987. def set_vocab(self):
  4988. vocab_size = self.hparams["vocab_size"]
  4989. # Round vocab size to next multiple of 8
  4990. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  4991. # pad using ceiling division
  4992. # ref: https://stackoverflow.com/a/17511341/22827863
  4993. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4994. self.hparams["vocab_size"] = vocab_size
  4995. if (self.dir_model / "tokenizer.json").is_file():
  4996. self._set_vocab_gpt2()
  4997. elif (self.dir_model / "tokenizer.model").is_file():
  4998. self._set_vocab_sentencepiece()
  4999. else:
  5000. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5001. self._set_vocab_builtin("gpt-neox", vocab_size)
  5002. def set_gguf_parameters(self):
  5003. d_model = self.find_hparam(["hidden_size", "d_model"])
  5004. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5005. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  5006. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  5007. # ceiling division
  5008. # ref: https://stackoverflow.com/a/17511341/22827863
  5009. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5010. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  5011. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5012. use_dt_b_c_norm = False
  5013. # For falconmamba we do apply RMS norm on B / DT and C layers
  5014. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  5015. use_dt_b_c_norm = True
  5016. # Fail early for models which don't have a block expansion factor of 2
  5017. assert d_inner == 2 * d_model
  5018. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5019. self.gguf_writer.add_embedding_length(d_model)
  5020. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5021. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5022. self.gguf_writer.add_block_count(self.block_count)
  5023. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5024. self.gguf_writer.add_ssm_inner_size(d_inner)
  5025. self.gguf_writer.add_ssm_state_size(d_state)
  5026. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5027. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5028. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  5029. self.gguf_writer.add_file_type(self.ftype)
  5030. _tok_embd = None
  5031. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5032. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  5033. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  5034. new_name = self.map_tensor_name(name)
  5035. if name.endswith(".A_log"):
  5036. logger.debug("A_log --> A ==> " + new_name)
  5037. data_torch = -torch.exp(data_torch)
  5038. # [4 1 8192 1] -> [4 8192 1 1]
  5039. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5040. data_torch = data_torch.squeeze()
  5041. # assuming token_embd.weight is seen before output.weight
  5042. if self._tok_embd is not None and new_name == output_name:
  5043. if torch.equal(self._tok_embd, data_torch):
  5044. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  5045. return []
  5046. elif new_name == tok_embd_name:
  5047. self._tok_embd = data_torch
  5048. return [(new_name, data_torch)]
  5049. @ModelBase.register("Mamba2ForCausalLM")
  5050. class Mamba2Model(TextModel):
  5051. model_arch = gguf.MODEL_ARCH.MAMBA2
  5052. def __init__(self, dir_model: Path, *args, **kwargs):
  5053. # Avoid using AutoConfig for hparams
  5054. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  5055. hparams = kwargs.pop("hparams", None)
  5056. if hparams is None:
  5057. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5058. hparams = json.load(f)
  5059. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5060. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  5061. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  5062. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  5063. def set_vocab(self):
  5064. vocab_size = self.hparams["vocab_size"]
  5065. # Round vocab size to next multiple of 16
  5066. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  5067. # pad using ceiling division
  5068. # ref: https://stackoverflow.com/a/17511341/22827863
  5069. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5070. self.hparams["vocab_size"] = vocab_size
  5071. if (self.dir_model / "tokenizer.model").is_file():
  5072. self._set_vocab_sentencepiece()
  5073. elif (self.dir_model / "tokenizer.model.v3").is_file():
  5074. # mamba-codestral
  5075. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  5076. elif (self.dir_model / "tokenizer.json").is_file():
  5077. self._set_vocab_gpt2()
  5078. else:
  5079. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5080. self._set_vocab_builtin("gpt-neox", vocab_size)
  5081. def set_gguf_parameters(self):
  5082. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5083. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  5084. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  5085. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5086. # Fail early for models which don't have a block expansion factor of 2
  5087. # TODO: does this really matter?
  5088. # skip the assertion for FalconH1 Model
  5089. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  5090. assert self.d_inner == 2 * self.d_model
  5091. assert self.d_inner % head_dim == 0
  5092. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5093. self.gguf_writer.add_embedding_length(self.d_model)
  5094. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5095. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5096. self.gguf_writer.add_block_count(self.block_count)
  5097. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5098. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  5099. self.gguf_writer.add_ssm_state_size(d_state)
  5100. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  5101. self.gguf_writer.add_ssm_group_count(self.n_group)
  5102. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5103. self.gguf_writer.add_file_type(self.ftype)
  5104. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5105. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  5106. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  5107. name = name.removeprefix("model.")
  5108. if name.endswith(".dt_bias"):
  5109. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  5110. new_name = self.map_tensor_name(name)
  5111. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5112. data_torch = data_torch.squeeze()
  5113. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  5114. gguf.MODEL_TENSOR.SSM_A,
  5115. gguf.MODEL_TENSOR.SSM_D,
  5116. ]):
  5117. # unsqueeze A to use similar shape semantics as Mamba-1
  5118. # (D is also unsqueezed, but for more straightforward broadcast internally)
  5119. data_torch = data_torch.reshape((*data_torch.shape, 1))
  5120. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  5121. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  5122. if name.endswith(".A_log"):
  5123. logger.debug("A_log --> A ==> " + new_name)
  5124. data_torch = -torch.exp(data_torch)
  5125. yield (new_name, data_torch)
  5126. @ModelBase.register("JambaForCausalLM")
  5127. class JambaModel(TextModel):
  5128. model_arch = gguf.MODEL_ARCH.JAMBA
  5129. def set_vocab(self):
  5130. if (self.dir_model / "tokenizer.model").is_file():
  5131. self._set_vocab_sentencepiece()
  5132. else:
  5133. self._set_vocab_llama_hf()
  5134. self.gguf_writer.add_add_space_prefix(False)
  5135. def set_gguf_parameters(self):
  5136. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  5137. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  5138. d_inner = self.hparams["mamba_expand"] * d_model
  5139. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  5140. # ceiling division
  5141. # ref: https://stackoverflow.com/a/17511341/22827863
  5142. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5143. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  5144. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  5145. n_kv_head = self.hparams["num_key_value_heads"]
  5146. attn_offset = self.hparams["attn_layer_offset"]
  5147. attn_period = self.hparams["attn_layer_period"]
  5148. n_kv_vec = [0 for _ in range(attn_offset)] + [
  5149. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  5150. ]
  5151. self.gguf_writer.add_block_count(self.block_count)
  5152. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  5153. self.gguf_writer.add_embedding_length(d_model)
  5154. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  5155. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  5156. self.gguf_writer.add_head_count_kv(n_kv_vec)
  5157. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5158. self.gguf_writer.add_ssm_inner_size(d_inner)
  5159. self.gguf_writer.add_ssm_state_size(d_state)
  5160. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5161. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5162. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  5163. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  5164. self.gguf_writer.add_file_type(self.ftype)
  5165. _experts: list[dict[str, Tensor]] | None = None
  5166. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5167. # Mini-Jamba
  5168. name = name.replace(".moe.", ".feed_forward.")
  5169. if bid is not None:
  5170. moe_offset = self.hparams["expert_layer_offset"]
  5171. moe_period = self.hparams["expert_layer_period"]
  5172. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  5173. name = name.replace(".experts.0.", ".")
  5174. # process the experts separately
  5175. if ".feed_forward.experts." in name:
  5176. n_experts = self.hparams["num_experts"]
  5177. assert bid is not None
  5178. if self._experts is None:
  5179. self._experts = [{} for _ in range(self.block_count)]
  5180. self._experts[bid][name] = data_torch
  5181. if len(self._experts[bid]) >= n_experts * 3:
  5182. # merge the experts into a single 3d tensor
  5183. for wid in ["down_proj", "gate_proj", "up_proj"]:
  5184. datas: list[Tensor] = []
  5185. for xid in range(n_experts):
  5186. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  5187. datas.append(self._experts[bid][ename])
  5188. del self._experts[bid][ename]
  5189. data_torch = torch.stack(datas, dim=0)
  5190. # using the same merged name as qwen2moe
  5191. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  5192. new_name = self.map_tensor_name(merged_name)
  5193. yield new_name, data_torch
  5194. return
  5195. new_name = self.map_tensor_name(name)
  5196. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5197. data_torch = data_torch.squeeze()
  5198. if name.endswith(".A_log"):
  5199. logger.debug("A_log --> A ==> " + new_name)
  5200. data_torch = -torch.exp(data_torch)
  5201. yield (new_name, data_torch)
  5202. def prepare_tensors(self):
  5203. super().prepare_tensors()
  5204. if self._experts is not None:
  5205. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5206. experts = [k for d in self._experts for k in d.keys()]
  5207. if len(experts) > 0:
  5208. raise ValueError(f"Unprocessed experts: {experts}")
  5209. @ModelBase.register("CohereForCausalLM")
  5210. class CommandR2Model(TextModel):
  5211. model_arch = gguf.MODEL_ARCH.COMMAND_R
  5212. def __init__(self, *args, **kwargs):
  5213. super().__init__(*args, **kwargs)
  5214. # max_position_embeddings = 8192 in config.json but model was actually
  5215. # trained on 128k context length
  5216. # aya-23 models don't have model_max_length specified
  5217. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  5218. def set_gguf_parameters(self):
  5219. super().set_gguf_parameters()
  5220. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5221. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5222. @ModelBase.register("Cohere2ForCausalLM")
  5223. class Cohere2Model(TextModel):
  5224. model_arch = gguf.MODEL_ARCH.COHERE2
  5225. def set_gguf_parameters(self):
  5226. super().set_gguf_parameters()
  5227. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5228. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5229. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  5230. rotary_pct = self.hparams["rotary_pct"]
  5231. hidden_size = self.hparams["hidden_size"]
  5232. num_attention_heads = self.hparams["num_attention_heads"]
  5233. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  5234. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5235. @ModelBase.register("OlmoForCausalLM")
  5236. @ModelBase.register("OLMoForCausalLM")
  5237. class OlmoModel(TextModel):
  5238. model_arch = gguf.MODEL_ARCH.OLMO
  5239. def set_gguf_parameters(self):
  5240. super().set_gguf_parameters()
  5241. self.gguf_writer.add_layer_norm_eps(1e-5)
  5242. clip_qkv = self.hparams.get("clip_qkv")
  5243. if clip_qkv is not None:
  5244. self.gguf_writer.add_clamp_kqv(clip_qkv)
  5245. # Same as super class, but permuting q_proj, k_proj
  5246. # Copied from: LlamaModel
  5247. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5248. del bid # unused
  5249. n_head = self.hparams["num_attention_heads"]
  5250. n_kv_head = self.hparams.get("num_key_value_heads")
  5251. if name.endswith("q_proj.weight"):
  5252. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5253. if name.endswith("k_proj.weight"):
  5254. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5255. return [(self.map_tensor_name(name), data_torch)]
  5256. @ModelBase.register("SeedOssForCausalLM")
  5257. class SeedOssModel(TextModel):
  5258. model_arch = gguf.MODEL_ARCH.SEED_OSS
  5259. @ModelBase.register("Olmo2ForCausalLM")
  5260. @ModelBase.register("Olmo3ForCausalLM")
  5261. class Olmo2Model(TextModel):
  5262. model_arch = gguf.MODEL_ARCH.OLMO2
  5263. def set_gguf_parameters(self):
  5264. super().set_gguf_parameters()
  5265. rope_scaling = self.hparams.get("rope_scaling") or {}
  5266. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5267. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5268. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5269. self.gguf_writer.add_rope_scaling_attn_factors(rope_scaling["attention_factor"])
  5270. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5271. if "sliding_window" in self.hparams:
  5272. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5273. sliding_window_pattern = []
  5274. if "layer_types" in self.hparams:
  5275. sliding_window_pattern = [t == "sliding_attention" for t in self.hparams["layer_types"]]
  5276. else:
  5277. # Olmo2 does not use sliding window attention.
  5278. # Olmo3 defaults to using sliding window for all layers except every 4th.
  5279. for i in range(self.hparams["num_hidden_layers"]):
  5280. sliding_window_pattern.append((i + 1) % 4 != 0)
  5281. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5282. @ModelBase.register("OlmoeForCausalLM")
  5283. class OlmoeModel(TextModel):
  5284. model_arch = gguf.MODEL_ARCH.OLMOE
  5285. def set_gguf_parameters(self):
  5286. super().set_gguf_parameters()
  5287. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  5288. if (n_experts := self.hparams.get("num_experts")) is not None:
  5289. self.gguf_writer.add_expert_count(n_experts)
  5290. _experts: list[dict[str, Tensor]] | None = None
  5291. # Copied from: Qwen2MoeModel
  5292. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5293. # process the experts separately
  5294. if name.find("experts") != -1:
  5295. n_experts = self.hparams["num_experts"]
  5296. assert bid is not None
  5297. if self._experts is None:
  5298. self._experts = [{} for _ in range(self.block_count)]
  5299. self._experts[bid][name] = data_torch
  5300. if len(self._experts[bid]) >= n_experts * 3:
  5301. tensors: list[tuple[str, Tensor]] = []
  5302. # merge the experts into a single 3d tensor
  5303. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5304. datas: list[Tensor] = []
  5305. for xid in range(n_experts):
  5306. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5307. datas.append(self._experts[bid][ename])
  5308. del self._experts[bid][ename]
  5309. data_torch = torch.stack(datas, dim=0)
  5310. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5311. new_name = self.map_tensor_name(merged_name)
  5312. tensors.append((new_name, data_torch))
  5313. return tensors
  5314. else:
  5315. return []
  5316. return [(self.map_tensor_name(name), data_torch)]
  5317. # Copied from: Qwen2MoeModel
  5318. def prepare_tensors(self):
  5319. super().prepare_tensors()
  5320. if self._experts is not None:
  5321. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5322. experts = [k for d in self._experts for k in d.keys()]
  5323. if len(experts) > 0:
  5324. raise ValueError(f"Unprocessed experts: {experts}")
  5325. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  5326. class JinaBertV2Model(BertModel):
  5327. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  5328. def set_vocab(self):
  5329. tokenizer_class = 'BertTokenizer'
  5330. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  5331. tokenizer_class = json.load(f)['tokenizer_class']
  5332. if tokenizer_class == 'BertTokenizer':
  5333. super().set_vocab()
  5334. elif tokenizer_class == 'RobertaTokenizer':
  5335. self._set_vocab_gpt2()
  5336. self.gguf_writer.add_token_type_count(2)
  5337. else:
  5338. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  5339. @ModelBase.register("OpenELMForCausalLM")
  5340. class OpenELMModel(TextModel):
  5341. model_arch = gguf.MODEL_ARCH.OPENELM
  5342. @staticmethod
  5343. def _make_divisible(v: float | int, divisor: int) -> int:
  5344. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  5345. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  5346. # Make sure that round down does not go down by more than 10%.
