| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082 |
- #include <algorithm>
- #include <array>
- #include <cassert>
- #include <chrono>
- #include <cinttypes>
- #include <clocale>
- #include <cmath>
- #include <cstdio>
- #include <cstdlib>
- #include <cstring>
- #include <ctime>
- #include <iterator>
- #include <map>
- #include <numeric>
- #include <regex>
- #include <sstream>
- #include <string>
- #include <thread>
- #include <vector>
- #include "common.h"
- #include "ggml.h"
- #include "llama.h"
- #ifdef _WIN32
- # define WIN32_LEAN_AND_MEAN
- # ifndef NOMINMAX
- # define NOMINMAX
- # endif
- # include <windows.h>
- #endif
- // utils
- static uint64_t get_time_ns() {
- using clock = std::chrono::high_resolution_clock;
- return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
- }
- static bool tensor_buft_override_equal(const llama_model_tensor_buft_override& a, const llama_model_tensor_buft_override& b) {
- if (a.pattern != b.pattern) {
- // cString comparison that may be null
- if (a.pattern == nullptr || b.pattern == nullptr) {
- return false;
- }
- if (strcmp(a.pattern, b.pattern) != 0) {
- return false;
- }
- }
- if (a.buft != b.buft) {
- return false;
- }
- return true;
- }
- static bool vec_tensor_buft_override_equal(const std::vector<llama_model_tensor_buft_override>& a, const std::vector<llama_model_tensor_buft_override>& b) {
- if (a.size() != b.size()) {
- return false;
- }
- for (size_t i = 0; i < a.size(); i++) {
- if (!tensor_buft_override_equal(a[i], b[i])) {
- return false;
- }
- }
- return true;
- }
- static bool vec_vec_tensor_buft_override_equal(const std::vector<std::vector<llama_model_tensor_buft_override>>& a, const std::vector<std::vector<llama_model_tensor_buft_override>>& b) {
- if (a.size() != b.size()) {
- return false;
- }
- for (size_t i = 0; i < a.size(); i++) {
- if (!vec_tensor_buft_override_equal(a[i], b[i])) {
- return false;
- }
- }
- return true;
- }
- template <class T> static std::string join(const std::vector<T> & values, const std::string & delim) {
- std::ostringstream str;
- for (size_t i = 0; i < values.size(); i++) {
- str << values[i];
- if (i < values.size() - 1) {
- str << delim;
- }
- }
- return str.str();
- }
- template <typename T, typename F> static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
- std::vector<std::string> str_values;
- std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
- return str_values;
- }
- template <typename T> static T avg(const std::vector<T> & v) {
- if (v.empty()) {
- return 0;
- }
- T sum = std::accumulate(v.begin(), v.end(), T(0));
- return sum / (T) v.size();
- }
- template <typename T> static T stdev(const std::vector<T> & v) {
- if (v.size() <= 1) {
- return 0;
- }
- T mean = avg(v);
- T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
- T stdev = std::sqrt(sq_sum / (T) (v.size() - 1) - mean * mean * (T) v.size() / (T) (v.size() - 1));
- return stdev;
- }
- static std::string get_cpu_info() {
- std::vector<std::string> cpu_list;
- for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
- auto * dev = ggml_backend_dev_get(i);
- auto dev_type = ggml_backend_dev_type(dev);
- if (dev_type == GGML_BACKEND_DEVICE_TYPE_CPU || dev_type == GGML_BACKEND_DEVICE_TYPE_ACCEL) {
- cpu_list.push_back(ggml_backend_dev_description(dev));
- }
- }
- return join(cpu_list, ", ");
- }
- static std::string get_gpu_info() {
- std::vector<std::string> gpu_list;
- for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
- auto * dev = ggml_backend_dev_get(i);
- auto dev_type = ggml_backend_dev_type(dev);
- if (dev_type == GGML_BACKEND_DEVICE_TYPE_GPU || dev_type == GGML_BACKEND_DEVICE_TYPE_IGPU) {
- gpu_list.push_back(ggml_backend_dev_description(dev));
- }
- }
- return join(gpu_list, ", ");
- }
- // command line params
- enum output_formats { NONE, CSV, JSON, JSONL, MARKDOWN, SQL };
- static const char * output_format_str(output_formats format) {
- switch (format) {
- case NONE:
- return "none";
- case CSV:
- return "csv";
- case JSON:
- return "json";
- case JSONL:
- return "jsonl";
- case MARKDOWN:
- return "md";
- case SQL:
- return "sql";
- default:
- GGML_ABORT("invalid output format");
- }
- }
- static bool output_format_from_str(const std::string & s, output_formats & format) {
- if (s == "none") {
- format = NONE;
- } else if (s == "csv") {
- format = CSV;
- } else if (s == "json") {
- format = JSON;
- } else if (s == "jsonl") {
- format = JSONL;
- } else if (s == "md") {
- format = MARKDOWN;
- } else if (s == "sql") {
- format = SQL;
- } else {
- return false;
- }
- return true;
- }
- static const char * split_mode_str(llama_split_mode mode) {
- switch (mode) {
- case LLAMA_SPLIT_MODE_NONE:
- return "none";
- case LLAMA_SPLIT_MODE_LAYER:
- return "layer";
- case LLAMA_SPLIT_MODE_ROW:
- return "row";
- default:
- GGML_ABORT("invalid split mode");
- }
- }
- static std::string pair_str(const std::pair<int, int> & p) {
- static char buf[32];
- snprintf(buf, sizeof(buf), "%d,%d", p.first, p.second);
- return buf;
- }
- static std::vector<int> parse_int_range(const std::string & s) {
- // first[-last[(+|*)step]]
- std::regex range_regex(R"(^(\d+)(?:-(\d+)(?:([\+|\*])(\d+))?)?(?:,|$))");
- std::smatch match;
- std::string::const_iterator search_start(s.cbegin());
- std::vector<int> result;
- while (std::regex_search(search_start, s.cend(), match, range_regex)) {
- int first = std::stoi(match[1]);
- int last = match[2].matched ? std::stoi(match[2]) : first;
- char op = match[3].matched ? match[3].str()[0] : '+';
- int step = match[4].matched ? std::stoi(match[4]) : 1;
- for (int i = first; i <= last;) {
- result.push_back(i);
- int prev_i = i;
- if (op == '+') {
- i += step;
- } else if (op == '*') {
- i *= step;
- } else {
- throw std::invalid_argument("invalid range format");
- }
- if (i <= prev_i) {
- throw std::invalid_argument("invalid range");
- }
- }
- search_start = match.suffix().first;
- }
- if (search_start != s.cend()) {
- throw std::invalid_argument("invalid range format");
- }
- return result;
- }
- struct cmd_params {
- std::vector<std::string> model;
- std::vector<int> n_prompt;
- std::vector<int> n_gen;
- std::vector<std::pair<int, int>> n_pg;
- std::vector<int> n_depth;
- std::vector<int> n_batch;
- std::vector<int> n_ubatch;
- std::vector<ggml_type> type_k;
- std::vector<ggml_type> type_v;
- std::vector<int> n_threads;
- std::vector<std::string> cpu_mask;
- std::vector<bool> cpu_strict;
- std::vector<int> poll;
- std::vector<int> n_gpu_layers;
- std::vector<int> n_cpu_moe;
- std::vector<std::string> rpc_servers;
- std::vector<llama_split_mode> split_mode;
- std::vector<int> main_gpu;
- std::vector<bool> no_kv_offload;
- std::vector<bool> flash_attn;
- std::vector<std::vector<float>> tensor_split;
- std::vector<std::vector<llama_model_tensor_buft_override>> tensor_buft_overrides;
- std::vector<bool> use_mmap;
- std::vector<bool> embeddings;
- std::vector<bool> no_op_offload;
- ggml_numa_strategy numa;
- int reps;
- ggml_sched_priority prio;
- int delay;
- bool verbose;
- bool progress;
- bool no_warmup;
- output_formats output_format;
- output_formats output_format_stderr;
- };
