llama-bench.cpp 80 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <clocale>
  7. #include <cmath>
  8. #include <cstdio>
  9. #include <cstdlib>
  10. #include <cstring>
  11. #include <ctime>
  12. #include <iterator>
  13. #include <map>
  14. #include <numeric>
  15. #include <regex>
  16. #include <sstream>
  17. #include <string>
  18. #include <thread>
  19. #include <vector>
  20. #include "common.h"
  21. #include "ggml.h"
  22. #include "llama.h"
  23. #ifdef _WIN32
  24. # define WIN32_LEAN_AND_MEAN
  25. # ifndef NOMINMAX
  26. # define NOMINMAX
  27. # endif
  28. # include <windows.h>
  29. #endif
  30. // utils
  31. static uint64_t get_time_ns() {
  32. using clock = std::chrono::high_resolution_clock;
  33. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  34. }
  35. static bool tensor_buft_override_equal(const llama_model_tensor_buft_override& a, const llama_model_tensor_buft_override& b) {
  36. if (a.pattern != b.pattern) {
  37. // cString comparison that may be null
  38. if (a.pattern == nullptr || b.pattern == nullptr) {
  39. return false;
  40. }
  41. if (strcmp(a.pattern, b.pattern) != 0) {
  42. return false;
  43. }
  44. }
  45. if (a.buft != b.buft) {
  46. return false;
  47. }
  48. return true;
  49. }
  50. static bool vec_tensor_buft_override_equal(const std::vector<llama_model_tensor_buft_override>& a, const std::vector<llama_model_tensor_buft_override>& b) {
  51. if (a.size() != b.size()) {
  52. return false;
  53. }
  54. for (size_t i = 0; i < a.size(); i++) {
  55. if (!tensor_buft_override_equal(a[i], b[i])) {
  56. return false;
  57. }
  58. }
  59. return true;
  60. }
  61. static bool vec_vec_tensor_buft_override_equal(const std::vector<std::vector<llama_model_tensor_buft_override>>& a, const std::vector<std::vector<llama_model_tensor_buft_override>>& b) {
  62. if (a.size() != b.size()) {
  63. return false;
  64. }
  65. for (size_t i = 0; i < a.size(); i++) {
  66. if (!vec_tensor_buft_override_equal(a[i], b[i])) {
  67. return false;
  68. }
  69. }
  70. return true;
  71. }
  72. template <class T> static std::string join(const std::vector<T> & values, const std::string & delim) {
  73. std::ostringstream str;
  74. for (size_t i = 0; i < values.size(); i++) {
  75. str << values[i];
  76. if (i < values.size() - 1) {
  77. str << delim;
  78. }
  79. }
  80. return str.str();
  81. }
  82. template <typename T, typename F> static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
  83. std::vector<std::string> str_values;
  84. std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
  85. return str_values;
  86. }
  87. template <typename T> static T avg(const std::vector<T> & v) {
  88. if (v.empty()) {
  89. return 0;
  90. }
  91. T sum = std::accumulate(v.begin(), v.end(), T(0));
  92. return sum / (T) v.size();
  93. }
  94. template <typename T> static T stdev(const std::vector<T> & v) {
  95. if (v.size() <= 1) {
  96. return 0;
  97. }
  98. T mean = avg(v);
  99. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  100. T stdev = std::sqrt(sq_sum / (T) (v.size() - 1) - mean * mean * (T) v.size() / (T) (v.size() - 1));
  101. return stdev;
  102. }
  103. static std::string get_cpu_info() {
  104. std::vector<std::string> cpu_list;
  105. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  106. auto * dev = ggml_backend_dev_get(i);
  107. auto dev_type = ggml_backend_dev_type(dev);
  108. if (dev_type == GGML_BACKEND_DEVICE_TYPE_CPU || dev_type == GGML_BACKEND_DEVICE_TYPE_ACCEL) {
  109. cpu_list.push_back(ggml_backend_dev_description(dev));
  110. }
  111. }
  112. return join(cpu_list, ", ");
  113. }
  114. static std::string get_gpu_info() {
  115. std::vector<std::string> gpu_list;
  116. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  117. auto * dev = ggml_backend_dev_get(i);
  118. auto dev_type = ggml_backend_dev_type(dev);
  119. if (dev_type == GGML_BACKEND_DEVICE_TYPE_GPU || dev_type == GGML_BACKEND_DEVICE_TYPE_IGPU) {
  120. gpu_list.push_back(ggml_backend_dev_description(dev));
  121. }
  122. }
  123. return join(gpu_list, ", ");
  124. }
  125. // command line params
  126. enum output_formats { NONE, CSV, JSON, JSONL, MARKDOWN, SQL };
  127. static const char * output_format_str(output_formats format) {
  128. switch (format) {
  129. case NONE:
  130. return "none";
  131. case CSV:
  132. return "csv";
  133. case JSON:
  134. return "json";
  135. case JSONL:
  136. return "jsonl";
  137. case MARKDOWN:
  138. return "md";
  139. case SQL:
  140. return "sql";
  141. default:
  142. GGML_ABORT("invalid output format");
  143. }
  144. }
  145. static bool output_format_from_str(const std::string & s, output_formats & format) {
  146. if (s == "none") {
  147. format = NONE;
  148. } else if (s == "csv") {
  149. format = CSV;
  150. } else if (s == "json") {
  151. format = JSON;
  152. } else if (s == "jsonl") {
  153. format = JSONL;
  154. } else if (s == "md") {
  155. format = MARKDOWN;
  156. } else if (s == "sql") {
  157. format = SQL;
  158. } else {
  159. return false;
  160. }
  161. return true;
  162. }
  163. static const char * split_mode_str(llama_split_mode mode) {
  164. switch (mode) {
  165. case LLAMA_SPLIT_MODE_NONE:
  166. return "none";
  167. case LLAMA_SPLIT_MODE_LAYER:
  168. return "layer";
  169. case LLAMA_SPLIT_MODE_ROW:
  170. return "row";
  171. default:
  172. GGML_ABORT("invalid split mode");
  173. }
  174. }
  175. static std::string pair_str(const std::pair<int, int> & p) {
  176. static char buf[32];
  177. snprintf(buf, sizeof(buf), "%d,%d", p.first, p.second);
  178. return buf;
  179. }
  180. static std::vector<int> parse_int_range(const std::string & s) {
  181. // first[-last[(+|*)step]]
  182. std::regex range_regex(R"(^(\d+)(?:-(\d+)(?:([\+|\*])(\d+))?)?(?:,|$))");
  183. std::smatch match;
  184. std::string::const_iterator search_start(s.cbegin());
  185. std::vector<int> result;
  186. while (std::regex_search(search_start, s.cend(), match, range_regex)) {
  187. int first = std::stoi(match[1]);
  188. int last = match[2].matched ? std::stoi(match[2]) : first;
  189. char op = match[3].matched ? match[3].str()[0] : '+';
  190. int step = match[4].matched ? std::stoi(match[4]) : 1;
  191. for (int i = first; i <= last;) {
  192. result.push_back(i);
  193. int prev_i = i;
  194. if (op == '+') {
  195. i += step;
  196. } else if (op == '*') {
  197. i *= step;
  198. } else {
  199. throw std::invalid_argument("invalid range format");
  200. }
  201. if (i <= prev_i) {
  202. throw std::invalid_argument("invalid range");
  203. }
  204. }
  205. search_start = match.suffix().first;
  206. }
  207. if (search_start != s.cend()) {
  208. throw std::invalid_argument("invalid range format");
  209. }
  210. return result;
  211. }
  212. struct cmd_params {
  213. std::vector<std::string> model;
  214. std::vector<int> n_prompt;
  215. std::vector<int> n_gen;
  216. std::vector<std::pair<int, int>> n_pg;
  217. std::vector<int> n_depth;
  218. std::vector<int> n_batch;
  219. std::vector<int> n_ubatch;
  220. std::vector<ggml_type> type_k;
  221. std::vector<ggml_type> type_v;
  222. std::vector<int> n_threads;
  223. std::vector<std::string> cpu_mask;
  224. std::vector<bool> cpu_strict;
  225. std::vector<int> poll;
  226. std::vector<int> n_gpu_layers;
  227. std::vector<int> n_cpu_moe;
  228. std::vector<std::string> rpc_servers;
  229. std::vector<llama_split_mode> split_mode;
  230. std::vector<int> main_gpu;
  231. std::vector<bool> no_kv_offload;
  232. std::vector<bool> flash_attn;
  233. std::vector<std::vector<float>> tensor_split;
  234. std::vector<std::vector<llama_model_tensor_buft_override>> tensor_buft_overrides;
  235. std::vector<bool> use_mmap;
  236. std::vector<bool> embeddings;
  237. std::vector<bool> no_op_offload;
  238. ggml_numa_strategy numa;
  239. int reps;
  240. ggml_sched_priority prio;
  241. int delay;
  242. bool verbose;
  243. bool progress;
  244. bool no_warmup;
  245. output_formats output_format;
  246. output_formats output_format_stderr;
  247. };
  248. static const cmd_params cmd_params_defaults = {
  249. /* model */ { "models/7B/ggml-model-q4_0.gguf" },
  250. /* n_prompt */ { 512 },
  251. /* n_gen */ { 128 },
  252. /* n_pg */ {},
  253. /* n_depth */ { 0 },
