1
0

convert_hf_to_gguf.py 474 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. from gguf.vocab import MistralTokenizerType, MistralVocab
  27. try:
  28. from mistral_common.tokens.tokenizers.base import TokenizerVersion # pyright: ignore[reportMissingImports]
  29. from mistral_common.tokens.tokenizers.multimodal import DATASET_MEAN as _MISTRAL_COMMON_DATASET_MEAN, DATASET_STD as _MISTRAL_COMMON_DATASET_STD # pyright: ignore[reportMissingImports]
  30. from mistral_common.tokens.tokenizers.tekken import Tekkenizer # pyright: ignore[reportMissingImports]
  31. from mistral_common.tokens.tokenizers.sentencepiece import ( # pyright: ignore[reportMissingImports]
  32. SentencePieceTokenizer,
  33. )
  34. _mistral_common_installed = True
  35. _mistral_import_error_msg = ""
  36. except ImportError:
  37. _MISTRAL_COMMON_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
  38. _MISTRAL_COMMON_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
  39. _mistral_common_installed = False
  40. TokenizerVersion = None
  41. Tekkenizer = None
  42. SentencePieceTokenizer = None
  43. _mistral_import_error_msg = (
  44. "Mistral format requires `mistral-common` to be installed. Please run "
  45. "`pip install mistral-common[image,audio]` to install it."
  46. )
  47. logger = logging.getLogger("hf-to-gguf")
  48. ###### MODEL DEFINITIONS ######
  49. class SentencePieceTokenTypes(IntEnum):
  50. NORMAL = 1
  51. UNKNOWN = 2
  52. CONTROL = 3
  53. USER_DEFINED = 4
  54. UNUSED = 5
  55. BYTE = 6
  56. class ModelType(IntEnum):
  57. TEXT = 1
  58. MMPROJ = 2
  59. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  60. class ModelBase:
  61. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  62. ModelType.TEXT: {},
  63. ModelType.MMPROJ: {},
  64. }
  65. dir_model: Path
  66. ftype: gguf.LlamaFileType
  67. fname_out: Path
  68. is_big_endian: bool
  69. endianess: gguf.GGUFEndian
  70. use_temp_file: bool
  71. lazy: bool
  72. dry_run: bool
  73. hparams: dict[str, Any]
  74. model_tensors: dict[str, Callable[[], Tensor]]
  75. gguf_writer: gguf.GGUFWriter
  76. model_name: str | None
  77. metadata_override: Path | None
  78. dir_model_card: Path
  79. remote_hf_model_id: str | None
  80. # subclasses should define this!
  81. model_arch: gguf.MODEL_ARCH
  82. # subclasses should initialize this!
  83. block_count: int
  84. tensor_map: gguf.TensorNameMap
  85. # Mistral format specifics
  86. is_mistral_format: bool = False
  87. disable_mistral_community_chat_template: bool = False
  88. sentence_transformers_dense_modules: bool = False
  89. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  90. use_temp_file: bool = False, eager: bool = False,
  91. metadata_override: Path | None = None, model_name: str | None = None,
  92. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  93. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None,
  94. disable_mistral_community_chat_template: bool = False,
  95. sentence_transformers_dense_modules: bool = False):
  96. if type(self) is ModelBase or \
  97. type(self) is TextModel or \
  98. type(self) is MmprojModel:
  99. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  100. if self.is_mistral_format and not _mistral_common_installed:
  101. raise ImportError(_mistral_import_error_msg)
  102. self.dir_model = dir_model
  103. self.ftype = ftype
  104. self.fname_out = fname_out
  105. self.is_big_endian = is_big_endian
  106. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  107. self.use_temp_file = use_temp_file
  108. self.lazy = not eager or (remote_hf_model_id is not None)
  109. self.dry_run = dry_run
  110. self.remote_hf_model_id = remote_hf_model_id
  111. self.sentence_transformers_dense_modules = sentence_transformers_dense_modules
  112. self.hparams = ModelBase.load_hparams(self.dir_model, self.is_mistral_format) if hparams is None else hparams
  113. self.model_tensors = self.index_tensors(remote_hf_model_id=remote_hf_model_id)
  114. self.metadata_override = metadata_override
  115. self.model_name = model_name
  116. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  117. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  118. if self.ftype == gguf.LlamaFileType.GUESSED:
  119. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  120. _, first_tensor = next(self.get_tensors())
  121. if first_tensor.dtype == torch.float16:
  122. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  123. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  124. else:
  125. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  126. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  127. self.dequant_model()
  128. # Configure GGUF Writer
  129. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  130. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  131. # Mistral specific
  132. self.disable_mistral_community_chat_template = disable_mistral_community_chat_template
  133. @classmethod
  134. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  135. stem, suffix = path.stem, path.suffix
  136. new_name = f"{prefix}{stem}{suffix}"
  137. return path.with_name(new_name)
  138. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  139. key = next((k for k in keys if k in self.hparams), None)
  140. if key is not None:
  141. return self.hparams[key]
  142. if optional:
  143. return None
  144. raise KeyError(f"could not find any of: {keys}")
  145. def index_tensors(self, remote_hf_model_id: str | None = None) -> dict[str, Callable[[], Tensor]]:
  146. tensors: dict[str, Callable[[], Tensor]] = {}
  147. if remote_hf_model_id is not None:
  148. is_safetensors = True
  149. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  150. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  151. for name, remote_tensor in remote_tensors.items():
  152. tensors[name] = lambda r=remote_tensor: LazyTorchTensor.from_remote_tensor(r)
  153. return tensors
  154. prefix = "model" if not self.is_mistral_format else "consolidated"
  155. part_names: set[str] = set(ModelBase.get_model_part_names(self.dir_model, prefix, ".safetensors"))
  156. is_safetensors: bool = len(part_names) > 0
  157. if not is_safetensors:
  158. part_names = set(ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin"))
  159. tensor_names_from_index: set[str] = set()
  160. if not self.is_mistral_format:
  161. index_name = "model.safetensors" if is_safetensors else "pytorch_model.bin"
  162. index_name += ".index.json"
  163. index_file = self.dir_model / index_name
  164. if index_file.is_file():