- static const cmd_params cmd_params_defaults = {
- /* model */ { "models/7B/ggml-model-q4_0.gguf" },
- /* n_prompt */ { 512 },
- /* n_gen */ { 128 },
- /* n_pg */ {},
- /* n_depth */ { 0 },
- /* n_batch */ { 2048 },
- /* n_ubatch */ { 512 },
- /* type_k */ { GGML_TYPE_F16 },
- /* type_v */ { GGML_TYPE_F16 },
- /* n_threads */ { cpu_get_num_math() },
- /* cpu_mask */ { "0x0" },
- /* cpu_strict */ { false },
- /* poll */ { 50 },
- /* n_gpu_layers */ { 99 },
- /* n_cpu_moe */ { 0 },
- /* rpc_servers */ { "" },
- /* split_mode */ { LLAMA_SPLIT_MODE_LAYER },
- /* main_gpu */ { 0 },
- /* no_kv_offload */ { false },
- /* flash_attn */ { false },
- /* tensor_split */ { std::vector<float>(llama_max_devices(), 0.0f) },
- /* tensor_buft_overrides*/ { std::vector<llama_model_tensor_buft_override>{ { nullptr, nullptr } } },
- /* use_mmap */ { true },
- /* embeddings */ { false },
- /* no_op_offload */ { false },
- /* numa */ GGML_NUMA_STRATEGY_DISABLED,
- /* reps */ 5,
- /* prio */ GGML_SCHED_PRIO_NORMAL,
- /* delay */ 0,
- /* verbose */ false,
- /* progress */ false,
- /* no_warmup */ false,
- /* output_format */ MARKDOWN,
- /* output_format_stderr */ NONE,
- };
- static void print_usage(int /* argc */, char ** argv) {
- printf("usage: %s [options]\n", argv[0]);
- printf("\n");
- printf("options:\n");
- printf(" -h, --help\n");
- printf(" --numa <distribute|isolate|numactl> numa mode (default: disabled)\n");
- printf(" -r, --repetitions <n> number of times to repeat each test (default: %d)\n",
- cmd_params_defaults.reps);
- printf(" --prio <-1|0|1|2|3> process/thread priority (default: %d)\n",
- cmd_params_defaults.prio);
- printf(" --delay <0...N> (seconds) delay between each test (default: %d)\n",
- cmd_params_defaults.delay);
- printf(" -o, --output <csv|json|jsonl|md|sql> output format printed to stdout (default: %s)\n",
- output_format_str(cmd_params_defaults.output_format));
- printf(" -oe, --output-err <csv|json|jsonl|md|sql> output format printed to stderr (default: %s)\n",
- output_format_str(cmd_params_defaults.output_format_stderr));
- printf(" -v, --verbose verbose output\n");
- printf(" --progress print test progress indicators\n");
- printf(" --no-warmup skip warmup runs before benchmarking\n");
- printf("\n");
- printf("test parameters:\n");
- printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
- printf(" -p, --n-prompt <n> (default: %s)\n",
- join(cmd_params_defaults.n_prompt, ",").c_str());
- printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
- printf(" -pg <pp,tg> (default: %s)\n",
- join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str());
- printf(" -d, --n-depth <n> (default: %s)\n",
- join(cmd_params_defaults.n_depth, ",").c_str());
- printf(" -b, --batch-size <n> (default: %s)\n",
- join(cmd_params_defaults.n_batch, ",").c_str());
- printf(" -ub, --ubatch-size <n> (default: %s)\n",
- join(cmd_params_defaults.n_ubatch, ",").c_str());
- printf(" -ctk, --cache-type-k <t> (default: %s)\n",
- join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
- printf(" -ctv, --cache-type-v <t> (default: %s)\n",
- join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
- printf(" -t, --threads <n> (default: %s)\n",
- join(cmd_params_defaults.n_threads, ",").c_str());
- printf(" -C, --cpu-mask <hex,hex> (default: %s)\n",
- join(cmd_params_defaults.cpu_mask, ",").c_str());
- printf(" --cpu-strict <0|1> (default: %s)\n",
- join(cmd_params_defaults.cpu_strict, ",").c_str());
- printf(" --poll <0...100> (default: %s)\n", join(cmd_params_defaults.poll, ",").c_str());
- printf(" -ngl, --n-gpu-layers <n> (default: %s)\n",
- join(cmd_params_defaults.n_gpu_layers, ",").c_str());
- printf(" -ncmoe, --n-cpu-moe <n> (default: %s)\n",
- join(cmd_params_defaults.n_cpu_moe, ",").c_str());
- if (llama_supports_rpc()) {
- printf(" -rpc, --rpc <rpc_servers> (default: %s)\n",
- join(cmd_params_defaults.rpc_servers, ",").c_str());
- }
- printf(" -sm, --split-mode <none|layer|row> (default: %s)\n",
- join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
- printf(" -mg, --main-gpu <i> (default: %s)\n",
- join(cmd_params_defaults.main_gpu, ",").c_str());
- printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n",
- join(cmd_params_defaults.no_kv_offload, ",").c_str());
- printf(" -fa, --flash-attn <0|1> (default: %s)\n",
- join(cmd_params_defaults.flash_attn, ",").c_str());
- printf(" -mmp, --mmap <0|1> (default: %s)\n",
- join(cmd_params_defaults.use_mmap, ",").c_str());
- printf(" -embd, --embeddings <0|1> (default: %s)\n",
- join(cmd_params_defaults.embeddings, ",").c_str());
- printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
- printf(" -ot --override-tensor <tensor name pattern>=<buffer type>;...\n");
- printf(" (default: disabled)\n");
- printf(" -nopo, --no-op-offload <0|1> (default: 0)\n");
- printf("\n");
- printf(
- "Multiple values can be given for each parameter by separating them with ','\n"
- "or by specifying the parameter multiple times. Ranges can be given as\n"
- "'first-last' or 'first-last+step' or 'first-last*mult'.\n");
- }
- static ggml_type ggml_type_from_name(const std::string & s) {
- if (s == "f16") {
- return GGML_TYPE_F16;
- }
- if (s == "bf16") {
- return GGML_TYPE_BF16;
- }
- if (s == "q8_0") {
- return GGML_TYPE_Q8_0;
- }
- if (s == "q4_0") {
- return GGML_TYPE_Q4_0;
- }
- if (s == "q4_1") {
- return GGML_TYPE_Q4_1;
- }
- if (s == "q5_0") {
- return GGML_TYPE_Q5_0;
- }
- if (s == "q5_1") {
- return GGML_TYPE_Q5_1;
- }
- if (s == "iq4_nl") {
- return GGML_TYPE_IQ4_NL;
- }
- return GGML_TYPE_COUNT;
- }
- static cmd_params parse_cmd_params(int argc, char ** argv) {
- cmd_params params;
- std::string arg;
- bool invalid_param = false;
- const std::string arg_prefix = "--";
- const char split_delim = ',';
- params.verbose = cmd_params_defaults.verbose;
- params.output_format = cmd_params_defaults.output_format;
- params.output_format_stderr = cmd_params_defaults.output_format_stderr;
- params.reps = cmd_params_defaults.reps;
- params.numa = cmd_params_defaults.numa;
- params.prio = cmd_params_defaults.prio;
- params.delay = cmd_params_defaults.delay;
- params.progress = cmd_params_defaults.progress;
- params.no_warmup = cmd_params_defaults.no_warmup;
- for (int i = 1; i < argc; i++) {
- arg = argv[i];
- if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
- std::replace(arg.begin(), arg.end(), '_', '-');
- }
- try {
- if (arg == "-h" || arg == "--help") {
- print_usage(argc, argv);
- exit(0);
- } else if (arg == "-m" || arg == "--model") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = string_split<std::string>(argv[i], split_delim);
- params.model.insert(params.model.end(), p.begin(), p.end());
- } else if (arg == "-p" || arg == "--n-prompt") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = parse_int_range(argv[i]);
- params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
- } else if (arg == "-n" || arg == "--n-gen") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = parse_int_range(argv[i]);
- params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
- } else if (arg == "-pg") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = string_split<std::string>(argv[i], ',');