  5347. if new_v < 0.9 * v:
  5348. new_v += divisor
  5349. return new_v
  5350. def __init__(self, *args, **kwargs):
  5351. super().__init__(*args, **kwargs)
  5352. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  5353. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  5354. self._n_embd: int = self.hparams["model_dim"]
  5355. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  5356. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  5357. self._ffn_dims: list[int] = [
  5358. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  5359. for multiplier in ffn_multipliers
  5360. ]
  5361. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  5362. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  5363. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  5364. def set_vocab(self):
  5365. try:
  5366. self._set_vocab_sentencepiece()
  5367. except FileNotFoundError:
  5368. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  5369. def set_gguf_parameters(self):
  5370. n_embd = self._n_embd
  5371. head_dim = self.hparams["head_dim"]
  5372. rot_pct = 1.0
  5373. assert self.block_count == len(self._num_kv_heads)
  5374. assert self.block_count == len(self._num_query_heads)
  5375. assert self.block_count == len(self._ffn_dims)
  5376. self.gguf_writer.add_block_count(self.block_count)
  5377. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  5378. self.gguf_writer.add_embedding_length(n_embd)
  5379. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  5380. self.gguf_writer.add_head_count(self._num_query_heads)
  5381. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  5382. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  5383. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  5384. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  5385. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  5386. self.gguf_writer.add_key_length(head_dim)
  5387. self.gguf_writer.add_value_length(head_dim)
  5388. self.gguf_writer.add_file_type(self.ftype)
  5389. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  5390. if "n_layers" in keys:
  5391. return self.hparams["num_transformer_layers"]
  5392. return super().find_hparam(keys, optional)
  5393. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5394. # split ff
  5395. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  5396. ff_dim = self._ffn_dims[bid]
  5397. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  5398. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  5399. return
  5400. yield (self.map_tensor_name(name), data_torch)
  5401. @ModelBase.register("ArcticForCausalLM")
  5402. class ArcticModel(TextModel):
  5403. model_arch = gguf.MODEL_ARCH.ARCTIC
  5404. def set_vocab(self):
  5405. # The reason for using a custom implementation here is that the
  5406. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  5407. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  5408. from sentencepiece import SentencePieceProcessor
  5409. tokenizer_path = self.dir_model / 'tokenizer.model'
  5410. if not tokenizer_path.is_file():
  5411. logger.error(f'Error: Missing {tokenizer_path}')
  5412. sys.exit(1)
  5413. # Read the whole vocabulary from the tokenizer.model file
  5414. tokenizer = SentencePieceProcessor()
  5415. tokenizer.LoadFromFile(str(tokenizer_path))
  5416. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5417. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5418. scores: list[float] = [-10000.0] * vocab_size
  5419. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5420. for token_id in range(tokenizer.vocab_size()):
  5421. piece = tokenizer.IdToPiece(token_id)
  5422. text = piece.encode("utf-8")
  5423. score = tokenizer.GetScore(token_id)
  5424. toktype = SentencePieceTokenTypes.NORMAL
  5425. if tokenizer.IsUnknown(token_id):
  5426. toktype = SentencePieceTokenTypes.UNKNOWN
  5427. elif tokenizer.IsControl(token_id):
  5428. toktype = SentencePieceTokenTypes.CONTROL
  5429. elif tokenizer.IsUnused(token_id):
  5430. toktype = SentencePieceTokenTypes.UNUSED
  5431. elif tokenizer.IsByte(token_id):
  5432. toktype = SentencePieceTokenTypes.BYTE
  5433. tokens[token_id] = text
  5434. scores[token_id] = score
  5435. toktypes[token_id] = toktype
  5436. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  5437. # of information about added/redefined tokens and modify them accordingly.
  5438. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  5439. if tokenizer_config_file.is_file():
  5440. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  5441. tokenizer_config_json = json.load(f)
  5442. if "added_tokens_decoder" in tokenizer_config_json:
  5443. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  5444. for token_id, token_json in added_tokens_decoder.items():
  5445. token_id = int(token_id)
  5446. if token_id >= vocab_size:
  5447. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5448. continue
  5449. token_content = token_json["content"]
  5450. token_type = SentencePieceTokenTypes.USER_DEFINED
  5451. token_score = -10000.0
  5452. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  5453. # Set the score to 0.0 as in the original tokenizer.model
  5454. if ("special" in token_json) and token_json["special"]:
  5455. if token_content == tokenizer_config_json["unk_token"]:
  5456. token_type = SentencePieceTokenTypes.UNKNOWN
  5457. else:
  5458. token_type = SentencePieceTokenTypes.CONTROL
  5459. token_score = 0.0
  5460. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  5461. tokens[token_id] = token_content.encode("utf-8")
  5462. toktypes[token_id] = token_type
  5463. scores[token_id] = token_score
  5464. self.gguf_writer.add_tokenizer_model("llama")
  5465. self.gguf_writer.add_tokenizer_pre("default")
  5466. self.gguf_writer.add_token_list(tokens)
  5467. self.gguf_writer.add_token_scores(scores)
  5468. self.gguf_writer.add_token_types(toktypes)
  5469. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5470. special_vocab.add_to_gguf(self.gguf_writer)
  5471. def set_gguf_parameters(self):
  5472. super().set_gguf_parameters()
  5473. hparams = self.hparams
  5474. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5475. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  5476. _experts: list[dict[str, Tensor]] | None = None
  5477. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5478. n_head = self.hparams["num_attention_heads"]
  5479. n_kv_head = self.hparams.get("num_key_value_heads")
  5480. if name.endswith("q_proj.weight"):
  5481. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5482. if name.endswith("k_proj.weight"):
  5483. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5484. # process the experts separately
  5485. if name.find("block_sparse_moe.experts") != -1:
  5486. n_experts = self.hparams["num_local_experts"]
  5487. assert bid is not None
  5488. if self._experts is None:
  5489. self._experts = [{} for _ in range(self.block_count)]
  5490. self._experts[bid][name] = data_torch
  5491. if len(self._experts[bid]) >= n_experts * 3:
  5492. tensors: list[tuple[str, Tensor]] = []
  5493. # merge the experts into a single 3d tensor
  5494. for wid in ["w1", "w2", "w3"]:
  5495. datas: list[Tensor] = []
  5496. for xid in range(n_experts):
  5497. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  5498. datas.append(self._experts[bid][ename])
  5499. del self._experts[bid][ename]
  5500. data_torch = torch.stack(datas, dim=0)
  5501. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  5502. new_name = self.map_tensor_name(merged_name)
  5503. tensors.append((new_name, data_torch))
  5504. return tensors
  5505. else:
  5506. return []
  5507. return [(self.map_tensor_name(name), data_torch)]
  5508. def prepare_tensors(self):
  5509. super().prepare_tensors()
  5510. if self._experts is not None:
  5511. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5512. experts = [k for d in self._experts for k in d.keys()]
  5513. if len(experts) > 0:
  5514. raise ValueError(f"Unprocessed experts: {experts}")
  5515. @ModelBase.register("DeepseekForCausalLM")
  5516. class DeepseekModel(TextModel):
  5517. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  5518. def set_vocab(self):
  5519. try:
  5520. self._set_vocab_sentencepiece()
  5521. except FileNotFoundError:
  5522. self._set_vocab_gpt2()
  5523. def set_gguf_parameters(self):
  5524. super().set_gguf_parameters()
  5525. hparams = self.hparams
  5526. if (rope_dim := hparams.get("head_dim")) is None:
  5527. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5528. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5529. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5530. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5531. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5532. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5533. self.gguf_writer.add_expert_weights_scale(1.0)
  5534. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5535. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5536. _experts: list[dict[str, Tensor]] | None = None
  5537. @staticmethod
  5538. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5539. if n_head_kv is not None and n_head != n_head_kv:
  5540. n_head = n_head_kv
  5541. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5542. .swapaxes(1, 2)
  5543. .reshape(weights.shape))
  5544. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5545. n_head = self.hparams["num_attention_heads"]
  5546. n_kv_head = self.hparams.get("num_key_value_heads")
  5547. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5548. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  5549. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5550. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  5551. # process the experts separately
  5552. if name.find("mlp.experts") != -1:
  5553. n_experts = self.hparams["n_routed_experts"]
  5554. assert bid is not None
  5555. if self._experts is None:
  5556. self._experts = [{} for _ in range(self.block_count)]
  5557. self._experts[bid][name] = data_torch
  5558. if len(self._experts[bid]) >= n_experts * 3:
  5559. tensors: list[tuple[str, Tensor]] = []
  5560. # merge the experts into a single 3d tensor
  5561. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5562. datas: list[Tensor] = []
  5563. for xid in range(n_experts):
  5564. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5565. datas.append(self._experts[bid][ename])
  5566. del self._experts[bid][ename]
  5567. data_torch = torch.stack(datas, dim=0)
  5568. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5569. new_name = self.map_tensor_name(merged_name)
  5570. tensors.append((new_name, data_torch))
  5571. return tensors
  5572. else:
  5573. return []
  5574. return [(self.map_tensor_name(name), data_torch)]
  5575. def prepare_tensors(self):
  5576. super().prepare_tensors()
  5577. if self._experts is not None:
  5578. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5579. experts = [k for d in self._experts for k in d.keys()]
  5580. if len(experts) > 0:
  5581. raise ValueError(f"Unprocessed experts: {experts}")
  5582. @ModelBase.register(
  5583. "DeepseekV2ForCausalLM",
  5584. "DeepseekV3ForCausalLM",
  5585. "KimiVLForConditionalGeneration",
  5586. )
  5587. class DeepseekV2Model(TextModel):
  5588. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  5589. def set_vocab(self):
  5590. try:
  5591. self._set_vocab_gpt2()
  5592. return
  5593. except Exception:
  5594. pass
  5595. from transformers import AutoTokenizer
  5596. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5597. tokpre = self.get_vocab_base_pre(tokenizer)
  5598. if tokpre == "kimi-k2":
  5599. # Build merges list using the approach similar to HunYuanMoE
  5600. merges = []
  5601. vocab = {}
  5602. mergeable_ranks = tokenizer.model._mergeable_ranks
  5603. for token, rank in mergeable_ranks.items():
  5604. vocab[QwenModel.token_bytes_to_string(token)] = rank
  5605. if len(token) == 1:
  5606. continue
  5607. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  5608. if len(merged) == 2:
  5609. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  5610. # Build token list
  5611. vocab_size = self.hparams["vocab_size"]
  5612. special_tokens = tokenizer.special_tokens
  5613. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  5614. tokens: list[str] = []
  5615. toktypes: list[int] = []
  5616. for i in range(vocab_size):
  5617. if i not in reverse_vocab:
  5618. tokens.append(f"[PAD{i}]")
  5619. toktypes.append(gguf.TokenType.UNUSED)
  5620. else:
  5621. token = reverse_vocab[i]
  5622. tokens.append(token)
  5623. if i in special_tokens.values():
  5624. toktypes.append(gguf.TokenType.CONTROL)
  5625. else:
  5626. toktypes.append(gguf.TokenType.NORMAL)
  5627. self.gguf_writer.add_tokenizer_model("gpt2")
  5628. self.gguf_writer.add_tokenizer_pre(tokpre)
  5629. self.gguf_writer.add_token_list(tokens)
  5630. self.gguf_writer.add_token_types(toktypes)
  5631. self.gguf_writer.add_token_merges(merges)
  5632. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  5633. special_vocab.add_to_gguf(self.gguf_writer)
  5634. else:
  5635. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  5636. def set_gguf_parameters(self):
  5637. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  5638. self.hparams["num_key_value_heads"] = 1
  5639. super().set_gguf_parameters()
  5640. hparams = self.hparams
  5641. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5642. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5643. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  5644. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  5645. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5646. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  5647. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  5648. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  5649. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5650. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  5651. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5652. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5653. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5654. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  5655. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  5656. if hparams["scoring_func"] == "sigmoid":
  5657. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5658. elif hparams["scoring_func"] == "softmax":
  5659. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  5660. else:
  5661. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  5662. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5663. rope_scaling = self.hparams.get("rope_scaling") or {}
  5664. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5665. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5666. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5667. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5668. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
  5669. _experts: list[dict[str, Tensor]] | None = None
  5670. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5671. # skip vision tensors and remove "language_model." for Kimi-VL
  5672. if "vision_tower" in name or "multi_modal_projector" in name:
  5673. return []
  5674. if name.startswith("language_model."):
  5675. name = name.replace("language_model.", "")
  5676. # rename e_score_correction_bias tensors
  5677. if name.endswith("e_score_correction_bias"):
  5678. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5679. # skip Multi-Token Prediction (MTP) layers
  5680. block_count = self.hparams["num_hidden_layers"]
  5681. match = re.match(r"model.layers.(\d+)", name)
  5682. if match and int(match.group(1)) >= block_count:
  5683. return []
  5684. # process the experts separately
  5685. if name.find("mlp.experts") != -1:
  5686. n_experts = self.hparams["n_routed_experts"]
  5687. assert bid is not None
  5688. if self._experts is None:
  5689. self._experts = [{} for _ in range(self.block_count)]
  5690. self._experts[bid][name] = data_torch
  5691. if len(self._experts[bid]) >= n_experts * 3:
  5692. tensors: list[tuple[str, Tensor]] = []
  5693. # merge the experts into a single 3d tensor
  5694. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5695. datas: list[Tensor] = []
  5696. for xid in range(n_experts):
  5697. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5698. datas.append(self._experts[bid][ename])
  5699. del self._experts[bid][ename]
  5700. data_torch = torch.stack(datas, dim=0)
  5701. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5702. new_name = self.map_tensor_name(merged_name)
  5703. tensors.append((new_name, data_torch))
  5704. return tensors
  5705. else:
  5706. return []
  5707. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  5708. if name.endswith("kv_b_proj.weight"):
  5709. name_kb = name.replace("kv_b_proj", "k_b_proj")
  5710. name_vb = name.replace("kv_b_proj", "v_b_proj")
  5711. n_head_kv = self.hparams["num_key_value_heads"]
  5712. v_head_dim = self.hparams["v_head_dim"]
  5713. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  5714. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  5715. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  5716. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  5717. k_b = k_b.transpose(1, 2)
  5718. return [
  5719. (self.map_tensor_name(name_kb), k_b),
  5720. (self.map_tensor_name(name_vb), v_b)
  5721. ]
  5722. return [(self.map_tensor_name(name), data_torch)]
  5723. def prepare_tensors(self):
  5724. super().prepare_tensors()
  5725. if self._experts is not None:
  5726. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5727. experts = [k for d in self._experts for k in d.keys()]
  5728. if len(experts) > 0:
  5729. raise ValueError(f"Unprocessed experts: {experts}")
  5730. @ModelBase.register("Dots1ForCausalLM")
  5731. class Dots1Model(Qwen2MoeModel):
  5732. model_arch = gguf.MODEL_ARCH.DOTS1
  5733. def __init__(self, *args, **kwargs):
  5734. super().__init__(*args, **kwargs)
  5735. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  5736. def set_gguf_parameters(self):
  5737. super().set_gguf_parameters()
  5738. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  5739. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  5740. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  5741. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  5742. if self.hparams["scoring_func"] == "noaux_tc":
  5743. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5744. else:
  5745. raise ValueError(f"Unsupported scoring_func value: {self.hparams['scoring_func']}")
  5746. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  5747. if name.endswith("e_score_correction_bias"):
  5748. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5749. if "shared_experts" in name:
  5750. return [(self.map_tensor_name(name), data_torch)]
  5751. return super().modify_tensors(data_torch, name, bid)
  5752. @ModelBase.register("PLMForCausalLM")
  5753. class PLMModel(TextModel):
  5754. model_arch = gguf.MODEL_ARCH.PLM
  5755. def set_vocab(self):
  5756. self._set_vocab_gpt2()
  5757. def set_gguf_parameters(self):
  5758. super().set_gguf_parameters()
  5759. hparams = self.hparams
  5760. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5761. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5762. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5763. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  5764. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5765. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5766. return [(self.map_tensor_name(name), data_torch)]
  5767. def prepare_tensors(self):
  5768. super().prepare_tensors()
  5769. @ModelBase.register("T5WithLMHeadModel")
  5770. @ModelBase.register("T5ForConditionalGeneration")
  5771. @ModelBase.register("MT5ForConditionalGeneration")
  5772. @ModelBase.register("UMT5ForConditionalGeneration")
  5773. class T5Model(TextModel):
  5774. model_arch = gguf.MODEL_ARCH.T5
  5775. def __init__(self, *args, **kwargs):
  5776. super().__init__(*args, **kwargs)
  5777. self.shared_token_embeddings_found = False
  5778. def set_vocab(self):
  5779. # to avoid TypeError: Descriptors cannot be created directly
  5780. # exception when importing sentencepiece_model_pb2
  5781. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  5782. from sentencepiece import SentencePieceProcessor
  5783. from sentencepiece import sentencepiece_model_pb2 as model
  5784. tokenizer_path = self.dir_model / 'tokenizer.model'
  5785. # many older models use spiece.model tokenizer model filename
  5786. if not tokenizer_path.is_file():
  5787. tokenizer_path = self.dir_model / 'spiece.model'
  5788. if not tokenizer_path.is_file():
  5789. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  5790. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  5791. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  5792. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  5793. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  5794. # assure the tokenizer model file name is correct
  5795. assert tokenizer_path.name == 'tokenizer.model'
  5796. return self._set_vocab_sentencepiece()
  5797. else:
  5798. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  5799. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  5800. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  5801. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  5802. tokenizer = SentencePieceProcessor()
  5803. tokenizer.LoadFromFile(str(tokenizer_path))
  5804. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5805. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5806. scores: list[float] = [-10000.0] * vocab_size
  5807. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5808. for token_id in range(tokenizer.vocab_size()):
  5809. piece = tokenizer.IdToPiece(token_id)
  5810. text = piece.encode("utf-8")
  5811. score = tokenizer.GetScore(token_id)
  5812. toktype = SentencePieceTokenTypes.NORMAL
  5813. if tokenizer.IsUnknown(token_id):
  5814. toktype = SentencePieceTokenTypes.UNKNOWN
  5815. elif tokenizer.IsControl(token_id):
  5816. toktype = SentencePieceTokenTypes.CONTROL
  5817. elif tokenizer.IsUnused(token_id):
  5818. toktype = SentencePieceTokenTypes.UNUSED
  5819. elif tokenizer.IsByte(token_id):
  5820. toktype = SentencePieceTokenTypes.BYTE
  5821. tokens[token_id] = text
  5822. scores[token_id] = score
  5823. toktypes[token_id] = toktype
  5824. added_tokens_file = self.dir_model / 'added_tokens.json'
  5825. if added_tokens_file.is_file():
  5826. with open(added_tokens_file, "r", encoding="utf-8") as f:
  5827. added_tokens_json = json.load(f)
  5828. for key in added_tokens_json:
  5829. token_id = added_tokens_json[key]
  5830. if token_id >= vocab_size:
  5831. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5832. continue
  5833. tokens[token_id] = key.encode("utf-8")
  5834. scores[token_id] = -1000.0
  5835. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  5836. if vocab_size > len(tokens):
  5837. pad_count = vocab_size - len(tokens)
  5838. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  5839. for i in range(1, pad_count + 1):
  5840. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  5841. scores.append(-1000.0)
  5842. toktypes.append(SentencePieceTokenTypes.UNUSED)
  5843. self.gguf_writer.add_tokenizer_model("t5")
  5844. self.gguf_writer.add_tokenizer_pre("default")
  5845. self.gguf_writer.add_token_list(tokens)
  5846. self.gguf_writer.add_token_scores(scores)
  5847. self.gguf_writer.add_token_types(toktypes)
  5848. self.gguf_writer.add_add_space_prefix(add_prefix)
  5849. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  5850. if precompiled_charsmap:
  5851. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  5852. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5853. special_vocab.add_to_gguf(self.gguf_writer)
  5854. def set_gguf_parameters(self):
  5855. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  5856. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  5857. n_ctx = 512
  5858. self.gguf_writer.add_context_length(n_ctx)
  5859. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  5860. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  5861. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  5862. if (dec_n_layer := self.hparams.get("num_decoder_layers")) is not None:
  5863. self.gguf_writer.add_decoder_block_count(dec_n_layer)
  5864. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  5865. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  5866. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  5867. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5868. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  5869. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  5870. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  5871. self.gguf_writer.add_file_type(self.ftype)
  5872. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5873. del bid # unused
  5874. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  5875. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5876. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5877. # and decoder and ignore the remaining ones.