  165. logger.info(f"gguf: loading model weight map from '{index_name}'")
  166. with open(index_file, "r", encoding="utf-8") as f:
  167. index: dict[str, Any] = json.load(f)
  168. weight_map = index.get("weight_map")
  169. if weight_map is None or not isinstance(weight_map, dict):
  170. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  171. tensor_names_from_index.update(weight_map.keys())
  172. part_names |= set(weight_map.values())
  173. else:
  174. weight_map = {}
  175. else:
  176. weight_map = {}
  177. for part_name in part_names:
  178. logger.info(f"gguf: indexing model part '{part_name}'")
  179. ctx: ContextManager[Any]
  180. if is_safetensors:
  181. ctx = cast(ContextManager[Any], gguf.utility.SafetensorsLocal(self.dir_model / part_name))
  182. else:
  183. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  184. with ctx as model_part:
  185. assert model_part is not None
  186. for name in model_part.keys():
  187. if is_safetensors:
  188. data: gguf.utility.LocalTensor = model_part[name]
  189. if self.lazy:
  190. data_gen = lambda data=data: LazyTorchTensor.from_local_tensor(data) # noqa: E731
  191. else:
  192. dtype = LazyTorchTensor._dtype_str_map[data.dtype]
  193. data_gen = lambda data=data, dtype=dtype: torch.from_numpy(data.mmap_bytes()).view(dtype).reshape(data.shape) # noqa: E731
  194. else:
  195. data_torch: Tensor = model_part[name]
  196. if self.lazy:
  197. data_gen = lambda data=data_torch: LazyTorchTensor.from_eager(data) # noqa: E731
  198. else:
  199. data_gen = lambda data=data_torch: data # noqa: E731
  200. tensors[name] = data_gen
  201. # verify tensor name presence and identify potentially missing files
  202. if len(tensor_names_from_index) > 0:
  203. tensor_names_from_parts = set(tensors.keys())
  204. if len(tensor_names_from_parts.symmetric_difference(tensor_names_from_index)) > 0:
  205. missing = sorted(tensor_names_from_index.difference(tensor_names_from_parts))
  206. extra = sorted(tensor_names_from_parts.difference(tensor_names_from_index))
  207. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  208. if len(extra) == 0 and len(missing_files) > 0:
  209. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  210. f"Missing tensors: {missing}")
  211. else:
  212. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  213. f"Missing tensors: {missing}\n"
  214. f"Extra tensors: {extra}")
  215. return tensors
  216. def dequant_model(self):
  217. tensors_to_remove: list[str] = []
  218. new_tensors: dict[str, Callable[[], Tensor]] = {}
  219. if (quant_config := self.hparams.get("quantization_config")) and isinstance(quant_config, dict):
  220. quant_method = quant_config.get("quant_method")
  221. def dequant_bitnet(weight: Tensor, scale: Tensor) -> Tensor:
  222. weight = weight.view(torch.uint8)
  223. orig_shape = weight.shape
  224. shift = torch.tensor([0, 2, 4, 6], dtype=torch.uint8).reshape((4, *(1 for _ in range(len(orig_shape)))))
  225. data = weight.unsqueeze(0).expand((4, *orig_shape)) >> shift
  226. data = data & 3
  227. data = (data.float() - 1).reshape((orig_shape[0] * 4, *orig_shape[1:]))
  228. # The scale is inverted
  229. return data / scale.float()
  230. def dequant_simple(weight: Tensor, scale: Tensor, block_size: Sequence[int] | None = None) -> Tensor:
  231. scale = scale.float()
  232. if block_size is not None:
  233. for i, size in enumerate(block_size):
  234. scale = scale.repeat_interleave(size, i)
  235. # unpad the scale (e.g. when the tensor size isn't a multiple of the block size)
  236. scale = scale[tuple(slice(0, size) for size in weight.shape)]
  237. return weight.float() * scale
  238. # ref: https://github.com/ModelCloud/GPTQModel/blob/037c5c0f6c9e33c500d975b038d02e7ca437546d/gptqmodel/nn_modules/qlinear/__init__.py#L437-L476
  239. def dequant_gptq(g_idx: Tensor, qweight: Tensor, qzeros: Tensor, scales: Tensor) -> Tensor:
  240. bits = quant_config["bits"]
  241. assert bits in (2, 3, 4, 8)
  242. assert qweight.dtype == qzeros.dtype
  243. maxq = (2 ** bits) - 1
  244. weight = None
  245. zeros = None
  246. pack_dtype_bits = qweight.dtype.itemsize * 8
  247. if bits in [2, 4, 8]:
  248. pack_factor = pack_dtype_bits // bits
  249. wf = torch.tensor(list(range(0, pack_dtype_bits, bits)), dtype=torch.int32).unsqueeze(0)
  250. if self.lazy:
  251. wf = LazyTorchTensor.from_eager(wf)
  252. zeros = torch.bitwise_right_shift(
  253. qzeros.unsqueeze(2).expand(-1, -1, pack_factor),
  254. wf.unsqueeze(0)
  255. ).to(torch.int16 if bits == 8 else torch.int8)
  256. zeros = torch.bitwise_and(zeros, maxq).reshape(scales.shape)
  257. weight = torch.bitwise_and(
  258. torch.bitwise_right_shift(
  259. qweight.unsqueeze(1).expand(-1, pack_factor, -1),
  260. wf.unsqueeze(-1)
  261. ).to(torch.int16 if bits == 8 else torch.int8),
  262. maxq
  263. )
  264. elif bits == 3:
  265. raise NotImplementedError("3-bit gptq dequantization is not yet implemented")
  266. assert weight is not None
  267. assert zeros is not None
  268. weight = weight.reshape(weight.shape[0] * weight.shape[1], weight.shape[2])
  269. # gptq_v2 doesn't need to offset zeros
  270. if quant_config.get("checkpoint_format", "gptq") == "gptq":
  271. zeros += 1
  272. return (scales[g_idx].float() * (weight - zeros[g_idx]).float()).T
  273. def dequant_packed(w: Tensor, scale: Tensor, shape_tensor: Tensor, zero_point: Tensor | None, num_bits: int, group_size: int):
  274. assert w.dtype == torch.int32
  275. shape = tuple(shape_tensor.tolist())
  276. assert len(shape) == 2
  277. mask = (1 << num_bits) - 1
  278. shifts = torch.arange(0, 32 - (num_bits - 1), num_bits, dtype=torch.int32)
  279. if self.lazy:
  280. shifts = LazyTorchTensor.from_eager(shifts)
  281. if zero_point is None:
  282. offset = 1 << (num_bits - 1)
  283. else:
  284. assert len(zero_point.shape) == 2
  285. offset = (zero_point.unsqueeze(1) >> shifts.reshape(1, -1, 1)) & mask
  286. offset = offset.reshape(-1, zero_point.shape[1])
  287. # trim padding, and prepare for broadcast
  288. # NOTE: the zero-point is packed along dim 0
  289. offset = offset[:shape[0], :].unsqueeze(-1)
  290. # extract values
  291. # NOTE: the weights are packed along dim 1
  292. unpacked = (w.unsqueeze(-1) >> shifts.reshape(1, 1, -1)) & mask
  293. unpacked = unpacked.reshape(shape[0], -1)
  294. # trim padding
  295. unpacked = unpacked[:, :shape[1]]
  296. # prepare for broadcast of the scale
  297. unpacked = unpacked.reshape(shape[0], (unpacked.shape[-1] + group_size - 1) // group_size, group_size)