  254. /* n_batch */ { 2048 },
  255. /* n_ubatch */ { 512 },
  256. /* type_k */ { GGML_TYPE_F16 },
  257. /* type_v */ { GGML_TYPE_F16 },
  258. /* n_threads */ { cpu_get_num_math() },
  259. /* cpu_mask */ { "0x0" },
  260. /* cpu_strict */ { false },
  261. /* poll */ { 50 },
  262. /* n_gpu_layers */ { 99 },
  263. /* n_cpu_moe */ { 0 },
  264. /* rpc_servers */ { "" },
  265. /* split_mode */ { LLAMA_SPLIT_MODE_LAYER },
  266. /* main_gpu */ { 0 },
  267. /* no_kv_offload */ { false },
  268. /* flash_attn */ { false },
  269. /* tensor_split */ { std::vector<float>(llama_max_devices(), 0.0f) },
  270. /* tensor_buft_overrides*/ { std::vector<llama_model_tensor_buft_override>{ { nullptr, nullptr } } },
  271. /* use_mmap */ { true },
  272. /* embeddings */ { false },
  273. /* no_op_offload */ { false },
  274. /* numa */ GGML_NUMA_STRATEGY_DISABLED,
  275. /* reps */ 5,
  276. /* prio */ GGML_SCHED_PRIO_NORMAL,
  277. /* delay */ 0,
  278. /* verbose */ false,
  279. /* progress */ false,
  280. /* no_warmup */ false,
  281. /* output_format */ MARKDOWN,
  282. /* output_format_stderr */ NONE,
  283. };
  284. static void print_usage(int /* argc */, char ** argv) {
  285. printf("usage: %s [options]\n", argv[0]);
  286. printf("\n");
  287. printf("options:\n");
  288. printf(" -h, --help\n");
  289. printf(" --numa <distribute|isolate|numactl> numa mode (default: disabled)\n");
  290. printf(" -r, --repetitions <n> number of times to repeat each test (default: %d)\n",
  291. cmd_params_defaults.reps);
  292. printf(" --prio <-1|0|1|2|3> process/thread priority (default: %d)\n",
  293. cmd_params_defaults.prio);
  294. printf(" --delay <0...N> (seconds) delay between each test (default: %d)\n",
  295. cmd_params_defaults.delay);
  296. printf(" -o, --output <csv|json|jsonl|md|sql> output format printed to stdout (default: %s)\n",
  297. output_format_str(cmd_params_defaults.output_format));
  298. printf(" -oe, --output-err <csv|json|jsonl|md|sql> output format printed to stderr (default: %s)\n",
  299. output_format_str(cmd_params_defaults.output_format_stderr));
  300. printf(" -v, --verbose verbose output\n");
  301. printf(" --progress print test progress indicators\n");
  302. printf(" --no-warmup skip warmup runs before benchmarking\n");
  303. printf("\n");
  304. printf("test parameters:\n");
  305. printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  306. printf(" -p, --n-prompt <n> (default: %s)\n",
  307. join(cmd_params_defaults.n_prompt, ",").c_str());
  308. printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  309. printf(" -pg <pp,tg> (default: %s)\n",
  310. join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str());
  311. printf(" -d, --n-depth <n> (default: %s)\n",
  312. join(cmd_params_defaults.n_depth, ",").c_str());
  313. printf(" -b, --batch-size <n> (default: %s)\n",
  314. join(cmd_params_defaults.n_batch, ",").c_str());
  315. printf(" -ub, --ubatch-size <n> (default: %s)\n",
  316. join(cmd_params_defaults.n_ubatch, ",").c_str());
  317. printf(" -ctk, --cache-type-k <t> (default: %s)\n",
  318. join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
  319. printf(" -ctv, --cache-type-v <t> (default: %s)\n",
  320. join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
  321. printf(" -t, --threads <n> (default: %s)\n",
  322. join(cmd_params_defaults.n_threads, ",").c_str());
  323. printf(" -C, --cpu-mask <hex,hex> (default: %s)\n",
  324. join(cmd_params_defaults.cpu_mask, ",").c_str());
  325. printf(" --cpu-strict <0|1> (default: %s)\n",
  326. join(cmd_params_defaults.cpu_strict, ",").c_str());
  327. printf(" --poll <0...100> (default: %s)\n", join(cmd_params_defaults.poll, ",").c_str());
  328. printf(" -ngl, --n-gpu-layers <n> (default: %s)\n",
  329. join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  330. printf(" -ncmoe, --n-cpu-moe <n> (default: %s)\n",
  331. join(cmd_params_defaults.n_cpu_moe, ",").c_str());
  332. if (llama_supports_rpc()) {
  333. printf(" -rpc, --rpc <rpc_servers> (default: %s)\n",
  334. join(cmd_params_defaults.rpc_servers, ",").c_str());
  335. }
  336. printf(" -sm, --split-mode <none|layer|row> (default: %s)\n",
  337. join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
  338. printf(" -mg, --main-gpu <i> (default: %s)\n",
  339. join(cmd_params_defaults.main_gpu, ",").c_str());
  340. printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n",
  341. join(cmd_params_defaults.no_kv_offload, ",").c_str());
  342. printf(" -fa, --flash-attn <0|1> (default: %s)\n",
  343. join(cmd_params_defaults.flash_attn, ",").c_str());
  344. printf(" -mmp, --mmap <0|1> (default: %s)\n",
  345. join(cmd_params_defaults.use_mmap, ",").c_str());
  346. printf(" -embd, --embeddings <0|1> (default: %s)\n",
  347. join(cmd_params_defaults.embeddings, ",").c_str());
  348. printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
  349. printf(" -ot --override-tensor <tensor name pattern>=<buffer type>;...\n");
  350. printf(" (default: disabled)\n");
  351. printf(" -nopo, --no-op-offload <0|1> (default: 0)\n");
  352. printf("\n");
  353. printf(
  354. "Multiple values can be given for each parameter by separating them with ','\n"
  355. "or by specifying the parameter multiple times. Ranges can be given as\n"
  356. "'first-last' or 'first-last+step' or 'first-last*mult'.\n");
  357. }
  358. static ggml_type ggml_type_from_name(const std::string & s) {
  359. if (s == "f16") {
  360. return GGML_TYPE_F16;
  361. }
  362. if (s == "bf16") {
  363. return GGML_TYPE_BF16;
  364. }
  365. if (s == "q8_0") {
  366. return GGML_TYPE_Q8_0;
  367. }
  368. if (s == "q4_0") {
  369. return GGML_TYPE_Q4_0;
  370. }
  371. if (s == "q4_1") {
  372. return GGML_TYPE_Q4_1;
  373. }
  374. if (s == "q5_0") {
  375. return GGML_TYPE_Q5_0;
  376. }
  377. if (s == "q5_1") {
  378. return GGML_TYPE_Q5_1;
  379. }
  380. if (s == "iq4_nl") {
  381. return GGML_TYPE_IQ4_NL;
  382. }
  383. return GGML_TYPE_COUNT;
  384. }
  385. static cmd_params parse_cmd_params(int argc, char ** argv) {
  386. cmd_params params;
  387. std::string arg;
  388. bool invalid_param = false;
  389. const std::string arg_prefix = "--";
  390. const char split_delim = ',';
  391. params.verbose = cmd_params_defaults.verbose;
  392. params.output_format = cmd_params_defaults.output_format;
  393. params.output_format_stderr = cmd_params_defaults.output_format_stderr;
  394. params.reps = cmd_params_defaults.reps;
  395. params.numa = cmd_params_defaults.numa;
  396. params.prio = cmd_params_defaults.prio;
  397. params.delay = cmd_params_defaults.delay;
  398. params.progress = cmd_params_defaults.progress;
  399. params.no_warmup = cmd_params_defaults.no_warmup;
  400. for (int i = 1; i < argc; i++) {
  401. arg = argv[i];
  402. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  403. std::replace(arg.begin(), arg.end(), '_', '-');
  404. }
  405. try {
  406. if (arg == "-h" || arg == "--help") {
  407. print_usage(argc, argv);
  408. exit(0);
  409. } else if (arg == "-m" || arg == "--model") {
  410. if (++i >= argc) {
  411. invalid_param = true;
  412. break;
  413. }
  414. auto p = string_split<std::string>(argv[i], split_delim);
  415. params.model.insert(params.model.end(), p.begin(), p.end());
  416. } else if (arg == "-p" || arg == "--n-prompt") {
  417. if (++i >= argc) {
  418. invalid_param = true;
  419. break;
  420. }
  421. auto p = parse_int_range(argv[i]);
  422. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  423. } else if (arg == "-n" || arg == "--n-gen") {
  424. if (++i >= argc) {
  425. invalid_param = true;
  426. break;
  427. }
  428. auto p = parse_int_range(argv[i]);
  429. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  430. } else if (arg == "-pg") {
  431. if (++i >= argc) {
  432. invalid_param = true;
  433. break;
  434. }
  435. auto p = string_split<std::string>(argv[i], ',');
  436. if (p.size() != 2) {
  437. invalid_param = true;
  438. break;
  439. }
  440. params.n_pg.push_back({ std::stoi(p[0]), std::stoi(p[1]) });
  441. } else if (arg == "-d" || arg == "--n-depth") {
  442. if (++i >= argc) {
  443. invalid_param = true;
  444. break;
  445. }
  446. auto p = parse_int_range(argv[i]);
  447. params.n_depth.insert(params.n_depth.end(), p.begin(), p.end());