- if (p.size() != 2) {
- invalid_param = true;
- break;
- }
- params.n_pg.push_back({ std::stoi(p[0]), std::stoi(p[1]) });
- } else if (arg == "-d" || arg == "--n-depth") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = parse_int_range(argv[i]);
- params.n_depth.insert(params.n_depth.end(), p.begin(), p.end());
- } else if (arg == "-b" || arg == "--batch-size") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = parse_int_range(argv[i]);
- params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
- } else if (arg == "-ub" || arg == "--ubatch-size") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = parse_int_range(argv[i]);
- params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end());
- } else if (arg == "-ctk" || arg == "--cache-type-k") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = string_split<std::string>(argv[i], split_delim);
- std::vector<ggml_type> types;
- for (const auto & t : p) {
- ggml_type gt = ggml_type_from_name(t);
- if (gt == GGML_TYPE_COUNT) {
- invalid_param = true;
- break;
- }
- types.push_back(gt);
- }
- if (invalid_param) {
- break;
- }
- params.type_k.insert(params.type_k.end(), types.begin(), types.end());
- } else if (arg == "-ctv" || arg == "--cache-type-v") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = string_split<std::string>(argv[i], split_delim);
- std::vector<ggml_type> types;
- for (const auto & t : p) {
- ggml_type gt = ggml_type_from_name(t);
- if (gt == GGML_TYPE_COUNT) {
- invalid_param = true;
- break;
- }
- types.push_back(gt);
- }
- if (invalid_param) {
- break;
- }
- params.type_v.insert(params.type_v.end(), types.begin(), types.end());
- } else if (arg == "-t" || arg == "--threads") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = parse_int_range(argv[i]);
- params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
- } else if (arg == "-C" || arg == "--cpu-mask") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = string_split<std::string>(argv[i], split_delim);
- params.cpu_mask.insert(params.cpu_mask.end(), p.begin(), p.end());
- } else if (arg == "--cpu-strict") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = string_split<bool>(argv[i], split_delim);
- params.cpu_strict.insert(params.cpu_strict.end(), p.begin(), p.end());
- } else if (arg == "--poll") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = parse_int_range(argv[i]);
- params.poll.insert(params.poll.end(), p.begin(), p.end());
- } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = parse_int_range(argv[i]);
- params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
- } else if (arg == "-ncmoe" || arg == "--n-cpu-moe") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = parse_int_range(argv[i]);
- params.n_cpu_moe.insert(params.n_cpu_moe.end(), p.begin(), p.end());
- } else if (llama_supports_rpc() && (arg == "-rpc" || arg == "--rpc")) {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params.rpc_servers.push_back(argv[i]);
- } else if (arg == "-sm" || arg == "--split-mode") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = string_split<std::string>(argv[i], split_delim);
- std::vector<llama_split_mode> modes;
- for (const auto & m : p) {
- llama_split_mode mode;
- if (m == "none") {
- mode = LLAMA_SPLIT_MODE_NONE;
- } else if (m == "layer") {
- mode = LLAMA_SPLIT_MODE_LAYER;
- } else if (m == "row") {
- mode = LLAMA_SPLIT_MODE_ROW;
- } else {
- invalid_param = true;
- break;
- }
- modes.push_back(mode);
- }
- if (invalid_param) {
- break;
- }
- params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
- } else if (arg == "-mg" || arg == "--main-gpu") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params.main_gpu = parse_int_range(argv[i]);
- } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = string_split<bool>(argv[i], split_delim);
- params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
- } else if (arg == "--numa") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- std::string value(argv[i]);
- if (value == "distribute" || value == "") {
- params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE;
- } else if (value == "isolate") {
- params.numa = GGML_NUMA_STRATEGY_ISOLATE;
- } else if (value == "numactl") {
- params.numa = GGML_NUMA_STRATEGY_NUMACTL;
- } else {
- invalid_param = true;
- break;
- }
- } else if (arg == "-fa" || arg == "--flash-attn") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = string_split<bool>(argv[i], split_delim);
- params.flash_attn.insert(params.flash_attn.end(), p.begin(), p.end());
- } else if (arg == "-mmp" || arg == "--mmap") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = string_split<bool>(argv[i], split_delim);
- params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
- } else if (arg == "-embd" || arg == "--embeddings") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = string_split<bool>(argv[i], split_delim);
- params.embeddings.insert(params.embeddings.end(), p.begin(), p.end());
- } else if (arg == "-nopo" || arg == "--no-op-offload") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = string_split<bool>(argv[i], split_delim);
- params.no_op_offload.insert(params.no_op_offload.end(), p.begin(), p.end());
- } else if (arg == "-ts" || arg == "--tensor-split") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- for (auto ts : string_split<std::string>(argv[i], split_delim)) {
- // split string by ; and /
- const std::regex regex{ R"([;/]+)" };
- std::sregex_token_iterator it{ ts.begin(), ts.end(), regex, -1 };
- std::vector<std::string> split_arg{ it, {} };
- GGML_ASSERT(split_arg.size() <= llama_max_devices());
- std::vector<float> tensor_split(llama_max_devices());
- for (size_t i = 0; i < llama_max_devices(); ++i) {
- if (i < split_arg.size()) {
- tensor_split[i] = std::stof(split_arg[i]);
- } else {
- tensor_split[i] = 0.0f;
- }
- }
- params.tensor_split.push_back(tensor_split);
- }
- } else if (arg == "-ot" || arg == "--override-tensor") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto * value = argv[i];
- /* static */ std::map<std::string, ggml_backend_buffer_type_t> buft_list;
- if (buft_list.empty()) {
- // enumerate all the devices and add their buffer types to the list
- for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
- auto * dev = ggml_backend_dev_get(i);
- auto * buft = ggml_backend_dev_buffer_type(dev);
- if (buft) {
- buft_list[ggml_backend_buft_name(buft)] = buft;
- }
- }
- }
- auto override_group_span_len = std::strcspn(value, ",");
- bool last_group = false;
- do {
- if (override_group_span_len == 0) {
- // Adds an empty override-tensors for an empty span
- params.tensor_buft_overrides.push_back({{}});
- if (value[override_group_span_len] == '\0') {
- value = &value[override_group_span_len];
- last_group = true;
- } else {
- value = &value[override_group_span_len + 1];
- override_group_span_len = std::strcspn(value, ",");
- }
- continue;
- }
- // Stamps null terminators into the argv
- // value for this option to avoid the
- // memory leak present in the implementation
- // over in arg.cpp. Acceptable because we
- // only parse these args once in this program.