  298. unpacked = unpacked - offset
  299. return (unpacked * scale.unsqueeze(-1).float()).reshape(shape)
  300. if quant_method == "bitnet":
  301. for name in self.model_tensors.keys():
  302. if name.endswith(".weight_scale"):
  303. weight_name = name.removesuffix("_scale")
  304. w = self.model_tensors[weight_name]
  305. s = self.model_tensors[name]
  306. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_bitnet(w(), s())
  307. tensors_to_remove.append(name)
  308. elif quant_method == "fp8":
  309. block_size = quant_config.get("weight_block_size")
  310. for name in self.model_tensors.keys():
  311. if name.endswith(".weight_scale_inv"):
  312. weight_name = name.removesuffix("_scale_inv")
  313. w = self.model_tensors[weight_name]
  314. s = self.model_tensors[name]
  315. self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
  316. tensors_to_remove.append(name)
  317. elif quant_method == "gptq":
  318. for name in self.model_tensors.keys():
  319. if name.endswith(".qweight"):
  320. base_name = name.removesuffix(".qweight")
  321. g_idx = self.model_tensors[base_name + ".g_idx"]
  322. qweight = self.model_tensors[base_name + ".qweight"]
  323. qzeros = self.model_tensors[base_name + ".qzeros"]
  324. scales = self.model_tensors[base_name + ".scales"]
  325. new_tensors[base_name + ".weight"] = (
  326. lambda g=g_idx, z=qzeros, w=qweight, s=scales: dequant_gptq(
  327. g(), w(), z(), s()
  328. )
  329. )
  330. tensors_to_remove += [
  331. base_name + n
  332. for n in (
  333. ".g_idx",
  334. ".qzeros",
  335. ".qweight",
  336. ".scales",
  337. )
  338. ]
  339. elif quant_method == "compressed-tensors":
  340. quant_format = quant_config["format"]
  341. groups = quant_config["config_groups"]
  342. if len(groups) > 1:
  343. raise NotImplementedError("Can't handle multiple config groups for compressed-tensors yet")
  344. weight_config = tuple(groups.values())[0]["weights"]
  345. if quant_format == "float-quantized" or quant_format == "int-quantized" or quant_format == "naive-quantized":
  346. block_size = weight_config.get("block_structure", None)
  347. strategy = weight_config.get("strategy")
  348. assert strategy == "channel" or strategy == "block"
  349. assert weight_config.get("group_size") is None # didn't find a model using this yet
  350. for name in self.model_tensors.keys():
  351. if name.endswith(".weight_scale"):
  352. weight_name = name.removesuffix("_scale")
  353. w = self.model_tensors[weight_name]
  354. s = self.model_tensors[name]
  355. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_simple(w(), s(), block_size)
  356. tensors_to_remove.append(name)
  357. elif quant_format == "pack-quantized":
  358. assert weight_config.get("strategy") == "group"
  359. assert weight_config.get("type", "int") == "int"
  360. num_bits = weight_config.get("num_bits")
  361. group_size = weight_config.get("group_size")
  362. assert isinstance(num_bits, int)
  363. assert isinstance(group_size, int)
  364. for name in self.model_tensors.keys():
  365. if name.endswith(".weight_packed"):
  366. base_name = name.removesuffix("_packed")
  367. w = self.model_tensors[name]
  368. scale = self.model_tensors[base_name + "_scale"]
  369. shape = self.model_tensors[base_name + "_shape"]
  370. zero_point = self.model_tensors.get(base_name + "_zero_point", lambda: None)
  371. new_tensors[base_name] = (
  372. lambda w=w, scale=scale, shape=shape, zero_point=zero_point: dequant_packed(
  373. w(), scale(), shape(), zero_point(), num_bits, group_size,
  374. )
  375. )
  376. tensors_to_remove += [base_name + n for n in ("_packed", "_shape", "_scale")]
  377. if (base_name + "_zero_point") in self.model_tensors:
  378. tensors_to_remove.append(base_name + "_zero_point")
  379. else:
  380. raise NotImplementedError(f"Quant format {quant_format!r} for method {quant_method!r} is not yet supported")
  381. else:
  382. raise NotImplementedError(f"Quant method is not yet supported: {quant_method!r}")
  383. for name in tensors_to_remove:
  384. if name in self.model_tensors:
  385. del self.model_tensors[name]
  386. for name, value in new_tensors.items():
  387. self.model_tensors[name] = value
  388. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  389. for name, gen in self.model_tensors.items():
  390. yield name, gen()
  391. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  392. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  393. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  394. name: str = gguf.TENSOR_NAMES[key]
  395. if "{bid}" in name:
  396. assert bid is not None
  397. name = name.format(bid=bid)
  398. return name + suffix
  399. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  400. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  401. return False
  402. key_name: str = gguf.TENSOR_NAMES[key]
  403. if "{bid}" in key_name:
  404. if bid is None:
  405. return False
  406. key_name = key_name.format(bid=bid)
  407. else:
  408. if bid is not None:
  409. return False
  410. return name == (key_name + suffix)
  411. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  412. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  413. if new_name is None:
  414. raise ValueError(f"Can not map tensor {name!r}")
  415. return new_name
  416. def set_gguf_parameters(self):
  417. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  418. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  419. del bid # unused
  420. return [(self.map_tensor_name(name), data_torch)]
  421. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  422. del name, new_name, bid, n_dims # unused
  423. return False
  424. # some models need extra generated tensors (like rope_freqs)
  425. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  426. return ()
  427. def prepare_tensors(self):
  428. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  429. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  430. # we don't need these
  431. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  432. continue
  433. old_dtype = data_torch.dtype
  434. # convert any unsupported data types to float32
  435. if data_torch.dtype not in (torch.float16, torch.float32):
  436. data_torch = data_torch.to(torch.float32)
  437. # use the first number-like part of the tensor name as the block id
  438. bid = None
  439. for part in name.split("."):
  440. if part.isdecimal():
  441. bid = int(part)
  442. break
  443. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  444. # TODO: why do we squeeze here?