  448. } else if (arg == "-b" || arg == "--batch-size") {
  449. if (++i >= argc) {
  450. invalid_param = true;
  451. break;
  452. }
  453. auto p = parse_int_range(argv[i]);
  454. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  455. } else if (arg == "-ub" || arg == "--ubatch-size") {
  456. if (++i >= argc) {
  457. invalid_param = true;
  458. break;
  459. }
  460. auto p = parse_int_range(argv[i]);
  461. params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end());
  462. } else if (arg == "-ctk" || arg == "--cache-type-k") {
  463. if (++i >= argc) {
  464. invalid_param = true;
  465. break;
  466. }
  467. auto p = string_split<std::string>(argv[i], split_delim);
  468. std::vector<ggml_type> types;
  469. for (const auto & t : p) {
  470. ggml_type gt = ggml_type_from_name(t);
  471. if (gt == GGML_TYPE_COUNT) {
  472. invalid_param = true;
  473. break;
  474. }
  475. types.push_back(gt);
  476. }
  477. if (invalid_param) {
  478. break;
  479. }
  480. params.type_k.insert(params.type_k.end(), types.begin(), types.end());
  481. } else if (arg == "-ctv" || arg == "--cache-type-v") {
  482. if (++i >= argc) {
  483. invalid_param = true;
  484. break;
  485. }
  486. auto p = string_split<std::string>(argv[i], split_delim);
  487. std::vector<ggml_type> types;
  488. for (const auto & t : p) {
  489. ggml_type gt = ggml_type_from_name(t);
  490. if (gt == GGML_TYPE_COUNT) {
  491. invalid_param = true;
  492. break;
  493. }
  494. types.push_back(gt);
  495. }
  496. if (invalid_param) {
  497. break;
  498. }
  499. params.type_v.insert(params.type_v.end(), types.begin(), types.end());
  500. } else if (arg == "-t" || arg == "--threads") {
  501. if (++i >= argc) {
  502. invalid_param = true;
  503. break;
  504. }
  505. auto p = parse_int_range(argv[i]);
  506. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  507. } else if (arg == "-C" || arg == "--cpu-mask") {
  508. if (++i >= argc) {
  509. invalid_param = true;
  510. break;
  511. }
  512. auto p = string_split<std::string>(argv[i], split_delim);
  513. params.cpu_mask.insert(params.cpu_mask.end(), p.begin(), p.end());
  514. } else if (arg == "--cpu-strict") {
  515. if (++i >= argc) {
  516. invalid_param = true;
  517. break;
  518. }
  519. auto p = string_split<bool>(argv[i], split_delim);
  520. params.cpu_strict.insert(params.cpu_strict.end(), p.begin(), p.end());
  521. } else if (arg == "--poll") {
  522. if (++i >= argc) {
  523. invalid_param = true;
  524. break;
  525. }
  526. auto p = parse_int_range(argv[i]);
  527. params.poll.insert(params.poll.end(), p.begin(), p.end());
  528. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  529. if (++i >= argc) {
  530. invalid_param = true;
  531. break;
  532. }
  533. auto p = parse_int_range(argv[i]);
  534. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  535. } else if (arg == "-ncmoe" || arg == "--n-cpu-moe") {
  536. if (++i >= argc) {
  537. invalid_param = true;
  538. break;
  539. }
  540. auto p = parse_int_range(argv[i]);
  541. params.n_cpu_moe.insert(params.n_cpu_moe.end(), p.begin(), p.end());
  542. } else if (llama_supports_rpc() && (arg == "-rpc" || arg == "--rpc")) {
  543. if (++i >= argc) {
  544. invalid_param = true;
  545. break;
  546. }
  547. params.rpc_servers.push_back(argv[i]);
  548. } else if (arg == "-sm" || arg == "--split-mode") {
  549. if (++i >= argc) {
  550. invalid_param = true;
  551. break;
  552. }
  553. auto p = string_split<std::string>(argv[i], split_delim);
  554. std::vector<llama_split_mode> modes;
  555. for (const auto & m : p) {
  556. llama_split_mode mode;
  557. if (m == "none") {
  558. mode = LLAMA_SPLIT_MODE_NONE;
  559. } else if (m == "layer") {
  560. mode = LLAMA_SPLIT_MODE_LAYER;
  561. } else if (m == "row") {
  562. mode = LLAMA_SPLIT_MODE_ROW;
  563. } else {
  564. invalid_param = true;
  565. break;
  566. }
  567. modes.push_back(mode);
  568. }
  569. if (invalid_param) {
  570. break;
  571. }
  572. params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
  573. } else if (arg == "-mg" || arg == "--main-gpu") {
  574. if (++i >= argc) {
  575. invalid_param = true;
  576. break;
  577. }
  578. params.main_gpu = parse_int_range(argv[i]);
  579. } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
  580. if (++i >= argc) {
  581. invalid_param = true;
  582. break;
  583. }
  584. auto p = string_split<bool>(argv[i], split_delim);
  585. params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
  586. } else if (arg == "--numa") {
  587. if (++i >= argc) {
  588. invalid_param = true;
  589. break;
  590. }
  591. std::string value(argv[i]);
  592. if (value == "distribute" || value == "") {
  593. params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE;
  594. } else if (value == "isolate") {
  595. params.numa = GGML_NUMA_STRATEGY_ISOLATE;
  596. } else if (value == "numactl") {
  597. params.numa = GGML_NUMA_STRATEGY_NUMACTL;
  598. } else {
  599. invalid_param = true;
  600. break;
  601. }
  602. } else if (arg == "-fa" || arg == "--flash-attn") {
  603. if (++i >= argc) {
  604. invalid_param = true;
  605. break;
  606. }
  607. auto p = string_split<bool>(argv[i], split_delim);
  608. params.flash_attn.insert(params.flash_attn.end(), p.begin(), p.end());
  609. } else if (arg == "-mmp" || arg == "--mmap") {
  610. if (++i >= argc) {
  611. invalid_param = true;
  612. break;
  613. }
  614. auto p = string_split<bool>(argv[i], split_delim);
  615. params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
  616. } else if (arg == "-embd" || arg == "--embeddings") {
  617. if (++i >= argc) {
  618. invalid_param = true;
  619. break;
  620. }
  621. auto p = string_split<bool>(argv[i], split_delim);
  622. params.embeddings.insert(params.embeddings.end(), p.begin(), p.end());
  623. } else if (arg == "-nopo" || arg == "--no-op-offload") {
  624. if (++i >= argc) {
  625. invalid_param = true;
  626. break;
  627. }
  628. auto p = string_split<bool>(argv[i], split_delim);
  629. params.no_op_offload.insert(params.no_op_offload.end(), p.begin(), p.end());
  630. } else if (arg == "-ts" || arg == "--tensor-split") {
  631. if (++i >= argc) {
  632. invalid_param = true;
  633. break;
  634. }
  635. for (auto ts : string_split<std::string>(argv[i], split_delim)) {
  636. // split string by ; and /
  637. const std::regex regex{ R"([;/]+)" };
  638. std::sregex_token_iterator it{ ts.begin(), ts.end(), regex, -1 };
  639. std::vector<std::string> split_arg{ it, {} };
  640. GGML_ASSERT(split_arg.size() <= llama_max_devices());
  641. std::vector<float> tensor_split(llama_max_devices());
  642. for (size_t i = 0; i < llama_max_devices(); ++i) {
  643. if (i < split_arg.size()) {
  644. tensor_split[i] = std::stof(split_arg[i]);
  645. } else {
  646. tensor_split[i] = 0.0f;
  647. }
  648. }
  649. params.tensor_split.push_back(tensor_split);
  650. }
  651. } else if (arg == "-ot" || arg == "--override-tensor") {
  652. if (++i >= argc) {
  653. invalid_param = true;
  654. break;
  655. }
  656. auto * value = argv[i];
  657. /* static */ std::map<std::string, ggml_backend_buffer_type_t> buft_list;
  658. if (buft_list.empty()) {
  659. // enumerate all the devices and add their buffer types to the list
  660. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  661. auto * dev = ggml_backend_dev_get(i);
  662. auto * buft = ggml_backend_dev_buffer_type(dev);
  663. if (buft) {
  664. buft_list[ggml_backend_buft_name(buft)] = buft;
  665. }
  666. }
  667. }
  668. auto override_group_span_len = std::strcspn(value, ",");
  669. bool last_group = false;
  670. do {
  671. if (override_group_span_len == 0) {
  672. // Adds an empty override-tensors for an empty span
  673. params.tensor_buft_overrides.push_back({{}});
  674. if (value[override_group_span_len] == '\0') {
  675. value = &value[override_group_span_len];
  676. last_group = true;
  677. } else {
  678. value = &value[override_group_span_len + 1];
  679. override_group_span_len = std::strcspn(value, ",");
  680. }
  681. continue;
  682. }
  683. // Stamps null terminators into the argv
  684. // value for this option to avoid the
  685. // memory leak present in the implementation
  686. // over in arg.cpp. Acceptable because we
  687. // only parse these args once in this program.