- auto * override_group = value;
- if (value[override_group_span_len] == '\0') {
- value = &value[override_group_span_len];
- last_group = true;
- } else {
- value[override_group_span_len] = '\0';
- value = &value[override_group_span_len + 1];
- }
- std::vector<llama_model_tensor_buft_override> group_tensor_buft_overrides{};
- auto override_span_len = std::strcspn(override_group, ";");
- while (override_span_len > 0) {
- auto * override = override_group;
- if (override_group[override_span_len] != '\0') {
- override_group[override_span_len] = '\0';
- override_group = &override_group[override_span_len + 1];
- } else {
- override_group = &override_group[override_span_len];
- }
- auto tensor_name_span_len = std::strcspn(override, "=");
- if (tensor_name_span_len >= override_span_len) {
- invalid_param = true;
- break;
- }
- override[tensor_name_span_len] = '\0';
- auto * tensor_name = override;
- auto * buffer_type = &override[tensor_name_span_len + 1];
- if (buft_list.find(buffer_type) == buft_list.end()) {
- printf("error: unrecognized buffer type '%s'\n", buffer_type);
- printf("Available buffer types:\n");
- for (const auto & it : buft_list) {
- printf(" %s\n", ggml_backend_buft_name(it.second));
- }
- invalid_param = true;
- break;
- }
- group_tensor_buft_overrides.push_back({tensor_name, buft_list.at(buffer_type)});
- override_span_len = std::strcspn(override_group, ";");
- }
- if (invalid_param) {
- break;
- }
- group_tensor_buft_overrides.push_back({nullptr,nullptr});
- params.tensor_buft_overrides.push_back(group_tensor_buft_overrides);
- override_group_span_len = std::strcspn(value, ",");
- } while (!last_group);
- } else if (arg == "-r" || arg == "--repetitions") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params.reps = std::stoi(argv[i]);
- } else if (arg == "--prio") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params.prio = (enum ggml_sched_priority) std::stoi(argv[i]);
- } else if (arg == "--delay") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params.delay = std::stoi(argv[i]);
- } else if (arg == "-o" || arg == "--output") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- invalid_param = !output_format_from_str(argv[i], params.output_format);
- } else if (arg == "-oe" || arg == "--output-err") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- invalid_param = !output_format_from_str(argv[i], params.output_format_stderr);
- } else if (arg == "-v" || arg == "--verbose") {
- params.verbose = true;
- } else if (arg == "--progress") {
- params.progress = true;
- } else if (arg == "--no-warmup") {
- params.no_warmup = true;
- } else {
- invalid_param = true;
- break;
- }
- } catch (const std::exception & e) {
- fprintf(stderr, "error: %s\n", e.what());
- invalid_param = true;
- break;
- }
- }
- if (invalid_param) {
- fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
- print_usage(argc, argv);
- exit(1);
- }
- // set defaults
- if (params.model.empty()) {
- params.model = cmd_params_defaults.model;
- }
- if (params.n_prompt.empty()) {
- params.n_prompt = cmd_params_defaults.n_prompt;
- }
- if (params.n_gen.empty()) {
- params.n_gen = cmd_params_defaults.n_gen;
- }
- if (params.n_pg.empty()) {
- params.n_pg = cmd_params_defaults.n_pg;
- }
- if (params.n_depth.empty()) {
- params.n_depth = cmd_params_defaults.n_depth;
- }
- if (params.n_batch.empty()) {
- params.n_batch = cmd_params_defaults.n_batch;
- }
- if (params.n_ubatch.empty()) {
- params.n_ubatch = cmd_params_defaults.n_ubatch;
- }
- if (params.type_k.empty()) {
- params.type_k = cmd_params_defaults.type_k;
- }
- if (params.type_v.empty()) {
- params.type_v = cmd_params_defaults.type_v;
- }
- if (params.n_gpu_layers.empty()) {
- params.n_gpu_layers = cmd_params_defaults.n_gpu_layers;
- }
- if (params.n_cpu_moe.empty()) {
- params.n_cpu_moe = cmd_params_defaults.n_cpu_moe;
- }
- if (params.rpc_servers.empty()) {
- params.rpc_servers = cmd_params_defaults.rpc_servers;
- }
- if (params.split_mode.empty()) {
- params.split_mode = cmd_params_defaults.split_mode;
- }
- if (params.main_gpu.empty()) {
- params.main_gpu = cmd_params_defaults.main_gpu;
- }
- if (params.no_kv_offload.empty()) {
- params.no_kv_offload = cmd_params_defaults.no_kv_offload;
- }
- if (params.flash_attn.empty()) {
- params.flash_attn = cmd_params_defaults.flash_attn;
- }
- if (params.tensor_split.empty()) {
- params.tensor_split = cmd_params_defaults.tensor_split;
- }
- if (params.tensor_buft_overrides.empty()) {
- params.tensor_buft_overrides = cmd_params_defaults.tensor_buft_overrides;
- }
- if (params.use_mmap.empty()) {
- params.use_mmap = cmd_params_defaults.use_mmap;
- }
- if (params.embeddings.empty()) {
- params.embeddings = cmd_params_defaults.embeddings;
- }
- if (params.no_op_offload.empty()) {
- params.no_op_offload = cmd_params_defaults.no_op_offload;
- }
- if (params.n_threads.empty()) {
- params.n_threads = cmd_params_defaults.n_threads;
- }
- if (params.cpu_mask.empty()) {
- params.cpu_mask = cmd_params_defaults.cpu_mask;
- }
- if (params.cpu_strict.empty()) {
- params.cpu_strict = cmd_params_defaults.cpu_strict;
- }
- if (params.poll.empty()) {
- params.poll = cmd_params_defaults.poll;
- }
- return params;
- }
- struct cmd_params_instance {
- std::string model;
- int n_prompt;
- int n_gen;
- int n_depth;
- int n_batch;
- int n_ubatch;
- ggml_type type_k;
- ggml_type type_v;
- int n_threads;
- std::string cpu_mask;
- bool cpu_strict;
- int poll;
- int n_gpu_layers;
- int n_cpu_moe;
- std::string rpc_servers_str;
- llama_split_mode split_mode;
- int main_gpu;
- bool no_kv_offload;
- bool flash_attn;
- std::vector<float> tensor_split;
- std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
- bool use_mmap;
- bool embeddings;
- bool no_op_offload;
- llama_model_params to_llama_mparams() const {
- llama_model_params mparams = llama_model_default_params();
- mparams.n_gpu_layers = n_gpu_layers;
- if (!rpc_servers_str.empty()) {
- auto rpc_servers = string_split<std::string>(rpc_servers_str, ',');
- // add RPC devices
- if (!rpc_servers.empty()) {
- ggml_backend_reg_t rpc_reg = ggml_backend_reg_by_name("RPC");
- if (!rpc_reg) {
- fprintf(stderr, "%s: failed to find RPC backend\n", __func__);
- exit(1);
- }
- typedef ggml_backend_dev_t (*ggml_backend_rpc_add_device_t)(const char * endpoint);
- ggml_backend_rpc_add_device_t ggml_backend_rpc_add_device_fn = (ggml_backend_rpc_add_device_t) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_device");
- if (!ggml_backend_rpc_add_device_fn) {
- fprintf(stderr, "%s: failed to find RPC device add function\n", __func__);
- exit(1);
- }
- static std::vector<ggml_backend_dev_t> devices;
- devices.clear();
- // RPC devices should always come first for performance reasons
- for (const std::string & server : rpc_servers) {
- ggml_backend_dev_t dev = ggml_backend_rpc_add_device_fn(server.c_str());
- if (dev) {
- devices.push_back(dev);
- } else {
- fprintf(stderr, "%s: failed to add RPC device for server '%s'\n", __func__, server.c_str());
- exit(1);
- }
- }
- // FIXME: use llama.cpp device selection logic
- // add local GPU devices if any
- for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
- ggml_backend_dev_t dev = ggml_backend_dev_get(i);
- switch (ggml_backend_dev_type(dev)) {
- case GGML_BACKEND_DEVICE_TYPE_CPU:
- case GGML_BACKEND_DEVICE_TYPE_ACCEL:
- // skip CPU backends since they are handled separately
- break;
- case GGML_BACKEND_DEVICE_TYPE_GPU:
- devices.push_back(dev);
- break;
- case GGML_BACKEND_DEVICE_TYPE_IGPU:
- // iGPUs are not used when there are RPC servers
- break;
- }
- }
- devices.push_back(nullptr);
- mparams.devices = devices.data();
- }
- }
- mparams.split_mode = split_mode;
- mparams.main_gpu = main_gpu;