  445. # data = data_torch.squeeze().numpy()
  446. data = data_torch.numpy()
  447. n_dims = len(data.shape)
  448. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  449. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  450. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  451. data_qtype = gguf.GGMLQuantizationType.F32
  452. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  453. # Some tensor types are always in float32
  454. if data_qtype is False and (
  455. any(
  456. self.match_model_tensor_name(new_name, key, bid)
  457. for key in (
  458. gguf.MODEL_TENSOR.FFN_GATE_INP,
  459. gguf.MODEL_TENSOR.POS_EMBD,
  460. gguf.MODEL_TENSOR.TOKEN_TYPES,
  461. gguf.MODEL_TENSOR.SSM_CONV1D,
  462. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  463. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  464. gguf.MODEL_TENSOR.TIME_MIX_W1,
  465. gguf.MODEL_TENSOR.TIME_MIX_W2,
  466. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  467. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  468. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  469. gguf.MODEL_TENSOR.POSNET_NORM1,
  470. gguf.MODEL_TENSOR.POSNET_NORM2,
  471. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  472. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  473. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  474. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  475. )
  476. )
  477. or not new_name.endswith(".weight")
  478. ):
  479. data_qtype = gguf.GGMLQuantizationType.F32
  480. if data_qtype is False and any(
  481. self.match_model_tensor_name(new_name, key, bid)
  482. for key in (
  483. gguf.MODEL_TENSOR.TOKEN_EMBD,
  484. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  485. gguf.MODEL_TENSOR.OUTPUT,
  486. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  487. gguf.MODEL_TENSOR.LAUREL_L,
  488. gguf.MODEL_TENSOR.LAUREL_R,
  489. )
  490. ):
  491. if self.ftype in (
  492. gguf.LlamaFileType.MOSTLY_TQ1_0,
  493. gguf.LlamaFileType.MOSTLY_TQ2_0,
  494. ):
  495. # TODO: use Q4_K and Q6_K
  496. data_qtype = gguf.GGMLQuantizationType.F16
  497. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  498. if isinstance(data_qtype, bool):
  499. if self.ftype == gguf.LlamaFileType.ALL_F32:
  500. data_qtype = gguf.GGMLQuantizationType.F32
  501. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  502. data_qtype = gguf.GGMLQuantizationType.F16
  503. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  504. data_qtype = gguf.GGMLQuantizationType.BF16
  505. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  506. data_qtype = gguf.GGMLQuantizationType.Q8_0
  507. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  508. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  509. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  510. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  511. else:
  512. raise ValueError(f"Unknown file type: {self.ftype.name}")
  513. try:
  514. data = gguf.quants.quantize(data, data_qtype)
  515. except gguf.QuantError as e:
  516. logger.warning("%s, %s", e, "falling back to F16")
  517. data_qtype = gguf.GGMLQuantizationType.F16
  518. data = gguf.quants.quantize(data, data_qtype)
  519. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  520. # reverse shape to make it similar to the internal ggml dimension order
  521. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  522. # n_dims is implicit in the shape
  523. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  524. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  525. def set_type(self):
  526. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  527. def prepare_metadata(self, vocab_only: bool):
  528. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  529. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  530. # If we are using HF model id, set the metadata name to the model id
  531. if self.remote_hf_model_id:
  532. self.metadata.name = self.remote_hf_model_id
  533. # Fallback to model directory name if metadata name is still missing
  534. if self.metadata.name is None:
  535. self.metadata.name = self.dir_model.name
  536. # Generate parameter weight class (useful for leader boards) if not yet determined
  537. if self.metadata.size_label is None and total_params > 0:
  538. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  539. self.set_type()
  540. logger.info("Set meta model")
  541. self.metadata.set_gguf_meta_model(self.gguf_writer)
  542. logger.info("Set model parameters")
  543. self.set_gguf_parameters()
  544. logger.info("Set model quantization version")
  545. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  546. def write_vocab(self):
  547. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  548. def write(self):
  549. self.prepare_tensors()
  550. self.prepare_metadata(vocab_only=False)
  551. self.gguf_writer.write_header_to_file(path=self.fname_out)
  552. self.gguf_writer.write_kv_data_to_file()
  553. self.gguf_writer.write_tensors_to_file(progress=True)
  554. self.gguf_writer.close()
  555. @staticmethod
  556. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  557. part_names: list[str] = []
  558. for filename in os.listdir(dir_model):
  559. if filename.startswith(prefix) and filename.endswith(suffix):
  560. part_names.append(filename)
  561. part_names.sort()
  562. return part_names
  563. @staticmethod
  564. def load_hparams(dir_model: Path, is_mistral_format: bool):
  565. if is_mistral_format:
  566. with open(dir_model / "params.json", "r", encoding="utf-8") as f:
  567. config = json.load(f)
  568. return config
  569. try:
  570. # for security reason, we don't allow loading remote code by default
  571. # if a model need remote code, we will fallback to config.json
  572. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  573. except Exception as e:
  574. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  575. logger.warning("Trying to load config.json instead")
  576. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  577. config = json.load(f)
  578. if "llm_config" in config:
  579. # rename for InternVL
  580. config["text_config"] = config["llm_config"]
  581. if "thinker_config" in config:
  582. # rename for Qwen2.5-Omni
  583. config["text_config"] = config["thinker_config"]["text_config"]
  584. return config
  585. @classmethod
  586. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  587. assert names
  588. def func(modelcls: AnyModel) -> AnyModel:
  589. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  590. for name in names:
