pca.hpp 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315
  1. #include "common.h"
  2. #include "llama.h"
  3. #include "ggml.h"
  4. #ifdef GGML_USE_CUDA
  5. #include "ggml-cuda.h"
  6. #endif
  7. #ifdef GGML_USE_METAL
  8. #include "ggml-metal.h"
  9. #endif
  10. #include <cstdio>
  11. #include <ctime>
  12. #include <random>
  13. #include <string>
  14. #include <vector>
  15. #define DEBUG_POS 5
  16. static void print_debug_tensor(struct ggml_tensor * t, bool with_data = true) {
  17. printf("%s: %s (%s): [%d, %d]\n", __func__, t->name, ggml_type_name(t->type), (int) t->ne[0], (int) t->ne[1]);
  18. if (!with_data) return;
  19. printf("%s: %s[0] = [", __func__, t->name);
  20. for (size_t i = 0; i <= DEBUG_POS; i++) {
  21. printf(" %f,", ggml_get_f32_nd(t, i, 0, 0, 0));
  22. }
  23. printf(" ... ]\n");
  24. }
  25. namespace PCA {
  26. // input params for PCA computations
  27. struct pca_params {
  28. int n_threads = 1;
  29. int n_batch = 20; // number of iterations do to in one batch. larger the batch, more memory is used
  30. int n_iterations = 1000;
  31. float tolerance = 1e-7;
  32. // for debugging
  33. int i_layer = 0;
  34. int n_layers = 0;
  35. };
  36. // result from each iteration
  37. struct pca_result {
  38. struct ggml_tensor * calculated_square = NULL;
  39. std::vector<struct ggml_tensor *> eigenvectors;
  40. std::vector<float> distances;
  41. };
  42. struct pca_model {
  43. ggml_backend_t backend = NULL;
  44. ggml_backend_buffer_t buffer;
  45. struct ggml_context * ctx; // context to compute graph on target device
  46. struct ggml_context * ctx_host; // host context to store results
  47. // tensors on target device
  48. struct ggml_tensor * dev_input;
  49. struct ggml_tensor * dev_square;
  50. struct ggml_tensor * dev_eigenvector;
  51. pca_model(struct ggml_tensor * t_input) {
  52. #ifdef GGML_USE_CUDA
  53. fprintf(stderr, "%s: using CUDA backend\n", __func__);
  54. backend = ggml_backend_cuda_init(0); // init device 0
  55. if (!backend) {
  56. fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
  57. }
  58. #endif
  59. // TODO: enable Metal support when support for GGML_OP_SQRT is added
  60. // #ifdef GGML_USE_METAL
  61. // fprintf(stderr, "%s: using Metal backend\n", __func__);
  62. // backend = ggml_backend_metal_init();
  63. // if (!backend) {
  64. // fprintf(stderr, "%s: ggml_backend_metal_init() failed\n", __func__);
  65. // }
  66. // #endif
  67. // if there aren't GPU Backends fallback to CPU backend
  68. if (!backend) {
  69. backend = ggml_backend_cpu_init();
  70. }
  71. const int num_tensors = 4;
  72. struct ggml_init_params params {
  73. /*.mem_size =*/ ggml_tensor_overhead() * num_tensors,
  74. /*.mem_buffer =*/ NULL,
  75. /*.no_alloc =*/ true,
  76. };
  77. ctx = ggml_init(params);
  78. auto n_samples = t_input->ne[0];
  79. auto n_embd = t_input->ne[1];
  80. dev_input = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_samples, n_embd);
  81. dev_square = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
  82. dev_eigenvector = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
  83. ggml_set_name(dev_input, "dev_input");
  84. ggml_set_name(dev_square, "dev_square");
  85. ggml_set_name(dev_eigenvector, "dev_eigenvector");
  86. buffer = ggml_backend_alloc_ctx_tensors(ctx, backend);
  87. ggml_backend_tensor_set(dev_input, t_input->data, 0, ggml_nbytes(t_input));
  88. // initialize eigenvector to random normalized vector
  89. {
  90. std::vector<float> random_vec(ggml_nelements(dev_eigenvector), 0.0);
  91. std::default_random_engine generator(static_cast<unsigned int>(std::time(0)));
  92. std::uniform_real_distribution<float> distribution(0.0, 1.0);
  93. float sum_sqr = 0.0; // for normalizing random_vec