  5878. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5879. if not self.shared_token_embeddings_found:
  5880. name = "shared.weight"
  5881. self.shared_token_embeddings_found = True
  5882. else:
  5883. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5884. return []
  5885. return [(self.map_tensor_name(name), data_torch)]
  5886. @ModelBase.register("T5EncoderModel")
  5887. class T5EncoderModel(TextModel):
  5888. model_arch = gguf.MODEL_ARCH.T5ENCODER
  5889. def __init__(self, *args, **kwargs):
  5890. super().__init__(*args, **kwargs)
  5891. self.shared_token_embeddings_found = False
  5892. def set_vocab(self):
  5893. # to avoid TypeError: Descriptors cannot be created directly
  5894. # exception when importing sentencepiece_model_pb2
  5895. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  5896. from sentencepiece import SentencePieceProcessor
  5897. from sentencepiece import sentencepiece_model_pb2 as model
  5898. tokenizer_path = self.dir_model / 'tokenizer.model'
  5899. # many older models use spiece.model tokenizer model filename
  5900. if not tokenizer_path.is_file():
  5901. tokenizer_path = self.dir_model / 'spiece.model'
  5902. if not tokenizer_path.is_file():
  5903. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  5904. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  5905. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  5906. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  5907. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  5908. # assure the tokenizer model file name is correct
  5909. assert tokenizer_path.name == 'tokenizer.model'
  5910. return self._set_vocab_sentencepiece()
  5911. else:
  5912. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  5913. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  5914. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  5915. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  5916. tokenizer = SentencePieceProcessor()
  5917. tokenizer.LoadFromFile(str(tokenizer_path))
  5918. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5919. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5920. scores: list[float] = [-10000.0] * vocab_size
  5921. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5922. for token_id in range(tokenizer.vocab_size()):
  5923. piece = tokenizer.IdToPiece(token_id)
  5924. text = piece.encode("utf-8")
  5925. score = tokenizer.GetScore(token_id)
  5926. toktype = SentencePieceTokenTypes.NORMAL
  5927. if tokenizer.IsUnknown(token_id):
  5928. toktype = SentencePieceTokenTypes.UNKNOWN
  5929. elif tokenizer.IsControl(token_id):
  5930. toktype = SentencePieceTokenTypes.CONTROL
  5931. elif tokenizer.IsUnused(token_id):
  5932. toktype = SentencePieceTokenTypes.UNUSED
  5933. elif tokenizer.IsByte(token_id):
  5934. toktype = SentencePieceTokenTypes.BYTE
  5935. tokens[token_id] = text
  5936. scores[token_id] = score
  5937. toktypes[token_id] = toktype
  5938. added_tokens_file = self.dir_model / 'added_tokens.json'
  5939. if added_tokens_file.is_file():
  5940. with open(added_tokens_file, "r", encoding="utf-8") as f:
  5941. added_tokens_json = json.load(f)
  5942. for key in added_tokens_json:
  5943. token_id = added_tokens_json[key]
  5944. if token_id >= vocab_size:
  5945. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5946. continue
  5947. tokens[token_id] = key.encode("utf-8")
  5948. scores[token_id] = -1000.0
  5949. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  5950. if vocab_size > len(tokens):
  5951. pad_count = vocab_size - len(tokens)
  5952. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  5953. for i in range(1, pad_count + 1):
  5954. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  5955. scores.append(-1000.0)
  5956. toktypes.append(SentencePieceTokenTypes.UNUSED)
  5957. self.gguf_writer.add_tokenizer_model("t5")
  5958. self.gguf_writer.add_tokenizer_pre("default")
  5959. self.gguf_writer.add_token_list(tokens)
  5960. self.gguf_writer.add_token_scores(scores)
  5961. self.gguf_writer.add_token_types(toktypes)
  5962. self.gguf_writer.add_add_space_prefix(add_prefix)
  5963. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  5964. if precompiled_charsmap:
  5965. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  5966. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5967. special_vocab.add_to_gguf(self.gguf_writer)
  5968. def set_gguf_parameters(self):
  5969. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  5970. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  5971. n_ctx = 512
  5972. self.gguf_writer.add_context_length(n_ctx)
  5973. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  5974. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  5975. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  5976. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  5977. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  5978. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  5979. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5980. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  5981. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  5982. self.gguf_writer.add_file_type(self.ftype)
  5983. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5984. del bid # unused
  5985. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  5986. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5987. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5988. # and decoder and ignore the remaining ones.
  5989. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5990. if not self.shared_token_embeddings_found:
  5991. name = "shared.weight"
  5992. self.shared_token_embeddings_found = True
  5993. else:
  5994. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5995. return []
  5996. return [(self.map_tensor_name(name), data_torch)]
  5997. @ModelBase.register("JAISLMHeadModel")
  5998. class JaisModel(TextModel):
  5999. model_arch = gguf.MODEL_ARCH.JAIS
  6000. def __init__(self, *args, **kwargs):
  6001. super().__init__(*args, **kwargs)
  6002. # SwigLU activation
  6003. assert self.hparams["activation_function"] == "swiglu"
  6004. # ALiBi position embedding
  6005. assert self.hparams["position_embedding_type"] == "alibi"
  6006. # Embeddings scale
  6007. self.embeddings_scale = 1.0
  6008. if 'mup_embeddings_scale' in self.hparams:
  6009. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  6010. elif 'embeddings_scale' in self.hparams:
  6011. self.embeddings_scale = self.hparams['embeddings_scale']
  6012. else:
  6013. assert False
  6014. self.width_scale = 1.0
  6015. if 'mup_output_alpha' in self.hparams:
  6016. assert 'mup_width_scale' in self.hparams
  6017. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  6018. elif 'width_scale' in self.hparams:
  6019. self.width_scale = self.hparams['width_scale']
  6020. else:
  6021. assert False
  6022. self.max_alibi_bias = 8.0
  6023. def set_vocab(self):
  6024. self._set_vocab_gpt2()
  6025. def set_gguf_parameters(self):
  6026. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  6027. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  6028. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  6029. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  6030. self.gguf_writer.add_head_count(self.hparams["n_head"])
  6031. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6032. self.gguf_writer.add_file_type(self.ftype)
  6033. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6034. del bid # unused
  6035. tensors: list[tuple[str, Tensor]] = []
  6036. # we don't need these
  6037. if name.endswith((".attn.bias")):
  6038. return tensors
  6039. if name.endswith(("relative_pe.slopes")):
  6040. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  6041. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  6042. # but Jais's PyTorch model simply precalculates the slope values and places them
  6043. # in relative_pes.slopes
  6044. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  6045. first_val = float(data_torch[0].item())
  6046. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  6047. return tensors
  6048. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  6049. data_torch = data_torch.transpose(1, 0)
  6050. new_name = self.map_tensor_name(name)
  6051. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  6052. tensors.append((new_name, data_torch * self.embeddings_scale))
  6053. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  6054. tensors.append((new_name, data_torch * self.width_scale))
  6055. else:
  6056. tensors.append((new_name, data_torch))
  6057. return tensors
  6058. def prepare_tensors(self):
  6059. super().prepare_tensors()
  6060. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  6061. @ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
  6062. class Glm4Model(TextModel):
  6063. model_arch = gguf.MODEL_ARCH.GLM4
  6064. def set_vocab(self):
  6065. from transformers import AutoTokenizer
  6066. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6067. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6068. tokens, toktypes, tokpre = self.get_vocab_base()
  6069. self.gguf_writer.add_tokenizer_model("gpt2")
  6070. self.gguf_writer.add_tokenizer_pre(tokpre)
  6071. self.gguf_writer.add_token_list(tokens)
  6072. self.gguf_writer.add_token_types(toktypes)
  6073. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6074. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6075. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6076. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6077. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6078. special_vocab.add_to_gguf(self.gguf_writer)
  6079. def set_gguf_parameters(self):
  6080. super().set_gguf_parameters()
  6081. if (rope_dim := self.hparams.get("head_dim")) is None:
  6082. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6083. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6084. rope_scaling = self.hparams.get("rope_scaling") or {}
  6085. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6086. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6087. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6088. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6089. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6090. if name.startswith("model.visual."): # ignore visual part of Glm4v
  6091. return []
  6092. elif name.startswith("model.language_model."):
  6093. name = name.replace("language_model.", "") # for Glm4v
  6094. return super().modify_tensors(data_torch, name, bid)
  6095. @ModelBase.register("Glm4MoeForCausalLM")
  6096. class Glm4MoeModel(TextModel):
  6097. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  6098. def __init__(self, *args, **kwargs):
  6099. super().__init__(*args, **kwargs)
  6100. # GLM4_MOE has num_hidden_layers + 1 actual layers (including NextN layer)
  6101. self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
  6102. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  6103. def set_vocab(self):
  6104. from transformers import AutoTokenizer
  6105. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  6106. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6107. tokens, toktypes, tokpre = self.get_vocab_base()
  6108. self.gguf_writer.add_tokenizer_model("gpt2")
  6109. self.gguf_writer.add_tokenizer_pre(tokpre)
  6110. self.gguf_writer.add_token_list(tokens)
  6111. self.gguf_writer.add_token_types(toktypes)
  6112. # Special tokens
  6113. # Note: Using <|endoftext|> (151329) for eot causes endless generation
  6114. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
  6115. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
  6116. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
  6117. special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
  6118. # Patch broken chat template
  6119. if isinstance(special_vocab.chat_template, str) and "visible_text(m.content).endswith" in special_vocab.chat_template:
  6120. special_vocab.chat_template = special_vocab.chat_template.replace(
  6121. """{{ visible_text(m.content) }}\n{{- '/nothink' if (enable_thinking is defined and not enable_thinking and not visible_text(m.content).endswith("/nothink")) else '' -}}""",
  6122. """{% set content = visible_text(m.content) %}{{ content }}\n{{- '/nothink' if (enable_thinking is defined and not enable_thinking and not content.endswith("/nothink")) else '' -}}""")
  6123. special_vocab.add_to_gguf(self.gguf_writer)
  6124. def set_gguf_parameters(self):
  6125. super().set_gguf_parameters()
  6126. if (rope_dim := self.hparams.get("head_dim")) is None:
  6127. rope_dim = (
  6128. self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6129. )
  6130. self.gguf_writer.add_rope_dimension_count(
  6131. int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))
  6132. )
  6133. # MoE parameters - Use only routed expert count (shared experts handled separately)
  6134. if (n_routed_experts := self.hparams.get("n_routed_experts")) is not None:
  6135. self.gguf_writer.add_expert_count(n_routed_experts)
  6136. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  6137. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6138. if (n_shared_experts := self.hparams.get("n_shared_experts")) is not None:
  6139. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  6140. if (first_k_dense_replace := self.hparams.get("first_k_dense_replace")) is not None:
  6141. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  6142. # Expert gating function (sigmoid for GLM4_MOE)
  6143. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6144. # Routed scaling factor
  6145. if (routed_scaling_factor := self.hparams.get("routed_scaling_factor")) is not None:
  6146. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  6147. # Normalise topk probabilities
  6148. if (norm_topk_prob := self.hparams.get("norm_topk_prob")) is not None:
  6149. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  6150. # NextN/MTP prediction layers
  6151. if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  6152. self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
  6153. _experts: list[dict[str, Tensor]] | None = None
  6154. def modify_tensors(
  6155. self, data_torch: Tensor, name: str, bid: int | None
  6156. ) -> Iterable[tuple[str, Tensor]]:
  6157. if name.startswith("model.visual."): # ignore visual part
  6158. return []
  6159. elif name.startswith("model.language_model."):
  6160. name = name.replace("language_model.", "") # for multimodal variants
  6161. # Handle main token embedding (but not layer-specific NextN embeddings)
  6162. if name == "model.embed_tokens.weight" and ".layers." not in name:
  6163. return [(self.map_tensor_name("token_embd.weight"), data_torch)]
  6164. # Handle routed experts
  6165. if name.find("mlp.experts") != -1:
  6166. n_experts = self.hparams["n_routed_experts"]
  6167. assert bid is not None
  6168. if self._experts is None:
  6169. self._experts = [{} for _ in range(self.block_count)]
  6170. self._experts[bid][name] = data_torch
  6171. if len(self._experts[bid]) >= n_experts * 3:
  6172. tensors: list[tuple[str, Tensor]] = []
  6173. # merge the experts into a single 3d tensor
  6174. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6175. datas: list[Tensor] = []
  6176. for xid in range(n_experts):
  6177. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6178. datas.append(self._experts[bid][ename])
  6179. del self._experts[bid][ename]
  6180. data_torch = torch.stack(datas, dim=0)
  6181. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6182. new_name = self.map_tensor_name(merged_name)
  6183. tensors.append((new_name, data_torch))
  6184. return tensors
  6185. else:
  6186. return []
  6187. if name.endswith("e_score_correction_bias"):
  6188. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6189. new_name = self.map_tensor_name(name)
  6190. return [(new_name, data_torch)]
  6191. def prepare_tensors(self):
  6192. super().prepare_tensors()
  6193. if self._experts is not None:
  6194. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6195. experts = [k for d in self._experts for k in d.keys()]
  6196. if len(experts) > 0:
  6197. raise ValueError(f"Unprocessed experts: {experts}")
  6198. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  6199. class ChatGLMModel(TextModel):
  6200. model_arch = gguf.MODEL_ARCH.CHATGLM
  6201. def set_vocab_chatglm3(self):
  6202. dir_model = self.dir_model
  6203. hparams = self.hparams
  6204. tokens: list[bytes] = []
  6205. toktypes: list[int] = []
  6206. scores: list[float] = []
  6207. from transformers import AutoTokenizer
  6208. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6209. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  6210. assert max(tokenizer.get_vocab().values()) < vocab_size
  6211. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  6212. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  6213. for token_id in range(vocab_size):