  591. cls._model_classes[model_type][name] = modelcls
  592. return modelcls
  593. return func
  594. @classmethod
  595. def print_registered_models(cls):
  596. for model_type, model_classes in cls._model_classes.items():
  597. logger.error(f"{model_type.name} models:")
  598. for name in sorted(model_classes.keys()):
  599. logger.error(f" - {name}")
  600. @classmethod
  601. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  602. try:
  603. return cls._model_classes[model_type][arch]
  604. except KeyError:
  605. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  606. class TextModel(ModelBase):
  607. model_type = ModelType.TEXT
  608. hf_arch: str
  609. def __init__(self, *args, **kwargs):
  610. super().__init__(*args, **kwargs)
  611. if not self.is_mistral_format:
  612. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  613. else:
  614. self.hf_arch = ""
  615. if "text_config" in self.hparams:
  616. # move the text_config to the root level
  617. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  618. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  619. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  620. @classmethod
  621. def __init_subclass__(cls):
  622. # can't use an abstract property, because overriding it without type errors
  623. # would require using decorated functions instead of simply defining the property
  624. if "model_arch" not in cls.__dict__:
  625. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  626. def set_vocab(self):
  627. self._set_vocab_gpt2()
  628. def prepare_metadata(self, vocab_only: bool):
  629. super().prepare_metadata(vocab_only=vocab_only)
  630. total_params = self.gguf_writer.get_total_parameter_count()[0]
  631. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  632. output_type: str = self.ftype.name.partition("_")[2]
  633. # Filename Output
  634. if self.fname_out.is_dir():
  635. # Generate default filename based on model specification and available metadata
  636. if not vocab_only:
  637. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  638. else:
  639. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  640. # Use the default filename
  641. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  642. else:
  643. # Output path is a custom defined templated filename
  644. # Note: `not is_dir()` is used because `.is_file()` will not detect
  645. # file template strings as it doesn't actually exist as a file
  646. # Process templated file name with the output ftype, useful with the "auto" ftype
  647. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  648. logger.info("Set model tokenizer")
  649. self.set_vocab()
  650. def set_gguf_parameters(self):
  651. self.gguf_writer.add_block_count(self.block_count)
  652. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length"], optional=True)) is not None:
  653. self.gguf_writer.add_context_length(n_ctx)
  654. logger.info(f"gguf: context length = {n_ctx}")
  655. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  656. self.gguf_writer.add_embedding_length(n_embd)
  657. logger.info(f"gguf: embedding length = {n_embd}")
  658. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  659. self.gguf_writer.add_feed_forward_length(n_ff)
  660. logger.info(f"gguf: feed forward length = {n_ff}")
  661. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  662. self.gguf_writer.add_head_count(n_head)
  663. logger.info(f"gguf: head count = {n_head}")
  664. if (n_head_kv := self.find_hparam(["num_key_value_heads", "n_kv_heads"], optional=True)) is not None:
  665. self.gguf_writer.add_head_count_kv(n_head_kv)
  666. logger.info(f"gguf: key-value head count = {n_head_kv}")
  667. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  668. self.gguf_writer.add_rope_freq_base(rope_theta)
  669. logger.info(f"gguf: rope theta = {rope_theta}")
  670. if (f_rms_eps := self.find_hparam(["rms_norm_eps", "norm_eps"], optional=True)) is not None:
  671. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  672. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  673. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  674. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  675. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  676. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  677. self.gguf_writer.add_expert_count(n_experts)
  678. logger.info(f"gguf: expert count = {n_experts}")
  679. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  680. self.gguf_writer.add_expert_used_count(n_experts_used)
  681. logger.info(f"gguf: experts used count = {n_experts_used}")
  682. if (n_expert_groups := self.hparams.get("n_group")) is not None:
  683. self.gguf_writer.add_expert_group_count(n_expert_groups)
  684. logger.info(f"gguf: expert groups count = {n_expert_groups}")
  685. if (n_group_used := self.hparams.get("topk_group")) is not None:
  686. self.gguf_writer.add_expert_group_used_count(n_group_used)
  687. logger.info(f"gguf: expert groups used count = {n_group_used}")
  688. if (score_func := self.find_hparam(["score_function", "scoring_func", "score_func"], optional=True)) is not None:
  689. if score_func == "sigmoid":
  690. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  691. elif score_func == "softmax":
  692. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  693. else:
  694. raise ValueError(f"Unsupported expert score gating function value: {score_func}")
  695. logger.info(f"gguf: expert score gating function = {score_func}")
  696. if (head_dim := self.hparams.get("head_dim")) is not None:
  697. self.gguf_writer.add_key_length(head_dim)
  698. self.gguf_writer.add_value_length(head_dim)
  699. self.gguf_writer.add_file_type(self.ftype)
  700. logger.info(f"gguf: file type = {self.ftype}")
  701. def write_vocab(self):
  702. if len(self.gguf_writer.tensors) != 1:
  703. raise ValueError('Splitting the vocabulary is not supported')
  704. self.prepare_metadata(vocab_only=True)
  705. self.gguf_writer.write_header_to_file(path=self.fname_out)
  706. self.gguf_writer.write_kv_data_to_file()
  707. self.gguf_writer.close()
  708. def does_token_look_special(self, token: str | bytes) -> bool:
  709. if isinstance(token, (bytes, bytearray)):
  710. token_text = token.decode(encoding="utf-8")
  711. elif isinstance(token, memoryview):
  712. token_text = token.tobytes().decode(encoding="utf-8")
  713. else:
  714. token_text = token
  715. # Some models mark some added tokens which ought to be control tokens as not special.