  688. auto * override_group = value;
  689. if (value[override_group_span_len] == '\0') {
  690. value = &value[override_group_span_len];
  691. last_group = true;
  692. } else {
  693. value[override_group_span_len] = '\0';
  694. value = &value[override_group_span_len + 1];
  695. }
  696. std::vector<llama_model_tensor_buft_override> group_tensor_buft_overrides{};
  697. auto override_span_len = std::strcspn(override_group, ";");
  698. while (override_span_len > 0) {
  699. auto * override = override_group;
  700. if (override_group[override_span_len] != '\0') {
  701. override_group[override_span_len] = '\0';
  702. override_group = &override_group[override_span_len + 1];
  703. } else {
  704. override_group = &override_group[override_span_len];
  705. }
  706. auto tensor_name_span_len = std::strcspn(override, "=");
  707. if (tensor_name_span_len >= override_span_len) {
  708. invalid_param = true;
  709. break;
  710. }
  711. override[tensor_name_span_len] = '\0';
  712. auto * tensor_name = override;
  713. auto * buffer_type = &override[tensor_name_span_len + 1];
  714. if (buft_list.find(buffer_type) == buft_list.end()) {
  715. printf("error: unrecognized buffer type '%s'\n", buffer_type);
  716. printf("Available buffer types:\n");
  717. for (const auto & it : buft_list) {
  718. printf(" %s\n", ggml_backend_buft_name(it.second));
  719. }
  720. invalid_param = true;
  721. break;
  722. }
  723. group_tensor_buft_overrides.push_back({tensor_name, buft_list.at(buffer_type)});
  724. override_span_len = std::strcspn(override_group, ";");
  725. }
  726. if (invalid_param) {
  727. break;
  728. }
  729. group_tensor_buft_overrides.push_back({nullptr,nullptr});
  730. params.tensor_buft_overrides.push_back(group_tensor_buft_overrides);
  731. override_group_span_len = std::strcspn(value, ",");
  732. } while (!last_group);
  733. } else if (arg == "-r" || arg == "--repetitions") {
  734. if (++i >= argc) {
  735. invalid_param = true;
  736. break;
  737. }
  738. params.reps = std::stoi(argv[i]);
  739. } else if (arg == "--prio") {
  740. if (++i >= argc) {
  741. invalid_param = true;
  742. break;
  743. }
  744. params.prio = (enum ggml_sched_priority) std::stoi(argv[i]);
  745. } else if (arg == "--delay") {
  746. if (++i >= argc) {
  747. invalid_param = true;
  748. break;
  749. }
  750. params.delay = std::stoi(argv[i]);
  751. } else if (arg == "-o" || arg == "--output") {
  752. if (++i >= argc) {
  753. invalid_param = true;
  754. break;
  755. }
  756. invalid_param = !output_format_from_str(argv[i], params.output_format);
  757. } else if (arg == "-oe" || arg == "--output-err") {
  758. if (++i >= argc) {
  759. invalid_param = true;
  760. break;
  761. }
  762. invalid_param = !output_format_from_str(argv[i], params.output_format_stderr);
  763. } else if (arg == "-v" || arg == "--verbose") {
  764. params.verbose = true;
  765. } else if (arg == "--progress") {
  766. params.progress = true;
  767. } else if (arg == "--no-warmup") {
  768. params.no_warmup = true;
  769. } else {
  770. invalid_param = true;
  771. break;
  772. }
  773. } catch (const std::exception & e) {
  774. fprintf(stderr, "error: %s\n", e.what());
  775. invalid_param = true;
  776. break;
  777. }
  778. }
  779. if (invalid_param) {
  780. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  781. print_usage(argc, argv);
  782. exit(1);
  783. }
  784. // set defaults
  785. if (params.model.empty()) {
  786. params.model = cmd_params_defaults.model;
  787. }
  788. if (params.n_prompt.empty()) {
  789. params.n_prompt = cmd_params_defaults.n_prompt;
  790. }
  791. if (params.n_gen.empty()) {
  792. params.n_gen = cmd_params_defaults.n_gen;
  793. }
  794. if (params.n_pg.empty()) {
  795. params.n_pg = cmd_params_defaults.n_pg;
  796. }
  797. if (params.n_depth.empty()) {
  798. params.n_depth = cmd_params_defaults.n_depth;
  799. }
  800. if (params.n_batch.empty()) {
  801. params.n_batch = cmd_params_defaults.n_batch;
  802. }
  803. if (params.n_ubatch.empty()) {
  804. params.n_ubatch = cmd_params_defaults.n_ubatch;
  805. }
  806. if (params.type_k.empty()) {
  807. params.type_k = cmd_params_defaults.type_k;
  808. }
  809. if (params.type_v.empty()) {
  810. params.type_v = cmd_params_defaults.type_v;
  811. }
  812. if (params.n_gpu_layers.empty()) {
  813. params.n_gpu_layers = cmd_params_defaults.n_gpu_layers;
  814. }
  815. if (params.n_cpu_moe.empty()) {
  816. params.n_cpu_moe = cmd_params_defaults.n_cpu_moe;
  817. }
  818. if (params.rpc_servers.empty()) {
  819. params.rpc_servers = cmd_params_defaults.rpc_servers;
  820. }
  821. if (params.split_mode.empty()) {
  822. params.split_mode = cmd_params_defaults.split_mode;
  823. }
  824. if (params.main_gpu.empty()) {
  825. params.main_gpu = cmd_params_defaults.main_gpu;
  826. }
  827. if (params.no_kv_offload.empty()) {
  828. params.no_kv_offload = cmd_params_defaults.no_kv_offload;
  829. }
  830. if (params.flash_attn.empty()) {
  831. params.flash_attn = cmd_params_defaults.flash_attn;
  832. }
  833. if (params.tensor_split.empty()) {
  834. params.tensor_split = cmd_params_defaults.tensor_split;
  835. }
  836. if (params.tensor_buft_overrides.empty()) {
  837. params.tensor_buft_overrides = cmd_params_defaults.tensor_buft_overrides;
  838. }
  839. if (params.use_mmap.empty()) {
  840. params.use_mmap = cmd_params_defaults.use_mmap;
  841. }
  842. if (params.embeddings.empty()) {
  843. params.embeddings = cmd_params_defaults.embeddings;
  844. }
  845. if (params.no_op_offload.empty()) {
  846. params.no_op_offload = cmd_params_defaults.no_op_offload;
  847. }
  848. if (params.n_threads.empty()) {
  849. params.n_threads = cmd_params_defaults.n_threads;
  850. }
  851. if (params.cpu_mask.empty()) {
  852. params.cpu_mask = cmd_params_defaults.cpu_mask;
  853. }
  854. if (params.cpu_strict.empty()) {
  855. params.cpu_strict = cmd_params_defaults.cpu_strict;
  856. }
  857. if (params.poll.empty()) {
  858. params.poll = cmd_params_defaults.poll;
  859. }
  860. return params;
  861. }
  862. struct cmd_params_instance {
  863. std::string model;
  864. int n_prompt;
  865. int n_gen;
  866. int n_depth;
  867. int n_batch;
  868. int n_ubatch;
  869. ggml_type type_k;
  870. ggml_type type_v;
  871. int n_threads;
  872. std::string cpu_mask;
  873. bool cpu_strict;
  874. int poll;
  875. int n_gpu_layers;
  876. int n_cpu_moe;
  877. std::string rpc_servers_str;
  878. llama_split_mode split_mode;
  879. int main_gpu;
  880. bool no_kv_offload;
  881. bool flash_attn;
  882. std::vector<float> tensor_split;
  883. std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
  884. bool use_mmap;
  885. bool embeddings;
  886. bool no_op_offload;
  887. llama_model_params to_llama_mparams() const {
  888. llama_model_params mparams = llama_model_default_params();
  889. mparams.n_gpu_layers = n_gpu_layers;
  890. if (!rpc_servers_str.empty()) {
  891. auto rpc_servers = string_split<std::string>(rpc_servers_str, ',');
  892. // add RPC devices
  893. if (!rpc_servers.empty()) {
  894. ggml_backend_reg_t rpc_reg = ggml_backend_reg_by_name("RPC");
  895. if (!rpc_reg) {
  896. fprintf(stderr, "%s: failed to find RPC backend\n", __func__);
  897. exit(1);
  898. }
  899. typedef ggml_backend_dev_t (*ggml_backend_rpc_add_device_t)(const char * endpoint);
  900. ggml_backend_rpc_add_device_t ggml_backend_rpc_add_device_fn = (ggml_backend_rpc_add_device_t) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_device");
  901. if (!ggml_backend_rpc_add_device_fn) {
  902. fprintf(stderr, "%s: failed to find RPC device add function\n", __func__);
  903. exit(1);
  904. }
  905. static std::vector<ggml_backend_dev_t> devices;
  906. devices.clear();
  907. // RPC devices should always come first for performance reasons
  908. for (const std::string & server : rpc_servers) {
  909. ggml_backend_dev_t dev = ggml_backend_rpc_add_device_fn(server.c_str());
  910. if (dev) {
  911. devices.push_back(dev);
  912. } else {
  913. fprintf(stderr, "%s: failed to add RPC device for server '%s'\n", __func__, server.c_str());
  914. exit(1);
  915. }
  916. }
  917. // FIXME: use llama.cpp device selection logic
  918. // add local GPU devices if any
  919. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  920. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  921. switch (ggml_backend_dev_type(dev)) {
  922. case GGML_BACKEND_DEVICE_TYPE_CPU:
  923. case GGML_BACKEND_DEVICE_TYPE_ACCEL:
  924. // skip CPU backends since they are handled separately
  925. break;
  926. case GGML_BACKEND_DEVICE_TYPE_GPU:
  927. devices.push_back(dev);
  928. break;
  929. case GGML_BACKEND_DEVICE_TYPE_IGPU:
  930. // iGPUs are not used when there are RPC servers
  931. break;
  932. }
  933. }
  934. devices.push_back(nullptr);
  935. mparams.devices = devices.data();
  936. }
  937. }
  938. mparams.split_mode = split_mode;
  939. mparams.main_gpu = main_gpu;
  940. mparams.tensor_split = tensor_split.data();
  941. mparams.use_mmap = use_mmap;