  6214. piece = tokenizer._convert_id_to_token(token_id)
  6215. if token_id == 0:
  6216. piece = "<unk>"
  6217. elif token_id == 1:
  6218. piece = "<bos>"
  6219. elif token_id == 2:
  6220. piece = "<eos>"
  6221. text = piece.encode("utf-8")
  6222. score = 0.0
  6223. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  6224. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  6225. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  6226. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  6227. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  6228. if piece in special_tokens:
  6229. toktype = SentencePieceTokenTypes.CONTROL
  6230. elif len(piece) == 0:
  6231. text = f"[PAD{token_id}]".encode("utf-8")
  6232. toktype = SentencePieceTokenTypes.UNUSED
  6233. else:
  6234. toktype = SentencePieceTokenTypes.USER_DEFINED
  6235. tokens.append(text)
  6236. scores.append(score)
  6237. toktypes.append(toktype)
  6238. continue
  6239. toktype = SentencePieceTokenTypes.NORMAL
  6240. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  6241. toktype = SentencePieceTokenTypes.UNKNOWN
  6242. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  6243. toktype = SentencePieceTokenTypes.CONTROL
  6244. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  6245. toktype = SentencePieceTokenTypes.UNUSED
  6246. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  6247. toktype = SentencePieceTokenTypes.BYTE
  6248. tokens.append(text)
  6249. scores.append(score)
  6250. toktypes.append(toktype)
  6251. self.gguf_writer.add_tokenizer_model("llama")
  6252. # glm3 needs prefix and suffix formatted as:
  6253. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  6254. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  6255. self.gguf_writer.add_token_list(tokens)
  6256. self.gguf_writer.add_token_scores(scores)
  6257. self.gguf_writer.add_token_types(toktypes)
  6258. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6259. special_vocab.add_to_gguf(self.gguf_writer)
  6260. @staticmethod
  6261. def token_bytes_to_string(b):
  6262. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  6263. byte_encoder = bytes_to_unicode()
  6264. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  6265. @staticmethod
  6266. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  6267. parts = [bytes([b]) for b in token]
  6268. while True:
  6269. min_idx = None
  6270. min_rank = None
  6271. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  6272. rank = mergeable_ranks.get(pair[0] + pair[1])
  6273. if rank is not None and (min_rank is None or rank < min_rank):
  6274. min_idx = i
  6275. min_rank = rank
  6276. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  6277. break
  6278. assert min_idx is not None
  6279. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  6280. return parts
  6281. def set_vocab(self):
  6282. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  6283. self.set_vocab_chatglm3()
  6284. return
  6285. dir_model = self.dir_model
  6286. hparams = self.hparams
  6287. tokens: list[str] = []
  6288. toktypes: list[int] = []
  6289. from transformers import AutoTokenizer
  6290. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6291. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  6292. assert max(tokenizer.get_vocab().values()) < vocab_size
  6293. tokens, toktypes, tokpre = self.get_vocab_base()
  6294. self.gguf_writer.add_tokenizer_model("gpt2")
  6295. self.gguf_writer.add_tokenizer_pre(tokpre)
  6296. self.gguf_writer.add_token_list(tokens)
  6297. self.gguf_writer.add_token_types(toktypes)
  6298. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6299. # only add special tokens when they were not already loaded from config.json
  6300. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6301. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6302. # this one is usually not in config.json anyway
  6303. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6304. special_vocab.add_to_gguf(self.gguf_writer)
  6305. def set_gguf_parameters(self):
  6306. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  6307. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  6308. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  6309. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  6310. self.gguf_writer.add_embedding_length(n_embed)
  6311. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  6312. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  6313. self.gguf_writer.add_head_count(n_head)
  6314. self.gguf_writer.add_head_count_kv(n_head_kv)
  6315. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  6316. self.gguf_writer.add_file_type(self.ftype)
  6317. if "attention_dim" in self.hparams:
  6318. rope_dim = self.hparams["attention_dim"]
  6319. else:
  6320. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6321. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6322. self.gguf_writer.add_add_bos_token(False)
  6323. rope_freq = 10000
  6324. if "rope_ratio" in self.hparams:
  6325. rope_freq = rope_freq * self.hparams["rope_ratio"]
  6326. self.gguf_writer.add_rope_freq_base(rope_freq)
  6327. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6328. del bid # unused
  6329. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  6330. return []
  6331. name = name.removeprefix("transformer.")
  6332. return [(self.map_tensor_name(name), data_torch)]
  6333. @ModelBase.register("NemotronForCausalLM")
  6334. class NemotronModel(TextModel):
  6335. model_arch = gguf.MODEL_ARCH.NEMOTRON
  6336. def set_vocab(self):
  6337. self._set_vocab_sentencepiece()
  6338. self.gguf_writer.add_pad_token_id(0)
  6339. self.gguf_writer.add_unk_token_id(1)
  6340. def set_gguf_parameters(self):
  6341. super().set_gguf_parameters()
  6342. hparams = self.hparams
  6343. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6344. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  6345. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  6346. # * Partial RoPE
  6347. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  6348. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  6349. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  6350. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  6351. # * RopeScaling for Nemotron
  6352. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  6353. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6354. else:
  6355. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6356. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  6357. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6358. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  6359. # model.layers.{l}.input_layernorm.weight
  6360. # model.layers.{l}.post_attention_layernorm.weight
  6361. # model.norm.weight
  6362. if name.endswith("norm.weight"):
  6363. data_torch = data_torch + 1
  6364. return [(self.map_tensor_name(name), data_torch)]
  6365. @ModelBase.register("ExaoneForCausalLM")
  6366. class ExaoneModel(TextModel):
  6367. model_arch = gguf.MODEL_ARCH.EXAONE
  6368. def set_gguf_parameters(self):
  6369. hparams = self.hparams
  6370. assert (hparams["activation_function"] == "silu")
  6371. max_position_embeddings = hparams["max_position_embeddings"]
  6372. embed_dim = hparams["hidden_size"]
  6373. num_heads = hparams["num_attention_heads"]
  6374. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  6375. layer_norm_eps = hparams["layer_norm_epsilon"]
  6376. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  6377. num_layers = hparams["num_layers"]
  6378. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  6379. # attention_dropout_rate = hparams["attention_dropout"]
  6380. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  6381. # embed_dropout_rate = hparams["embed_dropout"]
  6382. self.gguf_writer.add_embedding_length(embed_dim)
  6383. self.gguf_writer.add_head_count(num_heads)
  6384. self.gguf_writer.add_head_count_kv(num_kv_heads)
  6385. self.gguf_writer.add_context_length(max_position_embeddings)
  6386. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  6387. self.gguf_writer.add_feed_forward_length(intermediate_size)
  6388. self.gguf_writer.add_block_count(num_layers)
  6389. self.gguf_writer.add_file_type(self.ftype)
  6390. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  6391. self.gguf_writer.add_rope_freq_base(rope_theta)
  6392. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  6393. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  6394. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  6395. rope_scaling = self.hparams.get("rope_scaling") or {}
  6396. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  6397. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6398. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6399. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6400. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  6401. if rope_scaling.get("rope_type", '').lower() == "llama3":
  6402. base = self.hparams.get("rope_theta", 10000.0)
  6403. if (dim := self.hparams.get("head_dim")) is None:
  6404. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6405. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6406. factor = rope_scaling.get("factor", 8.0)
  6407. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  6408. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  6409. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6410. low_freq_wavelen = old_context_len / low_freq_factor
  6411. high_freq_wavelen = old_context_len / high_freq_factor
  6412. assert low_freq_wavelen != high_freq_wavelen
  6413. rope_factors = []
  6414. for freq in freqs:
  6415. wavelen = 2 * math.pi / freq
  6416. if wavelen < high_freq_wavelen:
  6417. rope_factors.append(1)
  6418. elif wavelen > low_freq_wavelen:
  6419. rope_factors.append(factor)
  6420. else:
  6421. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6422. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6423. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6424. @ModelBase.register("Exaone4ForCausalLM")
  6425. class Exaone4Model(TextModel):
  6426. model_arch = gguf.MODEL_ARCH.EXAONE4
  6427. def set_vocab(self):
  6428. tokens, toktypes, tokpre = self.get_vocab_base()
  6429. self.gguf_writer.add_tokenizer_model("gpt2")
  6430. self.gguf_writer.add_tokenizer_pre(tokpre)
  6431. self.gguf_writer.add_token_list(tokens)
  6432. self.gguf_writer.add_token_types(toktypes)
  6433. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6434. special_vocab.add_to_gguf(self.gguf_writer)
  6435. def set_gguf_parameters(self):
  6436. super().set_gguf_parameters()
  6437. hparams = self.hparams
  6438. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6439. if hparams.get("sliding_window") is not None:
  6440. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  6441. if "layer_types" in hparams:
  6442. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  6443. elif "sliding_window_pattern" in hparams:
  6444. sliding_window_pattern = []
  6445. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  6446. for i in range(hparams["num_hidden_layers"]):
  6447. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  6448. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  6449. for i in range(hparams["num_hidden_layers"]):
  6450. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  6451. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  6452. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  6453. rope_scaling = self.hparams.get("rope_scaling") or {}
  6454. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  6455. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6456. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6457. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6458. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  6459. if rope_scaling.get("rope_type", '').lower() == "llama3":
  6460. base = self.hparams.get("rope_theta", 10_000.0)
  6461. if (dim := self.hparams.get("head_dim")) is None:
  6462. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6463. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6464. factor = rope_scaling.get("factor", 16.0)
  6465. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  6466. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  6467. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6468. low_freq_wavelen = old_context_len / low_freq_factor
  6469. high_freq_wavelen = old_context_len / high_freq_factor
  6470. rope_factors = []
  6471. for freq in freqs:
  6472. wavelen = 2 * math.pi / freq
  6473. if wavelen < high_freq_wavelen:
  6474. rope_factors.append(1)
  6475. elif wavelen > low_freq_wavelen:
  6476. rope_factors.append(factor)
  6477. else:
  6478. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6479. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6480. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6481. @ModelBase.register("GraniteForCausalLM")
  6482. class GraniteModel(LlamaModel):
  6483. """Conversion for IBM's GraniteForCausalLM"""
  6484. model_arch = gguf.MODEL_ARCH.GRANITE
  6485. def set_gguf_parameters(self):
  6486. """Granite uses standard llama parameters with the following differences:
  6487. - No head_dim support
  6488. - New multiplier params:
  6489. - attention_scale
  6490. - embedding_scale
  6491. - residual_scale
  6492. - logits_scaling
  6493. """
  6494. if head_dim := self.hparams.pop("head_dim", None):
  6495. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  6496. super().set_gguf_parameters()
  6497. # NOTE: Convert _multiplier params to _scale params for naming
  6498. # consistency
  6499. if attention_scale := self.hparams.get("attention_multiplier"):
  6500. self.gguf_writer.add_attention_scale(attention_scale)
  6501. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  6502. if embedding_scale := self.hparams.get("embedding_multiplier"):
  6503. self.gguf_writer.add_embedding_scale(embedding_scale)
  6504. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  6505. if residual_scale := self.hparams.get("residual_multiplier"):
  6506. self.gguf_writer.add_residual_scale(residual_scale)
  6507. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  6508. if logits_scale := self.hparams.get("logits_scaling"):
  6509. self.gguf_writer.add_logit_scale(logits_scale)
  6510. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  6511. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  6512. class GraniteMoeModel(GraniteModel):
  6513. """Conversion for IBM's GraniteMoeForCausalLM"""
  6514. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  6515. def set_gguf_parameters(self):
  6516. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  6517. - shared_intermediate_size
  6518. """
  6519. super().set_gguf_parameters()
  6520. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  6521. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  6522. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  6523. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6524. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  6525. is used. This essentially merges w1 and w3 into a single tensor with 2x
  6526. the hidden size that is then split during forward. To keep compatibility
  6527. with existing mixtral support, we pull them apart here.
  6528. """
  6529. if name.endswith("block_sparse_moe.input_linear.weight"):
  6530. ffn_dim = self.hparams["intermediate_size"]
  6531. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  6532. gate, up = data_torch.split(ffn_dim, dim=-2)
  6533. return [
  6534. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  6535. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  6536. ]
  6537. has_experts = bool(self.hparams.get('num_local_experts'))
  6538. if name.endswith("shared_mlp.input_linear.weight"):
  6539. ffn_dim = self.hparams["shared_intermediate_size"]
  6540. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  6541. gate, up = data_torch.split(ffn_dim, dim=-2)
  6542. if has_experts:
  6543. return [
  6544. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  6545. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  6546. ]
  6547. return [
  6548. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  6549. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  6550. ]
  6551. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  6552. return [
  6553. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  6554. ]
  6555. return super().modify_tensors(data_torch, name, bid)
  6556. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  6557. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  6558. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  6559. layers and optionally uses MoE w/ a shared expert"""
  6560. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  6561. undo_permute = True
  6562. def __init__(self, *args, **kwargs):
  6563. # Hybrid mamba models use a prefix for the mamba-specific params.