  716. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  717. seems_special = token_text in (
  718. "<pad>", # deepseek-coder
  719. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  720. )
  721. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  722. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  723. # TODO: should these be marked as UNUSED instead? (maybe not)
  724. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  725. return seems_special
  726. # used for GPT-2 BPE and WordPiece vocabs
  727. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  728. tokens: list[str] = []
  729. toktypes: list[int] = []
  730. from transformers import AutoTokenizer
  731. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  732. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  733. assert max(tokenizer.vocab.values()) < vocab_size
  734. tokpre = self.get_vocab_base_pre(tokenizer)
  735. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  736. added_vocab = tokenizer.get_added_vocab()
  737. added_tokens_decoder = tokenizer.added_tokens_decoder
  738. for i in range(vocab_size):
  739. if i not in reverse_vocab:
  740. tokens.append(f"[PAD{i}]")
  741. toktypes.append(gguf.TokenType.UNUSED)
  742. else:
  743. token: str = reverse_vocab[i]
  744. if token in added_vocab:
  745. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  746. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  747. if not added_tokens_decoder[i].normalized:
  748. previous_token = token
  749. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  750. if previous_token != token:
  751. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  752. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  753. toktypes.append(gguf.TokenType.CONTROL)
  754. else:
  755. # NOTE: this was added for Gemma.
  756. # Encoding and decoding the tokens above isn't sufficient for this case.
  757. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  758. toktypes.append(gguf.TokenType.USER_DEFINED)
  759. else:
  760. toktypes.append(gguf.TokenType.NORMAL)
  761. tokens.append(token)
  762. return tokens, toktypes, tokpre
  763. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  764. # do not modify it manually!
  765. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  766. # Marker: Start get_vocab_base_pre
  767. def get_vocab_base_pre(self, tokenizer) -> str:
  768. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  769. # is specific for the BPE pre-tokenizer used by the model
  770. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  771. # use in llama.cpp to implement the same pre-tokenizer
  772. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  773. chktok = tokenizer.encode(chktxt)
  774. chkhsh = sha256(str(chktok).encode()).hexdigest()
  775. logger.debug(f"chktok: {chktok}")
  776. logger.debug(f"chkhsh: {chkhsh}")
  777. res = None
  778. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  779. # or pull the latest version of the model from Huggingface
  780. # don't edit the hashes manually!
  781. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  782. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  783. res = "chatglm-bpe"
  784. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  785. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  786. res = "chatglm-bpe"
  787. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  788. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  789. res = "glm4"
  790. if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902":
  791. # ref: https://huggingface.co/zai-org/GLM-4.5-Air
  792. res = "glm4"
  793. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  794. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  795. res = "minerva-7b"
  796. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  797. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  798. res = "hunyuan"
  799. if chkhsh == "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6":
  800. # ref: https://huggingface.co/tencent/Hunyuan-4B-Instruct
  801. res = "hunyuan-dense"
  802. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  803. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  804. res = "falcon-h1"
  805. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  806. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  807. res = "falcon-h1"
  808. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  809. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  810. res = "falcon-h1"
  811. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  812. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  813. res = "falcon-h1"
  814. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  815. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  816. res = "kimi-k2"
  817. if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
  818. # ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
  819. res = "qwen2"
  820. if chkhsh == "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273":
  821. # ref: https://huggingface.co/alvarobartt/grok-2-tokenizer
  822. res = "grok-2"
  823. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  824. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  825. res = "llama-bpe"
  826. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  827. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  828. res = "deepseek-llm"
  829. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  830. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  831. res = "deepseek-coder"
  832. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  833. # ref: https://huggingface.co/tiiuae/falcon-7b
  834. res = "falcon"
  835. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  836. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  837. res = "bert-bge"
  838. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  839. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  840. res = "falcon3"
  841. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  842. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  843. res = "bert-bge-large"
  844. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  845. # ref: https://huggingface.co/mosaicml/mpt-7b
  846. res = "mpt"
  847. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  848. # ref: https://huggingface.co/bigcode/starcoder2-3b
  849. res = "starcoder"
  850. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  851. # ref: https://huggingface.co/openai-community/gpt2
  852. res = "gpt-2"
  853. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  854. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  855. res = "stablelm2"
  856. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  857. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  858. res = "refact"
  859. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  860. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  861. res = "command-r"
  862. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  863. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  864. res = "qwen2"
  865. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  866. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  867. res = "olmo"
  868. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  869. # ref: https://huggingface.co/databricks/dbrx-base
  870. res = "dbrx"
  871. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  872. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  873. res = "jina-v1-en"
  874. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  875. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  876. res = "jina-v2-en"
  877. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  878. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  879. res = "jina-v2-es"
  880. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  881. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  882. res = "jina-v2-de"
  883. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  884. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  885. res = "smaug-bpe"
  886. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  887. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  888. res = "poro-chat"
  889. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  890. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  891. res = "jina-v2-code"
  892. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  893. # ref: https://huggingface.co/LumiOpen/Viking-7B
  894. res = "viking"
  895. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  896. # ref: https://huggingface.co/core42/jais-13b
  897. res = "jais"
  898. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  899. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  900. res = "codeshell"