- mparams.tensor_split = tensor_split.data();
- mparams.use_mmap = use_mmap;
- if (n_cpu_moe <= 0) {
- if (tensor_buft_overrides.empty()) {
- mparams.tensor_buft_overrides = nullptr;
- } else {
- GGML_ASSERT(tensor_buft_overrides.back().pattern == nullptr &&
- "Tensor buffer overrides not terminated with empty pattern");
- mparams.tensor_buft_overrides = tensor_buft_overrides.data();
- }
- } else {
- static std::vector<llama_model_tensor_buft_override> merged;
- static std::vector<std::string> patterns;
- merged.clear();
- patterns.clear();
- auto first = tensor_buft_overrides.begin();
- auto last = tensor_buft_overrides.end();
- if (first != last && (last - 1)->pattern == nullptr) {
- --last;
- }
- merged.insert(merged.end(), first, last);
- patterns.reserve((size_t) n_cpu_moe);
- merged.reserve(merged.size() + (size_t) n_cpu_moe + 1);
- for (int i = 0; i < n_cpu_moe; ++i) {
- patterns.push_back(llm_ffn_exps_block_regex(i));
- merged.push_back({ patterns.back().c_str(),
- ggml_backend_cpu_buffer_type() });
- }
- merged.push_back({ nullptr, nullptr });
- mparams.tensor_buft_overrides = merged.data();
- }
- return mparams;
- }
- bool equal_mparams(const cmd_params_instance & other) const {
- return model == other.model && n_gpu_layers == other.n_gpu_layers && n_cpu_moe == other.n_cpu_moe &&
- rpc_servers_str == other.rpc_servers_str && split_mode == other.split_mode &&
- main_gpu == other.main_gpu && use_mmap == other.use_mmap && tensor_split == other.tensor_split &&
- vec_tensor_buft_override_equal(tensor_buft_overrides, other.tensor_buft_overrides);
- }
- llama_context_params to_llama_cparams() const {
- llama_context_params cparams = llama_context_default_params();
- cparams.n_ctx = n_prompt + n_gen + n_depth;
- cparams.n_batch = n_batch;
- cparams.n_ubatch = n_ubatch;
- cparams.type_k = type_k;
- cparams.type_v = type_v;
- cparams.offload_kqv = !no_kv_offload;
- cparams.flash_attn_type = flash_attn ? LLAMA_FLASH_ATTN_TYPE_ENABLED : LLAMA_FLASH_ATTN_TYPE_DISABLED;
- cparams.embeddings = embeddings;
- cparams.op_offload = !no_op_offload;
- cparams.swa_full = false;
- return cparams;
- }
- };
- static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
- std::vector<cmd_params_instance> instances;
- // this ordering minimizes the number of times that each model needs to be reloaded
- // clang-format off
- for (const auto & m : params.model)
- for (const auto & nl : params.n_gpu_layers)
- for (const auto & ncmoe : params.n_cpu_moe)
- for (const auto & rpc : params.rpc_servers)
- for (const auto & sm : params.split_mode)
- for (const auto & mg : params.main_gpu)
- for (const auto & ts : params.tensor_split)
- for (const auto & ot : params.tensor_buft_overrides)
- for (const auto & mmp : params.use_mmap)
- for (const auto & embd : params.embeddings)
- for (const auto & nopo : params.no_op_offload)
- for (const auto & nb : params.n_batch)
- for (const auto & nub : params.n_ubatch)
- for (const auto & tk : params.type_k)
- for (const auto & tv : params.type_v)
- for (const auto & nkvo : params.no_kv_offload)
- for (const auto & fa : params.flash_attn)
- for (const auto & nt : params.n_threads)
- for (const auto & cm : params.cpu_mask)
- for (const auto & cs : params.cpu_strict)
- for (const auto & nd : params.n_depth)
- for (const auto & pl : params.poll) {
- for (const auto & n_prompt : params.n_prompt) {
- if (n_prompt == 0) {
- continue;
- }
- cmd_params_instance instance = {
- /* .model = */ m,
- /* .n_prompt = */ n_prompt,
- /* .n_gen = */ 0,
- /* .n_depth = */ nd,
- /* .n_batch = */ nb,
- /* .n_ubatch = */ nub,
- /* .type_k = */ tk,
- /* .type_v = */ tv,
- /* .n_threads = */ nt,
- /* .cpu_mask = */ cm,
- /* .cpu_strict = */ cs,
- /* .poll = */ pl,
- /* .n_gpu_layers = */ nl,
- /* .n_cpu_moe = */ ncmoe,
- /* .rpc_servers = */ rpc,
- /* .split_mode = */ sm,
- /* .main_gpu = */ mg,
- /* .no_kv_offload= */ nkvo,
- /* .flash_attn = */ fa,
- /* .tensor_split = */ ts,
- /* .tensor_buft_overrides = */ ot,
- /* .use_mmap = */ mmp,
- /* .embeddings = */ embd,
- /* .no_op_offload= */ nopo,
- };
- instances.push_back(instance);
- }
- for (const auto & n_gen : params.n_gen) {
- if (n_gen == 0) {
- continue;
- }
- cmd_params_instance instance = {
- /* .model = */ m,
- /* .n_prompt = */ 0,
- /* .n_gen = */ n_gen,
- /* .n_depth = */ nd,
- /* .n_batch = */ nb,
- /* .n_ubatch = */ nub,
- /* .type_k = */ tk,
- /* .type_v = */ tv,
- /* .n_threads = */ nt,
- /* .cpu_mask = */ cm,
- /* .cpu_strict = */ cs,
- /* .poll = */ pl,
- /* .n_gpu_layers = */ nl,
- /* .n_cpu_moe = */ ncmoe,
- /* .rpc_servers = */ rpc,
- /* .split_mode = */ sm,
- /* .main_gpu = */ mg,
- /* .no_kv_offload= */ nkvo,
- /* .flash_attn = */ fa,
- /* .tensor_split = */ ts,
- /* .tensor_buft_overrides = */ ot,
- /* .use_mmap = */ mmp,
- /* .embeddings = */ embd,
- /* .no_op_offload= */ nopo,
- };
- instances.push_back(instance);
- }
- for (const auto & n_pg : params.n_pg) {
- if (n_pg.first == 0 && n_pg.second == 0) {
- continue;
- }
- cmd_params_instance instance = {
- /* .model = */ m,
- /* .n_prompt = */ n_pg.first,
- /* .n_gen = */ n_pg.second,
- /* .n_depth = */ nd,
- /* .n_batch = */ nb,
- /* .n_ubatch = */ nub,
- /* .type_k = */ tk,
- /* .type_v = */ tv,
- /* .n_threads = */ nt,
- /* .cpu_mask = */ cm,
- /* .cpu_strict = */ cs,
- /* .poll = */ pl,
- /* .n_gpu_layers = */ nl,
- /* .n_cpu_moe = */ ncmoe,
- /* .rpc_servers = */ rpc,
- /* .split_mode = */ sm,
- /* .main_gpu = */ mg,
- /* .no_kv_offload= */ nkvo,
- /* .flash_attn = */ fa,
- /* .tensor_split = */ ts,
- /* .tensor_buft_overrides = */ ot,
- /* .use_mmap = */ mmp,
- /* .embeddings = */ embd,
- /* .no_op_offload= */ nopo,
- };
- instances.push_back(instance);
- }
- }
- // clang-format on
- return instances;
- }
- struct test {
- static const std::string build_commit;
- static const int build_number;
- const std::string cpu_info;
- const std::string gpu_info;
- std::string model_filename;
- std::string model_type;
- uint64_t model_size;
- uint64_t model_n_params;
- int n_batch;
- int n_ubatch;
- int n_threads;
- std::string cpu_mask;
- bool cpu_strict;
- int poll;
- ggml_type type_k;
- ggml_type type_v;
- int n_gpu_layers;
- int n_cpu_moe;
- llama_split_mode split_mode;
- int main_gpu;
- bool no_kv_offload;
- bool flash_attn;
- std::vector<float> tensor_split;
- std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
- bool use_mmap;
- bool embeddings;
- bool no_op_offload;
- int n_prompt;
- int n_gen;
- int n_depth;
- std::string test_time;
- std::vector<uint64_t> samples_ns;
- test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) :
- cpu_info(get_cpu_info()),
- gpu_info(get_gpu_info()) {
- model_filename = inst.model;
- char buf[128];
- llama_model_desc(lmodel, buf, sizeof(buf));
- model_type = buf;
- model_size = llama_model_size(lmodel);
- model_n_params = llama_model_n_params(lmodel);
- n_batch = inst.n_batch;
- n_ubatch = inst.n_ubatch;
- n_threads = inst.n_threads;
- cpu_mask = inst.cpu_mask;
- cpu_strict = inst.cpu_strict;
- poll = inst.poll;
- type_k = inst.type_k;
- type_v = inst.type_v;
- n_gpu_layers = inst.n_gpu_layers;
- n_cpu_moe = inst.n_cpu_moe;
- split_mode = inst.split_mode;
- main_gpu = inst.main_gpu;
- no_kv_offload = inst.no_kv_offload;
- flash_attn = inst.flash_attn;
- tensor_split = inst.tensor_split;
- tensor_buft_overrides = inst.tensor_buft_overrides;
- use_mmap = inst.use_mmap;
- embeddings = inst.embeddings;
- no_op_offload = inst.no_op_offload;
- n_prompt = inst.n_prompt;
- n_gen = inst.n_gen;
- n_depth = inst.n_depth;
- // RFC 3339 date-time format
- time_t t = time(NULL);
- std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
- test_time = buf;
- (void) ctx;
- }