  6564. # TODO: Extend this if the prefix(es) need to be configurable
  6565. self.hparam_prefixes = ["mamba"]
  6566. super().__init__(*args, **kwargs)
  6567. # Lists of which layers use ssm vs attention
  6568. self._attn_layers = self.get_attn_layers()
  6569. self._ssm_layers = [
  6570. i for i in range(self.block_count)
  6571. if i not in self._attn_layers
  6572. ]
  6573. # There are some models in this family that are non-hybrid, but keep the
  6574. # same parent class by setting all layers to "attention." If this is the
  6575. # case, the model architecture needs to be updated to a standard
  6576. # "granite" or "granitemoe" model
  6577. if not self._ssm_layers:
  6578. has_experts = self.find_hparam(["num_experts_per_tok"], optional=True)
  6579. new_arch = (
  6580. gguf.MODEL_ARCH.GRANITE_MOE
  6581. if has_experts else
  6582. gguf.MODEL_ARCH.GRANITE
  6583. )
  6584. self.model_arch = new_arch
  6585. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[new_arch]
  6586. self.gguf_writer.add_architecture()
  6587. # n_group and d_inner are used during reshape_tensors for mamba2
  6588. # NOTE: Explicitly include hparam prefix prefix for d_model to
  6589. # disambiguate with top-level head_dim
  6590. # NOTE 2: If needed for future models, this can be isolated in a method
  6591. # to separate the prefix setting and teh keys used
  6592. self.d_model = self.find_hparam([f"{self.hparam_prefixes[0]}_head_dim", "hidden_size", "d_model"])
  6593. self.n_group = self.find_hparam(["n_groups", "num_groups"])
  6594. self.d_inner = self.find_hparam(["expand", "num_heads"]) * self.d_model
  6595. def get_attn_layers(self):
  6596. # Explicit list of layer type names
  6597. if layer_types := self.hparams.get("layer_types"):
  6598. return [
  6599. i for i, typ in enumerate(layer_types)
  6600. if typ == "attention"
  6601. ]
  6602. # Layer types indicated by index or period
  6603. attn_layers = self.hparams.get("attn_layer_indices", [])
  6604. if not attn_layers:
  6605. attn_period = self.hparams.get("attn_layer_period")
  6606. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  6607. attn_offset = self.hparams.get("attn_layer_offset")
  6608. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  6609. attn_layers = [
  6610. i for i in range(self.block_count)
  6611. if i % attn_period == attn_offset
  6612. ]
  6613. return attn_layers
  6614. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6615. prefixed = []
  6616. for pfx in self.hparam_prefixes:
  6617. prefixed.extend(
  6618. "_".join([pfx, k])
  6619. for k in keys
  6620. )
  6621. keys = list(keys) + prefixed
  6622. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  6623. def modify_tensors(
  6624. self, data_torch: Tensor, name: str, bid: int | None
  6625. ) -> Iterable[tuple[str, Tensor]]:
  6626. if (
  6627. name.endswith("block_sparse_moe.input_linear.weight")
  6628. or "shared_mlp" in name
  6629. ):
  6630. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6631. # Determine whether this is a mamba layer or an attention layer
  6632. if bid in self._ssm_layers:
  6633. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  6634. elif bid in self._attn_layers:
  6635. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6636. return [(self.map_tensor_name(name), data_torch)]
  6637. def set_gguf_parameters(self):
  6638. """This method merges params from both parents and some that are
  6639. specific to this model. The result is some duplication of how the params
  6640. get set. The following warnings are expected during conversion:
  6641. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  6642. WARNING:Duplicated key name 'granitehybrid.context_length'
  6643. """
  6644. GraniteMoeModel.set_gguf_parameters(self)
  6645. ## Mamba mixer params ##
  6646. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  6647. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state", "state_dim", "ssm_state_size"]))
  6648. self.gguf_writer.add_ssm_group_count(self.n_group)
  6649. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  6650. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  6651. # in llama.cpp
  6652. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads", "num_heads"]))
  6653. ## Attention params ##
  6654. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  6655. head_count_kv_vec = [
  6656. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  6657. ]
  6658. if rope_dim := self.hparams.get("attn_rotary_emb"):
  6659. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6660. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  6661. ## If Bamba or non-hybrid, use rope, otherwise don't
  6662. use_rope = (
  6663. "BambaForCausalLM" in self.hparams["architectures"]
  6664. or not self._ssm_layers
  6665. )
  6666. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  6667. if not use_rope:
  6668. self.gguf_writer.add_context_length(2**20)
  6669. ## Validation ##
  6670. d_head = self.find_hparam(["d_head"], optional=True) or 64
  6671. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  6672. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  6673. def set_vocab(self):
  6674. self.hparams["pad_vocab_size_multiple"] = 8
  6675. Mamba2Model.set_vocab(self)
  6676. @ModelBase.register("NemotronHForCausalLM")
  6677. class NemotronHModel(GraniteHybridModel):
  6678. """Hybrid mamba2/attention model from NVIDIA"""
  6679. model_arch = gguf.MODEL_ARCH.NEMOTRON_H
  6680. def __init__(self, *args, **kwargs):
  6681. super().__init__(*args, **kwargs)
  6682. # Save the top-level head_dim for later
  6683. self.head_dim = self.hparams.get("head_dim", self.hparams.get("attention_head_dim"))
  6684. assert self.head_dim is not None, "Could not find the attention head dim in config"
  6685. # Don't use expand to calculate d_inner
  6686. self.d_inner = self.find_hparam(["num_heads"]) * self.d_model
  6687. # Update the ssm / attn / mlp layers
  6688. # M: Mamba2, *: Attention, -: MLP
  6689. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  6690. self._ssm_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "M"]
  6691. self._mlp_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "-"]
  6692. def get_attn_layers(self):
  6693. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  6694. assert len(hybrid_override_pattern) == self.block_count, "Mismatch between hybrid override and num_hidden_layers!"
  6695. return [i for i, val in enumerate(hybrid_override_pattern) if val == "*"]
  6696. def set_gguf_parameters(self):
  6697. super().set_gguf_parameters()
  6698. self.gguf_writer.add_key_length(self.head_dim)
  6699. self.gguf_writer.add_value_length(self.head_dim)
  6700. # Set feed_forward_length
  6701. # NOTE: This will trigger an override warning. This is preferrable to
  6702. # duplicating all the parent logic
  6703. n_ff = self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"])
  6704. self.gguf_writer.add_feed_forward_length([
  6705. n_ff if i in self._mlp_layers else 0 for i in range(self.block_count)
  6706. ])
  6707. def set_vocab(self):
  6708. super().set_vocab()
  6709. # The tokenizer _does_ add a BOS token (via post_processor type
  6710. # TemplateProcessing) but does not set add_bos_token to true in the
  6711. # config, so we need to explicitly override it here.
  6712. self.gguf_writer.add_add_bos_token(True)
  6713. @ModelBase.register("BailingMoeForCausalLM")
  6714. class BailingMoeModel(TextModel):
  6715. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  6716. def set_vocab(self):
  6717. self._set_vocab_gpt2()
  6718. def set_gguf_parameters(self):
  6719. super().set_gguf_parameters()
  6720. hparams = self.hparams
  6721. if (rope_dim := hparams.get("head_dim")) is None:
  6722. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  6723. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6724. rope_scaling = self.hparams.get("rope_scaling") or {}
  6725. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6726. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6727. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6728. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6729. else:
  6730. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6731. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  6732. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6733. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  6734. self.gguf_writer.add_expert_weights_scale(1.0)
  6735. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6736. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  6737. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  6738. _experts: list[dict[str, Tensor]] | None = None
  6739. @staticmethod
  6740. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  6741. if n_head_kv is not None and n_head != n_head_kv:
  6742. n_head = n_head_kv
  6743. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  6744. .swapaxes(1, 2)
  6745. .reshape(weights.shape))
  6746. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6747. n_head = self.hparams["num_attention_heads"]
  6748. n_kv_head = self.hparams.get("num_key_value_heads")
  6749. n_embd = self.hparams["hidden_size"]
  6750. if (head_dim := self.hparams.get("head_dim")) is None:
  6751. head_dim = n_embd // n_head
  6752. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  6753. if name.endswith("attention.dense.weight"):
  6754. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  6755. elif name.endswith("query_key_value.weight"):
  6756. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  6757. return [
  6758. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  6759. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  6760. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  6761. ]
  6762. elif name.find("mlp.experts") != -1:
  6763. n_experts = self.hparams["num_experts"]
  6764. assert bid is not None
  6765. tensors: list[tuple[str, Tensor]] = []
  6766. if self._experts is None:
  6767. self._experts = [{} for _ in range(self.block_count)]
  6768. self._experts[bid][name] = data_torch
  6769. if len(self._experts[bid]) >= n_experts * 3:
  6770. # merge the experts into a single 3d tensor
  6771. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6772. datas: list[Tensor] = []
  6773. for xid in range(n_experts):
  6774. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6775. datas.append(self._experts[bid][ename])
  6776. del self._experts[bid][ename]
  6777. data_torch = torch.stack(datas, dim=0)
  6778. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6779. new_name = self.map_tensor_name(merged_name)
  6780. tensors.append((new_name, data_torch))
  6781. return tensors
  6782. new_name = self.map_tensor_name(name)
  6783. if new_name == output_name and self.hparams.get("norm_head"):
  6784. data_torch = data_torch.float()
  6785. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  6786. return [(new_name, data_torch)]
  6787. def prepare_tensors(self):
  6788. super().prepare_tensors()
  6789. if self._experts is not None:
  6790. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6791. experts = [k for d in self._experts for k in d.keys()]
  6792. if len(experts) > 0:
  6793. raise ValueError(f"Unprocessed experts: {experts}")
  6794. @ModelBase.register("BailingMoeV2ForCausalLM")
  6795. class BailingMoeV2Model(TextModel):
  6796. model_arch = gguf.MODEL_ARCH.BAILINGMOE2
  6797. def __init__(self, *args, **kwargs):
  6798. super().__init__(*args, **kwargs)
  6799. if nextn_layers := self.hparams.get("num_nextn_predict_layers", 0):
  6800. self.block_count = self.hparams["num_hidden_layers"] + nextn_layers
  6801. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  6802. def set_vocab(self):
  6803. self._set_vocab_gpt2()
  6804. def set_gguf_parameters(self):
  6805. super().set_gguf_parameters()
  6806. hparams = self.hparams
  6807. if (rope_dim := hparams.get("head_dim")) is None:
  6808. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  6809. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6810. rope_scaling = self.hparams.get("rope_scaling") or {}
  6811. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6812. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6813. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6814. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6815. else:
  6816. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6817. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  6818. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6819. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  6820. self.gguf_writer.add_expert_shared_feed_forward_length(hparams.get("moe_shared_expert_intermediate_size", hparams["moe_intermediate_size"] * hparams["num_shared_experts"]))
  6821. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  6822. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6823. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  6824. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  6825. if hparams["score_function"] == "sigmoid":
  6826. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6827. elif hparams["score_function"] == "softmax":
  6828. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  6829. else:
  6830. raise ValueError(f"Unsupported score_function value: {hparams['score_function']}")
  6831. if (nextn_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  6832. self.gguf_writer.add_nextn_predict_layers(nextn_layers)
  6833. _experts: list[dict[str, Tensor]] | None = None
  6834. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6835. if "mlp.experts" in name:
  6836. n_experts = self.hparams["num_experts"]
  6837. assert bid is not None
  6838. tensors: list[tuple[str, Tensor]] = []
  6839. if self._experts is None:
  6840. self._experts = [{} for _ in range(self.block_count)]
  6841. self._experts[bid][name] = data_torch
  6842. if len(self._experts[bid]) >= n_experts * 3:
  6843. # merge the experts into a single 3d tensor
  6844. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6845. datas: list[Tensor] = []
  6846. for xid in range(n_experts):
  6847. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6848. datas.append(self._experts[bid][ename])
  6849. del self._experts[bid][ename]
  6850. data_torch = torch.stack(datas, dim=0)
  6851. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6852. new_name = self.map_tensor_name(merged_name)
  6853. tensors.append((new_name, data_torch))
  6854. return tensors
  6855. if name.endswith(".expert_bias"):
  6856. name = name.replace(".expert_bias", ".expert_bias.bias")
  6857. return [(self.map_tensor_name(name), data_torch)]
  6858. def prepare_tensors(self):
  6859. super().prepare_tensors()
  6860. if self._experts is not None:
  6861. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6862. experts = [k for d in self._experts for k in d.keys()]
  6863. if len(experts) > 0:
  6864. raise ValueError(f"Unprocessed experts: {experts}")
  6865. @ModelBase.register("GroveMoeForCausalLM", "modeling_grove_moe.GroveMoeForCausalLM")
  6866. class GroveMoeModel(TextModel):
  6867. model_arch = gguf.MODEL_ARCH.GROVEMOE
  6868. def set_gguf_parameters(self):
  6869. super().set_gguf_parameters()
  6870. if (n_experts := self.hparams.get("num_experts")) is not None:
  6871. self.gguf_writer.add_expert_count(n_experts)
  6872. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  6873. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6874. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  6875. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L299
  6876. self.gguf_writer.add_expert_chunk_feed_forward_length(self.hparams.get("head_dim") or 128)
  6877. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L298
  6878. self.gguf_writer.add_experts_per_group(2)
  6879. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L376
  6880. self.gguf_writer.add_expert_group_scale(0.05)
  6881. # YaRN is not enabled by default
  6882. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  6883. rope_scaling = self.hparams.get("rope_scaling") or {}
  6884. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6885. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6886. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6887. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6888. _experts: list[dict[str, Tensor]] | None = None
  6889. _chunk_experts: list[dict[str, Tensor]] | None = None
  6890. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6891. if name.endswith(".expert_bias"):
  6892. # FIXME?: Unused https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L303
  6893. return []
  6894. # process the experts separately
  6895. if name.find("chunk_experts") != -1:
  6896. n_experts = self.hparams["num_experts"] // 2 # see add_experts_per_group
  6897. assert bid is not None
  6898. if self._chunk_experts is None:
  6899. self._chunk_experts = [{} for _ in range(self.block_count)]
  6900. self._chunk_experts[bid][name] = data_torch
  6901. if len(self._chunk_experts[bid]) >= n_experts * 3:
  6902. tensors: list[tuple[str, Tensor]] = []
  6903. # merge the experts into a single 3d tensor
  6904. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6905. datas: list[Tensor] = []
  6906. for xid in range(n_experts):
  6907. ename = f"model.layers.{bid}.mlp.chunk_experts.{xid}.{w_name}.weight"
  6908. datas.append(self._chunk_experts[bid][ename])
  6909. del self._chunk_experts[bid][ename]
  6910. data_torch = torch.stack(datas, dim=0)
  6911. merged_name = f"model.layers.{bid}.mlp.chunk_experts.{w_name}.weight"
  6912. new_name = self.map_tensor_name(merged_name)
  6913. tensors.append((new_name, data_torch))
  6914. return tensors
  6915. else:
  6916. return []
  6917. elif name.find("experts") != -1:
  6918. n_experts = self.hparams["num_experts"]
  6919. assert bid is not None
  6920. if self._experts is None:
  6921. self._experts = [{} for _ in range(self.block_count)]
  6922. self._experts[bid][name] = data_torch
  6923. if len(self._experts[bid]) >= n_experts * 3:
  6924. tensors: list[tuple[str, Tensor]] = []
  6925. # merge the experts into a single 3d tensor
  6926. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6927. datas: list[Tensor] = []
  6928. for xid in range(n_experts):
  6929. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6930. datas.append(self._experts[bid][ename])
  6931. del self._experts[bid][ename]
  6932. data_torch = torch.stack(datas, dim=0)
  6933. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6934. new_name = self.map_tensor_name(merged_name)
  6935. tensors.append((new_name, data_torch))
  6936. return tensors
  6937. else:
  6938. return []
  6939. return [(self.map_tensor_name(name), data_torch)]
  6940. def prepare_tensors(self):
  6941. super().prepare_tensors()
  6942. if self._chunk_experts is not None:
  6943. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6944. chunk_experts = [k for d in self._chunk_experts for k in d.keys()]
  6945. if len(chunk_experts) > 0:
  6946. raise ValueError(f"Unprocessed adjugate experts: {chunk_experts}")
  6947. if self._experts is not None:
  6948. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6949. experts = [k for d in self._experts for k in d.keys()]
  6950. if len(experts) > 0:
  6951. raise ValueError(f"Unprocessed experts: {experts}")
  6952. @ModelBase.register("ChameleonForConditionalGeneration")
  6953. @ModelBase.register("ChameleonForCausalLM") # obsolete
  6954. class ChameleonModel(TextModel):
  6955. model_arch = gguf.MODEL_ARCH.CHAMELEON
  6956. def set_gguf_parameters(self):
  6957. super().set_gguf_parameters()
  6958. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  6959. def set_vocab(self):
  6960. self._set_vocab_gpt2()
  6961. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6962. # ignore image tokenizer for now
  6963. # TODO: remove this once image support is implemented for Chameleon
  6964. if name.startswith("model.vqmodel"):
  6965. return []
  6966. n_head = self.hparams["num_attention_heads"]
  6967. n_kv_head = self.hparams.get("num_key_value_heads")
  6968. hidden_dim = self.hparams.get("hidden_size")
  6969. if name.endswith(("q_proj.weight", "q_proj.bias")):
  6970. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  6971. if name.endswith(("k_proj.weight", "k_proj.bias")):
  6972. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  6973. if name.endswith(("q_norm.weight", "q_norm.bias")):
