tensor_mapping.py 71 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2 glm4-0414 plamo2 granite-hybrid
  13. "embed_tokens", # embeddinggemma
  14. "tok_embeddings", # llama-pth
  15. "embeddings.word_embeddings", # bert nomic-bert
  16. "language_model.embedding.word_embeddings", # persimmon
  17. "wte", # gpt2
  18. "transformer.embd.wte", # phi2
  19. "model.tok_embeddings", # internlm2
  20. "model.embedding", # mamba-qbert
  21. "backbone.embedding", # mamba
  22. "backbone.embeddings", # mamba-hf
  23. "transformer.in_out_embed", # Grok
  24. "embedding.word_embeddings", # chatglm
  25. "transformer.token_embeddings", # openelm
  26. "shared", # t5
  27. "rwkv.embeddings", # rwkv6
  28. "model.embeddings", # rwkv7
  29. "model.word_embeddings", # bailingmoe
  30. "language_model.model.embed_tokens", # llama4
  31. "encoder", # neobert
  32. "model.transformer.wte", # llada
  33. "embed_tokens", # qwen3-embedding
  34. ),
  35. # Token type embeddings
  36. MODEL_TENSOR.TOKEN_TYPES: (
  37. "embeddings.token_type_embeddings", # bert nomic-bert
  38. ),
  39. # Normalization of token embeddings
  40. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  41. "word_embeddings_layernorm", # bloom
  42. "embeddings.LayerNorm", # bert
  43. "emb_ln", # nomic-bert
  44. "transformer.norm", # openelm
  45. "rwkv.blocks.0.pre_ln", # rwkv
  46. "rwkv.blocks.0.pre_ln", # rwkv6
  47. "model.pre_ln", # rwkv7
  48. "model.layers.0.pre_norm", # rwkv7
  49. "backbone.norm", # wavtokenizer
  50. "model.embedding_norm", # lfm2
  51. ),
  52. # Position embeddings
  53. MODEL_TENSOR.POS_EMBD: (
  54. "transformer.wpe", # gpt2
  55. "embeddings.position_embeddings", # bert
  56. "wpe", # gpt2
  57. ),
  58. # Output
  59. MODEL_TENSOR.OUTPUT: (
  60. "embed_out", # gptneox
  61. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2 phimoe plamo2
  62. "output", # llama-pth bloom internlm2
  63. "word_embeddings_for_head", # persimmon
  64. "lm_head.linear", # phi2
  65. "output_layer", # chatglm
  66. "head", # rwkv
  67. "head.out", # wavtokenizer
  68. "lm_head", # llama4
  69. "model.transformer.ff_out", # llada
  70. ),
  71. MODEL_TENSOR.DENSE_2_OUT: (
  72. "dense_2_out", # embeddinggemma
  73. ),
  74. MODEL_TENSOR.DENSE_3_OUT: (
  75. "dense_3_out", # embeddinggemma
  76. ),
  77. # Output norm
  78. MODEL_TENSOR.OUTPUT_NORM: (
  79. "gpt_neox.final_layer_norm", # gptneox
  80. "transformer.ln_f", # gpt2 gpt-j falcon jais exaone
  81. "model.norm", # llama-hf baichuan internlm2 olmoe olmo2 phimoe plamo2
  82. "norm", # llama-pth
  83. "transformer.norm_f", # mpt dbrx
  84. "ln_f", # refact bloom qwen gpt2
  85. "language_model.encoder.final_layernorm", # persimmon
  86. "model.final_layernorm", # persimmon
  87. "lm_head.ln", # phi2
  88. "model.norm_f", # mamba-qbert
  89. "backbone.norm_f", # mamba
  90. "transformer.rms_norm", # Grok
  91. "encoder.final_layernorm", # chatglm
  92. "transformer.norm", # openelm
  93. "model.norm", # nemotron
  94. "rwkv.ln_out", # rwkv6
  95. "model.ln_out", # rwkv7
  96. "backbone.final_layer_norm", # wavtokenizer
  97. "model.norm", # llama4
  98. "model.transformer.ln_f", # llada
  99. ),
  100. # Rope frequencies
  101. MODEL_TENSOR.ROPE_FREQS: (
  102. "rope.freqs", # llama-pth
  103. "rotary_pos_emb.inv_freq", # chatglm
  104. ),
  105. MODEL_TENSOR.ROPE_FACTORS_LONG: (),
  106. MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
  107. MODEL_TENSOR.CONV1D: (
  108. "backbone.embed", # roberta
  109. ),
  110. }
  111. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  112. # Attention norm
  113. MODEL_TENSOR.ATTN_NORM: (
  114. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  115. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais exaone
  116. "transformer.blocks.{bid}.norm_1", # mpt
  117. "transformer.h.{bid}.input_layernorm", # falcon7b
  118. "h.{bid}.input_layernorm", # bloom
  119. "transformer.h.{bid}.ln_mlp", # falcon40b
  120. "model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe phimoe granite-hybrid
  121. "layers.{bid}.attention_norm", # llama-pth
  122. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  123. "model.layers.{bid}.ln1", # yi
  124. "h.{bid}.ln_1", # gpt2
  125. "transformer.h.{bid}.ln", # phi2
  126. "model.layers.layers.{bid}.norm", # plamo
  127. "model.layers.layers.{bid}.pre_mixer_norm", # plamo2
  128. "model.layers.{bid}.attention_norm", # internlm2
  129. "model.layers.{bid}.norm", # mamba-qbert
  130. "backbone.layers.{bid}.norm", # mamba
  131. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  132. "model.layers.{bid}.pre_attn_norm", # grok-2
  133. "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
  134. "encoder.layers.{bid}.input_layernorm", # chatglm
  135. "transformer.layers.{bid}.attn_norm", # openelm
  136. "rwkv.blocks.{bid}.ln1", # rwkv6
  137. "model.layers.{bid}.ln1", # rwkv7
  138. "model.layers.{bid}.input_layernorm", # llama4
  139. "layers.{bid}.input_layernorm", # embeddinggemma
  140. "transformer_encoder.{bid}.attention_norm", # neobert
  141. "model.layers.{bid}.operator_norm", # lfm2
  142. "model.transformer.blocks.{bid}.attn_norm", # llada
  143. "layers.{bid}.input_layernorm", # qwen3-embedding
  144. "model.layers.{bid}.attention_layernorm" # apertus
  145. ),
  146. # Attention norm 2
  147. MODEL_TENSOR.ATTN_NORM_2: (
  148. "transformer.h.{bid}.ln_attn", # falcon40b
  149. "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
  150. "rwkv.blocks.{bid}.ln2", # rwkv6
  151. "model.layers.{bid}.ln2", # rwkv7
  152. ),
  153. # Attention query-key-value
  154. MODEL_TENSOR.ATTN_QKV: (
  155. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  156. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
  157. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  158. "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
  159. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  160. "h.{bid}.self_attention.query_key_value", # bloom
  161. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  162. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  163. "model.layers.{bid}.attention.query_key_value", # bailingmoe2
  164. "h.{bid}.attn.c_attn", # gpt2
  165. "transformer.h.{bid}.mixer.Wqkv", # phi2
  166. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  167. "encoder.layers.{bid}.mixer.Wqkv", # jina
  168. "model.layers.{bid}.self_attn.qkv_proj", # phi3 minimax-m2
  169. "model.layers.layers.{bid}.mixer.qkv_proj", # plamo2
  170. "encoder.layers.{bid}.self_attention.query_key_value", # chatglm
  171. "transformer.layers.{bid}.attn.qkv_proj", # openelm
  172. "transformer_encoder.{bid}.qkv", # neobert
  173. ),
  174. # Attention query
  175. MODEL_TENSOR.ATTN_Q: (
  176. "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2 phimoe
  177. "layers.{bid}.self_attn.q_proj", # embeddinggemma
  178. "model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom
  179. "layers.{bid}.attention.wq", # llama-pth
  180. "encoder.layer.{bid}.attention.self.query", # bert
  181. "transformer.layer.{bid}.attention.q_lin", # distillbert
  182. "transformer.h.{bid}.attn.q_proj", # gpt-j
  183. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  184. "model.layers.{bid}.attention.wq", # internlm2
  185. "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