  94. for (size_t i = 0; i < random_vec.size(); ++i) {
  95. float f = distribution(generator);
  96. sum_sqr += f * f;
  97. random_vec[i] = f;
  98. }
  99. // normalize it
  100. float random_vec_norm = std::sqrt(sum_sqr);
  101. for (size_t i = 0; i < random_vec.size(); ++i) {
  102. random_vec[i] /= random_vec_norm;
  103. }
  104. ggml_backend_tensor_set(dev_eigenvector, random_vec.data(), 0, ggml_nbytes(dev_eigenvector));
  105. }
  106. }
  107. ~pca_model() {
  108. ggml_free(ctx);
  109. ggml_backend_buffer_free(buffer);
  110. ggml_backend_free(backend);
  111. }
  112. };
  113. static struct ggml_cgraph * build_graph_piter(
  114. const struct pca_params & params,
  115. const pca_model & model,
  116. bool calc_square = false) {
  117. GGML_ASSERT(params.n_batch > 0);
  118. // TODO: buf_size must be able to scale with params.n_batch
  119. static size_t buf_size = ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead();
  120. static std::vector<uint8_t> buf(buf_size);
  121. struct ggml_init_params params0 = {
  122. /*.mem_size =*/ buf_size,
  123. /*.mem_buffer =*/ buf.data(),
  124. /*.no_alloc =*/ true, // the tensors will be allocated later by ggml_allocr_alloc_graph()
  125. };
  126. // create a temporally context to build the graph
  127. struct ggml_context * ctx0 = ggml_init(params0);
  128. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  129. // turn v_diff_original into square matrix if needed
  130. struct ggml_tensor * tmp_square;
  131. if (calc_square) {
  132. tmp_square = ggml_mul_mat(ctx0, model.dev_input, model.dev_input);
  133. ggml_set_name(tmp_square, "tmp_square");
  134. }
  135. struct ggml_tensor * b_tensor;
  136. struct ggml_tensor * distance;
  137. struct ggml_tensor * old_eigen = model.dev_eigenvector;
  138. struct ggml_tensor * input_square = calc_square ? tmp_square : model.dev_square;
  139. for (int i = 0; i < params.n_batch; ++i) {
  140. // b_tensor = square * eigenvector^T
  141. b_tensor = ggml_mul_mat(ctx0, input_square, old_eigen);
  142. ggml_set_name(b_tensor, "b_tensor");
  143. // normalize
  144. b_tensor = ggml_div_inplace(ctx0,
  145. b_tensor,
  146. ggml_sqrt_inplace(ctx0, ggml_sum_rows(ctx0, ggml_sqr(ctx0, b_tensor)))
  147. );
  148. ggml_format_name(b_tensor, "b_tensor_norm_%d", i);
  149. // calculate distance(new eigenvector - old eigenvector)
  150. // we don't use ggml_sub because it may not be implemented on GPU backend
  151. struct ggml_tensor * new_sub_old = ggml_add(ctx0, old_eigen, ggml_scale(ctx0, b_tensor, -1));
  152. distance = ggml_sqrt_inplace(ctx0,
  153. ggml_sum_rows(ctx0, ggml_sqr_inplace(ctx0, new_sub_old)));
  154. ggml_format_name(distance, "distance_%d", i);
  155. old_eigen = b_tensor;
  156. // build operations nodes
  157. ggml_build_forward_expand(gf, distance);
  158. }
  159. // delete the temporally context used to build the graph
  160. ggml_free(ctx0);
  161. return gf;
  162. }
  163. static ggml_status compute_piter(
  164. const struct pca_params & params,
  165. const pca_model & model,
  166. struct ggml_cgraph * gf,
  167. ggml_gallocr_t allocr,
  168. struct pca_result & result) {
  169. // allocate tensors
  170. ggml_gallocr_alloc_graph(allocr, gf);
  171. if (ggml_backend_is_cpu(model.backend)) {
  172. ggml_backend_cpu_set_n_threads(model.backend, params.n_threads);
  173. }
  174. ggml_status res = ggml_backend_graph_compute(model.backend, gf);
  175. if (res == GGML_STATUS_SUCCESS) {
  176. auto extract_i = [](std::string prefix, std::string str) -> int {
  177. int i = -1;
  178. if (str.rfind(prefix, 0) == 0) {
  179. sscanf(str.c_str(), (prefix + "%d").c_str(), &i);
  180. }
  181. return i;
  182. };
  183. result.calculated_square = NULL;
  184. result.eigenvectors.clear();
  185. result.distances.clear();