  901. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  902. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  903. res = "tekken"
  904. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  905. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  906. res = "smollm"
  907. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  908. # ref: https://huggingface.co/bigscience/bloom
  909. res = "bloom"
  910. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  911. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  912. res = "gpt3-finnish"
  913. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  914. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  915. res = "exaone"
  916. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  917. # ref: https://huggingface.co/microsoft/phi-2
  918. res = "phi-2"
  919. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  920. # ref: https://huggingface.co/facebook/chameleon-7b
  921. res = "chameleon"
  922. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  923. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  924. res = "roberta-bpe"
  925. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  926. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  927. res = "gigachat"
  928. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  929. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  930. res = "megrez"
  931. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  932. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  933. res = "deepseek-v3"
  934. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  935. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  936. res = "deepseek-r1-qwen"
  937. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  938. # ref: https://huggingface.co/Xenova/gpt-4o
  939. res = "gpt-4o"
  940. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  941. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  942. res = "superbpe"
  943. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  944. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  945. res = "trillion"
  946. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  947. # ref: https://huggingface.co/inclusionAI/Ling-lite
  948. res = "bailingmoe"
  949. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  950. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  951. res = "llama4"
  952. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  953. # ref: https://huggingface.co/mistral-community/pixtral-12b
  954. res = "pixtral"
  955. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  956. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  957. res = "seed-coder"
  958. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  959. # ref: https://huggingface.co/skt/A.X-4.0
  960. res = "a.x-4.0"
  961. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  962. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  963. res = "midm-2.0"
  964. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  965. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  966. res = "lfm2"
  967. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  968. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  969. res = "exaone4"
  970. if chkhsh == "a1e163ecab2e718a4c829d1148b6e86824ec36163bb71941c3dca9cd5ac25756":
  971. # ref: https://huggingface.co/JetBrains/Mellum-4b-base
  972. res = "mellum"
  973. if chkhsh == "49fc0303c9e0d2c2c565c510f64b2d9b271276acdcdadff733249eda9f7d59df":
  974. # ref: https://huggingface.co/arcee-ai/Trinity-Tokenizer
  975. res = "afmoe"
  976. if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206":
  977. # ref: https://huggingface.co/inclusionAI/Ling-mini-base-2.0
  978. res = "bailingmoe2"
  979. if chkhsh == "53e325976a6e142379c19b09afcae354f2f496f147afa8f9e189a33fe4e3024e":
  980. # ref: https://huggingface.co/ibm-granite/granite-docling-258M
  981. res = "granite-docling"
  982. if chkhsh == "f4f37b6c8eb9ea29b3eac6bb8c8487c5ab7885f8d8022e67edc1c68ce8403e95":
  983. # ref: https://huggingface.co/MiniMaxAI/MiniMax-M2
  984. res = "minimax-m2"
  985. if res is None:
  986. logger.warning("\n")
  987. logger.warning("**************************************************************************************")
  988. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  989. logger.warning("** There are 2 possible reasons for this:")
  990. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  991. logger.warning("** - the pre-tokenization config has changed upstream")
  992. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  993. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  994. logger.warning("**")
  995. logger.warning(f"** chkhsh: {chkhsh}")
  996. logger.warning("**************************************************************************************")
  997. logger.warning("\n")
  998. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  999. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  1000. logger.debug(f"chkhsh: {chkhsh}")
  1001. return res
  1002. # Marker: End get_vocab_base_pre
  1003. def _set_vocab_none(self) -> None:
  1004. self.gguf_writer.add_tokenizer_model("none")
  1005. def _set_vocab_gpt2(self) -> None:
  1006. tokens, toktypes, tokpre = self.get_vocab_base()
  1007. self.gguf_writer.add_tokenizer_model("gpt2")
  1008. self.gguf_writer.add_tokenizer_pre(tokpre)
  1009. self.gguf_writer.add_token_list(tokens)
  1010. self.gguf_writer.add_token_types(toktypes)
  1011. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1012. special_vocab.add_to_gguf(self.gguf_writer)
  1013. def _set_vocab_qwen(self):
  1014. dir_model = self.dir_model
  1015. hparams = self.hparams
  1016. tokens: list[str] = []
  1017. toktypes: list[int] = []
  1018. from transformers import AutoTokenizer
  1019. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  1020. vocab_size = hparams["vocab_size"]
  1021. assert max(tokenizer.get_vocab().values()) < vocab_size
  1022. tokpre = self.get_vocab_base_pre(tokenizer)
  1023. merges = []
  1024. vocab = {}
  1025. mergeable_ranks = tokenizer.mergeable_ranks
  1026. for token, rank in mergeable_ranks.items():
  1027. vocab[QwenModel.token_bytes_to_string(token)] = rank
  1028. if len(token) == 1:
  1029. continue
  1030. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  1031. assert len(merged) == 2
  1032. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  1033. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  1034. added_vocab = tokenizer.special_tokens
  1035. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  1036. for i in range(vocab_size):
  1037. if i not in reverse_vocab:
  1038. tokens.append(f"[PAD{i}]")
  1039. toktypes.append(gguf.TokenType.UNUSED)
  1040. elif reverse_vocab[i] in added_vocab:
  1041. tokens.append(reverse_vocab[i])
  1042. toktypes.append(gguf.TokenType.CONTROL)
  1043. else:
  1044. tokens.append(reverse_vocab[i])
  1045. toktypes.append(gguf.TokenType.NORMAL)
  1046. self.gguf_writer.add_tokenizer_model("gpt2")
  1047. self.gguf_writer.add_tokenizer_pre(tokpre)
  1048. self.gguf_writer.add_token_list(tokens)
  1049. self.gguf_writer.add_token_types(toktypes)
  1050. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  1051. special_vocab.merges = merges
  1052. # only add special tokens when they were not already loaded from config.json
  1053. if len(special_vocab.special_token_ids) == 0:
  1054. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  1055. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  1056. # this one is usually not in config.json anyway
  1057. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  1058. special_vocab.add_to_gguf(self.gguf_writer)
  1059. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  1060. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  1061. self.gguf_writer.add_tokenizer_model("llama")
  1062. self.gguf_writer.add_tokenizer_pre("default")
  1063. self.gguf_writer.add_token_list(tokens)
  1064. self.gguf_writer.add_token_scores(scores)
  1065. self.gguf_writer.add_token_types(toktypes)
  1066. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1067. special_vocab.add_to_gguf(self.gguf_writer)
  1068. def _create_vocab_sentencepiece(self):
  1069. from sentencepiece import SentencePieceProcessor
  1070. tokenizer_path = self.dir_model / 'tokenizer.model'
  1071. if not tokenizer_path.is_file():
  1072. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  1073. tokenizer = SentencePieceProcessor()
  1074. tokenizer.LoadFromFile(str(tokenizer_path))
  1075. vocab_size = self.find_hparam([
  1076. "vocab_size_per_layer_input", # gemma3n
  1077. "vocab_size",
  1078. ], optional=True) or tokenizer.vocab_size()
  1079. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1080. scores: list[float] = [-10000.0] * vocab_size
