Yuri Khrustalev 07808ebb07 cmake : Do not install tools on iOS targets (#15903) 4 maanden geleden
..
CMakeLists.txt 07808ebb07 cmake : Do not install tools on iOS targets (#15903) 4 maanden geleden
README.md 7f97599581 quantize : update README.md (#14905) 5 maanden geleden
quantize.cpp fd1234cb46 llama : add gpt-oss (#15091) 5 maanden geleden
tests.sh e9b6350e61 scripts : make the shell scripts cross-platform (#14341) 6 maanden geleden

README.md

quantize

This tool takes a GGUF input model file, typically in a high-precision format like F32 or BF16, and converts it to a quantized format. Quantization reduces the precision of model weights (e.g., from 32-bit floats to 4-bit integers), which shrinks the model's size and can speed up inference. This process however, may introduce some accuracy loss which is usually measured in Perplexity (ppl) and/or Kullback–Leibler Divergence (kld). This can be minimized by using a suitable imatrix file.

You can also use the GGUF-my-repo space on Hugging Face to build your own quants without any setup.

Note: It is synced from llama.cpp main every 6 hours.

Example usage:


bash

from Hugginface, obtain the official meta-llama/Llama-3.1-8B model weights and place them in ./models

ls ./models config.json model-00001-of-00004.safetensors model-00004-of-00004.safetensors README.md tokenizer.json generation_config.json model-00002-of-00004.safetensors model.safetensors.index.json special_tokens_map.json USE_POLICY.md LICENSE model-00003-of-00004.safetensors original tokenizer_config.json

[Optional] for PyTorch .bin models like Mistral-7B

ls ./models

install Python dependencies

python3 -m pip install -r requirements.txt

convert the model to ggml FP16 format

python3 convert_hf_to_gguf.py ./models/mymodel/

quantize the model to 4-bits (using Q4_K_M method)

./llama-quantize ./models/mymodel/ggml-model-f16.gguf ./models/mymodel/ggml-model-Q4_K_M.gguf Q4_K_M

update the gguf filetype to current version if older version is now unsupported

./llama-quantize ./models/mymodel/ggml-model-Q4_K_M.gguf ./models/mymodel/ggml-model-Q4_K_M-v2.gguf COPY


Run the quantized model:

bash

start inference on a gguf model

./llama-cli -m ./models/mymodel/ggml-model-Q4_K_M.gguf -cnv -p "You are a helpful assistant"


Options:
* `--allow-requantize` allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit
* `--leave-output-tensor` will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing
* `--pure` disables k-quant mixtures and quantizes all tensors to the same type
* `--imatrix` uses data in file generated by `llama-imatrix` as importance matrix for quant optimizations (highly recommended)
* `--include-weights` use an importance matrix for tensor(s) in the list. Cannot be used with `--exclude-weights`
* `--exclude-weights` use an importance matrix for tensor(s) in the list. Cannot be used with `--include-weights`
* `--output-tensor-type` use a specific quant type for the output.weight tensor
* `--token-embedding-type` use a specific quant type for the token embeddings tensor
* `--keep-split` will generate the quantized model in the same shards as the input file otherwise it will produce a single quantized file

Advanced options:
* `--tensor-type` quantize specific tensor(s) to specific quant types. Supports regex syntax. May be specified multiple times.
* `--prune-layers` prune (remove) the layers in the list
* `--override-kv` option to override model metadata by key in the quantized model. May be specified multiple times

Examples:

bash

naive Q4_K_M quantization using default settings and 8 CPU threads. Output will be "ggml-model-Q4_K_M.gguf"

./llama-quantize input-model-f32.gguf q4_k_m 8


bash

quantize model enabling re-quantization, leaving the output tensor unquantized and all others quantized at the same level (Q4_K)

./llama-quantize --allow-requantize --leave-output-tensor --pure input-model-f32.gguf q4_k_m 8


bash

quantize model using an importance matrix for specified tensors only (attn_v and ffn_down)

./llama-quantize --imatrix imatrix.gguf --include-weights attn_v --include-weights ffn_down input-model-f32.gguf q4_k_m 8


bash

quantize model setting output tensor to Q5_K_M, token embeddings to Q3_K_M, and keeping the input file's shards

./llama-quantize --imatrix imatrix.gguf --output-tensor-type q5_k --token-embedding-type q3_k --keep-split input-model-f32.gguf q4_k_m 8


bash

quantize model using a regex to quantize attn_k tensors in odd layers to Q5_K_M and attn_q tensors in even layers to Q3_K_M