- uint64_t avg_ns() const { return ::avg(samples_ns); }
- uint64_t stdev_ns() const { return ::stdev(samples_ns); }
- std::vector<double> get_ts() const {
- int n_tokens = n_prompt + n_gen;
- std::vector<double> ts;
- std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts),
- [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
- return ts;
- }
- double avg_ts() const { return ::avg(get_ts()); }
- double stdev_ts() const { return ::stdev(get_ts()); }
- static std::string get_backend() {
- std::vector<std::string> backends;
- for (size_t i = 0; i < ggml_backend_reg_count(); i++) {
- auto * reg = ggml_backend_reg_get(i);
- std::string name = ggml_backend_reg_name(reg);
- if (name != "CPU") {
- backends.push_back(ggml_backend_reg_name(reg));
- }
- }
- return backends.empty() ? "CPU" : join(backends, ",");
- }
- static const std::vector<std::string> & get_fields() {
- static const std::vector<std::string> fields = {
- "build_commit", "build_number", "cpu_info", "gpu_info", "backends",
- "model_filename", "model_type", "model_size", "model_n_params", "n_batch",
- "n_ubatch", "n_threads", "cpu_mask", "cpu_strict", "poll",
- "type_k", "type_v", "n_gpu_layers", "n_cpu_moe", "split_mode",
- "main_gpu", "no_kv_offload", "flash_attn", "tensor_split", "tensor_buft_overrides",
- "use_mmap", "embeddings", "no_op_offload", "n_prompt", "n_gen",
- "n_depth", "test_time", "avg_ns", "stddev_ns", "avg_ts",
- "stddev_ts"
- };
- return fields;
- }
- enum field_type { STRING, BOOL, INT, FLOAT };
- static field_type get_field_type(const std::string & field) {
- if (field == "build_number" || field == "n_batch" || field == "n_ubatch" || field == "n_threads" ||
- field == "poll" || field == "model_size" || field == "model_n_params" || field == "n_gpu_layers" ||
- field == "main_gpu" || field == "n_prompt" || field == "n_gen" || field == "n_depth" || field == "avg_ns" ||
- field == "stddev_ns" || field == "no_op_offload" || field == "n_cpu_moe") {
- return INT;
- }
- if (field == "f16_kv" || field == "no_kv_offload" || field == "cpu_strict" || field == "flash_attn" ||
- field == "use_mmap" || field == "embeddings") {
- return BOOL;
- }
- if (field == "avg_ts" || field == "stddev_ts") {
- return FLOAT;
- }
- return STRING;
- }
- std::vector<std::string> get_values() const {
- std::string tensor_split_str;
- std::string tensor_buft_overrides_str;
- int max_nonzero = 0;
- for (size_t i = 0; i < llama_max_devices(); i++) {
- if (tensor_split[i] > 0) {
- max_nonzero = i;
- }
- }
- for (int i = 0; i <= max_nonzero; i++) {
- char buf[32];
- snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
- tensor_split_str += buf;
- if (i < max_nonzero) {
- tensor_split_str += "/";
- }
- }
- if (tensor_buft_overrides.size() == 1) {
- // Last element of tensor_buft_overrides is always a null pattern
- // so if it is only one element long, it must be a null pattern.
- GGML_ASSERT(tensor_buft_overrides[0].pattern == nullptr);
- tensor_buft_overrides_str += "none";
- } else {
- for (size_t i = 0; i < tensor_buft_overrides.size()-1; i++) {
- // Last element of tensor_buft_overrides is always a null pattern
- if (tensor_buft_overrides[i].pattern == nullptr) {
- tensor_buft_overrides_str += "none";
- } else {
- tensor_buft_overrides_str += tensor_buft_overrides[i].pattern;
- tensor_buft_overrides_str += "=";
- tensor_buft_overrides_str += ggml_backend_buft_name(tensor_buft_overrides[i].buft);
- }
- if (i + 2 < tensor_buft_overrides.size()) {
- tensor_buft_overrides_str += ";";
- }
- }
- }
- std::vector<std::string> values = { build_commit,
- std::to_string(build_number),
- cpu_info,
- gpu_info,
- get_backend(),
- model_filename,
- model_type,
- std::to_string(model_size),
- std::to_string(model_n_params),
- std::to_string(n_batch),
- std::to_string(n_ubatch),
- std::to_string(n_threads),
- cpu_mask,
- std::to_string(cpu_strict),
- std::to_string(poll),
- ggml_type_name(type_k),
- ggml_type_name(type_v),
- std::to_string(n_gpu_layers),
- std::to_string(n_cpu_moe),
- split_mode_str(split_mode),
- std::to_string(main_gpu),
- std::to_string(no_kv_offload),
- std::to_string(flash_attn),
- tensor_split_str,
- tensor_buft_overrides_str,
- std::to_string(use_mmap),
- std::to_string(embeddings),
- std::to_string(no_op_offload),
- std::to_string(n_prompt),
- std::to_string(n_gen),
- std::to_string(n_depth),
- test_time,
- std::to_string(avg_ns()),
- std::to_string(stdev_ns()),
- std::to_string(avg_ts()),
- std::to_string(stdev_ts()) };
- return values;
- }
- std::map<std::string, std::string> get_map() const {
- std::map<std::string, std::string> map;
- auto fields = get_fields();
- auto values = get_values();
- std::transform(fields.begin(), fields.end(), values.begin(), std::inserter(map, map.end()),
- std::make_pair<const std::string &, const std::string &>);
- return map;
- }
- };
- const std::string test::build_commit = LLAMA_COMMIT;
- const int test::build_number = LLAMA_BUILD_NUMBER;
- struct printer {
- virtual ~printer() {}
- FILE * fout;
- virtual void print_header(const cmd_params & params) { (void) params; }
- virtual void print_test(const test & t) = 0;
- virtual void print_footer() {}
- };
- struct csv_printer : public printer {
- static std::string escape_csv(const std::string & field) {
- std::string escaped = "\"";
- for (auto c : field) {
- if (c == '"') {
- escaped += "\"";
- }
- escaped += c;
- }
- escaped += "\"";
- return escaped;
- }
- void print_header(const cmd_params & params) override {
- std::vector<std::string> fields = test::get_fields();
- fprintf(fout, "%s\n", join(fields, ",").c_str());
- (void) params;
- }
- void print_test(const test & t) override {
- std::vector<std::string> values = t.get_values();
- std::transform(values.begin(), values.end(), values.begin(), escape_csv);
- fprintf(fout, "%s\n", join(values, ",").c_str());
- }
- };
- static std::string escape_json(const std::string & value) {
- std::string escaped;
- for (auto c : value) {
- if (c == '"') {
- escaped += "\\\"";
- } else if (c == '\\') {
- escaped += "\\\\";
- } else if (c <= 0x1f) {
- char buf[8];
- snprintf(buf, sizeof(buf), "\\u%04x", c);
- escaped += buf;
- } else {
- escaped += c;
- }
- }
- return escaped;
- }
- static std::string format_json_value(const std::string & field, const std::string & value) {
- switch (test::get_field_type(field)) {
- case test::STRING:
- return "\"" + escape_json(value) + "\"";
- case test::BOOL:
- return value == "0" ? "false" : "true";
- default:
- return value;
- }
- }
- struct json_printer : public printer {
- bool first = true;
- void print_header(const cmd_params & params) override {
- fprintf(fout, "[\n");
- (void) params;
- }
- void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
- assert(fields.size() == values.size());
- for (size_t i = 0; i < fields.size(); i++) {
- fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(),
- format_json_value(fields.at(i), values.at(i)).c_str());
- }
- }
- void print_test(const test & t) override {
- if (first) {
- first = false;
- } else {
- fprintf(fout, ",\n");
- }
- fprintf(fout, " {\n");
- print_fields(test::get_fields(), t.get_values());
- fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
- fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
- fprintf(fout, " }");
- fflush(fout);
- }
- void print_footer() override { fprintf(fout, "\n]\n"); }
- };
- struct jsonl_printer : public printer {
- void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
- assert(fields.size() == values.size());
- for (size_t i = 0; i < fields.size(); i++) {
- fprintf(fout, "\"%s\": %s, ", fields.at(i).c_str(), format_json_value(fields.at(i), values.at(i)).c_str());
- }
- }
- void print_test(const test & t) override {