  6974. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  6975. if name.endswith(("k_norm.weight", "k_norm.bias")):
  6976. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  6977. return [(self.map_tensor_name(name), data_torch)]
  6978. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  6979. @staticmethod
  6980. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  6981. head_dim = hidden_dim // n_heads
  6982. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  6983. data_torch = data_torch.repeat_interleave(n_heads, 0)
  6984. return data_torch
  6985. @ModelBase.register("UltravoxModel")
  6986. class UltravoxModel(TextModel):
  6987. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  6988. def __init__(self, *args, **kwargs):
  6989. super().__init__(*args, **kwargs)
  6990. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  6991. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  6992. class WhisperEncoderModel(MmprojModel):
  6993. has_vision_encoder = False # no vision encoder
  6994. has_audio_encoder = True
  6995. def __init__(self, *args, **kwargs):
  6996. super().__init__(*args, **kwargs)
  6997. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  6998. self.hparams["hidden_size"] = self.hparams["d_model"]
  6999. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  7000. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  7001. def set_gguf_parameters(self):
  7002. super().set_gguf_parameters()
  7003. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  7004. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  7005. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  7006. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7007. if ".conv" in name and ".weight" in name:
  7008. return gguf.GGMLQuantizationType.F16
  7009. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7010. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7011. del bid # unused
  7012. if name.startswith("language_model."):
  7013. # skip language model tensors
  7014. return []
  7015. # prevent clash naming with vision tensors
  7016. if name.startswith("multi_modal_projector"):
  7017. name = "audio." + name
  7018. if "conv1.bias" in name or "conv2.bias" in name:
  7019. # transpose conv1 and conv2 bias
  7020. data_torch = data_torch.unsqueeze(-1)
  7021. return [(self.map_tensor_name(name), data_torch)]
  7022. @ModelBase.register("UltravoxModel")
  7023. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  7024. has_vision_encoder = False # no vision encoder
  7025. has_audio_encoder = True
  7026. def set_gguf_parameters(self):
  7027. super().set_gguf_parameters()
  7028. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  7029. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  7030. @ModelBase.register("VoxtralForConditionalGeneration")
  7031. class VoxtralWhisperEncoderModel(WhisperEncoderModel):
  7032. has_vision_encoder = False # no vision encoder
  7033. has_audio_encoder = True
  7034. def set_gguf_parameters(self):
  7035. super().set_gguf_parameters()
  7036. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
  7037. self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
  7038. @ModelBase.register("FalconH1ForCausalLM")
  7039. class FalconH1Model(Mamba2Model):
  7040. model_arch = gguf.MODEL_ARCH.FALCON_H1
  7041. def __init__(self, *args, **kwargs):
  7042. # Set the hparam prefixes for Falcon Mamba2
  7043. self.hparam_prefixes = ["mamba"]
  7044. # Initialize the base Mamba2Model
  7045. super().__init__(*args, **kwargs)
  7046. # Use Llama conversion for attention
  7047. self._transformer_model_class = LlamaModel
  7048. # n_group and d_inner are used during reshape_tensors for mamba2
  7049. self.n_group = self.find_hparam(["n_groups"])
  7050. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  7051. self.d_head = self.find_hparam(["d_head"])
  7052. # Initialize any Falcon Mamba2 specific attributes
  7053. self.has_attention = True # Falcon Mamba2 has attention components
  7054. # Load Falcon-H1 multipliers from hyperparameters
  7055. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  7056. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  7057. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  7058. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  7059. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  7060. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  7061. self.intermediate_size = self.find_hparam(["intermediate_size"])
  7062. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  7063. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  7064. prefixed = []
  7065. for pfx in self.hparam_prefixes:
  7066. prefixed.extend(
  7067. "_".join([pfx, k])
  7068. for k in keys
  7069. )
  7070. keys = list(keys) + prefixed
  7071. return super().find_hparam(keys, *args, **kwargs)
  7072. def set_vocab(self):
  7073. self._set_vocab_gpt2()
  7074. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7075. tensors = list(super().modify_tensors(data_torch, name, bid))
  7076. tensor = tensors[0][1]
  7077. if "down_proj" in name:
  7078. tensor = tensor * self.mlp_multipliers[1]
  7079. elif "gate_proj" in name:
  7080. tensor = tensor * self.mlp_multipliers[0]
  7081. elif "k_proj" in name:
  7082. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  7083. elif "q_proj" in name:
  7084. tensor = tensor * self.attention_in_multiplier
  7085. elif "v_proj" in name:
  7086. tensor = tensor * self.attention_in_multiplier
  7087. elif "o_proj" in name:
  7088. tensor = tensor * self.attention_out_multiplier
  7089. elif "out_proj" in name:
  7090. tensor = tensor * self.ssm_out_multiplier
  7091. elif "in_proj" in name:
  7092. tensor = tensor * self.ssm_in_multiplier
  7093. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  7094. intermediate_size = self.hparams["mamba_d_ssm"]
  7095. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  7096. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  7097. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  7098. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  7099. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  7100. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  7101. elif "lm_head" in name:
  7102. tensor = tensor * self.hparams["lm_head_multiplier"]
  7103. elif "embed_tokens" in name:
  7104. tensor = tensor * self.hparams["embedding_multiplier"]
  7105. elif "mamba.norm" in name:
  7106. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  7107. tensors = [(tensors[0][0], tensor)]
  7108. return tensors
  7109. def set_gguf_parameters(self):
  7110. super().set_gguf_parameters()
  7111. ## General Params ##
  7112. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7113. # Override some Mamba2 defaults
  7114. self.gguf_writer.add_block_count(self.block_count)
  7115. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  7116. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  7117. ## Attention params ##
  7118. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  7119. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  7120. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  7121. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  7122. ## Validation ##
  7123. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  7124. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  7125. # Add any other Falcon Mamba2 specific configuration
  7126. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  7127. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  7128. class HunYuanMoEModel(TextModel):
  7129. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  7130. def set_vocab(self):
  7131. from transformers import AutoTokenizer
  7132. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7133. # 1. Get the pre-tokenizer identifier hash
  7134. tokpre = self.get_vocab_base_pre(tokenizer)
  7135. # 2. Reverse-engineer the merges list from mergeable_ranks
  7136. merges = []
  7137. vocab = {}
  7138. mergeable_ranks = tokenizer.mergeable_ranks
  7139. for token, rank in mergeable_ranks.items():
  7140. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7141. if len(token) == 1:
  7142. continue
  7143. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7144. if len(merged) == 2: # todo this is an assert in Qwen, why?
  7145. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7146. # 3. Generate the tokens and toktypes lists
  7147. vocab_size = self.hparams["vocab_size"]
  7148. assert tokenizer.vocab_size == vocab_size
  7149. special_tokens = tokenizer.special_tokens
  7150. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7151. tokens: list[str] = []
  7152. toktypes: list[int] = []
  7153. for i in range(vocab_size):
  7154. if i not in reverse_vocab:
  7155. tokens.append(f"[PAD{i}]")
  7156. toktypes.append(gguf.TokenType.UNUSED)
  7157. else:
  7158. token = reverse_vocab[i]
  7159. tokens.append(token)
  7160. if i in special_tokens.values():
  7161. toktypes.append(gguf.TokenType.CONTROL)
  7162. else:
  7163. toktypes.append(gguf.TokenType.NORMAL)
  7164. # 4. Write all vocab-related fields to the GGUF writer
  7165. self.gguf_writer.add_tokenizer_model("gpt2")
  7166. self.gguf_writer.add_tokenizer_pre(tokpre)
  7167. self.gguf_writer.add_token_list(tokens)
  7168. self.gguf_writer.add_token_types(toktypes)
  7169. self.gguf_writer.add_token_merges(merges)
  7170. # 5. Add special tokens and chat templates
  7171. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7172. special_vocab.add_to_gguf(self.gguf_writer)
  7173. # FIX for BOS token: Overwrite incorrect id read from config.json
  7174. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  7175. def set_gguf_parameters(self):
  7176. super().set_gguf_parameters()
  7177. hparams = self.hparams
  7178. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7179. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  7180. moe_intermediate_size = hparams["moe_intermediate_size"]
  7181. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  7182. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  7183. moe_topk = hparams["moe_topk"]
  7184. assert all(topk == moe_topk[0] for topk in moe_topk)
  7185. self.gguf_writer.add_expert_used_count(moe_topk[0])
  7186. moe_shared_expert = hparams["num_shared_expert"]
  7187. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  7188. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  7189. # Rope
  7190. rope_scaling = hparams.get("rope_scaling", {})
  7191. if rope_scaling.get("type") == "dynamic":
  7192. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7193. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7194. alpha = rope_scaling.get("alpha", 1000)
  7195. base = hparams.get("rope_theta", 10000.0)
  7196. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  7197. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  7198. self.gguf_writer.add_rope_freq_base(scaled_base)
  7199. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7200. self.gguf_writer.add_rope_scaling_factor(1)
  7201. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7202. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7203. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7204. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7205. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7206. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7207. _experts: list[dict[str, Tensor]] | None = None
  7208. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7209. if name == "lm_head.weight":
  7210. if self.hparams.get("tie_word_embeddings", False):
  7211. logger.info("Skipping tied output layer 'lm_head.weight'")
  7212. return []
  7213. if name.find("mlp.experts") != -1:
  7214. n_experts = self.hparams["num_experts"]
  7215. assert bid is not None
  7216. if self._experts is None:
  7217. self._experts = [{} for _ in range(self.block_count)]
  7218. self._experts[bid][name] = data_torch
  7219. if len(self._experts[bid]) >= n_experts * 3:
  7220. # merge the experts into a single 3d tensor
  7221. tensors: list[tuple[str, Tensor]] = []
  7222. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7223. datas: list[Tensor] = []
  7224. for xid in range(n_experts):
  7225. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7226. datas.append(self._experts[bid][ename])
  7227. del self._experts[bid][ename]
  7228. data_torch = torch.stack(datas, dim=0)
  7229. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7230. new_name = self.map_tensor_name(merged_name)
  7231. tensors.append((new_name, data_torch))
  7232. return tensors
  7233. else:
  7234. return []
  7235. return [(self.map_tensor_name(name), data_torch)]
  7236. def prepare_tensors(self):
  7237. super().prepare_tensors()
  7238. if self._experts is not None:
  7239. experts = [k for d in self._experts for k in d.keys()]
  7240. if len(experts) > 0:
  7241. raise ValueError(f"Unprocessed experts: {experts}")
  7242. @ModelBase.register("LLaDAMoEModel", "LLaDAMoEModelLM")
  7243. class LLaDAMoEModel(TextModel):
  7244. model_arch = gguf.MODEL_ARCH.LLADA_MOE
  7245. def set_gguf_parameters(self):
  7246. super().set_gguf_parameters()
  7247. if (n_experts := self.hparams.get("num_experts")) is not None:
  7248. self.gguf_writer.add_expert_count(n_experts)
  7249. if (expert_intermediate_size := self.hparams.get("expert_intermediate_size")) is not None:
  7250. self.gguf_writer.add_expert_feed_forward_length(expert_intermediate_size)
  7251. # number of experts used per token (top-k)
  7252. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  7253. self.gguf_writer.add_expert_used_count(n_experts_used)
  7254. self.gguf_writer.add_mask_token_id(156895)
  7255. self.gguf_writer.add_causal_attention(False)
  7256. self.gguf_writer.add_diffusion_shift_logits(False)
  7257. _experts: list[dict[str, Tensor]] | None = None
  7258. # Copied from: Qwen2MoeModel
  7259. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7260. # process the experts separately
  7261. if name.find("experts") != -1:
  7262. n_experts = self.hparams["num_experts"]
  7263. assert bid is not None
  7264. if self._experts is None:
  7265. self._experts = [{} for _ in range(self.block_count)]
  7266. self._experts[bid][name] = data_torch
  7267. if len(self._experts[bid]) >= n_experts * 3:
  7268. tensors: list[tuple[str, Tensor]] = []
  7269. # merge the experts into a single 3d tensor
  7270. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7271. datas: list[Tensor] = []
  7272. for xid in range(n_experts):
  7273. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7274. datas.append(self._experts[bid][ename])
  7275. del self._experts[bid][ename]
  7276. data_torch = torch.stack(datas, dim=0)
  7277. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7278. new_name = self.map_tensor_name(merged_name)
  7279. tensors.append((new_name, data_torch))
  7280. return tensors
  7281. else:
  7282. return []
  7283. return [(self.map_tensor_name(name), data_torch)]
  7284. # Copied from: Qwen2MoeModel
  7285. def prepare_tensors(self):
  7286. super().prepare_tensors()
  7287. if self._experts is not None:
  7288. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7289. experts = [k for d in self._experts for k in d.keys()]
  7290. if len(experts) > 0:
  7291. raise ValueError(f"Unprocessed experts: {experts}")
  7292. @ModelBase.register("HunYuanDenseV1ForCausalLM")
  7293. class HunYuanModel(TextModel):
  7294. model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
  7295. def set_vocab(self):
  7296. if (self.dir_model / "tokenizer.json").is_file():
  7297. self._set_vocab_gpt2()
  7298. else:
  7299. from transformers import AutoTokenizer
  7300. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7301. # 1. Get the pre-tokenizer identifier hash
  7302. tokpre = self.get_vocab_base_pre(tokenizer)
  7303. # 2. Reverse-engineer the merges list from mergeable_ranks
  7304. merges = []
  7305. vocab = {}
  7306. mergeable_ranks = tokenizer.mergeable_ranks
  7307. for token, rank in mergeable_ranks.items():
  7308. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7309. if len(token) == 1:
  7310. continue
  7311. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7312. if len(merged) == 2:
  7313. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7314. # 3. Generate the tokens and toktypes lists
  7315. vocab_size = self.hparams["vocab_size"]
  7316. assert tokenizer.vocab_size == vocab_size
  7317. special_tokens = tokenizer.special_tokens
  7318. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7319. tokens: list[str] = []
  7320. toktypes: list[int] = []
  7321. for i in range(vocab_size):
  7322. if i not in reverse_vocab:
  7323. tokens.append(f"[PAD{i}]")
  7324. toktypes.append(gguf.TokenType.UNUSED)
  7325. else:
  7326. token = reverse_vocab[i]
  7327. tokens.append(token)
  7328. if i in special_tokens.values():
  7329. toktypes.append(gguf.TokenType.CONTROL)
  7330. else:
  7331. toktypes.append(gguf.TokenType.NORMAL)
  7332. # 4. Write all vocab-related fields to the GGUF writer
  7333. self.gguf_writer.add_tokenizer_model("gpt2")
  7334. self.gguf_writer.add_tokenizer_pre(tokpre)
  7335. self.gguf_writer.add_token_list(tokens)
  7336. self.gguf_writer.add_token_types(toktypes)
  7337. self.gguf_writer.add_token_merges(merges)
  7338. # 5. Add special tokens and chat templates
  7339. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7340. special_vocab.add_to_gguf(self.gguf_writer)
  7341. # FIX for BOS token: Overwrite incorrect id read from config.json
  7342. if self.hparams['hidden_size'] == 4096:
  7343. self.gguf_writer.add_bos_token_id(127958) # only for 7b dense, fix <|bos|> token
  7344. def set_gguf_parameters(self):
  7345. super().set_gguf_parameters()
  7346. hparams = self.hparams
  7347. # Rope
  7348. rope_scaling = hparams.get("rope_scaling", {})
  7349. if rope_scaling.get("type") == "dynamic":
  7350. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7351. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7352. alpha = rope_scaling.get("alpha", 50)
  7353. base = hparams.get("rope_theta", 10000.0)
  7354. dim = hparams["head_dim"]
  7355. scaled_base = base * (alpha ** (dim / (dim - 2)))
  7356. self.gguf_writer.add_rope_freq_base(scaled_base)
  7357. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7358. self.gguf_writer.add_rope_scaling_factor(1)
  7359. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7360. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7361. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7362. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7363. assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7364. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7365. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7366. if name == "lm_head.weight":
  7367. if self.hparams.get("tie_word_embeddings", False):
  7368. logger.info("Skipping tied output layer 'lm_head.weight'")
  7369. return []
  7370. return [(self.map_tensor_name(name), data_torch)]
  7371. @ModelBase.register("SmolLM3ForCausalLM")
  7372. class SmolLM3Model(LlamaModel):
  7373. model_arch = gguf.MODEL_ARCH.SMOLLM3
  7374. def set_vocab(self):
  7375. super().set_vocab()
  7376. # remove unsupported array slicing in chat template
  7377. # ref: https://huggingface.co/ggml-org/SmolLM3-3B-GGUF/discussions/1
  7378. from transformers import AutoTokenizer
  7379. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  7380. if tokenizer.chat_template is not None:
  7381. chat_template = tokenizer.chat_template.replace("[:]", "")
  7382. self.gguf_writer.add_chat_template(chat_template)
  7383. @ModelBase.register("GptOssForCausalLM")
  7384. class GptOssModel(TextModel):
  7385. model_arch = gguf.MODEL_ARCH.GPT_OSS
  7386. # TODO: remove once MXFP4 is supported more generally
  7387. def dequant_model(self):
  7388. quant_config = self.hparams.get("quantization_config")
  7389. if quant_config is not None and quant_config.get("quant_method") == "mxfp4":
  7390. return
  7391. return super().dequant_model()
  7392. def transform_nibble_layout(self, tensor):
  7393. assert tensor.dtype == torch.uint8
  7394. assert tensor.shape[-1] == 16
  7395. # swap nibbles
  7396. t_lo = tensor & 0x0F
  7397. t_hi = tensor & 0xF0
  7398. t_swapped = (t_lo << 4) | (t_hi >> 4)
  7399. tensor = t_swapped
  7400. # transform aaaa...bbbb... to abababab...