  942. if (n_cpu_moe <= 0) {
  943. if (tensor_buft_overrides.empty()) {
  944. mparams.tensor_buft_overrides = nullptr;
  945. } else {
  946. GGML_ASSERT(tensor_buft_overrides.back().pattern == nullptr &&
  947. "Tensor buffer overrides not terminated with empty pattern");
  948. mparams.tensor_buft_overrides = tensor_buft_overrides.data();
  949. }
  950. } else {
  951. static std::vector<llama_model_tensor_buft_override> merged;
  952. static std::vector<std::string> patterns;
  953. merged.clear();
  954. patterns.clear();
  955. auto first = tensor_buft_overrides.begin();
  956. auto last = tensor_buft_overrides.end();
  957. if (first != last && (last - 1)->pattern == nullptr) {
  958. --last;
  959. }
  960. merged.insert(merged.end(), first, last);
  961. patterns.reserve((size_t) n_cpu_moe);
  962. merged.reserve(merged.size() + (size_t) n_cpu_moe + 1);
  963. for (int i = 0; i < n_cpu_moe; ++i) {
  964. patterns.push_back(llm_ffn_exps_block_regex(i));
  965. merged.push_back({ patterns.back().c_str(),
  966. ggml_backend_cpu_buffer_type() });
  967. }
  968. merged.push_back({ nullptr, nullptr });
  969. mparams.tensor_buft_overrides = merged.data();
  970. }
  971. return mparams;
  972. }
  973. bool equal_mparams(const cmd_params_instance & other) const {
  974. return model == other.model && n_gpu_layers == other.n_gpu_layers && n_cpu_moe == other.n_cpu_moe &&
  975. rpc_servers_str == other.rpc_servers_str && split_mode == other.split_mode &&
  976. main_gpu == other.main_gpu && use_mmap == other.use_mmap && tensor_split == other.tensor_split &&
  977. vec_tensor_buft_override_equal(tensor_buft_overrides, other.tensor_buft_overrides);
  978. }
  979. llama_context_params to_llama_cparams() const {
  980. llama_context_params cparams = llama_context_default_params();
  981. cparams.n_ctx = n_prompt + n_gen + n_depth;
  982. cparams.n_batch = n_batch;
  983. cparams.n_ubatch = n_ubatch;
  984. cparams.type_k = type_k;
  985. cparams.type_v = type_v;
  986. cparams.offload_kqv = !no_kv_offload;
  987. cparams.flash_attn_type = flash_attn ? LLAMA_FLASH_ATTN_TYPE_ENABLED : LLAMA_FLASH_ATTN_TYPE_DISABLED;
  988. cparams.embeddings = embeddings;
  989. cparams.op_offload = !no_op_offload;
  990. cparams.swa_full = false;
  991. return cparams;
  992. }
  993. };
  994. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  995. std::vector<cmd_params_instance> instances;
  996. // this ordering minimizes the number of times that each model needs to be reloaded
  997. // clang-format off
  998. for (const auto & m : params.model)
  999. for (const auto & nl : params.n_gpu_layers)
  1000. for (const auto & ncmoe : params.n_cpu_moe)
  1001. for (const auto & rpc : params.rpc_servers)
  1002. for (const auto & sm : params.split_mode)
  1003. for (const auto & mg : params.main_gpu)
  1004. for (const auto & ts : params.tensor_split)
  1005. for (const auto & ot : params.tensor_buft_overrides)
  1006. for (const auto & mmp : params.use_mmap)
  1007. for (const auto & embd : params.embeddings)
  1008. for (const auto & nopo : params.no_op_offload)
  1009. for (const auto & nb : params.n_batch)
  1010. for (const auto & nub : params.n_ubatch)
  1011. for (const auto & tk : params.type_k)
  1012. for (const auto & tv : params.type_v)
  1013. for (const auto & nkvo : params.no_kv_offload)
  1014. for (const auto & fa : params.flash_attn)
  1015. for (const auto & nt : params.n_threads)
  1016. for (const auto & cm : params.cpu_mask)
  1017. for (const auto & cs : params.cpu_strict)
  1018. for (const auto & nd : params.n_depth)
  1019. for (const auto & pl : params.poll) {
  1020. for (const auto & n_prompt : params.n_prompt) {
  1021. if (n_prompt == 0) {
  1022. continue;
  1023. }
  1024. cmd_params_instance instance = {
  1025. /* .model = */ m,
  1026. /* .n_prompt = */ n_prompt,
  1027. /* .n_gen = */ 0,
  1028. /* .n_depth = */ nd,
  1029. /* .n_batch = */ nb,
  1030. /* .n_ubatch = */ nub,
  1031. /* .type_k = */ tk,
  1032. /* .type_v = */ tv,
  1033. /* .n_threads = */ nt,
  1034. /* .cpu_mask = */ cm,
  1035. /* .cpu_strict = */ cs,
  1036. /* .poll = */ pl,
  1037. /* .n_gpu_layers = */ nl,
  1038. /* .n_cpu_moe = */ ncmoe,
  1039. /* .rpc_servers = */ rpc,
  1040. /* .split_mode = */ sm,
  1041. /* .main_gpu = */ mg,
  1042. /* .no_kv_offload= */ nkvo,
  1043. /* .flash_attn = */ fa,
  1044. /* .tensor_split = */ ts,
  1045. /* .tensor_buft_overrides = */ ot,
  1046. /* .use_mmap = */ mmp,
  1047. /* .embeddings = */ embd,
  1048. /* .no_op_offload= */ nopo,
  1049. };
  1050. instances.push_back(instance);
  1051. }
  1052. for (const auto & n_gen : params.n_gen) {
  1053. if (n_gen == 0) {
  1054. continue;
  1055. }
  1056. cmd_params_instance instance = {
  1057. /* .model = */ m,
  1058. /* .n_prompt = */ 0,
  1059. /* .n_gen = */ n_gen,
  1060. /* .n_depth = */ nd,
  1061. /* .n_batch = */ nb,
  1062. /* .n_ubatch = */ nub,
  1063. /* .type_k = */ tk,
  1064. /* .type_v = */ tv,
  1065. /* .n_threads = */ nt,
  1066. /* .cpu_mask = */ cm,
  1067. /* .cpu_strict = */ cs,
  1068. /* .poll = */ pl,
  1069. /* .n_gpu_layers = */ nl,
  1070. /* .n_cpu_moe = */ ncmoe,
  1071. /* .rpc_servers = */ rpc,
  1072. /* .split_mode = */ sm,
  1073. /* .main_gpu = */ mg,
  1074. /* .no_kv_offload= */ nkvo,
  1075. /* .flash_attn = */ fa,
  1076. /* .tensor_split = */ ts,
  1077. /* .tensor_buft_overrides = */ ot,
  1078. /* .use_mmap = */ mmp,
  1079. /* .embeddings = */ embd,
  1080. /* .no_op_offload= */ nopo,
  1081. };
  1082. instances.push_back(instance);
  1083. }
  1084. for (const auto & n_pg : params.n_pg) {
  1085. if (n_pg.first == 0 && n_pg.second == 0) {
  1086. continue;
  1087. }
  1088. cmd_params_instance instance = {
  1089. /* .model = */ m,
  1090. /* .n_prompt = */ n_pg.first,
  1091. /* .n_gen = */ n_pg.second,
  1092. /* .n_depth = */ nd,
  1093. /* .n_batch = */ nb,
  1094. /* .n_ubatch = */ nub,
  1095. /* .type_k = */ tk,
  1096. /* .type_v = */ tv,
  1097. /* .n_threads = */ nt,
  1098. /* .cpu_mask = */ cm,
  1099. /* .cpu_strict = */ cs,
  1100. /* .poll = */ pl,
  1101. /* .n_gpu_layers = */ nl,
  1102. /* .n_cpu_moe = */ ncmoe,
  1103. /* .rpc_servers = */ rpc,
  1104. /* .split_mode = */ sm,
  1105. /* .main_gpu = */ mg,
  1106. /* .no_kv_offload= */ nkvo,
  1107. /* .flash_attn = */ fa,
  1108. /* .tensor_split = */ ts,
  1109. /* .tensor_buft_overrides = */ ot,
  1110. /* .use_mmap = */ mmp,
  1111. /* .embeddings = */ embd,
  1112. /* .no_op_offload= */ nopo,
  1113. };
  1114. instances.push_back(instance);
  1115. }
  1116. }
  1117. // clang-format on
  1118. return instances;
  1119. }
  1120. struct test {
  1121. static const std::string build_commit;
  1122. static const int build_number;
  1123. const std::string cpu_info;
  1124. const std::string gpu_info;
  1125. std::string model_filename;
  1126. std::string model_type;
  1127. uint64_t model_size;
  1128. uint64_t model_n_params;
  1129. int n_batch;
  1130. int n_ubatch;
  1131. int n_threads;
  1132. std::string cpu_mask;
  1133. bool cpu_strict;
  1134. int poll;
  1135. ggml_type type_k;
  1136. ggml_type type_v;
  1137. int n_gpu_layers;
  1138. int n_cpu_moe;
  1139. llama_split_mode split_mode;
  1140. int main_gpu;
  1141. bool no_kv_offload;
  1142. bool flash_attn;
  1143. std::vector<float> tensor_split;
  1144. std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
  1145. bool use_mmap;
  1146. bool embeddings;
  1147. bool no_op_offload;
  1148. int n_prompt;
  1149. int n_gen;
  1150. int n_depth;
  1151. std::string test_time;
  1152. std::vector<uint64_t> samples_ns;
  1153. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) :
  1154. cpu_info(get_cpu_info()),
  1155. gpu_info(get_gpu_info()) {
  1156. model_filename = inst.model;
  1157. char buf[128];
  1158. llama_model_desc(lmodel, buf, sizeof(buf));
  1159. model_type = buf;
  1160. model_size = llama_model_size(lmodel);
  1161. model_n_params = llama_model_n_params(lmodel);
  1162. n_batch = inst.n_batch;
  1163. n_ubatch = inst.n_ubatch;
  1164. n_threads = inst.n_threads;
  1165. cpu_mask = inst.cpu_mask;
  1166. cpu_strict = inst.cpu_strict;
  1167. poll = inst.poll;
  1168. type_k = inst.type_k;
  1169. type_v = inst.type_v;
  1170. n_gpu_layers = inst.n_gpu_layers;
  1171. n_cpu_moe = inst.n_cpu_moe;
  1172. split_mode = inst.split_mode;
  1173. main_gpu = inst.main_gpu;
  1174. no_kv_offload = inst.no_kv_offload;
  1175. flash_attn = inst.flash_attn;
  1176. tensor_split = inst.tensor_split;
  1177. tensor_buft_overrides = inst.tensor_buft_overrides;
  1178. use_mmap = inst.use_mmap;
  1179. embeddings = inst.embeddings;
  1180. no_op_offload = inst.no_op_offload;
  1181. n_prompt = inst.n_prompt;
  1182. n_gen = inst.n_gen;
  1183. n_depth = inst.n_depth;
  1184. // RFC 3339 date-time format
  1185. time_t t = time(NULL);
  1186. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  1187. test_time = buf;
  1188. (void) ctx;
  1189. }
  1190. uint64_t avg_ns() const { return ::avg(samples_ns); }
