1
0

utils.py 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. # type: ignore[reportUnusedImport]
  4. import subprocess
  5. import os
  6. import re
  7. import json
  8. import sys
  9. import requests
  10. import time
  11. from concurrent.futures import ThreadPoolExecutor, as_completed
  12. from typing import (
  13. Any,
  14. Callable,
  15. ContextManager,
  16. Iterable,
  17. Iterator,
  18. List,
  19. Literal,
  20. Tuple,
  21. Set,
  22. )
  23. from re import RegexFlag
  24. import wget
  25. DEFAULT_HTTP_TIMEOUT = 60
  26. class ServerResponse:
  27. headers: dict
  28. status_code: int
  29. body: dict | Any
  30. class ServerProcess:
  31. # default options
  32. debug: bool = False
  33. server_port: int = 8080
  34. server_host: str = "127.0.0.1"
  35. model_hf_repo: str = "ggml-org/models"
  36. model_hf_file: str | None = "tinyllamas/stories260K.gguf"
  37. model_alias: str = "tinyllama-2"
  38. temperature: float = 0.8
  39. seed: int = 42
  40. offline: bool = False
  41. # custom options
  42. model_alias: str | None = None
  43. model_url: str | None = None
  44. model_file: str | None = None
  45. model_draft: str | None = None
  46. n_threads: int | None = None
  47. n_gpu_layer: int | None = None
  48. n_batch: int | None = None
  49. n_ubatch: int | None = None
  50. n_ctx: int | None = None
  51. n_ga: int | None = None
  52. n_ga_w: int | None = None
  53. n_predict: int | None = None
  54. n_prompts: int | None = 0
  55. slot_save_path: str | None = None
  56. id_slot: int | None = None
  57. cache_prompt: bool | None = None
  58. n_slots: int | None = None
  59. ctk: str | None = None
  60. ctv: str | None = None
  61. fa: str | None = None
  62. server_continuous_batching: bool | None = False
  63. server_embeddings: bool | None = False
  64. server_reranking: bool | None = False
  65. server_metrics: bool | None = False
  66. server_slots: bool | None = False
  67. pooling: str | None = None
  68. draft: int | None = None
  69. api_key: str | None = None
  70. lora_files: List[str] | None = None
  71. enable_ctx_shift: int | None = False
  72. draft_min: int | None = None
  73. draft_max: int | None = None
  74. no_webui: bool | None = None
  75. jinja: bool | None = None
  76. reasoning_format: Literal['deepseek', 'none', 'nothink'] | None = None
  77. reasoning_budget: int | None = None
  78. chat_template: str | None = None
  79. chat_template_file: str | None = None
  80. server_path: str | None = None
  81. mmproj_url: str | None = None
  82. # session variables
  83. process: subprocess.Popen | None = None
  84. def __init__(self):
  85. if "N_GPU_LAYERS" in os.environ:
  86. self.n_gpu_layer = int(os.environ["N_GPU_LAYERS"])
  87. if "DEBUG" in os.environ:
  88. self.debug = True
  89. if "PORT" in os.environ:
  90. self.server_port = int(os.environ["PORT"])
  91. def start(self, timeout_seconds: int | None = DEFAULT_HTTP_TIMEOUT) -> None:
  92. if self.server_path is not None:
  93. server_path = self.server_path
  94. elif "LLAMA_SERVER_BIN_PATH" in os.environ:
  95. server_path = os.environ["LLAMA_SERVER_BIN_PATH"]
  96. elif os.name == "nt":
  97. server_path = "../../../build/bin/Release/llama-server.exe"
  98. else:
  99. server_path = "../../../build/bin/llama-server"
  100. server_args = [
  101. "--host",
  102. self.server_host,
  103. "--port",
  104. self.server_port,
  105. "--temp",
  106. self.temperature,
  107. "--seed",
  108. self.seed,
  109. ]
  110. if self.offline:
  111. server_args.append("--offline")
  112. if self.model_file:
  113. server_args.extend(["--model", self.model_file])
  114. if self.model_url:
  115. server_args.extend(["--model-url", self.model_url])
  116. if self.model_draft:
  117. server_args.extend(["--model-draft", self.model_draft])
  118. if self.model_hf_repo:
  119. server_args.extend(["--hf-repo", self.model_hf_repo])
  120. if self.model_hf_file:
  121. server_args.extend(["--hf-file", self.model_hf_file])
  122. if self.n_batch:
  123. server_args.extend(["--batch-size", self.n_batch])
  124. if self.n_ubatch:
  125. server_args.extend(["--ubatch-size", self.n_ubatch])
  126. if self.n_threads:
  127. server_args.extend(["--threads", self.n_threads])
  128. if self.n_gpu_layer:
  129. server_args.extend(["--n-gpu-layers", self.n_gpu_layer])
  130. if self.draft is not None:
  131. server_args.extend(["--draft", self.draft])
  132. if self.server_continuous_batching:
  133. server_args.append("--cont-batching")
  134. if self.server_embeddings:
  135. server_args.append("--embedding")
  136. if self.server_reranking:
  137. server_args.append("--reranking")
  138. if self.server_metrics:
  139. server_args.append("--metrics")
  140. if self.server_slots:
  141. server_args.append("--slots")
  142. else:
  143. server_args.append("--no-slots")
  144. if self.pooling:
  145. server_args.extend(["--pooling", self.pooling])
  146. if self.model_alias:
  147. server_args.extend(["--alias", self.model_alias])
  148. if self.n_ctx:
  149. server_args.extend(["--ctx-size", self.n_ctx])
  150. if self.n_slots:
  151. server_args.extend(["--parallel", self.n_slots])
  152. if self.ctk:
  153. server_args.extend(["-ctk", self.ctk])
  154. if self.ctv:
  155. server_args.extend(["-ctv", self.ctv])
  156. if self.fa is not None:
  157. server_args.extend(["-fa", self.fa])
  158. if self.n_predict:
  159. server_args.extend(["--n-predict", self.n_predict])
  160. if self.slot_save_path:
  161. server_args.extend(["--slot-save-path", self.slot_save_path])
  162. if self.n_ga:
  163. server_args.extend(["--grp-attn-n", self.n_ga])
  164. if self.n_ga_w:
  165. server_args.extend(["--grp-attn-w", self.n_ga_w])
  166. if self.debug:
  167. server_args.append("--verbose")
  168. if self.lora_files:
  169. for lora_file in self.lora_files:
  170. server_args.extend(["--lora", lora_file])
  171. if self.enable_ctx_shift:
  172. server_args.append("--context-shift")
  173. if self.api_key:
  174. server_args.extend(["--api-key", self.api_key])
  175. if self.draft_max:
  176. server_args.extend(["--draft-max", self.draft_max])
  177. if self.draft_min:
  178. server_args.extend(["--draft-min", self.draft_min])
  179. if self.no_webui:
  180. server_args.append("--no-webui")
  181. if self.jinja:
  182. server_args.append("--jinja")
  183. if self.reasoning_format is not None:
  184. server_args.extend(("--reasoning-format", self.reasoning_format))
  185. if self.reasoning_budget is not None:
  186. server_args.extend(("--reasoning-budget", self.reasoning_budget))
  187. if self.chat_template:
  188. server_args.extend(["--chat-template", self.chat_template])
  189. if self.chat_template_file:
  190. server_args.extend(["--chat-template-file", self.chat_template_file])
  191. if self.mmproj_url:
  192. server_args.extend(["--mmproj-url", self.mmproj_url])
  193. args = [str(arg) for arg in [server_path, *server_args]]
  194. print(f"tests: starting server with: {' '.join(args)}")
  195. flags = 0
  196. if "nt" == os.name:
  197. flags |= subprocess.DETACHED_PROCESS
  198. flags |= subprocess.CREATE_NEW_PROCESS_GROUP
  199. flags |= subprocess.CREATE_NO_WINDOW
  200. self.process = subprocess.Popen(
  201. [str(arg) for arg in [server_path, *server_args]],
  202. creationflags=flags,
  203. stdout=sys.stdout,
  204. stderr=sys.stdout,
  205. env={**os.environ, "LLAMA_CACHE": "tmp"} if "LLAMA_CACHE" not in os.environ else None,
  206. )
  207. server_instances.add(self)
  208. print(f"server pid={self.process.pid}, pytest pid={os.getpid()}")
  209. # wait for server to start
  210. start_time = time.time()
  211. while time.time() - start_time < timeout_seconds:
  212. try:
  213. response = self.make_request("GET", "/health", headers={
  214. "Authorization": f"Bearer {self.api_key}" if self.api_key else None
  215. })
  216. if response.status_code == 200:
  217. self.ready = True
  218. return # server is ready
  219. except Exception as e:
  220. pass
  221. # Check if process died
  222. if self.process.poll() is not None:
  223. raise RuntimeError(f"Server process died with return code {self.process.returncode}")
  224. print(f"Waiting for server to start...")