  7401. blk_a, blk_b = tensor.chunk(2, dim=-1)
  7402. # get a_
  7403. blk_a0 = (blk_a & 0xF0).view(-1, 1)
  7404. blk_a1 = (blk_a << 4).view(-1, 1)
  7405. blk_a = torch.stack((blk_a0, blk_a1), dim=2).view(tensor.shape)
  7406. # get _b
  7407. blk_b0 = (blk_b >> 4).view(-1, 1)
  7408. blk_b1 = (blk_b & 0x0F).view(-1, 1)
  7409. blk_b = torch.stack((blk_b0, blk_b1), dim=2).view(tensor.shape)
  7410. # swap once more
  7411. out = blk_a | blk_b
  7412. out_h = out & 0xF0
  7413. out_l = out & 0x0F
  7414. out = (out_h >> 4) | (out_l << 4)
  7415. return out
  7416. def repack_mxfp4(self, new_name: str, blocks: Tensor, scales: Tensor):
  7417. assert blocks.dtype == torch.uint8
  7418. assert scales.dtype == torch.uint8
  7419. scales = scales.unsqueeze(-1)
  7420. assert len(blocks.shape) == 4
  7421. assert len(scales.shape) == 4
  7422. blocks = self.transform_nibble_layout(blocks)
  7423. new_data = torch.concat((scales, blocks), dim=-1)
  7424. new_shape = [new_data.shape[0], new_data.shape[1], new_data.shape[2] * 32]
  7425. logger.info(f"Repacked {new_name} with shape {new_shape} and quantization MXFP4")
  7426. # flatten last dim
  7427. new_data = new_data.view(new_data.shape[0], new_data.shape[1], new_data.shape[2] * new_data.shape[3])
  7428. new_data = new_data.numpy()
  7429. self.gguf_writer.add_tensor(new_name, new_data, raw_dtype=gguf.GGMLQuantizationType.MXFP4)
  7430. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  7431. blocks0: Tensor = torch.zeros(1)
  7432. blocks1: Tensor = torch.zeros(1)
  7433. # we assume that tensors are loaded in the correct order
  7434. for name, data_torch in self.get_tensors():
  7435. if "mlp.experts.down_proj_blocks" in name:
  7436. blocks0 = data_torch
  7437. elif "mlp.experts.down_proj_scales" in name:
  7438. new_name = self.map_tensor_name(name.replace("_scales", ".weight"))
  7439. self.repack_mxfp4(new_name, blocks0, data_torch)
  7440. elif "mlp.experts.gate_up_proj_blocks" in name:
  7441. blocks0, blocks1 = data_torch[:, ::2, :, :], data_torch[:, 1::2, :, :]
  7442. elif "mlp.experts.gate_up_proj_scales" in name:
  7443. scales0, scales1 = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7444. new_name_gate = self.map_tensor_name(name.replace("gate_up_proj_scales", "gate_proj.weight"))
  7445. new_name_up = self.map_tensor_name(name.replace("gate_up_proj_scales", "up_proj.weight"))
  7446. self.repack_mxfp4(new_name_gate, blocks0, scales0)
  7447. self.repack_mxfp4(new_name_up, blocks1, scales1)
  7448. return []
  7449. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7450. del bid # unused
  7451. if "sinks" in name:
  7452. name += ".weight"
  7453. # correct naming for down_proj
  7454. if "down_proj" in name:
  7455. if name.endswith("_bias"):
  7456. name = name.replace("down_proj_bias", "down_proj.bias")
  7457. elif "_blocks" not in name and "_scales" not in name:
  7458. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7459. name = name.replace("down_proj", "down_proj.weight")
  7460. data_torch = data_torch.transpose(-1, -2)
  7461. else:
  7462. # otherwise, it should already be repacked to ggml MXFP4 format
  7463. return []
  7464. # split the gate_up into gate and up
  7465. if "gate_up_proj" in name:
  7466. if name.endswith("_bias"):
  7467. name_up = name.replace("gate_up_proj_bias", "up_proj.bias")
  7468. name_gate = name.replace("gate_up_proj_bias", "gate_proj.bias")
  7469. gate_proj_bias, up_proj_bias = data_torch[..., ::2], data_torch[..., 1::2]
  7470. return [
  7471. (self.map_tensor_name(name_gate), gate_proj_bias),
  7472. (self.map_tensor_name(name_up), up_proj_bias)
  7473. ]
  7474. elif "_blocks" not in name and "_scales" not in name:
  7475. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7476. name_up = name.replace("gate_up_proj", "up_proj.weight")
  7477. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  7478. data_torch = data_torch.transpose(-1, -2)
  7479. gate_proj_weight, up_proj_weight = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7480. return [
  7481. (self.map_tensor_name(name_gate), gate_proj_weight),
  7482. (self.map_tensor_name(name_up), up_proj_weight)
  7483. ]
  7484. else:
  7485. # otherwise, it should already be repacked to ggml MXFP4 format
  7486. return []
  7487. return [(self.map_tensor_name(name), data_torch)]
  7488. def set_vocab(self):
  7489. self._set_vocab_gpt2()
  7490. def set_gguf_parameters(self):
  7491. super().set_gguf_parameters()
  7492. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  7493. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size"])
  7494. rope_scaling = self.hparams.get("rope_scaling") or {}
  7495. rope_type = rope_scaling.get("rope_type", rope_scaling.get("type"))
  7496. assert rope_type == "yarn", f"GPT-OSS only supports yarn rope scaling, got {rope_type}"
  7497. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7498. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7499. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling.get("original_max_position_embeddings", 4096))
  7500. @ModelBase.register("Lfm2ForCausalLM", "LFM2ForCausalLM")
  7501. class LFM2Model(TextModel):
  7502. model_arch = gguf.MODEL_ARCH.LFM2
  7503. def _add_feed_forward_length(self):
  7504. ff_dim = self.hparams["block_ff_dim"]
  7505. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  7506. ff_dim = self.hparams["block_ff_dim"]
  7507. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  7508. multiple_of = self.hparams["block_multiple_of"]
  7509. if auto_adjust_ff_dim:
  7510. ff_dim = int(2 * ff_dim / 3)
  7511. # custom dim factor multiplier
  7512. if ffn_dim_multiplier is not None:
  7513. ff_dim = int(ffn_dim_multiplier * ff_dim)
  7514. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  7515. self.gguf_writer.add_feed_forward_length(ff_dim)
  7516. def set_gguf_parameters(self):
  7517. # set num_key_value_heads only for attention layers
  7518. self.hparams["num_key_value_heads"] = [
  7519. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  7520. for layer_type in self.hparams["layer_types"]
  7521. ]
  7522. super().set_gguf_parameters()
  7523. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7524. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  7525. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  7526. self._add_feed_forward_length()
  7527. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7528. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7529. if is_vision_tensor:
  7530. # skip vision tensors
  7531. return []
  7532. name = name.replace("language_model.", "")
  7533. # conv op requires 2d tensor
  7534. if 'conv.conv' in name:
  7535. data_torch = data_torch.squeeze(1)
  7536. return [(self.map_tensor_name(name), data_torch)]
  7537. @ModelBase.register("Lfm2MoeForCausalLM")
  7538. class LFM2MoeModel(TextModel):
  7539. model_arch = gguf.MODEL_ARCH.LFM2MOE
  7540. def set_gguf_parameters(self):
  7541. # set num_key_value_heads only for attention layers
  7542. self.hparams["num_key_value_heads"] = [
  7543. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  7544. for layer_type in self.hparams["layer_types"]
  7545. ]
  7546. super().set_gguf_parameters()
  7547. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  7548. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  7549. self.gguf_writer.add_leading_dense_block_count(self.hparams["num_dense_layers"])
  7550. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  7551. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7552. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  7553. # cache for experts weights for merging
  7554. _experts_cache: dict[int, dict[str, Tensor]] = {}
  7555. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7556. # conv op requires 2d tensor
  7557. if 'conv.conv' in name:
  7558. data_torch = data_torch.squeeze(1)
  7559. if name.endswith(".expert_bias"):
  7560. name = name.replace(".expert_bias", ".expert_bias.bias")
  7561. # merge expert weights
  7562. if 'experts' in name:
  7563. n_experts = self.hparams["num_experts"]
  7564. assert bid is not None
  7565. expert_cache = self._experts_cache.setdefault(bid, {})
  7566. expert_cache[name] = data_torch
  7567. expert_weights = ["w1", "w2", "w3"]
  7568. # not enough expert weights to merge
  7569. if len(expert_cache) < n_experts * len(expert_weights):
  7570. return []
  7571. tensors: list[tuple[str, Tensor]] = []
  7572. for w_name in expert_weights:
  7573. datas: list[Tensor] = []
  7574. for xid in range(n_experts):
  7575. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{w_name}.weight"
  7576. datas.append(expert_cache[ename])
  7577. del expert_cache[ename]
  7578. data_torch = torch.stack(datas, dim=0)
  7579. merged_name = f"layers.{bid}.feed_forward.experts.{w_name}.weight"
  7580. new_name = self.map_tensor_name(merged_name)
  7581. tensors.append((new_name, data_torch))
  7582. del self._experts_cache[bid]
  7583. return tensors
  7584. return [(self.map_tensor_name(name), data_torch)]
  7585. def prepare_tensors(self):
  7586. super().prepare_tensors()
  7587. assert not self._experts_cache
  7588. @ModelBase.register("Lfm2VlForConditionalGeneration")
  7589. class LFM2VLModel(MmprojModel):
  7590. def __init__(self, *args, **kwargs):
  7591. super().__init__(*args, **kwargs)
  7592. assert self.hparams_vision is not None
  7593. # TODO(tarek): for dynamic resolution image_size is not specified, setting here for compatibility
  7594. self.hparams_vision["image_size"] = 256
  7595. def set_gguf_parameters(self):
  7596. super().set_gguf_parameters()
  7597. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2)
  7598. self.gguf_writer.add_vision_attention_layernorm_eps(self.find_vparam(["layer_norm_eps"]))
  7599. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("downsample_factor", 2))
  7600. self.gguf_writer.add_vision_use_gelu(True)
  7601. # python notation, e.g. for vision_feature_layer == -1, we pick last layer -> vision_feature_layers_to_drop = 0
  7602. vision_feature_layers_to_drop = -(self.global_config.get("vision_feature_layer", -1) + 1)
  7603. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys) - vision_feature_layers_to_drop)
  7604. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7605. del bid # unused
  7606. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7607. if is_vision_tensor:
  7608. # remove "model." prefix
  7609. name = name.replace("model.vision_tower.", "vision_tower.")
  7610. name = name.replace("model.multi_modal_projector.", "multi_modal_projector.")
  7611. if "patch_embedding.weight" in name:
  7612. data_torch = data_torch.view(data_torch.shape[0], 16, 16, 3).permute(0, 3, 1, 2)
  7613. return [(self.map_tensor_name(name), data_torch)]
  7614. return [] # skip other tensors
  7615. @ModelBase.register("SmallThinkerForCausalLM")
  7616. class SmallThinkerModel(TextModel):
  7617. model_arch = gguf.MODEL_ARCH.SMALLTHINKER
  7618. def set_gguf_parameters(self):
  7619. super().set_gguf_parameters()
  7620. if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
  7621. self.gguf_writer.add_expert_count(n_experts)
  7622. if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
  7623. self.gguf_writer.add_expert_used_count(n_experts_used)
  7624. if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
  7625. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7626. self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
  7627. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  7628. if (self.hparams.get('moe_primary_router_apply_softmax')):
  7629. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  7630. else:
  7631. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  7632. # YaRN is not enabled by default
  7633. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  7634. rope_scaling = self.hparams.get("rope_scaling") or {}
  7635. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  7636. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7637. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7638. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  7639. sliding_window_layout = self.hparams.get("sliding_window_layout")
  7640. if sliding_window_layout:
  7641. for i in sliding_window_layout:
  7642. if i != 0:
  7643. sliding_window = self.hparams.get("sliding_window_size")
  7644. if sliding_window:
  7645. self.gguf_writer.add_sliding_window(sliding_window)
  7646. break
  7647. _experts: list[dict[str, Tensor]] | None = None
  7648. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7649. # process the experts separately
  7650. if name.find("experts") != -1:
  7651. n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
  7652. assert bid is not None
  7653. if self._experts is None:
  7654. self._experts = [{} for _ in range(self.block_count)]
  7655. self._experts[bid][name] = data_torch
  7656. if len(self._experts[bid]) >= n_experts * 3:
  7657. tensors: list[tuple[str, Tensor]] = []
  7658. # merge the experts into a single 3d tensor
  7659. for w_name in ["down", "gate", "up"]:
  7660. datas: list[Tensor] = []
  7661. for xid in range(n_experts):
  7662. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  7663. datas.append(self._experts[bid][ename])
  7664. del self._experts[bid][ename]
  7665. data_torch = torch.stack(datas, dim=0)
  7666. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  7667. new_name = self.map_tensor_name(merged_name)
  7668. tensors.append((new_name, data_torch))
  7669. return tensors
  7670. else:
  7671. return []
  7672. return [(self.map_tensor_name(name), data_torch)]
  7673. def prepare_tensors(self):
  7674. super().prepare_tensors()
  7675. if self._experts is not None:
  7676. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7677. experts = [k for d in self._experts for k in d.keys()]
  7678. if len(experts) > 0:
  7679. raise ValueError(f"Unprocessed experts: {experts}")
  7680. @ModelBase.register("ApertusForCausalLM")
  7681. class ApertusModel(LlamaModel):
  7682. model_arch = gguf.MODEL_ARCH.APERTUS
  7683. undo_permute = False
  7684. _alpha_n = {}
  7685. _alpha_p = {}
  7686. _beta = {}
  7687. _eps = {}
  7688. def modify_tensors(self, data_torch, name, bid):
  7689. # Handle xIELU activation parameters
  7690. n_layers = self.hparams["num_hidden_layers"]
  7691. if name.endswith(".act_fn.alpha_n"):
  7692. self._alpha_n[bid] = data_torch.to("cpu").float().item()
  7693. if (len(self._alpha_n) == n_layers):
  7694. self.gguf_writer.add_xielu_alpha_n([self._alpha_n[k] for k in sorted(self._alpha_n)])
  7695. return []
  7696. if name.endswith(".act_fn.alpha_p"):
  7697. self._alpha_p[bid] = data_torch.to("cpu").float().item()
  7698. if (len(self._alpha_p) == n_layers):
  7699. self.gguf_writer.add_xielu_alpha_p([self._alpha_p[k] for k in sorted(self._alpha_p)])
  7700. return []
  7701. if name.endswith(".act_fn.beta"):
  7702. self._beta[bid] = data_torch.to("cpu").float().item()
  7703. if (len(self._beta) == n_layers):
  7704. self.gguf_writer.add_xielu_beta([self._beta[k] for k in sorted(self._beta)])
  7705. return []
  7706. if name.endswith(".act_fn.eps"):
  7707. self._eps[bid] = data_torch.to("cpu").float().item()
  7708. if (len(self._eps) == n_layers):
  7709. self.gguf_writer.add_xielu_eps([self._eps[k] for k in sorted(self._eps)])
  7710. return []
  7711. return super().modify_tensors(data_torch, name, bid)
  7712. class MistralModel(LlamaModel):
  7713. model_arch = gguf.MODEL_ARCH.LLAMA
  7714. model_name = "Mistral"
  7715. hf_arch = ""
  7716. is_mistral_format = True
  7717. undo_permute = False
  7718. @staticmethod
  7719. def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool):
  7720. assert TokenizerVersion is not None and Tekkenizer is not None and SentencePieceTokenizer is not None, _mistral_import_error_msg
  7721. assert isinstance(vocab.tokenizer, (Tekkenizer, SentencePieceTokenizer)), (
  7722. f"Expected Tekkenizer or SentencePieceTokenizer, got {type(vocab.tokenizer)}"
  7723. )
  7724. if vocab.tokenizer.version == TokenizerVersion.v1:
  7725. return "mistral-v1"
  7726. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.spm:
  7727. return "mistral-v3"
  7728. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  7729. return "mistral-v3-tekken"
  7730. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.spm:
  7731. return "mistral-v7"
  7732. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  7733. return "mistral-v7-tekken"
  7734. elif vocab.tokenizer.version == TokenizerVersion.v11:
  7735. template_file = "Mistral-Small-3.2-24B-Instruct-2506.jinja"
  7736. elif vocab.tokenizer.version == TokenizerVersion.v13:
  7737. template_file = "unsloth-mistral-Devstral-Small-2507.jinja"
  7738. else:
  7739. err_message = f"Unknown tokenizer type: {vocab.tokenizer_type} and version {vocab.tokenizer.version}"
  7740. if is_mistral_format:
  7741. err_message += (
  7742. " . Please pass --disable-mistral-community-chat-template argument to the CLI "
  7743. "if you want to skip this error and use the Mistral official `mistral-common` pre-processing library."