  1191. uint64_t stdev_ns() const { return ::stdev(samples_ns); }
  1192. std::vector<double> get_ts() const {
  1193. int n_tokens = n_prompt + n_gen;
  1194. std::vector<double> ts;
  1195. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts),
  1196. [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  1197. return ts;
  1198. }
  1199. double avg_ts() const { return ::avg(get_ts()); }
  1200. double stdev_ts() const { return ::stdev(get_ts()); }
  1201. static std::string get_backend() {
  1202. std::vector<std::string> backends;
  1203. for (size_t i = 0; i < ggml_backend_reg_count(); i++) {
  1204. auto * reg = ggml_backend_reg_get(i);
  1205. std::string name = ggml_backend_reg_name(reg);
  1206. if (name != "CPU") {
  1207. backends.push_back(ggml_backend_reg_name(reg));
  1208. }
  1209. }
  1210. return backends.empty() ? "CPU" : join(backends, ",");
  1211. }
  1212. static const std::vector<std::string> & get_fields() {
  1213. static const std::vector<std::string> fields = {
  1214. "build_commit", "build_number", "cpu_info", "gpu_info", "backends",
  1215. "model_filename", "model_type", "model_size", "model_n_params", "n_batch",
  1216. "n_ubatch", "n_threads", "cpu_mask", "cpu_strict", "poll",
  1217. "type_k", "type_v", "n_gpu_layers", "n_cpu_moe", "split_mode",
  1218. "main_gpu", "no_kv_offload", "flash_attn", "tensor_split", "tensor_buft_overrides",
  1219. "use_mmap", "embeddings", "no_op_offload", "n_prompt", "n_gen",
  1220. "n_depth", "test_time", "avg_ns", "stddev_ns", "avg_ts",
  1221. "stddev_ts"
  1222. };
  1223. return fields;
  1224. }
  1225. enum field_type { STRING, BOOL, INT, FLOAT };
  1226. static field_type get_field_type(const std::string & field) {
  1227. if (field == "build_number" || field == "n_batch" || field == "n_ubatch" || field == "n_threads" ||
  1228. field == "poll" || field == "model_size" || field == "model_n_params" || field == "n_gpu_layers" ||
  1229. field == "main_gpu" || field == "n_prompt" || field == "n_gen" || field == "n_depth" || field == "avg_ns" ||
  1230. field == "stddev_ns" || field == "no_op_offload" || field == "n_cpu_moe") {
  1231. return INT;
  1232. }
  1233. if (field == "f16_kv" || field == "no_kv_offload" || field == "cpu_strict" || field == "flash_attn" ||
  1234. field == "use_mmap" || field == "embeddings") {
  1235. return BOOL;
  1236. }
  1237. if (field == "avg_ts" || field == "stddev_ts") {
  1238. return FLOAT;
  1239. }
  1240. return STRING;
  1241. }
  1242. std::vector<std::string> get_values() const {
  1243. std::string tensor_split_str;
  1244. std::string tensor_buft_overrides_str;
  1245. int max_nonzero = 0;
  1246. for (size_t i = 0; i < llama_max_devices(); i++) {
  1247. if (tensor_split[i] > 0) {
  1248. max_nonzero = i;
  1249. }
  1250. }
  1251. for (int i = 0; i <= max_nonzero; i++) {
  1252. char buf[32];
  1253. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  1254. tensor_split_str += buf;
  1255. if (i < max_nonzero) {
  1256. tensor_split_str += "/";
  1257. }
  1258. }
  1259. if (tensor_buft_overrides.size() == 1) {
  1260. // Last element of tensor_buft_overrides is always a null pattern
  1261. // so if it is only one element long, it must be a null pattern.
  1262. GGML_ASSERT(tensor_buft_overrides[0].pattern == nullptr);
  1263. tensor_buft_overrides_str += "none";
  1264. } else {
  1265. for (size_t i = 0; i < tensor_buft_overrides.size()-1; i++) {
  1266. // Last element of tensor_buft_overrides is always a null pattern
  1267. if (tensor_buft_overrides[i].pattern == nullptr) {
  1268. tensor_buft_overrides_str += "none";
  1269. } else {
  1270. tensor_buft_overrides_str += tensor_buft_overrides[i].pattern;
  1271. tensor_buft_overrides_str += "=";
  1272. tensor_buft_overrides_str += ggml_backend_buft_name(tensor_buft_overrides[i].buft);
  1273. }
  1274. if (i + 2 < tensor_buft_overrides.size()) {
  1275. tensor_buft_overrides_str += ";";
  1276. }
  1277. }
  1278. }
  1279. std::vector<std::string> values = { build_commit,
  1280. std::to_string(build_number),
  1281. cpu_info,
  1282. gpu_info,
  1283. get_backend(),
  1284. model_filename,
  1285. model_type,
  1286. std::to_string(model_size),
  1287. std::to_string(model_n_params),
  1288. std::to_string(n_batch),
  1289. std::to_string(n_ubatch),
  1290. std::to_string(n_threads),
  1291. cpu_mask,
  1292. std::to_string(cpu_strict),
  1293. std::to_string(poll),
  1294. ggml_type_name(type_k),
  1295. ggml_type_name(type_v),
  1296. std::to_string(n_gpu_layers),
  1297. std::to_string(n_cpu_moe),
  1298. split_mode_str(split_mode),
  1299. std::to_string(main_gpu),
  1300. std::to_string(no_kv_offload),
  1301. std::to_string(flash_attn),
  1302. tensor_split_str,
  1303. tensor_buft_overrides_str,
  1304. std::to_string(use_mmap),
  1305. std::to_string(embeddings),
  1306. std::to_string(no_op_offload),
  1307. std::to_string(n_prompt),
  1308. std::to_string(n_gen),
  1309. std::to_string(n_depth),
  1310. test_time,
  1311. std::to_string(avg_ns()),
  1312. std::to_string(stdev_ns()),
  1313. std::to_string(avg_ts()),
  1314. std::to_string(stdev_ts()) };
  1315. return values;
  1316. }
  1317. std::map<std::string, std::string> get_map() const {
  1318. std::map<std::string, std::string> map;
  1319. auto fields = get_fields();
  1320. auto values = get_values();
  1321. std::transform(fields.begin(), fields.end(), values.begin(), std::inserter(map, map.end()),
  1322. std::make_pair<const std::string &, const std::string &>);
  1323. return map;
  1324. }
  1325. };
  1326. const std::string test::build_commit = LLAMA_COMMIT;
  1327. const int test::build_number = LLAMA_BUILD_NUMBER;
  1328. struct printer {
  1329. virtual ~printer() {}
  1330. FILE * fout;
  1331. virtual void print_header(const cmd_params & params) { (void) params; }
  1332. virtual void print_test(const test & t) = 0;
  1333. virtual void print_footer() {}
  1334. };
  1335. struct csv_printer : public printer {
  1336. static std::string escape_csv(const std::string & field) {
  1337. std::string escaped = "\"";
  1338. for (auto c : field) {
  1339. if (c == '"') {
  1340. escaped += "\"";
  1341. }
  1342. escaped += c;
  1343. }
  1344. escaped += "\"";
  1345. return escaped;
  1346. }
  1347. void print_header(const cmd_params & params) override {
  1348. std::vector<std::string> fields = test::get_fields();
  1349. fprintf(fout, "%s\n", join(fields, ",").c_str());
  1350. (void) params;
  1351. }
  1352. void print_test(const test & t) override {
  1353. std::vector<std::string> values = t.get_values();
  1354. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  1355. fprintf(fout, "%s\n", join(values, ",").c_str());
  1356. }
  1357. };
  1358. static std::string escape_json(const std::string & value) {
  1359. std::string escaped;
  1360. for (auto c : value) {
  1361. if (c == '"') {
  1362. escaped += "\\\"";
  1363. } else if (c == '\\') {
  1364. escaped += "\\\\";
  1365. } else if (c <= 0x1f) {
  1366. char buf[8];
  1367. snprintf(buf, sizeof(buf), "\\u%04x", c);
  1368. escaped += buf;
  1369. } else {
  1370. escaped += c;
  1371. }
  1372. }
  1373. return escaped;
  1374. }
  1375. static std::string format_json_value(const std::string & field, const std::string & value) {
  1376. switch (test::get_field_type(field)) {
  1377. case test::STRING:
  1378. return "\"" + escape_json(value) + "\"";
  1379. case test::BOOL:
  1380. return value == "0" ? "false" : "true";
  1381. default:
  1382. return value;
  1383. }
  1384. }
  1385. struct json_printer : public printer {
  1386. bool first = true;
  1387. void print_header(const cmd_params & params) override {
  1388. fprintf(fout, "[\n");
  1389. (void) params;
  1390. }
  1391. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  1392. assert(fields.size() == values.size());
  1393. for (size_t i = 0; i < fields.size(); i++) {
  1394. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(),
  1395. format_json_value(fields.at(i), values.at(i)).c_str());
  1396. }
  1397. }
  1398. void print_test(const test & t) override {
  1399. if (first) {
  1400. first = false;
  1401. } else {
  1402. fprintf(fout, ",\n");
  1403. }
  1404. fprintf(fout, " {\n");
  1405. print_fields(test::get_fields(), t.get_values());
  1406. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  1407. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  1408. fprintf(fout, " }");
  1409. fflush(fout);
  1410. }
  1411. void print_footer() override { fprintf(fout, "\n]\n"); }
  1412. };
  1413. struct jsonl_printer : public printer {
  1414. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  1415. assert(fields.size() == values.size());
  1416. for (size_t i = 0; i < fields.size(); i++) {
  1417. fprintf(fout, "\"%s\": %s, ", fields.at(i).c_str(), format_json_value(fields.at(i), values.at(i)).c_str());
  1418. }
  1419. }
  1420. void print_test(const test & t) override {
  1421. fprintf(fout, "{");
  1422. print_fields(test::get_fields(), t.get_values());
  1423. fprintf(fout, "\"samples_ns\": [ %s ],", join(t.samples_ns, ", ").c_str());
