Currently this implementation supports glm-edge-v-2b and glm-edge-v-5b.
Build the llama-mtmd-cli binary.
After building, run: ./llama-mtmd-cli to see the usage. For example:
./llama-mtmd-cli -m model_path/ggml-model-f16.gguf --mmproj model_path/mmproj-model-f16.gguf
note: A lower temperature like 0.1 is recommended for better quality. add --temp 0.1 to the command to do so.
note: For GPU offloading ensure to use the -ngl flag just like usual
Clone a GLMV-EDGE model (2B or 5B). For example:
git clone https://huggingface.co/THUDM/glm-edge-v-5b or https://huggingface.co/THUDM/glm-edge-v-2b
Use glmedge-surgery.py to split the GLMV-EDGE model to LLM and multimodel projector constituents:
python ./tools/mtmd/glmedge-surgery.py -m ../model_path
Use glmedge-convert-image-encoder-to-gguf.py to convert the GLMV-EDGE image encoder to GGUF:
python ./tools/mtmd/glmedge-convert-image-encoder-to-gguf.py -m ../model_path --llava-projector ../model_path/glm.projector --output-dir ../model_path
Use examples/convert_hf_to_gguf.py to convert the LLM part of GLMV-EDGE to GGUF:
python convert_hf_to_gguf.py ../model_path
Now both the LLM part and the image encoder are in the model_path directory.