  225. time.sleep(0.5)
  226. raise TimeoutError(f"Server did not start within {timeout_seconds} seconds")
  227. def stop(self) -> None:
  228. if self in server_instances:
  229. server_instances.remove(self)
  230. if self.process:
  231. print(f"Stopping server with pid={self.process.pid}")
  232. self.process.kill()
  233. self.process = None
  234. def make_request(
  235. self,
  236. method: str,
  237. path: str,
  238. data: dict | Any | None = None,
  239. headers: dict | None = None,
  240. timeout: float | None = None,
  241. ) -> ServerResponse:
  242. url = f"http://{self.server_host}:{self.server_port}{path}"
  243. parse_body = False
  244. if method == "GET":
  245. response = requests.get(url, headers=headers, timeout=timeout)
  246. parse_body = True
  247. elif method == "POST":
  248. response = requests.post(url, headers=headers, json=data, timeout=timeout)
  249. parse_body = True
  250. elif method == "OPTIONS":
  251. response = requests.options(url, headers=headers, timeout=timeout)
  252. else:
  253. raise ValueError(f"Unimplemented method: {method}")
  254. result = ServerResponse()
  255. result.headers = dict(response.headers)
  256. result.status_code = response.status_code
  257. result.body = response.json() if parse_body else None
  258. print("Response from server", json.dumps(result.body, indent=2))
  259. return result
  260. def make_stream_request(
  261. self,
  262. method: str,
  263. path: str,
  264. data: dict | None = None,
  265. headers: dict | None = None,
  266. ) -> Iterator[dict]:
  267. url = f"http://{self.server_host}:{self.server_port}{path}"
  268. if method == "POST":
  269. response = requests.post(url, headers=headers, json=data, stream=True)
  270. else:
  271. raise ValueError(f"Unimplemented method: {method}")
  272. for line_bytes in response.iter_lines():
  273. line = line_bytes.decode("utf-8")
  274. if '[DONE]' in line:
  275. break
  276. elif line.startswith('data: '):
  277. data = json.loads(line[6:])
  278. print("Partial response from server", json.dumps(data, indent=2))
  279. yield data
  280. def make_any_request(
  281. self,
  282. method: str,
  283. path: str,
  284. data: dict | None = None,
  285. headers: dict | None = None,
  286. timeout: float | None = None,
  287. ) -> dict:
  288. stream = data.get('stream', False)
  289. if stream:
  290. content: list[str] = []
  291. reasoning_content: list[str] = []
  292. tool_calls: list[dict] = []
  293. finish_reason: Optional[str] = None
  294. content_parts = 0
  295. reasoning_content_parts = 0
  296. tool_call_parts = 0
  297. arguments_parts = 0
  298. for chunk in self.make_stream_request(method, path, data, headers):
  299. if chunk['choices']:
  300. assert len(chunk['choices']) == 1, f'Expected 1 choice, got {len(chunk["choices"])}'
  301. choice = chunk['choices'][0]
  302. if choice['delta'].get('content') is not None:
  303. assert len(choice['delta']['content']) > 0, f'Expected non empty content delta!'
  304. content.append(choice['delta']['content'])
  305. content_parts += 1
  306. if choice['delta'].get('reasoning_content') is not None:
  307. assert len(choice['delta']['reasoning_content']) > 0, f'Expected non empty reasoning_content delta!'