  186. "transformer.h.{bid}.attn.attention.q_proj", # exaone
  187. "model.layers.{bid}.self_attn.q_proj", # llama4
  188. "model.transformer.blocks.{bid}.q_proj", # llada
  189. "layers.{bid}.self_attn.q_proj", # qwen3-embedding
  190. "backbone.layers.{bid}.mixer.q_proj", # nemotron-h
  191. ),
  192. # Attention key
  193. MODEL_TENSOR.ATTN_K: (
  194. "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2 phimoe
  195. "layers.{bid}.self_attn.k_proj", # embeddinggemma
  196. "model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom
  197. "layers.{bid}.attention.wk", # llama-pth
  198. "encoder.layer.{bid}.attention.self.key", # bert
  199. "transformer.layer.{bid}.attention.k_lin", # distillbert
  200. "transformer.h.{bid}.attn.k_proj", # gpt-j
  201. "transformer.h.{bid}.attn.k", # refact
  202. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  203. "model.layers.{bid}.attention.wk", # internlm2
  204. "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
  205. "transformer.h.{bid}.attn.attention.k_proj", # exaone
  206. "model.layers.{bid}.self_attn.k_proj", # llama4
  207. "model.transformer.blocks.{bid}.k_proj", # llada
  208. "layers.{bid}.self_attn.k_proj", # qwen3-embedding
  209. "backbone.layers.{bid}.mixer.k_proj", # nemotron-h
  210. ),
  211. # Attention value
  212. MODEL_TENSOR.ATTN_V: (
  213. "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 phimoe
  214. "layers.{bid}.self_attn.v_proj", # embeddinggemma
  215. "layers.{bid}.attention.wv", # llama-pth
  216. "encoder.layer.{bid}.attention.self.value", # bert
  217. "transformer.layer.{bid}.attention.v_lin", # distillbert
  218. "transformer.h.{bid}.attn.v_proj", # gpt-j
  219. "transformer.h.{bid}.attn.v", # refact
  220. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  221. "model.layers.{bid}.attention.wv", # internlm2
  222. "transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
  223. "transformer.h.{bid}.attn.attention.v_proj", # exaone
  224. "model.layers.{bid}.self_attn.v_proj", # llama4
  225. "model.transformer.blocks.{bid}.v_proj", # llada
  226. "layers.{bid}.self_attn.v_proj", # qwen3-embedding
  227. "backbone.layers.{bid}.mixer.v_proj", # nemotron-h
  228. ),
  229. # Attention output
  230. MODEL_TENSOR.ATTN_OUT: (
  231. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  232. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
  233. "transformer.blocks.{bid}.attn.out_proj", # mpt
  234. "transformer.h.{bid}.self_attention.dense", # falcon
  235. "h.{bid}.self_attention.dense", # bloom
  236. "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 phimoe
  237. "layers.{bid}.self_attn.o_proj", # embeddinggemma
  238. "model.layers.{bid}.self_attn.out_proj", # lfm2
  239. "model.layers.{bid}.self_attn.linear_attn", # deci
  240. "layers.{bid}.attention.wo", # llama-pth
  241. "encoder.layer.{bid}.attention.output.dense", # bert
  242. "transformer.layer.{bid}.attention.out_lin", # distillbert
  243. "transformer.h.{bid}.attn.out_proj", # gpt-j
  244. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  245. "model.layers.{bid}.self_attn.dense", # persimmon
  246. "model.layers.{bid}.attention.dense", # bailingmoe2
  247. "h.{bid}.attn.c_proj", # gpt2
  248. "transformer.h.{bid}.mixer.out_proj", # phi2
  249. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  250. "model.layers.layers.{bid}.mixer.o_proj", # plamo2
  251. "model.layers.{bid}.attention.wo", # internlm2
  252. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  253. "encoder.layers.{bid}.mixer.out_proj", # jina
  254. "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
  255. "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
  256. "encoder.layers.{bid}.self_attention.dense", # chatglm
  257. "transformer.layers.{bid}.attn.out_proj", # openelm
  258. "transformer.h.{bid}.attn.attention.out_proj", # exaone
  259. "model.layers.{bid}.self_attn.o_proj", # llama4
  260. "transformer_encoder.{bid}.wo", # neobert
  261. "model.transformer.blocks.{bid}.attn_out", # llada
  262. "layers.{bid}.self_attn.o_proj", # qwen3-embedding
  263. "backbone.layers.{bid}.mixer.o_proj", # nemotron-h
  264. ),
  265. # Attention output norm
  266. MODEL_TENSOR.ATTN_OUT_NORM: (
  267. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  268. "transformer.layer.{bid}.sa_layer_norm", # distillbert
  269. "encoder.layers.{bid}.norm1", # nomic-bert
  270. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  271. "model.layers.{bid}.post_attn_norm", # grok-2
  272. "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
  273. ),
  274. MODEL_TENSOR.ATTN_POST_NORM: (
  275. "model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2 # ge
  276. "layers.{bid}.post_attention_layernorm", # embeddinggemma
  277. "model.layers.{bid}.post_self_attn_layernorm", # glm-4-0414
  278. "model.layers.layers.{bid}.post_mixer_norm.weight", # plamo2
  279. ),
  280. # Rotary embeddings
  281. MODEL_TENSOR.ATTN_ROT_EMBD: (
  282. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  283. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  284. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  285. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  286. ),
  287. MODEL_TENSOR.ATTN_SINKS: (
  288. "model.layers.{bid}.self_attn.sinks", # openai-moe
  289. ),
  290. # Feed-forward norm
  291. MODEL_TENSOR.FFN_NORM: (
  292. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  293. "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
  294. "h.{bid}.post_attention_layernorm", # bloom
  295. "transformer.blocks.{bid}.norm_2", # mpt
  296. "model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe phimoe
  297. "layers.{bid}.ffn_norm", # llama-pth
  298. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  299. "model.layers.{bid}.ln2", # yi
  300. "h.{bid}.ln_2", # gpt2
  301. "model.layers.{bid}.ffn_norm", # internlm2
  302. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  303. "model.layers.{bid}.pre_moe_norm", # grok-2
  304. "encoder.layers.{bid}.post_attention_layernorm", # chatglm
  305. "transformer.layers.{bid}.ffn_norm", # openelm
  306. "model.layers.{bid}.pre_ff_layernorm", # jamba granite-hybrid
  307. "model.layers.{bid}.pre_moe_layernorm", # mini-jamba
  308. "model.layers.{bid}.post_attention_layernorm", # llama4
  309. "transformer_encoder.{bid}.ffn_norm", # neobert
  310. "model.layers.layers.{bid}.pre_mlp_norm", # plamo2
  311. "model.transformer.blocks.{bid}.ff_norm", # llada
  312. "layers.{bid}.post_attention_layernorm", # qwen3-embedding
  313. "model.layers.{bid}.feedforward_layernorm", # apertus
  314. ),
  315. # Post feed-forward norm
  316. MODEL_TENSOR.FFN_PRE_NORM: (
  317. "model.layers.{bid}.pre_feedforward_layernorm", # gemma2
  318. "layers.{bid}.pre_feedforward_layernorm", # embeddinggemma
  319. "model.layers.{bid}.pre_ff_layernorm.weight",
  320. ),
  321. # Post feed-forward norm
  322. MODEL_TENSOR.FFN_POST_NORM: (
  323. "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
  324. "layers.{bid}.post_feedforward_layernorm", # embeddinggemma
  325. "model.layers.{bid}.post_mlp_layernorm", # glm-4-0414
  326. "model.layers.layers.{bid}.post_mlp_norm.weight", # plamo2
  327. "model.layers.{bid}.feed_forward.up_proj",
  328. "model.layers.{bid}.post_moe_norm", # grok-2
