| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647 |
- import argparse
- import os
- import torch
- from transformers import AutoModel, AutoTokenizer
- ap = argparse.ArgumentParser()
- ap.add_argument("-m", "--model", help="Path to MiniCPM-V model")
- args = ap.parse_args()
- # find the model part that includes the the multimodal projector weights
- model = AutoModel.from_pretrained(args.model, trust_remote_code=True, local_files_only=True, torch_dtype=torch.bfloat16)
- checkpoint = model.state_dict()
- # get a list of mm tensor names
- mm_tensors = [k for k, v in checkpoint.items() if k.startswith("resampler")]
- # store these tensors in a new dictionary and torch.save them
- projector = {name: checkpoint[name].float() for name in mm_tensors}
- if 'resampler.proj' in projector.keys() and hasattr(model.llm.config,'scale_emb') is True:
- projector['resampler.proj'] = projector['resampler.proj'] / model.llm.config.scale_emb
- torch.save(projector, f"{args.model}/minicpmv.projector")
- clip_tensors = [k for k, v in checkpoint.items() if k.startswith("vpm")]
- if len(clip_tensors) > 0:
- clip = {name.replace("vpm.", ""): checkpoint[name].float() for name in clip_tensors}
- torch.save(clip, f"{args.model}/minicpmv.clip")
- # added tokens should be removed to be able to convert Mistral models
- if os.path.exists(f"{args.model}/added_tokens.json"):
- with open(f"{args.model}/added_tokens.json", "w") as f:
- f.write("{}\n")
- config = model.llm.config
- config.auto_map = {
- "AutoConfig": "configuration_minicpm.MiniCPMConfig",
- "AutoModel": "modeling_minicpm.MiniCPMModel",
- "AutoModelForCausalLM": "modeling_minicpm.MiniCPMForCausalLM",
- "AutoModelForSeq2SeqLM": "modeling_minicpm.MiniCPMForCausalLM",
- "AutoModelForSequenceClassification": "modeling_minicpm.MiniCPMForSequenceClassification"
- }
- model.llm.save_pretrained(f"{args.model}/model")
- tok = AutoTokenizer.from_pretrained(args.model, trust_remote_code=True)
- tok.save_pretrained(f"{args.model}/model")
- print("Done!")
- print(f"Now you can convert {args.model} to a regular LLaMA GGUF file.")
- print(f"Also, use {args.model}/minicpmv.projector to prepare a minicpmv-encoder.gguf file.")
|