- fprintf(fout, "{");
- print_fields(test::get_fields(), t.get_values());
- fprintf(fout, "\"samples_ns\": [ %s ],", join(t.samples_ns, ", ").c_str());
- fprintf(fout, "\"samples_ts\": [ %s ]", join(t.get_ts(), ", ").c_str());
- fprintf(fout, "}\n");
- fflush(fout);
- }
- };
- struct markdown_printer : public printer {
- std::vector<std::string> fields;
- static int get_field_width(const std::string & field) {
- if (field == "model") {
- return -30;
- }
- if (field == "t/s") {
- return 20;
- }
- if (field == "size" || field == "params") {
- return 10;
- }
- if (field == "n_gpu_layers") {
- return 3;
- }
- if (field == "n_threads") {
- return 7;
- }
- if (field == "n_batch") {
- return 7;
- }
- if (field == "n_ubatch") {
- return 8;
- }
- if (field == "type_k" || field == "type_v") {
- return 6;
- }
- if (field == "split_mode") {
- return 5;
- }
- if (field == "flash_attn") {
- return 2;
- }
- if (field == "use_mmap") {
- return 4;
- }
- if (field == "test") {
- return 15;
- }
- if (field == "no_op_offload") {
- return 4;
- }
- int width = std::max((int) field.length(), 10);
- if (test::get_field_type(field) == test::STRING) {
- return -width;
- }
- return width;
- }
- static std::string get_field_display_name(const std::string & field) {
- if (field == "n_gpu_layers") {
- return "ngl";
- }
- if (field == "split_mode") {
- return "sm";
- }
- if (field == "n_threads") {
- return "threads";
- }
- if (field == "no_kv_offload") {
- return "nkvo";
- }
- if (field == "flash_attn") {
- return "fa";
- }
- if (field == "use_mmap") {
- return "mmap";
- }
- if (field == "embeddings") {
- return "embd";
- }
- if (field == "no_op_offload") {
- return "nopo";
- }
- if (field == "tensor_split") {
- return "ts";
- }
- if (field == "tensor_buft_overrides") {
- return "ot";
- }
- return field;
- }
- void print_header(const cmd_params & params) override {
- // select fields to print
- fields.emplace_back("model");
- fields.emplace_back("size");
- fields.emplace_back("params");
- fields.emplace_back("backend");
- bool is_cpu_backend = test::get_backend().find("CPU") != std::string::npos ||
- test::get_backend().find("BLAS") != std::string::npos;
- if (!is_cpu_backend) {
- fields.emplace_back("n_gpu_layers");
- }
- if (params.n_cpu_moe.size() > 1) {
- fields.emplace_back("n_cpu_moe");
- }
- if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
- fields.emplace_back("n_threads");
- }
- if (params.cpu_mask.size() > 1 || params.cpu_mask != cmd_params_defaults.cpu_mask) {
- fields.emplace_back("cpu_mask");
- }
- if (params.cpu_strict.size() > 1 || params.cpu_strict != cmd_params_defaults.cpu_strict) {
- fields.emplace_back("cpu_strict");
- }
- if (params.poll.size() > 1 || params.poll != cmd_params_defaults.poll) {
- fields.emplace_back("poll");
- }
- if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
- fields.emplace_back("n_batch");
- }
- if (params.n_ubatch.size() > 1 || params.n_ubatch != cmd_params_defaults.n_ubatch) {
- fields.emplace_back("n_ubatch");
- }
- if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
- fields.emplace_back("type_k");
- }
- if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
- fields.emplace_back("type_v");
- }
- if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
- fields.emplace_back("main_gpu");
- }
- if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
- fields.emplace_back("split_mode");
- }
- if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
- fields.emplace_back("no_kv_offload");
- }
- if (params.flash_attn.size() > 1 || params.flash_attn != cmd_params_defaults.flash_attn) {
- fields.emplace_back("flash_attn");
- }
- if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
- fields.emplace_back("tensor_split");
- }
- if (params.tensor_buft_overrides.size() > 1 || !vec_vec_tensor_buft_override_equal(params.tensor_buft_overrides, cmd_params_defaults.tensor_buft_overrides)) {
- fields.emplace_back("tensor_buft_overrides");
- }
- if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
- fields.emplace_back("use_mmap");
- }
- if (params.embeddings.size() > 1 || params.embeddings != cmd_params_defaults.embeddings) {
- fields.emplace_back("embeddings");
- }
- if (params.no_op_offload.size() > 1 || params.no_op_offload != cmd_params_defaults.no_op_offload) {
- fields.emplace_back("no_op_offload");
- }
- fields.emplace_back("test");
- fields.emplace_back("t/s");
- fprintf(fout, "|");
- for (const auto & field : fields) {
- fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
- }
- fprintf(fout, "\n");
- fprintf(fout, "|");
- for (const auto & field : fields) {
- int width = get_field_width(field);
- fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
- }
- fprintf(fout, "\n");
- }
- void print_test(const test & t) override {
- std::map<std::string, std::string> vmap = t.get_map();
- fprintf(fout, "|");
- for (const auto & field : fields) {
- std::string value;
- char buf[128];
- if (field == "model") {
- value = t.model_type;
- } else if (field == "size") {
- if (t.model_size < 1024 * 1024 * 1024) {
- snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
- } else {
- snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
- }
- value = buf;
- } else if (field == "params") {
- if (t.model_n_params < 1000 * 1000 * 1000) {
- snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
- } else {
- snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
- }
- value = buf;
- } else if (field == "backend") {
- value = test::get_backend();
- } else if (field == "test") {
- if (t.n_prompt > 0 && t.n_gen == 0) {
- snprintf(buf, sizeof(buf), "pp%d", t.n_prompt);
- } else if (t.n_gen > 0 && t.n_prompt == 0) {
- snprintf(buf, sizeof(buf), "tg%d", t.n_gen);
- } else {
- snprintf(buf, sizeof(buf), "pp%d+tg%d", t.n_prompt, t.n_gen);
- }
- if (t.n_depth > 0) {
- int len = strlen(buf);
- snprintf(buf + len, sizeof(buf) - len, " @ d%d", t.n_depth);
- }
- value = buf;
- } else if (field == "t/s") {
- snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
- value = buf;
- } else if (vmap.find(field) != vmap.end()) {
- value = vmap.at(field);
- } else {
- assert(false);
- exit(1);
- }
- int width = get_field_width(field);
- if (field == "t/s") {
- // HACK: the utf-8 character is 2 bytes
- width += 1;
- }
- fprintf(fout, " %*s |", width, value.c_str());
- }
- fprintf(fout, "\n");
- }
- void print_footer() override {
- fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
- }
- };
- struct sql_printer : public printer {
- static std::string get_sql_field_type(const std::string & field) {
- switch (test::get_field_type(field)) {
- case test::STRING:
- return "TEXT";
- case test::BOOL:
- case test::INT:
- return "INTEGER";
- case test::FLOAT:
- return "REAL";
- default:
- assert(false);
- exit(1);
- }
- }
- void print_header(const cmd_params & params) override {
- std::vector<std::string> fields = test::get_fields();
- fprintf(fout, "CREATE TABLE IF NOT EXISTS llama_bench (\n");
- for (size_t i = 0; i < fields.size(); i++) {
- fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(),
- i < fields.size() - 1 ? "," : "");
- }
- fprintf(fout, ");\n");
- fprintf(fout, "\n");
- (void) params;
- }
- void print_test(const test & t) override {
- fprintf(fout, "INSERT INTO llama_bench (%s) ", join(test::get_fields(), ", ").c_str());
- fprintf(fout, "VALUES (");
- std::vector<std::string> values = t.get_values();
- for (size_t i = 0; i < values.size(); i++) {
- fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
- }
- fprintf(fout, ");\n");
- }
- };
- static bool test_prompt(llama_context * ctx, int n_prompt, int n_batch, int n_threads) {
- llama_set_n_threads(ctx, n_threads, n_threads);
- const llama_model * model = llama_get_model(ctx);