  329. ),
  330. MODEL_TENSOR.FFN_GATE_INP: (
  331. "layers.{bid}.feed_forward.gate", # mixtral
  332. "model.layers.{bid}.block_sparse_moe.gate", # mixtral phimoe
  333. "model.layers.{bid}.mlp.gate", # qwen2moe olmoe
  334. "transformer.decoder_layer.{bid}.router", # Grok
  335. "transformer.blocks.{bid}.ffn.router.layer", # dbrx
  336. "model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
  337. "model.layers.{bid}.feed_forward.router", # llama4 jamba
  338. "encoder.layers.{bid}.mlp.router.layer", # nomic-bert-moe
  339. "model.layers.{bid}.mlp.router", # openai-moe
  340. "model.layers.{bid}.mlp.gate.wg", # hunyuan
  341. "model.layers.{bid}.block_sparse_moe.primary_router", # smallthinker
  342. "model.layers.{bid}.feed_forward.gate", # lfm2moe
  343. ),
  344. MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
  345. "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
  346. ),
  347. MODEL_TENSOR.FFN_EXP_PROBS_B: (
  348. "model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3 dots1
  349. "model.layers.{bid}.mlp.moe_statics.e_score_correction", # ernie4.5-moe
  350. "model.layers.{bid}.mlp.gate.expert_bias", # bailingmoe2
  351. "model.layers.{bid}.feed_forward.expert_bias", # lfm2moe
  352. "model.layers.{bid}.block_sparse_moe.e_score_correction.bias", # minimax-m2
  353. ),
  354. # Feed-forward up
  355. MODEL_TENSOR.FFN_UP: (
  356. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  357. "transformer.h.{bid}.mlp.c_fc", # gpt2 jais
  358. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  359. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  360. "h.{bid}.mlp.dense_h_to_4h", # bloom
  361. "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2
  362. "layers.{bid}.mlp.up_proj", # embeddinggemma
  363. "layers.{bid}.feed_forward.w3", # llama-pth
  364. "encoder.layer.{bid}.intermediate.dense", # bert
  365. "transformer.layer.{bid}.ffn.lin1", # distillbert
  366. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  367. "transformer.h.{bid}.mlp.linear_3", # refact
  368. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  369. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  370. "transformer.h.{bid}.mlp.w1", # qwen
  371. "h.{bid}.mlp.c_fc", # gpt2
  372. "transformer.h.{bid}.mlp.fc1", # phi2
  373. "model.layers.{bid}.mlp.fc1", # phi2
  374. "model.layers.{bid}.mlp.gate_up_proj", # phi3 glm-4-0414
  375. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  376. "model.layers.layers.{bid}.mlp.gate_up_proj", # plamo2
  377. "model.layers.{bid}.feed_forward.w3", # internlm2
  378. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  379. "encoder.layers.{bid}.mlp.fc1", # nomic-bert-moe
  380. "model.layers.{bid}.mlp.c_fc", # starcoder2
  381. "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2 (split up/gate, no longer used)
  382. "encoder.layer.{bid}.mlp.gated_layers", # jina-bert-v2 (GEGLU)
  383. "encoder.layer.{bid}.mlp.up_gated_layer", # jina-v2-code (GEGLU)
  384. "model.layers.{bid}.residual_mlp.w3", # arctic
  385. "encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
  386. "transformer.h.{bid}.mlp.c_fc_1", # exaone
  387. "model.layers.{bid}.feed_forward.up_proj", # llama4 jamba granite-hybrid
  388. "transformer_encoder.{bid}.ffn.w12", # neobert
  389. "model.layers.{bid}.block_sparse_moe.up", # smallthinker
  390. "model.transformer.blocks.{bid}.up_proj", # llada
  391. "layers.{bid}.mlp.up_proj", # qwen3-embedding
  392. "backbone.layers.{bid}.mixer.up_proj", # nemotron-h
  393. ),
  394. MODEL_TENSOR.FFN_UP_EXP: (
  395. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  396. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  397. "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
  398. "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  399. "model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
  400. "model.layers.{bid}.feed_forward.experts.up_proj", # llama4
  401. "encoder.layers.{bid}.mlp.experts.mlp.w1", # nomic-bert-moe
  402. "model.layers.{bid}.block_sparse_moe.experts.up", # smallthinker
  403. ),
  404. MODEL_TENSOR.FFN_UP_SHEXP: (
  405. "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
  406. "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek deepseek2
  407. "model.layers.{bid}.feed_forward.shared_expert.up_proj", # llama4
  408. "model.layers.{bid}.feed_forward.down_proj",
  409. "model.layers.{bid}.mlp.shared_mlp.up_proj", # hunyuan
  410. ),
  411. MODEL_TENSOR.FFN_UP_CHEXP: (
  412. "model.layers.{bid}.mlp.chunk_experts.up_proj", # grovemoe
  413. ),
  414. # AWQ-activation gate
  415. MODEL_TENSOR.FFN_ACT: (
  416. "transformer.blocks.{bid}.ffn.act", # mpt
  417. ),
  418. # Feed-forward gate
  419. MODEL_TENSOR.FFN_GATE: (
  420. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2
  421. "layers.{bid}.mlp.gate_proj", # embeddinggemma
  422. "layers.{bid}.feed_forward.w1", # llama-pth
  423. "transformer.h.{bid}.mlp.w2", # qwen
  424. "transformer.h.{bid}.mlp.c_fc2", # jais
  425. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  426. "model.layers.{bid}.feed_forward.w1", # internlm2
  427. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  428. "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2 (split up/gate, no longer used)
  429. "transformer.h.{bid}.mlp.linear_1", # refact
  430. "model.layers.{bid}.residual_mlp.w1", # arctic
  431. "transformer.h.{bid}.mlp.c_fc_0", # exaone
  432. "model.layers.{bid}.feed_forward.gate_proj", # llama4 jamba granite-hybrid
  433. "model.transformer.blocks.{bid}.ff_proj", # llada
  434. "layers.{bid}.mlp.gate_proj", # qwen3-embedding
  435. ),
  436. MODEL_TENSOR.FFN_GATE_EXP: (
  437. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  438. "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
  439. "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
  440. "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  441. "model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged)
  442. "model.layers.{bid}.feed_forward.experts.gate_proj", # llama4
  443. "model.layers.{bid}.block_sparse_moe.experts.gate", # smallthinker
  444. ),
  445. MODEL_TENSOR.FFN_GATE_SHEXP: (
  446. "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
  447. "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek deepseek2
  448. "model.layers.{bid}.feed_forward.shared_expert.gate_proj", # llama4
  449. "model.layers.{bid}.mlp.shared_mlp.gate_proj", # hunyuan
  450. ),
  451. MODEL_TENSOR.FFN_GATE_CHEXP: (
  452. "model.layers.{bid}.mlp.chunk_experts.gate_proj", # grovemoe
  453. ),
  454. # Feed-forward down
  455. MODEL_TENSOR.FFN_DOWN: (
  456. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  457. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
  458. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  459. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  460. "h.{bid}.mlp.dense_4h_to_h", # bloom
  461. "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2
  462. "layers.{bid}.mlp.down_proj", # embeddinggemma
  463. "layers.{bid}.feed_forward.w2", # llama-pth
  464. "encoder.layer.{bid}.output.dense", # bert
  465. "transformer.layer.{bid}.ffn.lin2", # distillbert
  466. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  467. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  468. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  469. "h.{bid}.mlp.c_proj", # gpt2
