| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748 |
- #include "common.h"
- #include "llama.h"
- #include "ggml.h"
- #include <string>
- #include <vector>
- #include <math.h>
- namespace mean {
- static void run(
- const std::vector<struct ggml_tensor *> & v_input, // shape of v_input[0]: [n_embd, n_samples]
- const std::vector<struct ggml_tensor *> & v_output) {
- printf("%s: Running mean...\n", __func__);
- for (size_t il = 0; il < v_input.size(); ++il) {
- // prepare output vector
- struct ggml_tensor * ctrl_out = v_output[il];
- ggml_format_name(ctrl_out, "direction.%zu", il+1);
- // calculate mean vector
- struct ggml_tensor * t_layer = v_input[il];
- GGML_ASSERT(t_layer->ne[0] == ctrl_out->ne[0]); // == n_embd
- for (int ic = 0; ic < t_layer->ne[0]; ic++) {
- float f = 0.0;
- for (int ir = 0; ir < t_layer->ne[1]; ir++) {
- f += ggml_get_f32_nd(t_layer, ic, ir, 0, 0);
- }
- f /= t_layer->ne[1];
- ggml_set_f32_1d(ctrl_out, ic, f);
- }
- // normalize output vector
- float norm = 0.0;
- for (int i = 0; i < ggml_nelements(ctrl_out); i++) {
- float f = ggml_get_f32_1d(ctrl_out, i);
- norm += f*f;
- }
- norm = sqrt(norm);
- for (int i = 0; i < ggml_nelements(ctrl_out); i++) {
- float f = ggml_get_f32_1d(ctrl_out, i);
- ggml_set_f32_1d(ctrl_out, i, f / norm);
- }
- printf("%s: Done layer %d / %d\n", __func__, (int) il+1, (int) v_input.size());
- }
- }
- }
|