./llama-quantize --imatrix imatrix.gguf --tensor-type ".(\d[13579]).attn_k=q5_k" --tensor-type ".(\d[02468]).attn_q=q3_k" input-model-f32.gguf q4_k_m 8


bash

quantize model setting tensors attn_v and ffn_down to Q5_K_M and pruning layers 20, 21, and 22

./llama-quantize --imatrix imatrix.gguf --tensor-type attn_v=q5_k --tensor-type ffn_down=q5_k --prune-layers 20,21,22 input-model-f32.gguf q4_k_m 8


bash

override expert used count metadata to 16, prune layers 20, 21, and 22 without quantizing the model (copy tensors) and use specified name for the output file

./llama-quantize --imatrix imatrix.gguf --override-kv qwen3moe.expert_used_count=int:16 --prune-layers 20,21,22 input-model-f32.gguf pruned-model-f32.gguf copy 8 ```

Memory/Disk Requirements

When running the larger models, make sure you have enough disk space to store all the intermediate files. As the models are currently fully loaded into memory, you will need adequate disk space to save them and sufficient RAM to load them. At the moment, memory and disk requirements are the same. For exmaple (Llama 3.1):

Model Original size Quantized size (Q4_K_M)
8B 32.1 GB 4.9 GB
70B 280.9 GB 43.1 GB
405B 1,625.1 GB 249.1 GB

Quantization

Several quantization methods are supported. They differ in the resulting model disk size and inference speed. For example,

meta-llama/Llama-3.1-8B

Measure IQ1_S IQ1_M IQ2_XXS IQ2_XS IQ2_S IQ2_M
bits/weight 2.0042 2.1460 2.3824 2.5882 2.7403 2.9294
size (GiB) 1.87 2.01 2.23 2.42 2.56 2.74
prompt processing t/s @ 512 858.88 ±1.22 847.99 ±0.47 852.39 ±0.85 826.99 ±12.51 783.55 ±13.73 787.68 ±7.00
text generation t/s @ 128 79.73 ±0.79 72.92 ±0.14 79.86 ±0.22 78.04 ±0.46 77.30 ±2.47 74.44 ±0.15
Measure IQ3_XXS IQ3_XS IQ3_S IQ3_M IQ4_XS IQ4_NL
bits/weight 3.2548 3.4977 3.6606 3.7628 4.4597 4.6818
size (GiB) 3.04 3.27 3.42 3.52 4.17 4.38
prompt processing t/s @ 512 813.88 ±6.53 708.71 ±1.26 798.78 ±8.81 768.70 ±13.73 771.80 ±11.38 806.03 ±7.07
text generation t/s @ 128 73.95 ±0.20 71.67 ±0.54 69.31 ±0.63 70.15 ±0.33 77.51 ±0.20 76.63 ±0.28
Measure Q2_K_S Q2_K Q3_K_S Q3_K_M Q3_K_L Q4_K_S
bits/weight 2.9697 3.1593 3.6429 3.9960 4.2979 4.6672
size (GiB) 2.78 2.95 3.41 3.74 4.02 4.36
prompt processing t/s @ 512 798.91 ±6.40 784.45 ±7.85 752.17 ±7.94 783.44 ±9.92 761.17 ±7.55 818.55 ±9.58
text generation t/s @ 128 90.01 ±0.12 79.85 ±0.20 69.84 ±0.18 71.68 ±0.22 69.38 ±0.49 76.71 ±0.20
Measure Q4_K_S Q4_K_M Q5_K_S Q5_K_M Q6_K Q8_0
bits/weight 4.6672 4.8944 5.5704 5.7036 6.5633 8.5008
size (GiB) 4.36 4.58 5.21 5.33 6.14 7.95
prompt processing t/s @ 512 818.55 ±9.58 821.81 ±21.44 752.52 ±0.99 758.69 ±7.43 812.01 ±10.82 865.09 ±8.30
text generation t/s @ 128 76.71 ±0.20 71.93 ±1.52 69.53 ±0.18 67.23 ±1.08 58.67 ±3.13 50.93 ±0.08
Measure F16
bits/weight 16.0005
size (GiB) 14.96
prompt processing t/s @ 512 923.49 ±0.53
text generation t/s @ 128 29.17 ±0.04

Background information on llama-quantize