  470. "transformer.h.{bid}.mlp.fc2", # phi2
  471. "model.layers.{bid}.mlp.fc2", # phi2
  472. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  473. "model.layers.{bid}.feed_forward.w2", # internlm2
  474. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  475. "model.layers.{bid}.mlp.c_proj", # starcoder2
  476. "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
  477. "transformer.layers.{bid}.ffn.proj_2", # openelm
  478. "model.layers.{bid}.residual_mlp.w2", # arctic
  479. "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
  480. "encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
  481. "model.layers.h.{bid}.mlp.c_proj", # exaone
  482. "model.layers.{bid}.feed_forward.down_proj", # llama4 jamba granite-hybrid
  483. "transformer_encoder.{bid}.ffn.w3", # neobert
  484. "model.layers.{bid}.block_sparse_moe.down", # smallthinker
  485. "model.transformer.blocks.{bid}.ff_out", # llada
  486. "layers.{bid}.mlp.down_proj", # qwen3-embedding
  487. "backbone.layers.{bid}.mixer.down_proj", # nemotron-h
  488. ),
  489. MODEL_TENSOR.FFN_DOWN_EXP: (
  490. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  491. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  492. "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
  493. "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  494. "model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
  495. "model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged)
  496. "model.layers.{bid}.feed_forward.experts.down_proj", # llama4
  497. "encoder.layers.{bid}.mlp.experts.mlp.w2", # nomic-bert-moe
  498. "model.layers.{bid}.block_sparse_moe.experts.down", # smallthinker
  499. ),
  500. MODEL_TENSOR.FFN_DOWN_SHEXP: (
  501. "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
  502. "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek deepseek2
  503. "model.layers.{bid}.feed_forward.shared_expert.down_proj", # llama4
  504. "model.layers.{bid}.shared_mlp.output_linear", # granitemoe
  505. "model.layers.{bid}.mlp.shared_mlp.down_proj", # hunyuan
  506. ),
  507. MODEL_TENSOR.FFN_DOWN_CHEXP: (
  508. "model.layers.{bid}.mlp.chunk_experts.down_proj", # grovemoe
  509. ),
  510. MODEL_TENSOR.ATTN_Q_NORM: (
  511. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  512. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  513. "model.layers.{bid}.self_attn.query_layernorm", # hunyuan
  514. "model.layers.{bid}.attention.query_layernorm", # bailingmoe2
  515. "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2 minimax-m2
  516. "layers.{bid}.self_attn.q_norm", # embeddinggemma
  517. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  518. "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
  519. "transformer.layers.{bid}.attn.q_norm", # openelm
  520. "model.layers.layers.{bid}.mixer.q", # plamo2
  521. "layers.{bid}.self_attn.q_norm", # qwen3-embedding
  522. "model.layers.{bid}.attention.query_layernorm", # apertus
  523. ),
  524. MODEL_TENSOR.ATTN_K_NORM: (
  525. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  526. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  527. "model.layers.{bid}.self_attn.key_layernorm", # hunyuan
  528. "model.layers.{bid}.attention.key_layernorm", # bailingmoe2
  529. "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2 minimax-m2
  530. "layers.{bid}.self_attn.k_norm", # embeddinggemma
  531. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  532. "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
  533. "transformer.layers.{bid}.attn.k_norm", # openelm
  534. "model.layers.layers.{bid}.mixer.k", # plamo2
  535. "layers.{bid}.self_attn.k_norm", # qwen3-embedding
  536. "model.layers.{bid}.attention.key_layernorm", # apertus
  537. ),
  538. MODEL_TENSOR.ROPE_FREQS: (
  539. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  540. ),
  541. MODEL_TENSOR.LAYER_OUT_NORM: (
  542. "encoder.layer.{bid}.output.LayerNorm", # bert
  543. "transformer.layer.{bid}.output_layer_norm", # distillbert
  544. "encoder.layers.{bid}.norm2", # nomic-bert
  545. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  546. "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
  547. "encoder.layer.{bid}.layer_norm_2", # jina-v2-code
  548. "model.layers.{bid}.final_layernorm", # bailingmoe2
  549. ),
  550. MODEL_TENSOR.PER_LAYER_TOKEN_EMBD: (
  551. "model.embed_tokens_per_layer", # gemma3n
  552. ),
  553. MODEL_TENSOR.PER_LAYER_MODEL_PROJ: (
  554. "model.per_layer_model_projection", # gemma3n
  555. ),
  556. MODEL_TENSOR.PER_LAYER_PROJ_NORM: (
  557. "model.per_layer_projection_norm", # gemma3n
  558. ),
  559. MODEL_TENSOR.ALTUP_PROJ: (
  560. "model.altup_projections", # gemma3n
  561. ),
  562. MODEL_TENSOR.ALTUP_UNEMBD_PROJ: (
  563. "model.altup_unembed_projections", # gemma3n
  564. ),
  565. MODEL_TENSOR.PER_LAYER_INP_GATE: (
  566. "model.layers.{bid}.per_layer_input_gate", # gemma3n
  567. ),
  568. MODEL_TENSOR.PER_LAYER_PROJ: (
  569. "model.layers.{bid}.per_layer_projection", # gemma3n
  570. ),
  571. MODEL_TENSOR.PER_LAYER_POST_NORM: (
  572. "model.layers.{bid}.post_per_layer_input_norm", # gemma3n
  573. ),
  574. MODEL_TENSOR.ALTUP_CORRECT_COEF: (
  575. "model.layers.{bid}.altup.correction_coefs", # gemma3n
  576. ),
  577. MODEL_TENSOR.ALTUP_CORRECT_SCALE: (
  578. "model.layers.{bid}.altup.correct_output_scale", # gemma3n
  579. ),
  580. MODEL_TENSOR.ALTUP_PREDICT_COEF: (
  581. "model.layers.{bid}.altup.prediction_coefs", # gemma3n
  582. ),
  583. MODEL_TENSOR.ALTUP_ROUTER: (
  584. "model.layers.{bid}.altup.modality_router", # gemma3n
  585. ),
  586. MODEL_TENSOR.ALTUP_ROUTER_NORM: (
  587. "model.layers.{bid}.altup.router_norm", # gemma3n
  588. ),
  589. MODEL_TENSOR.LAUREL_L: (
  590. "model.layers.{bid}.laurel.linear_left", # gemma3n
  591. ),
  592. MODEL_TENSOR.LAUREL_R: (
  593. "model.layers.{bid}.laurel.linear_right", # gemma3n
  594. ),
  595. MODEL_TENSOR.LAUREL_POST_NORM: (
  596. "model.layers.{bid}.laurel.post_laurel_norm", # gemma3n
  597. ),
  598. MODEL_TENSOR.SSM_IN: (
  599. "model.layers.{bid}.in_proj", # mamba-hf
  600. "backbone.layers.{bid}.mixer.in_proj", # mamba
  601. "model.layers.{bid}.mamba.in_proj", # jamba falcon-h1 granite-hybrid
  602. "model.layers.layers.{bid}.mixer.in_proj", # plamo2
  603. ),
  604. MODEL_TENSOR.SSM_CONV1D: (
  605. "model.layers.{bid}.conv1d", # mamba-hf
  606. "backbone.layers.{bid}.mixer.conv1d", # mamba
  607. "model.layers.{bid}.mamba.conv1d", # jamba falcon-h1 granite-hybrid
  608. "model.layers.layers.{bid}.mixer.conv1d", # plamo2
  609. ),
  610. MODEL_TENSOR.SSM_X: (
  611. "model.layers.{bid}.x_proj", # mamba-hf
  612. "backbone.layers.{bid}.mixer.x_proj", # mamba
  613. "model.layers.{bid}.mamba.x_proj", # jamba
  614. "model.layers.layers.{bid}.mixer.bcdt_proj", # plamo2
  615. ),
  616. MODEL_TENSOR.SSM_DT: (
  617. "model.layers.{bid}.dt_proj", # mamba-hf
  618. "backbone.layers.{bid}.mixer.dt_proj", # mamba
  619. "model.layers.{bid}.mamba.dt_proj", # jamba falcon-h1 granite-hybrid
  620. "model.layers.layers.{bid}.mixer.dt_proj", # plamo2
  621. ),
  622. MODEL_TENSOR.SSM_DT_NORM: (
  623. "model.layers.layers.{bid}.mixer.dt_norm.weight", # plamo2