- const llama_vocab * vocab = llama_model_get_vocab(model);
- const int32_t n_vocab = llama_vocab_n_tokens(vocab);
- std::vector<llama_token> tokens(n_batch);
- int n_processed = 0;
- while (n_processed < n_prompt) {
- int n_tokens = std::min(n_prompt - n_processed, n_batch);
- tokens[0] = n_processed == 0 && llama_vocab_get_add_bos(vocab) ? llama_vocab_bos(vocab) : std::rand() % n_vocab;
- for (int i = 1; i < n_tokens; i++) {
- tokens[i] = std::rand() % n_vocab;
- }
- int res = llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens));
- if (res != 0) {
- fprintf(stderr, "%s: failed to decode prompt batch, res = %d\n", __func__, res);
- return false;
- }
- n_processed += n_tokens;
- }
- llama_synchronize(ctx);
- return true;
- }
- static bool test_gen(llama_context * ctx, int n_gen, int n_threads) {
- llama_set_n_threads(ctx, n_threads, n_threads);
- const llama_model * model = llama_get_model(ctx);
- const llama_vocab * vocab = llama_model_get_vocab(model);
- const int32_t n_vocab = llama_vocab_n_tokens(vocab);
- llama_token token = llama_vocab_get_add_bos(vocab) ? llama_vocab_bos(vocab) : std::rand() % n_vocab;
- for (int i = 0; i < n_gen; i++) {
- int res = llama_decode(ctx, llama_batch_get_one(&token, 1));
- if (res != 0) {
- fprintf(stderr, "%s: failed to decode generation batch, res = %d\n", __func__, res);
- return false;
- }
- llama_synchronize(ctx);
- token = std::rand() % n_vocab;
- }
- return true;
- }
- static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
- (void) level;
- (void) text;
- (void) user_data;
- }
- static std::unique_ptr<printer> create_printer(output_formats format) {
- switch (format) {
- case NONE:
- return nullptr;
- case CSV:
- return std::unique_ptr<printer>(new csv_printer());
- case JSON:
- return std::unique_ptr<printer>(new json_printer());
- case JSONL:
- return std::unique_ptr<printer>(new jsonl_printer());
- case MARKDOWN:
- return std::unique_ptr<printer>(new markdown_printer());
- case SQL:
- return std::unique_ptr<printer>(new sql_printer());
- }
- GGML_ABORT("fatal error");
- }
- int main(int argc, char ** argv) {
- // try to set locale for unicode characters in markdown
- setlocale(LC_CTYPE, ".UTF-8");
- #if !defined(NDEBUG)
- fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
- #endif
- #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
- fprintf(stderr, "warning: debug build, performance may be affected\n");
- #endif
- #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
- fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
- #endif
- // initialize backends
- ggml_backend_load_all();
- cmd_params params = parse_cmd_params(argc, argv);
- auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
- if (!cpu_dev) {
- fprintf(stderr, "%s: error: CPU backend is not loaded\n", __func__);
- return 1;
- }
- auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
- auto * ggml_threadpool_new_fn = (decltype(ggml_threadpool_new) *) ggml_backend_reg_get_proc_address(cpu_reg, "ggml_threadpool_new");
- auto * ggml_threadpool_free_fn = (decltype(ggml_threadpool_free) *) ggml_backend_reg_get_proc_address(cpu_reg, "ggml_threadpool_free");
- // initialize llama.cpp
- if (!params.verbose) {
- llama_log_set(llama_null_log_callback, NULL);
- }
- llama_backend_init();
- llama_numa_init(params.numa);
- set_process_priority(params.prio);
- // initialize printer
- std::unique_ptr<printer> p = create_printer(params.output_format);
- std::unique_ptr<printer> p_err = create_printer(params.output_format_stderr);
- if (p) {
- p->fout = stdout;
- p->print_header(params);
- }
- if (p_err) {
- p_err->fout = stderr;
- p_err->print_header(params);
- }
- std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
- llama_model * lmodel = nullptr;
- const cmd_params_instance * prev_inst = nullptr;
- int params_idx = 0;
- auto params_count = params_instances.size();
- for (const auto & inst : params_instances) {
- params_idx++;
- if (params.progress) {
- fprintf(stderr, "llama-bench: benchmark %d/%zu: starting\n", params_idx, params_count);
- }
- // keep the same model between tests when possible
- if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
- if (lmodel) {
- llama_model_free(lmodel);
- }
- lmodel = llama_model_load_from_file(inst.model.c_str(), inst.to_llama_mparams());
- if (lmodel == NULL) {
- fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
- return 1;
- }
- prev_inst = &inst;
- }
- llama_context * ctx = llama_init_from_model(lmodel, inst.to_llama_cparams());
- if (ctx == NULL) {
- fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
- llama_model_free(lmodel);
- return 1;
- }
- test t(inst, lmodel, ctx);
- llama_memory_clear(llama_get_memory(ctx), false);
- // cool off before the test
- if (params.delay) {
- std::this_thread::sleep_for(std::chrono::seconds(params.delay));
- }
- struct ggml_threadpool_params tpp = ggml_threadpool_params_default(t.n_threads);
- if (!parse_cpu_mask(t.cpu_mask, tpp.cpumask)) {
- fprintf(stderr, "%s: failed to parse cpu-mask: %s\n", __func__, t.cpu_mask.c_str());
- exit(1);
- }
- tpp.strict_cpu = t.cpu_strict;
- tpp.poll = t.poll;
- tpp.prio = params.prio;
- struct ggml_threadpool * threadpool = ggml_threadpool_new_fn(&tpp);
- if (!threadpool) {
- fprintf(stderr, "%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads);
- exit(1);
- }
- llama_attach_threadpool(ctx, threadpool, NULL);
- // warmup run
- if (!params.no_warmup) {
- if (t.n_prompt > 0) {
- if (params.progress) {
- fprintf(stderr, "llama-bench: benchmark %d/%zu: warmup prompt run\n", params_idx, params_count);
- }
- //test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
- bool res = test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
- if (!res) {
- fprintf(stderr, "%s: error: failed to run prompt warmup\n", __func__);
- exit(1);
- }
- }
- if (t.n_gen > 0) {
- if (params.progress) {
- fprintf(stderr, "llama-bench: benchmark %d/%zu: warmup generation run\n", params_idx, params_count);
- }
- bool res = test_gen(ctx, 1, t.n_threads);
- if (!res) {
- fprintf(stderr, "%s: error: failed to run gen warmup\n", __func__);
- exit(1);
- }
- }
- }
- for (int i = 0; i < params.reps; i++) {
- llama_memory_clear(llama_get_memory(ctx), false);
- if (t.n_depth > 0) {
- if (params.progress) {
- fprintf(stderr, "llama-bench: benchmark %d/%zu: depth run %d/%d\n", params_idx, params_count,
- i + 1, params.reps);
- }
- bool res = test_prompt(ctx, t.n_depth, t.n_batch, t.n_threads);
- if (!res) {
- fprintf(stderr, "%s: error: failed to run depth\n", __func__);
- exit(1);
- }
- }
- uint64_t t_start = get_time_ns();
- if (t.n_prompt > 0) {
- if (params.progress) {
- fprintf(stderr, "llama-bench: benchmark %d/%zu: prompt run %d/%d\n", params_idx, params_count,
- i + 1, params.reps);
- }
- bool res = test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
- if (!res) {
- fprintf(stderr, "%s: error: failed to run prompt\n", __func__);
- exit(1);
- }
- }
- if (t.n_gen > 0) {
- if (params.progress) {
- fprintf(stderr, "llama-bench: benchmark %d/%zu: generation run %d/%d\n", params_idx, params_count,
- i + 1, params.reps);
- }
- bool res = test_gen(ctx, t.n_gen, t.n_threads);
- if (!res) {
- fprintf(stderr, "%s: error: failed to run gen\n", __func__);
- exit(1);
- }
- }
- uint64_t t_ns = get_time_ns() - t_start;
- t.samples_ns.push_back(t_ns);
- }
- if (p) {
- p->print_test(t);
- fflush(p->fout);
- }
- if (p_err) {
- p_err->print_test(t);
- fflush(p_err->fout);
- }
- llama_perf_context_print(ctx);
- llama_free(ctx);
- ggml_threadpool_free_fn(threadpool);
- }
- llama_model_free(lmodel);
- if (p) {
- p->print_footer();
- }
- if (p_err) {
- p_err->print_footer();
- }
- llama_backend_free();
- return 0;
- }
|