  7744. )
  7745. raise ValueError(err_message)
  7746. template_path = templates_dir / template_file
  7747. if not template_path.exists():
  7748. raise FileNotFoundError(f"Template file not found: {template_path}")
  7749. with open(template_path, "r", encoding="utf-8") as f:
  7750. template = f.read()
  7751. return template
  7752. class PixtralModel(LlavaVisionModel):
  7753. model_name = "Pixtral"
  7754. hf_arch = ""
  7755. is_mistral_format = True
  7756. def set_gguf_parameters(self):
  7757. super().set_gguf_parameters()
  7758. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  7759. self.gguf_writer.add_vision_attention_layernorm_eps(
  7760. self.find_hparam(["norm_eps"])
  7761. )
  7762. self.gguf_writer.add_rope_freq_base(self.find_vparam(["rope_theta"]))
  7763. self.gguf_writer.add_vision_use_silu(True)
  7764. # spatial_merge_size
  7765. if self.find_vparam(["mm_projector_id"]) == "patch_merge":
  7766. self.gguf_writer.add_vision_spatial_merge_size(
  7767. self.find_vparam(["spatial_merge_size"])
  7768. )
  7769. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  7770. if name == "vision_language_adapter.w_in.weight":
  7771. return "mm.1.weight"
  7772. elif name == "vision_language_adapter.w_out.weight":
  7773. return "mm.2.weight"
  7774. return super().map_tensor_name(name, try_suffixes)
  7775. @ModelBase.register("KimiVLForConditionalGeneration")
  7776. class KimiVLModel(MmprojModel):
  7777. def __init__(self, *args, **kwargs):
  7778. super().__init__(*args, **kwargs)
  7779. assert self.hparams_vision is not None
  7780. self.hparams_vision["image_size"] = 64 * 14 # for compatibility
  7781. def set_gguf_parameters(self):
  7782. super().set_gguf_parameters()
  7783. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.KIMIVL)
  7784. self.gguf_writer.add_vision_use_gelu(True)
  7785. self.gguf_writer.add_vision_projector_scale_factor(2)
  7786. # eps is the same as pytorch's default value
  7787. assert self.hparams_vision is not None
  7788. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-5))
  7789. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7790. del bid # unused
  7791. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7792. if is_vision_tensor:
  7793. if "pos_emb.weight" in name:
  7794. data_torch = data_torch.view(data_torch.shape[0] * data_torch.shape[1], data_torch.shape[2])
  7795. elif "wqkv" in name:
  7796. split_dim = 0 if "weight" in name else -1
  7797. wq, wk, wv = data_torch.chunk(3, dim=split_dim)
  7798. return [
  7799. (self.map_tensor_name(name.replace("wqkv", "wq")), wq),
  7800. (self.map_tensor_name(name.replace("wqkv", "wk")), wk),
  7801. (self.map_tensor_name(name.replace("wqkv", "wv")), wv)
  7802. ]
  7803. return [(self.map_tensor_name(name), data_torch)]
  7804. return [] # skip other tensors
  7805. ###### CONVERSION LOGIC ######
  7806. # tree of lazy tensors
  7807. class LazyTorchTensor(gguf.LazyBase):
  7808. _tensor_type = torch.Tensor
  7809. # to keep the type-checker happy
  7810. dtype: torch.dtype
  7811. shape: torch.Size
  7812. # only used when converting a torch.Tensor to a np.ndarray
  7813. _dtype_map: dict[torch.dtype, type] = {
  7814. torch.float16: np.float16,
  7815. torch.float32: np.float32,
  7816. torch.uint8: np.uint8,
  7817. }
  7818. # used for safetensors slices
  7819. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  7820. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  7821. _dtype_str_map: dict[str, torch.dtype] = {
  7822. "F64": torch.float64,
  7823. "F32": torch.float32,
  7824. "BF16": torch.bfloat16,
  7825. "F16": torch.float16,
  7826. # "U64": torch.uint64,
  7827. "I64": torch.int64,
  7828. # "U32": torch.uint32,
  7829. "I32": torch.int32,
  7830. # "U16": torch.uint16,
  7831. "I16": torch.int16,
  7832. "U8": torch.uint8,
  7833. "I8": torch.int8,
  7834. "BOOL": torch.bool,
  7835. "F8_E4M3": torch.float8_e4m3fn,
  7836. "F8_E5M2": torch.float8_e5m2,
  7837. }
  7838. def numpy(self) -> gguf.LazyNumpyTensor:
  7839. dtype = self._dtype_map[self.dtype]
  7840. return gguf.LazyNumpyTensor(
  7841. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  7842. args=(self,),
  7843. func=(lambda s: s.numpy())
  7844. )
  7845. @classmethod
  7846. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  7847. return torch.empty(size=shape, dtype=dtype, device="meta")
  7848. @classmethod
  7849. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  7850. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  7851. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  7852. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[...] if len(s.get_shape()) == 0 else s[:])
  7853. return cast(torch.Tensor, lazy)
  7854. @classmethod
  7855. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  7856. dtype = cls._dtype_str_map[remote_tensor.dtype]
  7857. shape = remote_tensor.shape
  7858. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  7859. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  7860. return cast(torch.Tensor, lazy)
  7861. @classmethod
  7862. def __torch_function__(cls, func, types, args=(), kwargs=None):
  7863. del types # unused
  7864. if kwargs is None:
  7865. kwargs = {}
  7866. if func is torch.Tensor.numpy:
  7867. return args[0].numpy()
  7868. return cls._wrap_fn(func)(*args, **kwargs)
  7869. def parse_args() -> argparse.Namespace:
  7870. parser = argparse.ArgumentParser(
  7871. description="Convert a huggingface model to a GGML compatible file")
  7872. parser.add_argument(
  7873. "--vocab-only", action="store_true",
  7874. help="extract only the vocab",
  7875. )
  7876. parser.add_argument(
  7877. "--outfile", type=Path,
  7878. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  7879. )
  7880. parser.add_argument(
  7881. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  7882. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  7883. )
  7884. parser.add_argument(
  7885. "--bigendian", action="store_true",
  7886. help="model is executed on big endian machine",
  7887. )
  7888. parser.add_argument(
  7889. "model", type=str,
  7890. help="directory containing model file or huggingface repository ID (if --remote)",
  7891. nargs="?",
  7892. )
  7893. parser.add_argument(
  7894. "--use-temp-file", action="store_true",
  7895. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  7896. )
  7897. parser.add_argument(
  7898. "--no-lazy", action="store_true",
  7899. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  7900. )
  7901. parser.add_argument(
  7902. "--model-name", type=str, default=None,
  7903. help="name of the model",
  7904. )
  7905. parser.add_argument(
  7906. "--verbose", action="store_true",
  7907. help="increase output verbosity",
  7908. )
  7909. parser.add_argument(
  7910. "--split-max-tensors", type=int, default=0,
  7911. help="max tensors in each split",
  7912. )
  7913. parser.add_argument(
  7914. "--split-max-size", type=str, default="0",
  7915. help="max size per split N(M|G)",
  7916. )
  7917. parser.add_argument(
  7918. "--dry-run", action="store_true",
  7919. help="only print out a split plan and exit, without writing any new files",
  7920. )
  7921. parser.add_argument(
  7922. "--no-tensor-first-split", action="store_true",
  7923. help="do not add tensors to the first split (disabled by default)"
  7924. )
  7925. parser.add_argument(
  7926. "--metadata", type=Path,
  7927. help="Specify the path for an authorship metadata override file"
  7928. )
  7929. parser.add_argument(
  7930. "--print-supported-models", action="store_true",
  7931. help="Print the supported models"
  7932. )
  7933. parser.add_argument(
  7934. "--remote", action="store_true",
  7935. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  7936. )
  7937. parser.add_argument(
  7938. "--mmproj", action="store_true",
  7939. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  7940. )
  7941. parser.add_argument(
  7942. "--mistral-format", action="store_true",
  7943. help="Whether the model is stored following the Mistral format.",
  7944. )
  7945. parser.add_argument(
  7946. "--disable-mistral-community-chat-template", action="store_true",
  7947. help=(
  7948. "Whether to disable usage of Mistral community chat templates. If set, use the Mistral official `mistral-common` library for tokenization and detokenization of Mistral models. "
  7949. "Using `mistral-common` ensure correctness and zero-day support of tokenization for models converted from the Mistral format but requires to manually setup the tokenization server."
  7950. )
  7951. )
  7952. parser.add_argument(
  7953. "--sentence-transformers-dense-modules", action="store_true",
  7954. help=("Whether to include sentence-transformers dense modules."
  7955. "It can be used for sentence-transformers models, like google/embeddinggemma-300m"
  7956. "Default these modules are not included.")
  7957. )
  7958. args = parser.parse_args()
  7959. if not args.print_supported_models and args.model is None:
  7960. parser.error("the following arguments are required: model")
  7961. return args
  7962. def split_str_to_n_bytes(split_str: str) -> int:
  7963. if split_str.endswith("K"):
  7964. n = int(split_str[:-1]) * 1000
  7965. elif split_str.endswith("M"):
  7966. n = int(split_str[:-1]) * 1000 * 1000
  7967. elif split_str.endswith("G"):
  7968. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  7969. elif split_str.isnumeric():
  7970. n = int(split_str)
  7971. else:
  7972. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  7973. if n < 0:
  7974. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  7975. return n
  7976. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  7977. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  7978. # maybe we should fallback to text model's arch in that case, since not many models have both
  7979. text_config = hparams.get("text_config", {})
  7980. vision_config = hparams.get("vision_config", {})
  7981. arch = None
  7982. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  7983. arch = arches[0]
  7984. elif "ssm_cfg" in hparams:
  7985. # For non-hf Mamba and Mamba2 models
  7986. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  7987. # if "architectures" is found in the sub-config, use that instead
  7988. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  7989. arch = text_config["architectures"][0]
  7990. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  7991. arch = vision_config["architectures"][0]
  7992. if arch is None:
  7993. raise ValueError("Failed to detect model architecture")
  7994. return arch
  7995. def main() -> None:
  7996. args = parse_args()
  7997. if args.print_supported_models:
  7998. logger.error("Supported models:")
  7999. ModelBase.print_registered_models()
  8000. sys.exit(0)
  8001. if args.verbose:
  8002. logging.basicConfig(level=logging.DEBUG)
  8003. else:
  8004. logging.basicConfig(level=logging.INFO)
  8005. if args.remote:
  8006. hf_repo_id = args.model
  8007. from huggingface_hub import snapshot_download
  8008. allowed_patterns = ["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"]
  8009. if args.sentence_transformers_dense_modules:
  8010. # include sentence-transformers dense modules safetensors files
  8011. allowed_patterns.append("*.safetensors")
  8012. local_dir = snapshot_download(
  8013. repo_id=hf_repo_id,
  8014. allow_patterns=allowed_patterns)
  8015. dir_model = Path(local_dir)
  8016. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  8017. else:
  8018. hf_repo_id = None
  8019. dir_model = Path(args.model)
  8020. if not dir_model.is_dir():
  8021. logger.error(f'Error: {dir_model} is not a directory')
  8022. sys.exit(1)
  8023. ftype_map: dict[str, gguf.LlamaFileType] = {
  8024. "f32": gguf.LlamaFileType.ALL_F32,
  8025. "f16": gguf.LlamaFileType.MOSTLY_F16,
  8026. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  8027. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  8028. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  8029. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  8030. "auto": gguf.LlamaFileType.GUESSED,
  8031. }
  8032. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  8033. if args.use_temp_file and is_split:
  8034. logger.error("Error: Cannot use temp file when splitting")
  8035. sys.exit(1)
  8036. if args.outfile is not None:
  8037. fname_out = args.outfile
  8038. elif hf_repo_id:
  8039. # if remote, use the model ID as the output file name
  8040. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  8041. else:
  8042. fname_out = dir_model
  8043. logger.info(f"Loading model: {dir_model.name}")
  8044. is_mistral_format = args.mistral_format
  8045. if is_mistral_format and not _mistral_common_installed:
  8046. raise ImportError(_mistral_import_error_msg)
  8047. disable_mistral_community_chat_template = args.disable_mistral_community_chat_template
  8048. with torch.inference_mode():
  8049. output_type = ftype_map[args.outtype]
  8050. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  8051. hparams = ModelBase.load_hparams(dir_model, is_mistral_format)
  8052. if not is_mistral_format:
  8053. model_architecture = get_model_architecture(hparams, model_type)
  8054. logger.info(f"Model architecture: {model_architecture}")
  8055. try:
  8056. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  8057. except NotImplementedError:
  8058. logger.error(f"Model {model_architecture} is not supported")
  8059. sys.exit(1)
  8060. elif args.mmproj:
  8061. assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
  8062. model_class = PixtralModel
  8063. else:
  8064. model_class = MistralModel
  8065. model_instance = model_class(dir_model, output_type, fname_out,
  8066. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  8067. eager=args.no_lazy,
  8068. metadata_override=args.metadata, model_name=args.model_name,
  8069. split_max_tensors=args.split_max_tensors,
  8070. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  8071. small_first_shard=args.no_tensor_first_split,
  8072. remote_hf_model_id=hf_repo_id, disable_mistral_community_chat_template=disable_mistral_community_chat_template,
  8073. sentence_transformers_dense_modules=args.sentence_transformers_dense_modules
  8074. )
  8075. if args.vocab_only:
  8076. logger.info("Exporting model vocab...")
  8077. model_instance.write_vocab()
  8078. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  8079. else:
  8080. logger.info("Exporting model...")
  8081. model_instance.write()
  8082. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  8083. logger.info(f"Model successfully exported to {out_path}")
  8084. if __name__ == '__main__':
  8085. main()