  624. "model.layers.{bid}.mamba.dt_layernorm", # jamba
  625. ),
  626. MODEL_TENSOR.SSM_A: (
  627. "model.layers.{bid}.A_log", # mamba-hf
  628. "backbone.layers.{bid}.mixer.A_log", # mamba
  629. "model.layers.{bid}.mamba.A_log", # jamba falcon-h1 granite-hybrid
  630. "model.layers.layers.{bid}.mixer.A_log", # plamo2
  631. ),
  632. MODEL_TENSOR.SSM_B_NORM: (
  633. "model.layers.{bid}.mamba.b_layernorm", # jamba
  634. "model.layers.{bid}.mamba.B_layernorm", # mini-jamba
  635. "model.layers.layers.{bid}.mixer.B_norm.weight", # plamo2
  636. ),
  637. MODEL_TENSOR.SSM_C_NORM: (
  638. "model.layers.{bid}.mamba.c_layernorm", # jamba
  639. "model.layers.{bid}.mamba.C_layernorm", # mini-jamba
  640. "model.layers.layers.{bid}.mixer.C_norm.weight", # plamo2
  641. ),
  642. MODEL_TENSOR.SSM_D: (
  643. "model.layers.{bid}.D", # mamba-hf
  644. "backbone.layers.{bid}.mixer.D", # mamba
  645. "model.layers.{bid}.mamba.D", # jamba falcon-h1 granite-hybrid
  646. "model.layers.layers.{bid}.mixer.D", # plamo2
  647. ),
  648. MODEL_TENSOR.SSM_NORM: (
  649. "model.layers.{bid}.mamba.norm", # falcon-h1 granite-hybrid
  650. "backbone.layers.{bid}.mixer.norm", # mamba2
  651. ),
  652. MODEL_TENSOR.SSM_OUT: (
  653. "model.layers.{bid}.out_proj", # mamba-hf
  654. "backbone.layers.{bid}.mixer.out_proj", # mamba
  655. "model.layers.{bid}.mamba.out_proj", # jamba falcon-h1 granite-hybrid
  656. "model.layers.layers.{bid}.mixer.out_proj", # plamo2
  657. ),
  658. MODEL_TENSOR.TIME_MIX_W0: (
  659. "model.layers.{bid}.attention.w0", # rwkv7
  660. ),
  661. MODEL_TENSOR.TIME_MIX_W1: (
  662. "rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv6
  663. "model.layers.{bid}.self_attn.time_maa_w1", # rwkv6qwen2
  664. "model.layers.{bid}.attention.w1", # rwkv7
  665. ),
  666. MODEL_TENSOR.TIME_MIX_W2: (
  667. "rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv6
  668. "model.layers.{bid}.self_attn.time_maa_w2", # rwkv6qwen2
  669. "model.layers.{bid}.attention.w2", # rwkv7
  670. ),
  671. MODEL_TENSOR.TIME_MIX_A0: (
  672. "model.layers.{bid}.attention.a0", # rwkv7
  673. ),
  674. MODEL_TENSOR.TIME_MIX_A1: (
  675. "model.layers.{bid}.attention.a1", # rwkv7
  676. ),
  677. MODEL_TENSOR.TIME_MIX_A2: (
  678. "model.layers.{bid}.attention.a2", # rwkv7
  679. ),
  680. MODEL_TENSOR.TIME_MIX_V0: (
  681. "model.layers.{bid}.attention.v0", # rwkv7
  682. ),
  683. MODEL_TENSOR.TIME_MIX_V1: (
  684. "model.layers.{bid}.attention.v1", # rwkv7
  685. ),
  686. MODEL_TENSOR.TIME_MIX_V2: (
  687. "model.layers.{bid}.attention.v2", # rwkv7
  688. ),
  689. MODEL_TENSOR.TIME_MIX_G1: (
  690. "model.layers.{bid}.attention.g1", # rwkv7
  691. ),
  692. MODEL_TENSOR.TIME_MIX_G2: (
  693. "model.layers.{bid}.attention.g2", # rwkv7
  694. ),
  695. MODEL_TENSOR.TIME_MIX_K_K: (
  696. "model.layers.{bid}.attention.k_k", # rwkv7
  697. ),
  698. MODEL_TENSOR.TIME_MIX_K_A: (
  699. "model.layers.{bid}.attention.k_a", # rwkv7
  700. ),
  701. MODEL_TENSOR.TIME_MIX_R_K: (
  702. "model.layers.{bid}.attention.r_k", # rwkv7
  703. ),
  704. MODEL_TENSOR.TIME_MIX_LERP_X: (
  705. "rwkv.blocks.{bid}.attention.time_maa_x", # rwkv6
  706. "model.layers.{bid}.self_attn.time_maa_x", # rwkv6qwen2
  707. ),
  708. MODEL_TENSOR.TIME_MIX_LERP_K: (
  709. "rwkv.blocks.{bid}.attention.time_maa_k", # rwkv6
  710. "model.layers.{bid}.self_attn.time_maa_k", # rwkv6qwen2
  711. ),
  712. MODEL_TENSOR.TIME_MIX_LERP_V: (
  713. "rwkv.blocks.{bid}.attention.time_maa_v", # rwkv6
  714. "model.layers.{bid}.self_attn.time_maa_v", # rwkv6qwen2
  715. ),
  716. MODEL_TENSOR.TIME_MIX_LERP_R: (
  717. "rwkv.blocks.{bid}.attention.time_maa_r", # rwkv6
  718. "model.layers.{bid}.self_attn.time_maa_r", # rwkv6qwen2
  719. ),
  720. MODEL_TENSOR.TIME_MIX_LERP_G: (
  721. "rwkv.blocks.{bid}.attention.time_maa_g", # rwkv6
  722. "model.layers.{bid}.self_attn.time_maa_g", # rwkv6qwen2
  723. ),
  724. MODEL_TENSOR.TIME_MIX_LERP_W: (
  725. "rwkv.blocks.{bid}.attention.time_maa_w", # rwkv6
  726. "model.layers.{bid}.self_attn.time_maa_w", # rwkv6qwen2
  727. ),
  728. MODEL_TENSOR.TIME_MIX_FIRST: (
  729. "rwkv.blocks.{bid}.attention.time_faaaa", # rwkv6
  730. ),
  731. MODEL_TENSOR.TIME_MIX_DECAY: (
  732. "rwkv.blocks.{bid}.attention.time_decay", # rwkv6
  733. "model.layers.{bid}.self_attn.time_decay", # rwkv6qwen2
  734. ),
  735. MODEL_TENSOR.TIME_MIX_DECAY_W1: (
  736. "rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv6
  737. "model.layers.{bid}.self_attn.time_decay_w1", # rwkv6qwen2
  738. ),
  739. MODEL_TENSOR.TIME_MIX_DECAY_W2: (
  740. "rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv6
  741. "model.layers.{bid}.self_attn.time_decay_w2", # rwkv6qwen2
  742. ),
  743. MODEL_TENSOR.TIME_MIX_KEY: (
  744. "rwkv.blocks.{bid}.attention.key", # rwkv6
  745. "model.layers.{bid}.self_attn.k_proj", # rwkv6qwen2
  746. "model.layers.{bid}.attention.key", # rwkv7
  747. "model.layers.{bid}.attention.k_proj", # rwkv7
  748. ),
  749. MODEL_TENSOR.TIME_MIX_VALUE: (
  750. "rwkv.blocks.{bid}.attention.value", # rwkv6
  751. "model.layers.{bid}.self_attn.v_proj", # rwkv6qwen2
  752. "model.layers.{bid}.attention.value", # rwkv7
  753. "model.layers.{bid}.attention.v_proj", # rwkv7
  754. ),
  755. MODEL_TENSOR.TIME_MIX_RECEPTANCE: (
  756. "rwkv.blocks.{bid}.attention.receptance", # rwkv6
  757. "model.layers.{bid}.self_attn.q_proj", # rwkv6qwen2
  758. "model.layers.{bid}.attention.receptance", # rwkv7
  759. "model.layers.{bid}.attention.r_proj", # rwkv7
  760. ),
  761. MODEL_TENSOR.TIME_MIX_GATE: (
  762. "rwkv.blocks.{bid}.attention.gate", # rwkv6
  763. "model.layers.{bid}.self_attn.gate", # rwkv6qwen2
  764. ),
  765. MODEL_TENSOR.TIME_MIX_LN: (
  766. "rwkv.blocks.{bid}.attention.ln_x", # rwkv6
  767. "model.layers.{bid}.attention.ln_x" # rwkv7
  768. ),
  769. MODEL_TENSOR.TIME_MIX_OUTPUT: (
  770. "rwkv.blocks.{bid}.attention.output", # rwkv6
  771. "model.layers.{bid}.self_attn.o_proj", # rwkv6qwen2
  772. "model.layers.{bid}.attention.output", # rwkv7
  773. "model.layers.{bid}.attention.o_proj", # rwkv7
  774. ),
  775. MODEL_TENSOR.CHANNEL_MIX_LERP_K: (
  776. "rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv6
  777. "model.layers.{bid}.feed_forward.x_k", # rwkv7
  778. ),
  779. MODEL_TENSOR.CHANNEL_MIX_LERP_R: (
  780. "rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv6
  781. ),
  782. MODEL_TENSOR.CHANNEL_MIX_KEY: (
  783. "rwkv.blocks.{bid}.feed_forward.key", # rwkv6
  784. "model.layers.{bid}.feed_forward.key", # rwkv7
  785. ),
  786. MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: (
  787. "rwkv.blocks.{bid}.feed_forward.receptance", # rwkv6
  788. ),
  789. MODEL_TENSOR.CHANNEL_MIX_VALUE: (
  790. "rwkv.blocks.{bid}.feed_forward.value", # rwkv6
  791. "model.layers.{bid}.feed_forward.value", # rwkv7
  792. ),
  793. MODEL_TENSOR.ATTN_Q_A: (
  794. "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
  795. ),
  796. MODEL_TENSOR.ATTN_Q_B: (
  797. "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
  798. ),
  799. MODEL_TENSOR.ATTN_KV_A_MQA: (
  800. "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
  801. ),
  802. MODEL_TENSOR.ATTN_KV_B: (
  803. "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
  804. ),
  805. MODEL_TENSOR.ATTN_K_B: (