  1424. fprintf(fout, "\"samples_ts\": [ %s ]", join(t.get_ts(), ", ").c_str());
  1425. fprintf(fout, "}\n");
  1426. fflush(fout);
  1427. }
  1428. };
  1429. struct markdown_printer : public printer {
  1430. std::vector<std::string> fields;
  1431. static int get_field_width(const std::string & field) {
  1432. if (field == "model") {
  1433. return -30;
  1434. }
  1435. if (field == "t/s") {
  1436. return 20;
  1437. }
  1438. if (field == "size" || field == "params") {
  1439. return 10;
  1440. }
  1441. if (field == "n_gpu_layers") {
  1442. return 3;
  1443. }
  1444. if (field == "n_threads") {
  1445. return 7;
  1446. }
  1447. if (field == "n_batch") {
  1448. return 7;
  1449. }
  1450. if (field == "n_ubatch") {
  1451. return 8;
  1452. }
  1453. if (field == "type_k" || field == "type_v") {
  1454. return 6;
  1455. }
  1456. if (field == "split_mode") {
  1457. return 5;
  1458. }
  1459. if (field == "flash_attn") {
  1460. return 2;
  1461. }
  1462. if (field == "use_mmap") {
  1463. return 4;
  1464. }
  1465. if (field == "test") {
  1466. return 15;
  1467. }
  1468. if (field == "no_op_offload") {
  1469. return 4;
  1470. }
  1471. int width = std::max((int) field.length(), 10);
  1472. if (test::get_field_type(field) == test::STRING) {
  1473. return -width;
  1474. }
  1475. return width;
  1476. }
  1477. static std::string get_field_display_name(const std::string & field) {
  1478. if (field == "n_gpu_layers") {
  1479. return "ngl";
  1480. }
  1481. if (field == "split_mode") {
  1482. return "sm";
  1483. }
  1484. if (field == "n_threads") {
  1485. return "threads";
  1486. }
  1487. if (field == "no_kv_offload") {
  1488. return "nkvo";
  1489. }
  1490. if (field == "flash_attn") {
  1491. return "fa";
  1492. }
  1493. if (field == "use_mmap") {
  1494. return "mmap";
  1495. }
  1496. if (field == "embeddings") {
  1497. return "embd";
  1498. }
  1499. if (field == "no_op_offload") {
  1500. return "nopo";
  1501. }
  1502. if (field == "tensor_split") {
  1503. return "ts";
  1504. }
  1505. if (field == "tensor_buft_overrides") {
  1506. return "ot";
  1507. }
  1508. return field;
  1509. }
  1510. void print_header(const cmd_params & params) override {
  1511. // select fields to print
  1512. fields.emplace_back("model");
  1513. fields.emplace_back("size");
  1514. fields.emplace_back("params");
  1515. fields.emplace_back("backend");
  1516. bool is_cpu_backend = test::get_backend().find("CPU") != std::string::npos ||
  1517. test::get_backend().find("BLAS") != std::string::npos;
  1518. if (!is_cpu_backend) {
  1519. fields.emplace_back("n_gpu_layers");
  1520. }
  1521. if (params.n_cpu_moe.size() > 1) {
  1522. fields.emplace_back("n_cpu_moe");
  1523. }
  1524. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  1525. fields.emplace_back("n_threads");
  1526. }
  1527. if (params.cpu_mask.size() > 1 || params.cpu_mask != cmd_params_defaults.cpu_mask) {
  1528. fields.emplace_back("cpu_mask");
  1529. }
  1530. if (params.cpu_strict.size() > 1 || params.cpu_strict != cmd_params_defaults.cpu_strict) {
  1531. fields.emplace_back("cpu_strict");
  1532. }
  1533. if (params.poll.size() > 1 || params.poll != cmd_params_defaults.poll) {
  1534. fields.emplace_back("poll");
  1535. }
  1536. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  1537. fields.emplace_back("n_batch");
  1538. }
  1539. if (params.n_ubatch.size() > 1 || params.n_ubatch != cmd_params_defaults.n_ubatch) {
  1540. fields.emplace_back("n_ubatch");
  1541. }
  1542. if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
  1543. fields.emplace_back("type_k");
  1544. }
  1545. if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
  1546. fields.emplace_back("type_v");
  1547. }
  1548. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  1549. fields.emplace_back("main_gpu");
  1550. }
  1551. if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
  1552. fields.emplace_back("split_mode");
  1553. }
  1554. if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
  1555. fields.emplace_back("no_kv_offload");
  1556. }
  1557. if (params.flash_attn.size() > 1 || params.flash_attn != cmd_params_defaults.flash_attn) {
  1558. fields.emplace_back("flash_attn");
  1559. }
  1560. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  1561. fields.emplace_back("tensor_split");
  1562. }
  1563. if (params.tensor_buft_overrides.size() > 1 || !vec_vec_tensor_buft_override_equal(params.tensor_buft_overrides, cmd_params_defaults.tensor_buft_overrides)) {
  1564. fields.emplace_back("tensor_buft_overrides");
  1565. }
  1566. if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
  1567. fields.emplace_back("use_mmap");
  1568. }
  1569. if (params.embeddings.size() > 1 || params.embeddings != cmd_params_defaults.embeddings) {
  1570. fields.emplace_back("embeddings");
  1571. }
  1572. if (params.no_op_offload.size() > 1 || params.no_op_offload != cmd_params_defaults.no_op_offload) {
  1573. fields.emplace_back("no_op_offload");
  1574. }
  1575. fields.emplace_back("test");
  1576. fields.emplace_back("t/s");
  1577. fprintf(fout, "|");
  1578. for (const auto & field : fields) {
  1579. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  1580. }
  1581. fprintf(fout, "\n");
  1582. fprintf(fout, "|");
  1583. for (const auto & field : fields) {
  1584. int width = get_field_width(field);
  1585. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  1586. }
  1587. fprintf(fout, "\n");
  1588. }
  1589. void print_test(const test & t) override {
  1590. std::map<std::string, std::string> vmap = t.get_map();
  1591. fprintf(fout, "|");
  1592. for (const auto & field : fields) {
  1593. std::string value;
  1594. char buf[128];
  1595. if (field == "model") {
  1596. value = t.model_type;
  1597. } else if (field == "size") {
  1598. if (t.model_size < 1024 * 1024 * 1024) {
  1599. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  1600. } else {
  1601. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  1602. }
  1603. value = buf;
  1604. } else if (field == "params") {
  1605. if (t.model_n_params < 1000 * 1000 * 1000) {
  1606. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  1607. } else {
  1608. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  1609. }
  1610. value = buf;
  1611. } else if (field == "backend") {
  1612. value = test::get_backend();
  1613. } else if (field == "test") {
  1614. if (t.n_prompt > 0 && t.n_gen == 0) {
  1615. snprintf(buf, sizeof(buf), "pp%d", t.n_prompt);
  1616. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  1617. snprintf(buf, sizeof(buf), "tg%d", t.n_gen);
  1618. } else {
  1619. snprintf(buf, sizeof(buf), "pp%d+tg%d", t.n_prompt, t.n_gen);
  1620. }
  1621. if (t.n_depth > 0) {
  1622. int len = strlen(buf);
  1623. snprintf(buf + len, sizeof(buf) - len, " @ d%d", t.n_depth);
  1624. }
  1625. value = buf;
  1626. } else if (field == "t/s") {
  1627. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  1628. value = buf;
  1629. } else if (vmap.find(field) != vmap.end()) {
  1630. value = vmap.at(field);
  1631. } else {
  1632. assert(false);
  1633. exit(1);
  1634. }
  1635. int width = get_field_width(field);
  1636. if (field == "t/s") {
  1637. // HACK: the utf-8 character is 2 bytes
  1638. width += 1;
  1639. }
  1640. fprintf(fout, " %*s |", width, value.c_str());
  1641. }
  1642. fprintf(fout, "\n");
  1643. }
  1644. void print_footer() override {
  1645. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  1646. }
  1647. };
  1648. struct sql_printer : public printer {
  1649. static std::string get_sql_field_type(const std::string & field) {
  1650. switch (test::get_field_type(field)) {
  1651. case test::STRING:
  1652. return "TEXT";
  1653. case test::BOOL:
  1654. case test::INT:
  1655. return "INTEGER";
  1656. case test::FLOAT:
  1657. return "REAL";
  1658. default:
  1659. assert(false);
  1660. exit(1);
  1661. }
  1662. }
  1663. void print_header(const cmd_params & params) override {
  1664. std::vector<std::string> fields = test::get_fields();
  1665. fprintf(fout, "CREATE TABLE IF NOT EXISTS llama_bench (\n");
  1666. for (size_t i = 0; i < fields.size(); i++) {
  1667. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(),
  1668. i < fields.size() - 1 ? "," : "");
  1669. }
  1670. fprintf(fout, ");\n");
  1671. fprintf(fout, "\n");
  1672. (void) params;
  1673. }
  1674. void print_test(const test & t) override {
  1675. fprintf(fout, "INSERT INTO llama_bench (%s) ", join(test::get_fields(), ", ").c_str());
  1676. fprintf(fout, "VALUES (");
  1677. std::vector<std::string> values = t.get_values();
  1678. for (size_t i = 0; i < values.size(); i++) {
  1679. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  1680. }
  1681. fprintf(fout, ");\n");
  1682. }
  1683. };
  1684. static bool test_prompt(llama_context * ctx, int n_prompt, int n_batch, int n_threads) {
  1685. llama_set_n_threads(ctx, n_threads, n_threads);