  308. reasoning_content.append(choice['delta']['reasoning_content'])
  309. reasoning_content_parts += 1
  310. if choice['delta'].get('finish_reason') is not None:
  311. finish_reason = choice['delta']['finish_reason']
  312. for tc in choice['delta'].get('tool_calls', []):
  313. if 'function' not in tc:
  314. raise ValueError(f"Expected function type, got {tc['type']}")
  315. if tc['index'] >= len(tool_calls):
  316. assert 'id' in tc
  317. assert tc.get('type') == 'function'
  318. assert 'function' in tc and 'name' in tc['function'] and len(tc['function']['name']) > 0, \
  319. f"Expected function call with name, got {tc.get('function')}"
  320. tool_calls.append(dict(
  321. id="",
  322. type="function",
  323. function=dict(
  324. name="",
  325. arguments="",
  326. )
  327. ))
  328. tool_call = tool_calls[tc['index']]
  329. if tc.get('id') is not None:
  330. tool_call['id'] = tc['id']
  331. fct = tc['function']
  332. assert 'id' not in fct, f"Function call should not have id: {fct}"
  333. if fct.get('name') is not None:
  334. tool_call['function']['name'] = tool_call['function'].get('name', '') + fct['name']
  335. if fct.get('arguments') is not None:
  336. tool_call['function']['arguments'] += fct['arguments']
  337. arguments_parts += 1
  338. tool_call_parts += 1
  339. else:
  340. # When `include_usage` is True (the default), we expect the last chunk of the stream
  341. # immediately preceding the `data: [DONE]` message to contain a `choices` field with an empty array
  342. # and a `usage` field containing the usage statistics (n.b., llama-server also returns `timings` in
  343. # the last chunk)
  344. assert 'usage' in chunk, f"Expected finish_reason in chunk: {chunk}"
  345. assert 'timings' in chunk, f"Expected finish_reason in chunk: {chunk}"
  346. print(f'Streamed response had {content_parts} content parts, {reasoning_content_parts} reasoning_content parts, {tool_call_parts} tool call parts incl. {arguments_parts} arguments parts')
  347. result = dict(
  348. choices=[
  349. dict(
  350. index=0,
  351. finish_reason=finish_reason,
  352. message=dict(
  353. role='assistant',
  354. content=''.join(content) if content else None,
  355. reasoning_content=''.join(reasoning_content) if reasoning_content else None,
  356. tool_calls=tool_calls if tool_calls else None,
  357. ),
  358. )
  359. ],
  360. )
  361. print("Final response from server", json.dumps(result, indent=2))
  362. return result
  363. else:
  364. response = self.make_request(method, path, data, headers, timeout=timeout)
  365. assert response.status_code == 200, f"Server returned error: {response.status_code}"
  366. return response.body
  367. server_instances: Set[ServerProcess] = set()
  368. class ServerPreset:
  369. @staticmethod
  370. def load_all() -> None:
  371. """ Load all server presets to ensure model files are cached. """
  372. servers: List[ServerProcess] = [
  373. method()
  374. for name, method in ServerPreset.__dict__.items()
  375. if callable(method) and name != "load_all"
  376. ]
  377. for server in servers:
  378. server.offline = False
  379. server.start()
  380. server.stop()
  381. @staticmethod
  382. def tinyllama2() -> ServerProcess:
  383. server = ServerProcess()
  384. server.model_hf_repo = "ggml-org/models"
  385. server.model_hf_file = "tinyllamas/stories260K.gguf"
  386. server.model_alias = "tinyllama-2"
  387. server.n_ctx = 512
  388. server.n_batch = 32
  389. server.n_slots = 2
  390. server.n_predict = 64
  391. server.seed = 42
  392. return server
  393. @staticmethod
  394. def bert_bge_small() -> ServerProcess:
  395. server = ServerProcess()
  396. server.offline = True # will be downloaded by load_all()
  397. server.model_hf_repo = "ggml-org/models"
  398. server.model_hf_file = "bert-bge-small/ggml-model-f16.gguf"
  399. server.model_alias = "bert-bge-small"
  400. server.n_ctx = 512
  401. server.n_batch = 128
  402. server.n_ubatch = 128
  403. server.n_slots = 2
  404. server.seed = 42
  405. server.server_embeddings = True
  406. return server
  407. @staticmethod
  408. def bert_bge_small_with_fa() -> ServerProcess:
  409. server = ServerProcess()
  410. server.offline = True # will be downloaded by load_all()
  411. server.model_hf_repo = "ggml-org/models"
  412. server.model_hf_file = "bert-bge-small/ggml-model-f16.gguf"
  413. server.model_alias = "bert-bge-small"
  414. server.n_ctx = 1024
  415. server.n_batch = 300
  416. server.n_ubatch = 300
  417. server.n_slots = 2
  418. server.fa = "on"