  806. "model.layers.{bid}.self_attn.k_b_proj", # deepseek2
  807. ),
  808. MODEL_TENSOR.ATTN_V_B: (
  809. "model.layers.{bid}.self_attn.v_b_proj", # deepseek2
  810. ),
  811. MODEL_TENSOR.ATTN_Q_A_NORM: (
  812. "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
  813. ),
  814. MODEL_TENSOR.ATTN_KV_A_NORM: (
  815. "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
  816. ),
  817. MODEL_TENSOR.ATTN_SUB_NORM: (
  818. "model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
  819. ),
  820. MODEL_TENSOR.FFN_SUB_NORM: (
  821. "model.layers.{bid}.mlp.ffn_layernorm", # bitnet
  822. ),
  823. MODEL_TENSOR.DEC_ATTN_NORM: (
  824. "decoder.block.{bid}.layer.0.layer_norm", # t5
  825. ),
  826. MODEL_TENSOR.DEC_ATTN_Q: (
  827. "decoder.block.{bid}.layer.0.SelfAttention.q", # t5
  828. ),
  829. MODEL_TENSOR.DEC_ATTN_K: (
  830. "decoder.block.{bid}.layer.0.SelfAttention.k", # t5
  831. ),
  832. MODEL_TENSOR.DEC_ATTN_V: (
  833. "decoder.block.{bid}.layer.0.SelfAttention.v", # t5
  834. ),
  835. MODEL_TENSOR.DEC_ATTN_OUT: (
  836. "decoder.block.{bid}.layer.0.SelfAttention.o", # t5
  837. ),
  838. MODEL_TENSOR.DEC_ATTN_REL_B: (
  839. "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  840. ),
  841. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
  842. "decoder.block.{bid}.layer.1.layer_norm", # t5
  843. ),
  844. MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
  845. "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
  846. ),
  847. MODEL_TENSOR.DEC_CROSS_ATTN_K: (
  848. "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
  849. ),
  850. MODEL_TENSOR.DEC_CROSS_ATTN_V: (
  851. "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
  852. ),
  853. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
  854. "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
  855. ),
  856. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
  857. "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
  858. ),
  859. MODEL_TENSOR.DEC_FFN_NORM: (
  860. "decoder.block.{bid}.layer.2.layer_norm", # t5
  861. ),
  862. MODEL_TENSOR.DEC_FFN_GATE: (
  863. "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
  864. ),
  865. MODEL_TENSOR.DEC_FFN_UP: (
  866. "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
  867. "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
  868. ),
  869. MODEL_TENSOR.DEC_FFN_DOWN: (
  870. "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
  871. ),
  872. MODEL_TENSOR.DEC_OUTPUT_NORM: (
  873. "decoder.final_layer_norm", # t5
  874. ),
  875. MODEL_TENSOR.ENC_ATTN_NORM: (
  876. "encoder.block.{bid}.layer.0.layer_norm", # t5
  877. ),
  878. MODEL_TENSOR.ENC_ATTN_Q: (
  879. "encoder.block.{bid}.layer.0.SelfAttention.q", # t5
  880. ),
  881. MODEL_TENSOR.ENC_ATTN_K: (
  882. "encoder.block.{bid}.layer.0.SelfAttention.k", # t5
  883. ),
  884. MODEL_TENSOR.ENC_ATTN_V: (
  885. "encoder.block.{bid}.layer.0.SelfAttention.v", # t5
  886. ),
  887. MODEL_TENSOR.ENC_ATTN_OUT: (
  888. "encoder.block.{bid}.layer.0.SelfAttention.o", # t5
  889. ),
  890. MODEL_TENSOR.ENC_ATTN_REL_B: (
  891. "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  892. ),
  893. MODEL_TENSOR.ENC_FFN_NORM: (
  894. "encoder.block.{bid}.layer.1.layer_norm", # t5
  895. ),
  896. MODEL_TENSOR.ENC_FFN_GATE: (
  897. "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
  898. ),
  899. MODEL_TENSOR.ENC_FFN_UP: (
  900. "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
  901. "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
  902. ),
  903. MODEL_TENSOR.ENC_FFN_DOWN: (
  904. "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
  905. ),
  906. ############################################################################
  907. # TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg
  908. MODEL_TENSOR.ENC_OUTPUT_NORM: (
  909. "encoder.final_layer_norm", # t5
  910. "layer_norm", # neobert
  911. ),
  912. MODEL_TENSOR.CLS: (
  913. "classifier", # jina
  914. "classifier.dense", # roberta
  915. "pre_classifier", # distillbert
  916. "dense", # neobert
  917. ),
  918. MODEL_TENSOR.CLS_OUT: (
  919. "classifier.out_proj", # roberta
  920. ),
  921. #############################################################################
  922. MODEL_TENSOR.CONVNEXT_DW: (
  923. "backbone.convnext.{bid}.dwconv", # wavtokenizer
  924. ),
  925. MODEL_TENSOR.CONVNEXT_NORM: (
  926. "backbone.convnext.{bid}.norm", # wavtokenizer
  927. ),
  928. MODEL_TENSOR.CONVNEXT_PW1: (
  929. "backbone.convnext.{bid}.pwconv1", # wavtokenizer
  930. ),
  931. MODEL_TENSOR.CONVNEXT_PW2: (
  932. "backbone.convnext.{bid}.pwconv2", # wavtokenizer
  933. ),
  934. MODEL_TENSOR.CONVNEXT_GAMMA: (
  935. "backbone.convnext.{bid}.gamma", # wavtokenizer
  936. ),
  937. MODEL_TENSOR.POSNET_CONV1: (
  938. "backbone.posnet.{bid}.conv1", # wavtokenizer
  939. ),
  940. MODEL_TENSOR.POSNET_CONV2: (
  941. "backbone.posnet.{bid}.conv2", # wavtokenizer
  942. ),
  943. MODEL_TENSOR.POSNET_NORM: (
  944. "backbone.posnet.{bid}.norm", # wavtokenizer
  945. ),
  946. MODEL_TENSOR.POSNET_NORM1: (
  947. "backbone.posnet.{bid}.norm1", # wavtokenizer
  948. ),
  949. MODEL_TENSOR.POSNET_NORM2: (
  950. "backbone.posnet.{bid}.norm2", # wavtokenizer
  951. ),
  952. MODEL_TENSOR.POSNET_ATTN_NORM: (
  953. "backbone.posnet.{bid}.norm", # wavtokenizer
  954. ),
  955. MODEL_TENSOR.POSNET_ATTN_Q: (
  956. "backbone.posnet.{bid}.q", # wavtokenizer
  957. ),
  958. MODEL_TENSOR.POSNET_ATTN_K: (
  959. "backbone.posnet.{bid}.k", # wavtokenizer
  960. ),
  961. MODEL_TENSOR.POSNET_ATTN_V: (
  962. "backbone.posnet.{bid}.v", # wavtokenizer
  963. ),
  964. MODEL_TENSOR.POSNET_ATTN_OUT: (
  965. "backbone.posnet.{bid}.proj_out", # wavtokenizer
  966. ),
  967. MODEL_TENSOR.SHORTCONV_CONV: (
  968. "model.layers.{bid}.conv.conv",
  969. ),
  970. MODEL_TENSOR.SHORTCONV_INPROJ: (
  971. "model.layers.{bid}.conv.in_proj",
  972. ),
  973. MODEL_TENSOR.SHORTCONV_OUTPROJ: (
  974. "model.layers.{bid}.conv.out_proj",
  975. ),
  976. #############################################################################
  977. ## Vision encoder
  978. MODEL_TENSOR.V_MMPROJ: (
  979. "multi_modal_projector.linear_{bid}",
  980. "visual.merger.mlp.{bid}", # qwen2vl
  981. ),
  982. MODEL_TENSOR.V_MMPROJ_FC: (
  983. "model.connector.modality_projection.proj", # SmolVLM
  984. ),
  985. MODEL_TENSOR.V_MMPROJ_MLP: (
  986. "model.mm_projector.mlp.mlp.{bid}",
  987. "vision_model.vision_adapter.mlp.fc{bid}", # llama 4
  988. "mlp1.{bid}", # InternVL
  989. ),
  990. MODEL_TENSOR.V_MMPROJ_PEG: (
  991. "model.mm_projector.peg.peg.{bid}",
  992. ),
  993. MODEL_TENSOR.V_ENC_EMBD_CLS: (
  994. "vision_tower.vision_model.embeddings.class_embedding",
  995. "model.vision_tower.embeddings.cls_token", # Intern-S1
  996. "vision_model.class_embedding", # llama 4
  997. ),
  998. MODEL_TENSOR.V_ENC_EMBD_PATCH: (
  999. "vision_tower.vision_model.embeddings.patch_embedding",
  1000. "model.vision_tower.embeddings.patch_embeddings.projection", # Intern-S1
  1001. "vpm.embeddings.patch_embedding",
  1002. "model.vision_model.embeddings.patch_embedding", # SmolVLM
  1003. "vision_tower.patch_conv", # pixtral-hf
  1004. "vision_encoder.patch_conv", # pixtral
  1005. "vision_model.patch_embedding.linear", # llama 4