  186. result.eigenvectors.resize(params.n_batch);
  187. result.distances.resize(params.n_batch);
  188. // get output nodes
  189. for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
  190. auto node = ggml_graph_node(gf, i);
  191. int iter = -1;
  192. // find b_tensor (without copying data from device)
  193. if ((iter = extract_i("b_tensor_norm_", node->name)) > -1) {
  194. result.eigenvectors[iter] = node;
  195. }
  196. // find distances, then copy data from device
  197. if ((iter = extract_i("distance_", node->name)) > -1) {
  198. float d;
  199. ggml_backend_tensor_get(node, &d, 0, sizeof(float));
  200. result.distances[iter] = d;
  201. // std::cout << node->name << " = " << d << "\n";
  202. }
  203. // find tmp_square if it exists (without copying data from device)
  204. if (std::string(node->name) == "tmp_square") {
  205. result.calculated_square = node;
  206. }
  207. }
  208. }
  209. return res;
  210. }
  211. static void power_iteration(
  212. const struct pca_params & params,
  213. struct ggml_tensor * input, // shape of input: [n_samples, n_embd]
  214. struct ggml_tensor * output) {
  215. //printf("in power iteration\n");
  216. struct pca_model model(input);
  217. ggml_gallocr_t allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(model.backend));
  218. struct pca_result result;
  219. struct ggml_tensor * last_eigenvector = NULL;
  220. int n_iters = params.n_iterations / params.n_batch; // more batch, fewer iterations
  221. for (int iter = 0; iter < n_iters; ++iter) {
  222. bool calc_square = (iter == 0); // only need to calculate square for first iteration
  223. struct ggml_cgraph * gf = build_graph_piter(params, model, calc_square);
  224. // ggml_graph_dump_dot(gf, nullptr, "/tmp/_cgraph.dot");
  225. compute_piter(params, model, gf, allocr, result);
  226. for (size_t k = 0; k < result.distances.size(); ++k) {
  227. last_eigenvector = result.eigenvectors[k];
  228. if (result.distances[k] < params.tolerance) {
  229. break; // done
  230. }
  231. }
  232. if (calc_square) {
  233. // copy and store the square matrix if needed
  234. GGML_ASSERT(result.calculated_square != NULL);
  235. ggml_backend_tensor_copy(result.calculated_square, model.dev_square);
  236. }
  237. {
  238. // copy last eigen vector and store as input for next iteration
  239. GGML_ASSERT(last_eigenvector != NULL);
  240. ggml_backend_tensor_copy(last_eigenvector, model.dev_eigenvector);
  241. }
  242. printf("%s: layer %d/%d, iteration: %d / total: %d (batch = %d) ...\n",
  243. __func__, params.i_layer+1, params.n_layers, iter+1, n_iters, params.n_batch);
  244. }
  245. // get output tensor
  246. GGML_ASSERT(last_eigenvector);
  247. ggml_backend_tensor_get(last_eigenvector, output->data, 0, ggml_nbytes(last_eigenvector));
  248. //print_debug_tensor(output);
  249. ggml_gallocr_free(allocr);
  250. // TODO @ngxson : The output vector is randomly inverted
  251. // Solution: https://github.com/ggerganov/llama.cpp/pull/8069#issuecomment-2185328171
  252. }
  253. static void run_pca(
  254. struct pca_params & params,
  255. const std::vector<struct ggml_tensor *> & v_input, // shape of v_input[0]: [n_samples, n_embd]
  256. const std::vector<struct ggml_tensor *> & v_output) {
  257. printf("%s: Running PCA...\n", __func__);
  258. for (size_t il = 0; il < v_input.size(); ++il) {
  259. // prepare output vector
  260. struct ggml_tensor * ctrl_out = v_output[il];
  261. ggml_format_name(ctrl_out, "direction.%zu", il+1);
  262. // run power_iteration
  263. params.i_layer = il;
  264. params.n_layers = v_input.size();
  265. power_iteration(params, v_input[il], ctrl_out);
  266. printf("%s: Done layer %d / %d\n", __func__, (int) il+1, (int) v_input.size());
  267. }
  268. }
  269. }