  419. server.seed = 42
  420. server.server_embeddings = True
  421. return server
  422. @staticmethod
  423. def tinyllama_infill() -> ServerProcess:
  424. server = ServerProcess()
  425. server.offline = True # will be downloaded by load_all()
  426. server.model_hf_repo = "ggml-org/models"
  427. server.model_hf_file = "tinyllamas/stories260K-infill.gguf"
  428. server.model_alias = "tinyllama-infill"
  429. server.n_ctx = 2048
  430. server.n_batch = 1024
  431. server.n_slots = 1
  432. server.n_predict = 64
  433. server.temperature = 0.0
  434. server.seed = 42
  435. return server
  436. @staticmethod
  437. def stories15m_moe() -> ServerProcess:
  438. server = ServerProcess()
  439. server.offline = True # will be downloaded by load_all()
  440. server.model_hf_repo = "ggml-org/stories15M_MOE"
  441. server.model_hf_file = "stories15M_MOE-F16.gguf"
  442. server.model_alias = "stories15m-moe"
  443. server.n_ctx = 2048
  444. server.n_batch = 1024
  445. server.n_slots = 1
  446. server.n_predict = 64
  447. server.temperature = 0.0
  448. server.seed = 42
  449. return server
  450. @staticmethod
  451. def jina_reranker_tiny() -> ServerProcess:
  452. server = ServerProcess()
  453. server.offline = True # will be downloaded by load_all()
  454. server.model_hf_repo = "ggml-org/models"
  455. server.model_hf_file = "jina-reranker-v1-tiny-en/ggml-model-f16.gguf"
  456. server.model_alias = "jina-reranker"
  457. server.n_ctx = 512
  458. server.n_batch = 512
  459. server.n_slots = 1
  460. server.seed = 42
  461. server.server_reranking = True
  462. return server
  463. @staticmethod
  464. def tinygemma3() -> ServerProcess:
  465. server = ServerProcess()
  466. server.offline = True # will be downloaded by load_all()
  467. # mmproj is already provided by HF registry API
  468. server.model_hf_repo = "ggml-org/tinygemma3-GGUF"
  469. server.model_hf_file = "tinygemma3-Q8_0.gguf"
  470. server.mmproj_url = "https://huggingface.co/ggml-org/tinygemma3-GGUF/resolve/main/mmproj-tinygemma3.gguf"
  471. server.model_alias = "tinygemma3"
  472. server.n_ctx = 1024
  473. server.n_batch = 32
  474. server.n_slots = 2
  475. server.n_predict = 4
  476. server.seed = 42
  477. return server
  478. def parallel_function_calls(function_list: List[Tuple[Callable[..., Any], Tuple[Any, ...]]]) -> List[Any]:
  479. """
  480. Run multiple functions in parallel and return results in the same order as calls. Equivalent to Promise.all in JS.
  481. Example usage:
  482. results = parallel_function_calls([
  483. (func1, (arg1, arg2)),
  484. (func2, (arg3, arg4)),
  485. ])
  486. """
  487. results = [None] * len(function_list)
  488. exceptions = []
  489. def worker(index, func, args):
  490. try:
  491. result = func(*args)
  492. results[index] = result
  493. except Exception as e:
  494. exceptions.append((index, str(e)))
  495. with ThreadPoolExecutor() as executor:
  496. futures = []
  497. for i, (func, args) in enumerate(function_list):
  498. future = executor.submit(worker, i, func, args)
  499. futures.append(future)
  500. # Wait for all futures to complete
  501. for future in as_completed(futures):
  502. pass
  503. # Check if there were any exceptions
  504. if exceptions:
  505. print("Exceptions occurred:")
  506. for index, error in exceptions:
  507. print(f"Function at index {index}: {error}")
  508. return results
  509. def match_regex(regex: str, text: str) -> bool:
  510. return (
  511. re.compile(
  512. regex, flags=RegexFlag.IGNORECASE | RegexFlag.MULTILINE | RegexFlag.DOTALL
  513. ).search(text)
  514. is not None
  515. )
  516. def download_file(url: str, output_file_path: str | None = None) -> str:
  517. """
  518. Download a file from a URL to a local path. If the file already exists, it will not be downloaded again.
  519. output_file_path is the local path to save the downloaded file. If not provided, the file will be saved in the root directory.
  520. Returns the local path of the downloaded file.
  521. """
  522. file_name = url.split('/').pop()
  523. output_file = f'./tmp/{file_name}' if output_file_path is None else output_file_path
  524. if not os.path.exists(output_file):
  525. print(f"Downloading {url} to {output_file}")
  526. wget.download(url, out=output_file)
  527. print(f"Done downloading to {output_file}")
  528. else:
  529. print(f"File already exists at {output_file}")
  530. return output_file
  531. def is_slow_test_allowed():
  532. return os.environ.get("SLOW_TESTS") == "1" or os.environ.get("SLOW_TESTS") == "ON"