  1006. "visual.patch_embed.proj", # qwen2vl
  1007. "vision_tower.patch_embed.proj", # kimi-vl
  1008. ),
  1009. MODEL_TENSOR.V_ENC_EMBD_POS: (
  1010. "vision_tower.vision_model.embeddings.position_embedding",
  1011. "model.vision_tower.embeddings.position_embeddings", # Intern-S1
  1012. "vpm.embeddings.position_embedding",
  1013. "model.vision_model.embeddings.position_embedding", # SmolVLM
  1014. "vision_model.positional_embedding_vlm", # llama 4
  1015. "vision_tower.patch_embed.pos_emb", # kimi-vl
  1016. ),
  1017. MODEL_TENSOR.V_ENC_ATTN_Q: (
  1018. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.q_proj",
  1019. "model.vision_tower.encoder.layer.{bid}.attention.q_proj", # Intern-S1
  1020. "vpm.encoder.layers.{bid}.self_attn.q_proj",
  1021. "model.vision_model.encoder.layers.{bid}.self_attn.q_proj", # SmolVLM
  1022. "vision_model.model.layers.{bid}.self_attn.q_proj", # llama4
  1023. "vision_tower.transformer.layers.{bid}.attention.q_proj", # pixtral-hf
  1024. "vision_encoder.transformer.layers.{bid}.attention.wq", # pixtral
  1025. "visual.blocks.{bid}.attn.q", # qwen2vl, generated
  1026. "vision_tower.encoder.blocks.{bid}.wq", # kimi-vl, generated
  1027. ),
  1028. MODEL_TENSOR.V_ENC_ATTN_Q_NORM: (
  1029. "vision_tower.vision_model.encoder.layers.{bid}.attn.q_norm", # InternVL
  1030. "model.vision_tower.encoder.layer.{bid}.attention.q_norm", # Intern-S1
  1031. ),
  1032. MODEL_TENSOR.V_ENC_ATTN_K: (
  1033. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.k_proj",
  1034. "model.vision_tower.encoder.layer.{bid}.attention.k_proj", # Intern-S1
  1035. "vpm.encoder.layers.{bid}.self_attn.k_proj",
  1036. "model.vision_model.encoder.layers.{bid}.self_attn.k_proj", # SmolVLM
  1037. "vision_model.model.layers.{bid}.self_attn.k_proj", # llama4
  1038. "vision_tower.transformer.layers.{bid}.attention.k_proj", # pixtral-hf
  1039. "vision_encoder.transformer.layers.{bid}.attention.wk", # pixtral
  1040. "visual.blocks.{bid}.attn.k", # qwen2vl, generated
  1041. "vision_tower.encoder.blocks.{bid}.wk", # kimi-vl, generated
  1042. ),
  1043. MODEL_TENSOR.V_ENC_ATTN_K_NORM: (
  1044. "vision_tower.vision_model.encoder.layers.{bid}.attn.k_norm", # InternVL
  1045. "model.vision_tower.encoder.layer.{bid}.attention.k_norm", # Intern-S1
  1046. ),
  1047. MODEL_TENSOR.V_ENC_ATTN_V: (
  1048. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.v_proj",
  1049. "model.vision_tower.encoder.layer.{bid}.attention.v_proj", # Intern-S1
  1050. "vpm.encoder.layers.{bid}.self_attn.v_proj",
  1051. "model.vision_model.encoder.layers.{bid}.self_attn.v_proj", # SmolVLM
  1052. "vision_model.model.layers.{bid}.self_attn.v_proj", # llama4
  1053. "vision_tower.transformer.layers.{bid}.attention.v_proj", # pixtral-hf
  1054. "vision_encoder.transformer.layers.{bid}.attention.wv", # pixtral
  1055. "visual.blocks.{bid}.attn.v", # qwen2vl, generated
  1056. "vision_tower.encoder.blocks.{bid}.wv", # kimi-vl, generated
  1057. ),
  1058. MODEL_TENSOR.V_ENC_INPUT_NORM: (
  1059. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm1",
  1060. "vision_tower.vision_model.encoder.layers.{bid}.norm1", # InternVL
  1061. "model.vision_tower.encoder.layer.{bid}.layernorm_before", # Intern-S1
  1062. "vpm.encoder.layers.{bid}.layer_norm1",
  1063. "model.vision_model.encoder.layers.{bid}.layer_norm1", # SmolVLM
  1064. "vision_tower.transformer.layers.{bid}.attention_norm", # pixtral-hf
  1065. "vision_encoder.transformer.layers.{bid}.attention_norm", # pixtral
  1066. "vision_model.model.layers.{bid}.input_layernorm", # llama4
  1067. "visual.blocks.{bid}.norm1", # qwen2vl
  1068. "vision_tower.encoder.blocks.{bid}.norm0", # kimi-vl (norm0/norm1)
  1069. ),
  1070. MODEL_TENSOR.V_ENC_ATTN_O: (
  1071. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.out_proj",
  1072. "vision_tower.vision_model.encoder.layers.{bid}.attn.proj", # InternVL
  1073. "model.vision_tower.encoder.layer.{bid}.attention.projection_layer", # Intern-S1
  1074. "vpm.encoder.layers.{bid}.self_attn.out_proj",
  1075. "model.vision_model.encoder.layers.{bid}.self_attn.out_proj", # SmolVLM
  1076. "vision_model.model.layers.{bid}.self_attn.o_proj", # llama4
  1077. "vision_tower.transformer.layers.{bid}.attention.o_proj", # pixtral-hf
  1078. "vision_encoder.transformer.layers.{bid}.attention.wo", # pixtral
  1079. "visual.blocks.{bid}.attn.proj", # qwen2vl
  1080. "vision_tower.encoder.blocks.{bid}.wo", # kimi-vl
  1081. ),
  1082. MODEL_TENSOR.V_ENC_POST_ATTN_NORM: (
  1083. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm2",
  1084. "vision_tower.vision_model.encoder.layers.{bid}.norm2", # InternVL
  1085. "model.vision_tower.encoder.layer.{bid}.layernorm_after", # Intern-S1
  1086. "vpm.encoder.layers.{bid}.layer_norm2",
  1087. "model.vision_model.encoder.layers.{bid}.layer_norm2", # SmolVLM
  1088. "vision_model.model.layers.{bid}.post_attention_layernorm", # llama4
  1089. "vision_tower.transformer.layers.{bid}.ffn_norm", # pixtral-hf
  1090. "vision_encoder.transformer.layers.{bid}.ffn_norm", # pixtral
  1091. "visual.blocks.{bid}.norm2", # qwen2vl
  1092. "vision_tower.encoder.blocks.{bid}.norm1", # kimi-vl (norm0/norm1)
  1093. ),
  1094. MODEL_TENSOR.V_ENC_FFN_UP: (
  1095. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc1",
  1096. "model.vision_tower.encoder.layer.{bid}.mlp.fc1", # Intern-S1
  1097. "vpm.encoder.layers.{bid}.mlp.fc1",
  1098. "model.vision_model.encoder.layers.{bid}.mlp.fc1", # SmolVLM, gemma3
  1099. "vision_tower.transformer.layers.{bid}.feed_forward.up_proj", # pixtral-hf
  1100. "vision_encoder.transformer.layers.{bid}.feed_forward.w3", # pixtral
  1101. "vision_model.model.layers.{bid}.mlp.fc1", # llama4
  1102. "visual.blocks.{bid}.mlp.fc1", # qwen2vl
  1103. "visual.blocks.{bid}.mlp.up_proj", # qwen2.5vl
  1104. "vision_tower.encoder.blocks.{bid}.mlp.fc0", # kimi-vl (fc0/fc1)
  1105. ),
  1106. MODEL_TENSOR.V_ENC_FFN_GATE: (
  1107. "vision_tower.transformer.layers.{bid}.feed_forward.gate_proj", # pixtral-hf
  1108. "vision_encoder.transformer.layers.{bid}.feed_forward.w1", # pixtral
  1109. "visual.blocks.{bid}.mlp.gate_proj", # qwen2.5vl
  1110. ),
  1111. MODEL_TENSOR.V_ENC_FFN_DOWN: (
  1112. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc2",
  1113. "model.vision_tower.encoder.layer.{bid}.mlp.fc2", # Intern-S1
  1114. "vpm.encoder.layers.{bid}.mlp.fc2",
  1115. "model.vision_model.encoder.layers.{bid}.mlp.fc2", # SmolVLM, gemma3
  1116. "vision_tower.transformer.layers.{bid}.feed_forward.down_proj", # pixtral-hf
  1117. "vision_encoder.transformer.layers.{bid}.feed_forward.w2", # pixtral
  1118. "vision_model.model.layers.{bid}.mlp.fc2", # llama4
  1119. "visual.blocks.{bid}.mlp.fc2", # qwen2vl
  1120. "visual.blocks.{bid}.mlp.down_proj", # qwen2.5vl
  1121. "vision_tower.encoder.blocks.{bid}.mlp.fc1", # kimi-vl (fc0/fc1)
  1122. ),
  1123. MODEL_TENSOR.V_LAYER_SCALE_1: (
  1124. "vision_tower.vision_model.encoder.layers.{bid}.ls1", # InternVL
  1125. "model.vision_tower.encoder.layer.{bid}.lambda_1", # Intern-S1
  1126. ),
  1127. MODEL_TENSOR.V_LAYER_SCALE_2: (
  1128. "vision_tower.vision_model.encoder.layers.{bid}.ls2", # InternVL
  1129. "model.vision_tower.encoder.layer.{bid}.lambda_2", # Intern-S1
  1130. ),
  1131. MODEL_TENSOR.V_PRE_NORM: (