  1686. const llama_model * model = llama_get_model(ctx);
  1687. const llama_vocab * vocab = llama_model_get_vocab(model);
  1688. const int32_t n_vocab = llama_vocab_n_tokens(vocab);
  1689. std::vector<llama_token> tokens(n_batch);
  1690. int n_processed = 0;
  1691. while (n_processed < n_prompt) {
  1692. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  1693. tokens[0] = n_processed == 0 && llama_vocab_get_add_bos(vocab) ? llama_vocab_bos(vocab) : std::rand() % n_vocab;
  1694. for (int i = 1; i < n_tokens; i++) {
  1695. tokens[i] = std::rand() % n_vocab;
  1696. }
  1697. int res = llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens));
  1698. if (res != 0) {
  1699. fprintf(stderr, "%s: failed to decode prompt batch, res = %d\n", __func__, res);
  1700. return false;
  1701. }
  1702. n_processed += n_tokens;
  1703. }
  1704. llama_synchronize(ctx);
  1705. return true;
  1706. }
  1707. static bool test_gen(llama_context * ctx, int n_gen, int n_threads) {
  1708. llama_set_n_threads(ctx, n_threads, n_threads);
  1709. const llama_model * model = llama_get_model(ctx);
  1710. const llama_vocab * vocab = llama_model_get_vocab(model);
  1711. const int32_t n_vocab = llama_vocab_n_tokens(vocab);
  1712. llama_token token = llama_vocab_get_add_bos(vocab) ? llama_vocab_bos(vocab) : std::rand() % n_vocab;
  1713. for (int i = 0; i < n_gen; i++) {
  1714. int res = llama_decode(ctx, llama_batch_get_one(&token, 1));
  1715. if (res != 0) {
  1716. fprintf(stderr, "%s: failed to decode generation batch, res = %d\n", __func__, res);
  1717. return false;
  1718. }
  1719. llama_synchronize(ctx);
  1720. token = std::rand() % n_vocab;
  1721. }
  1722. return true;
  1723. }
  1724. static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
  1725. (void) level;
  1726. (void) text;
  1727. (void) user_data;
  1728. }
  1729. static std::unique_ptr<printer> create_printer(output_formats format) {
  1730. switch (format) {
  1731. case NONE:
  1732. return nullptr;
  1733. case CSV:
  1734. return std::unique_ptr<printer>(new csv_printer());
  1735. case JSON:
  1736. return std::unique_ptr<printer>(new json_printer());
  1737. case JSONL:
  1738. return std::unique_ptr<printer>(new jsonl_printer());
  1739. case MARKDOWN:
  1740. return std::unique_ptr<printer>(new markdown_printer());
  1741. case SQL:
  1742. return std::unique_ptr<printer>(new sql_printer());
  1743. }
  1744. GGML_ABORT("fatal error");
  1745. }
  1746. int main(int argc, char ** argv) {
  1747. // try to set locale for unicode characters in markdown
  1748. setlocale(LC_CTYPE, ".UTF-8");
  1749. #if !defined(NDEBUG)
  1750. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  1751. #endif
  1752. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  1753. fprintf(stderr, "warning: debug build, performance may be affected\n");
  1754. #endif
  1755. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  1756. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  1757. #endif
  1758. // initialize backends
  1759. ggml_backend_load_all();
  1760. cmd_params params = parse_cmd_params(argc, argv);
  1761. auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  1762. if (!cpu_dev) {
  1763. fprintf(stderr, "%s: error: CPU backend is not loaded\n", __func__);
  1764. return 1;
  1765. }
  1766. auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
  1767. auto * ggml_threadpool_new_fn = (decltype(ggml_threadpool_new) *) ggml_backend_reg_get_proc_address(cpu_reg, "ggml_threadpool_new");
  1768. auto * ggml_threadpool_free_fn = (decltype(ggml_threadpool_free) *) ggml_backend_reg_get_proc_address(cpu_reg, "ggml_threadpool_free");
  1769. // initialize llama.cpp
  1770. if (!params.verbose) {
  1771. llama_log_set(llama_null_log_callback, NULL);
  1772. }
  1773. llama_backend_init();
  1774. llama_numa_init(params.numa);
  1775. set_process_priority(params.prio);
  1776. // initialize printer
  1777. std::unique_ptr<printer> p = create_printer(params.output_format);
  1778. std::unique_ptr<printer> p_err = create_printer(params.output_format_stderr);
  1779. if (p) {
  1780. p->fout = stdout;
  1781. p->print_header(params);
  1782. }
  1783. if (p_err) {
  1784. p_err->fout = stderr;
  1785. p_err->print_header(params);
  1786. }
  1787. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  1788. llama_model * lmodel = nullptr;
  1789. const cmd_params_instance * prev_inst = nullptr;
  1790. int params_idx = 0;
  1791. auto params_count = params_instances.size();
  1792. for (const auto & inst : params_instances) {
  1793. params_idx++;
  1794. if (params.progress) {
  1795. fprintf(stderr, "llama-bench: benchmark %d/%zu: starting\n", params_idx, params_count);
  1796. }
  1797. // keep the same model between tests when possible
  1798. if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
  1799. if (lmodel) {
  1800. llama_model_free(lmodel);
  1801. }
  1802. lmodel = llama_model_load_from_file(inst.model.c_str(), inst.to_llama_mparams());
  1803. if (lmodel == NULL) {
  1804. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  1805. return 1;
  1806. }
  1807. prev_inst = &inst;
  1808. }
  1809. llama_context * ctx = llama_init_from_model(lmodel, inst.to_llama_cparams());
  1810. if (ctx == NULL) {
  1811. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  1812. llama_model_free(lmodel);
  1813. return 1;
  1814. }
  1815. test t(inst, lmodel, ctx);
  1816. llama_memory_clear(llama_get_memory(ctx), false);
  1817. // cool off before the test
  1818. if (params.delay) {
  1819. std::this_thread::sleep_for(std::chrono::seconds(params.delay));
  1820. }
  1821. struct ggml_threadpool_params tpp = ggml_threadpool_params_default(t.n_threads);
  1822. if (!parse_cpu_mask(t.cpu_mask, tpp.cpumask)) {
  1823. fprintf(stderr, "%s: failed to parse cpu-mask: %s\n", __func__, t.cpu_mask.c_str());
  1824. exit(1);
  1825. }
  1826. tpp.strict_cpu = t.cpu_strict;
  1827. tpp.poll = t.poll;
  1828. tpp.prio = params.prio;
  1829. struct ggml_threadpool * threadpool = ggml_threadpool_new_fn(&tpp);
  1830. if (!threadpool) {
  1831. fprintf(stderr, "%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads);
  1832. exit(1);
  1833. }
  1834. llama_attach_threadpool(ctx, threadpool, NULL);
  1835. // warmup run
  1836. if (!params.no_warmup) {
  1837. if (t.n_prompt > 0) {
  1838. if (params.progress) {
  1839. fprintf(stderr, "llama-bench: benchmark %d/%zu: warmup prompt run\n", params_idx, params_count);
  1840. }
  1841. //test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
  1842. bool res = test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
  1843. if (!res) {
  1844. fprintf(stderr, "%s: error: failed to run prompt warmup\n", __func__);
  1845. exit(1);
  1846. }
  1847. }
  1848. if (t.n_gen > 0) {
  1849. if (params.progress) {
  1850. fprintf(stderr, "llama-bench: benchmark %d/%zu: warmup generation run\n", params_idx, params_count);
  1851. }
  1852. bool res = test_gen(ctx, 1, t.n_threads);
  1853. if (!res) {
  1854. fprintf(stderr, "%s: error: failed to run gen warmup\n", __func__);
  1855. exit(1);
  1856. }
  1857. }
  1858. }
  1859. for (int i = 0; i < params.reps; i++) {
  1860. llama_memory_clear(llama_get_memory(ctx), false);
  1861. if (t.n_depth > 0) {
  1862. if (params.progress) {
  1863. fprintf(stderr, "llama-bench: benchmark %d/%zu: depth run %d/%d\n", params_idx, params_count,
  1864. i + 1, params.reps);
  1865. }
  1866. bool res = test_prompt(ctx, t.n_depth, t.n_batch, t.n_threads);
  1867. if (!res) {
  1868. fprintf(stderr, "%s: error: failed to run depth\n", __func__);
  1869. exit(1);
  1870. }
  1871. }
  1872. uint64_t t_start = get_time_ns();
  1873. if (t.n_prompt > 0) {
  1874. if (params.progress) {
  1875. fprintf(stderr, "llama-bench: benchmark %d/%zu: prompt run %d/%d\n", params_idx, params_count,
  1876. i + 1, params.reps);
  1877. }
  1878. bool res = test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
  1879. if (!res) {
  1880. fprintf(stderr, "%s: error: failed to run prompt\n", __func__);
  1881. exit(1);
  1882. }
  1883. }
  1884. if (t.n_gen > 0) {
  1885. if (params.progress) {
  1886. fprintf(stderr, "llama-bench: benchmark %d/%zu: generation run %d/%d\n", params_idx, params_count,
  1887. i + 1, params.reps);
  1888. }
  1889. bool res = test_gen(ctx, t.n_gen, t.n_threads);
  1890. if (!res) {
  1891. fprintf(stderr, "%s: error: failed to run gen\n", __func__);
  1892. exit(1);
  1893. }
  1894. }
  1895. uint64_t t_ns = get_time_ns() - t_start;
  1896. t.samples_ns.push_back(t_ns);
  1897. }
  1898. if (p) {
  1899. p->print_test(t);
  1900. fflush(p->fout);
  1901. }
  1902. if (p_err) {
  1903. p_err->print_test(t);
  1904. fflush(p_err->fout);
  1905. }
  1906. llama_perf_context_print(ctx);
  1907. llama_free(ctx);
  1908. ggml_threadpool_free_fn(threadpool);
  1909. }
  1910. llama_model_free(lmodel);
  1911. if (p) {
  1912. p->print_footer();
  1913. }
  1914. if (p_err) {
  1915. p_err->print_footer();
  1916. }
  1917. llama_backend_free();
  1918. return 0;
  1919. }