  1132. "vision_tower.vision_model.pre_layrnorm",
  1133. "vision_tower.ln_pre", # pixtral-hf
  1134. "vision_encoder.ln_pre", # pixtral
  1135. "vision_model.layernorm_pre", # llama4
  1136. ),
  1137. MODEL_TENSOR.V_POST_NORM: (
  1138. "vision_tower.vision_model.post_layernorm",
  1139. "model.vision_model.post_layernorm", # SmolVLM
  1140. "vision_model.layernorm_post", # llama4
  1141. "visual.merger.ln_q", # qwen2vl
  1142. "vision_tower.encoder.final_layernorm", # kimi-vl
  1143. ),
  1144. MODEL_TENSOR.V_MM_INP_PROJ: (
  1145. "multi_modal_projector.mm_input_projection",
  1146. ),
  1147. MODEL_TENSOR.V_MM_INP_NORM: (
  1148. "multi_modal_projector.norm",
  1149. "multi_modal_projector.layer_norm",
  1150. "multi_modal_projector.pre_norm",
  1151. "pre_mm_projector_norm",
  1152. ),
  1153. MODEL_TENSOR.V_MM_SOFT_EMB_NORM: (
  1154. "multi_modal_projector.mm_soft_emb_norm",
  1155. ),
  1156. MODEL_TENSOR.V_RESMPL_POS_EMBD_K: (
  1157. "resampler.pos_embed_k",
  1158. ),
  1159. MODEL_TENSOR.V_RESMPL_ATTN_Q: (
  1160. "resampler.attn.in_proj_q", # tensor generated from resampler.attn.in_proj
  1161. ),
  1162. MODEL_TENSOR.V_RESMPL_ATTN_K: (
  1163. "resampler.attn.in_proj_k", # tensor generated from resampler.attn.in_proj
  1164. ),
  1165. MODEL_TENSOR.V_RESMPL_ATTN_V: (
  1166. "resampler.attn.in_proj_v", # tensor generated from resampler.attn.in_proj
  1167. ),
  1168. MODEL_TENSOR.V_RESMPL_ATTN_OUT: (
  1169. "resampler.attn.out_proj",
  1170. ),
  1171. MODEL_TENSOR.V_RESMPL_KV: (
  1172. "resampler.kv_proj",
  1173. ),
  1174. MODEL_TENSOR.V_RESMPL_POST_NORM: (
  1175. "resampler.ln_post",
  1176. ),
  1177. MODEL_TENSOR.V_RESMPL_KV_NORM: (
  1178. "resampler.ln_kv",
  1179. ),
  1180. MODEL_TENSOR.V_RESMPL_Q_NORM: (
  1181. "resampler.ln_q",
  1182. ),
  1183. MODEL_TENSOR.V_RESMPL_PROJ: (
  1184. "resampler.proj",
  1185. ),
  1186. MODEL_TENSOR.V_RESMPL_QUERY: (
  1187. "resampler.query",
  1188. ),
  1189. MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK: (
  1190. "v.token_embd.img_break", # for pixtral, this is a generated vector
  1191. ),
  1192. MODEL_TENSOR.V_MM_PATCH_MERGER: (
  1193. "multi_modal_projector.patch_merger.merging_layer", # mistral small 3.1 - hf
  1194. "patch_merger.merging_layer", # mistral
  1195. ),
  1196. # audio (mtmd)
  1197. MODEL_TENSOR.A_ENC_EMBD_POS: (
  1198. "audio_tower.embed_positions", # ultravox
  1199. ),
  1200. MODEL_TENSOR.A_ENC_CONV1D: (
  1201. "audio_tower.conv{bid}", # ultravox
  1202. ),
  1203. MODEL_TENSOR.A_PRE_NORM: (),
  1204. MODEL_TENSOR.A_POST_NORM: (
  1205. "audio_tower.layer_norm", # ultravox
  1206. "audio_tower.ln_post", # qwen2omni
  1207. ),
  1208. MODEL_TENSOR.A_ENC_ATTN_Q: (
  1209. "audio_tower.layers.{bid}.self_attn.q_proj", # ultravox
  1210. ),
  1211. MODEL_TENSOR.A_ENC_ATTN_K: (
  1212. "audio_tower.layers.{bid}.self_attn.k_proj", # ultravox
  1213. ),
  1214. MODEL_TENSOR.A_ENC_ATTN_V: (
  1215. "audio_tower.layers.{bid}.self_attn.v_proj", # ultravox
  1216. ),
  1217. MODEL_TENSOR.A_ENC_INPUT_NORM: (
  1218. "audio_tower.layers.{bid}.self_attn_layer_norm", # ultravox
  1219. ),
  1220. MODEL_TENSOR.A_ENC_OUTPUT: (
  1221. "audio_tower.layers.{bid}.self_attn.out_proj", # ultravox
  1222. ),
  1223. MODEL_TENSOR.A_ENC_OUTPUT_NORM: (
  1224. "audio_tower.layers.{bid}.final_layer_norm", # ultravox
  1225. ),
  1226. MODEL_TENSOR.A_ENC_FFN_UP: (
  1227. "audio_tower.layers.{bid}.fc1", # ultravox
  1228. ),
  1229. MODEL_TENSOR.A_ENC_FFN_GATE: (),
  1230. MODEL_TENSOR.A_ENC_FFN_DOWN: (
  1231. "audio_tower.layers.{bid}.fc2", # ultravox
  1232. ),
  1233. # note: some tensors below has "audio." pseudo-prefix, to prevent conflicts with vision tensors
  1234. # this prefix is added in the conversion code in modify_tensors()
  1235. MODEL_TENSOR.A_MMPROJ: (
  1236. "audio.multi_modal_projector.linear_{bid}", # ultravox
  1237. ),
  1238. MODEL_TENSOR.A_MMPROJ_FC: (
  1239. "audio.multi_modal_projector.linear", # qwen2audio
  1240. "audio_tower.proj", # qwen2omni
  1241. ),
  1242. MODEL_TENSOR.A_MM_NORM_PRE: (
  1243. "audio.multi_modal_projector.ln_pre", # ultravox
  1244. ),
  1245. MODEL_TENSOR.A_MM_NORM_MID: (
  1246. "audio.multi_modal_projector.ln_mid", # ultravox
  1247. ),
  1248. # NextN/MTP tensors for GLM4_MOE
  1249. MODEL_TENSOR.NEXTN_EH_PROJ: (
  1250. "model.layers.{bid}.eh_proj",
  1251. ),
  1252. MODEL_TENSOR.NEXTN_EMBED_TOKENS: (
  1253. "model.layers.{bid}.embed_tokens",
  1254. ),
  1255. MODEL_TENSOR.NEXTN_ENORM: (
  1256. "model.layers.{bid}.enorm",
  1257. ),
  1258. MODEL_TENSOR.NEXTN_HNORM: (
  1259. "model.layers.{bid}.hnorm",
  1260. ),
  1261. MODEL_TENSOR.NEXTN_SHARED_HEAD_HEAD: (
  1262. "model.layers.{bid}.shared_head.head",
  1263. ),
  1264. MODEL_TENSOR.NEXTN_SHARED_HEAD_NORM: (
  1265. "model.layers.{bid}.shared_head.norm",
  1266. ),
  1267. }
  1268. # architecture-specific block mappings
  1269. arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
  1270. MODEL_ARCH.ARCTIC: {
  1271. MODEL_TENSOR.FFN_NORM: (
  1272. "model.layers.{bid}.residual_layernorm",
  1273. ),
  1274. MODEL_TENSOR.FFN_NORM_EXP: (
  1275. "model.layers.{bid}.post_attention_layernorm",
  1276. ),
  1277. },
  1278. }
  1279. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  1280. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  1281. self.mapping = {}
  1282. for tensor, keys in self.mappings_cfg.items():
  1283. if tensor not in MODEL_TENSORS[arch]:
  1284. continue
  1285. tensor_name = TENSOR_NAMES[tensor]
  1286. self.mapping[tensor_name] = (tensor, tensor_name)
  1287. for key in keys:
  1288. self.mapping[key] = (tensor, tensor_name)
  1289. if arch in self.arch_block_mappings_cfg:
  1290. self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
  1291. for bid in range(n_blocks):
  1292. for tensor, keys in self.block_mappings_cfg.items():
  1293. if tensor not in MODEL_TENSORS[arch]:
  1294. continue
  1295. tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
  1296. self.mapping[tensor_name] = (tensor, tensor_name)
  1297. for key in keys:
  1298. key = key.format(bid = bid)
  1299. self.mapping[key] = (tensor, tensor_name)
  1300. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  1301. result = self.mapping.get(key)
  1302. if result is not None:
  1303. return result
  1304. for suffix in try_suffixes:
  1305. if key.endswith(suffix):
  1306. result = self.mapping.get(key[:-len(suffix)])
  1307. if result is not None:
  1308. return result[0], result[1] + suffix
  1309. return None
  1310. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  1311. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1312. if result is None:
  1313. return None
  1314. return result[1]
  1315. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  1316. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1317. if result is None:
  1318. return None
  1319. return result[0]
  1320. def __getitem__(self, key: str) -> str:
  1321. try:
  1322. return self.mapping[key][1]
  1323. except KeyError:
  1324. raise KeyError(key)
  1325. def __contains__(self, key: str) -> bool:
  1326. return key in self.mapping
  1327. def __repr__(self) -> str:
  1328. return repr(self.mapping)
  1329. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  1330. return TensorNameMap(arch, n_blocks)