  1081. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1082. for token_id in range(tokenizer.vocab_size()):
  1083. if token_id >= vocab_size:
  1084. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  1085. break
  1086. piece = tokenizer.IdToPiece(token_id)
  1087. text = piece.encode("utf-8")
  1088. score = tokenizer.GetScore(token_id)
  1089. toktype = SentencePieceTokenTypes.NORMAL
  1090. if tokenizer.IsUnknown(token_id):
  1091. toktype = SentencePieceTokenTypes.UNKNOWN
  1092. elif tokenizer.IsControl(token_id):
  1093. toktype = SentencePieceTokenTypes.CONTROL
  1094. elif tokenizer.IsUnused(token_id):
  1095. toktype = SentencePieceTokenTypes.UNUSED
  1096. elif tokenizer.IsByte(token_id):
  1097. toktype = SentencePieceTokenTypes.BYTE
  1098. tokens[token_id] = text
  1099. scores[token_id] = score
  1100. toktypes[token_id] = toktype
  1101. added_tokens_file = self.dir_model / 'added_tokens.json'
  1102. if added_tokens_file.is_file():
  1103. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1104. added_tokens_json = json.load(f)
  1105. for key in added_tokens_json:
  1106. token_id = added_tokens_json[key]
  1107. if token_id >= vocab_size:
  1108. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1109. continue
  1110. tokens[token_id] = key.encode("utf-8")
  1111. scores[token_id] = -1000.0
  1112. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1113. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1114. if tokenizer_config_file.is_file():
  1115. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1116. tokenizer_config_json = json.load(f)
  1117. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1118. for token_id, token_data in added_tokens_decoder.items():
  1119. token_id = int(token_id)
  1120. token: str = token_data["content"]
  1121. if token_id >= vocab_size:
  1122. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1123. continue
  1124. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1125. if tokens[token_id] != token.encode("utf-8"):
  1126. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  1127. if token_data.get("special") or self.does_token_look_special(token):
  1128. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1129. else:
  1130. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  1131. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1132. scores[token_id] = -1000.0
  1133. tokens[token_id] = token.encode("utf-8")
  1134. if vocab_size > len(tokens):
  1135. pad_count = vocab_size - len(tokens)
  1136. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  1137. for i in range(1, pad_count + 1):
  1138. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  1139. scores.append(-1000.0)
  1140. toktypes.append(SentencePieceTokenTypes.UNUSED)
  1141. return tokens, scores, toktypes
  1142. def _set_vocab_llama_hf(self):
  1143. vocab = gguf.LlamaHfVocab(self.dir_model)
  1144. tokens = []
  1145. scores = []
  1146. toktypes = []
  1147. for text, score, toktype in vocab.all_tokens():
  1148. tokens.append(text)
  1149. scores.append(score)
  1150. toktypes.append(toktype)
  1151. assert len(tokens) == vocab.vocab_size
  1152. self.gguf_writer.add_tokenizer_model("llama")
  1153. self.gguf_writer.add_tokenizer_pre("default")
  1154. self.gguf_writer.add_token_list(tokens)
  1155. self.gguf_writer.add_token_scores(scores)
  1156. self.gguf_writer.add_token_types(toktypes)
  1157. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1158. special_vocab.add_to_gguf(self.gguf_writer)
  1159. def _set_vocab_rwkv_world(self):
  1160. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  1161. vocab_size = self.hparams.get("vocab_size", 65536)
  1162. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  1163. toktypes: list[int] = [gguf.TokenType.CONTROL]
  1164. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  1165. lines = f.readlines()
  1166. for line in lines:
  1167. parts = line.split(' ')
  1168. assert len(parts) >= 3
  1169. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  1170. token = token.encode("utf-8") if isinstance(token, str) else token
  1171. assert isinstance(token, bytes)
  1172. assert len(token) == token_len
  1173. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  1174. tokens.append(token_text.encode("utf-8"))
  1175. toktypes.append(gguf.TokenType.NORMAL)
  1176. remainder = vocab_size - len(tokens)
  1177. assert remainder >= 0
  1178. for i in range(len(tokens), vocab_size):
  1179. tokens.append(f"[PAD{i}]".encode("utf-8"))
  1180. toktypes.append(gguf.TokenType.UNUSED)
  1181. self.gguf_writer.add_tokenizer_model("rwkv")
  1182. self.gguf_writer.add_token_list(tokens)
  1183. self.gguf_writer.add_token_types(toktypes)
  1184. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  1185. if special_vocab.chat_template is None:
  1186. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  1187. if template_path.is_file():
  1188. with open(template_path, "r", encoding="utf-8") as f:
  1189. template = f.read()
  1190. else:
  1191. template = "rwkv-world"
  1192. special_vocab.chat_template = template
  1193. # hack: Add '\n\n' as the EOT token to make it chat normally
  1194. special_vocab._set_special_token("eot", 261)
  1195. # hack: Override these as they have already been set (incorrectly)
  1196. special_vocab.special_token_ids["bos"] = 0
  1197. special_vocab.special_token_ids["eos"] = 0
  1198. special_vocab.add_to_gguf(self.gguf_writer)
  1199. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  1200. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  1201. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1202. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  1203. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  1204. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1205. assert field # tokenizer model
  1206. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  1207. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  1208. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  1209. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1210. assert field # token list
  1211. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1212. if model_name == "llama-spm":
  1213. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  1214. assert field # token scores
  1215. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1216. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1217. assert field # token types
  1218. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1219. if model_name != "llama-spm":
  1220. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1221. assert field # token merges
  1222. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1223. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  1224. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1225. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  1226. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1227. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  1228. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1229. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  1230. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  1231. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  1232. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  1233. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  1234. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  1235. def _try_set_pooling_type(self) -> None:
  1236. # get pooling path
  1237. pooling_path = None
  1238. module_path = self.dir_model / "modules.json"
  1239. if module_path.is_file():
  1240. with open(module_path, encoding="utf-8") as f:
  1241. modules = json.load(f)
  1242. for mod in modules:
  1243. if mod["type"] == "sentence_transformers.models.Pooling":
  1244. pooling_path = mod["path"]
  1245. break
  1246. # get pooling type
  1247. if pooling_path is not None:
  1248. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1249. pooling = json.load(f)
  1250. if pooling["pooling_mode_mean_tokens"]:
  1251. pooling_type = gguf.PoolingType.MEAN
  1252. elif pooling["pooling_mode_cls_token"]:
  1253. pooling_type = gguf.PoolingType.CLS
  1254. elif pooling["pooling_mode_lasttoken"]:
  1255. pooling_type = gguf.PoolingType.LAST
  1256. else:
  1257. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  1258. self.gguf_writer.add_pooling_type(pooling_type)
  1259. def _set_vocab_interns1(self):
  1260. tokens: list[str] = []
  1261. toktypes: list[int] = []
  1262. from transformers import AutoTokenizer
  1263. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  1264. vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
  1265. vocab_size = self.hparams.get("vocab_size", len(vocab))
  1266. assert max(vocab.values()) < vocab_size
  1267. tokpre = self.get_vocab_base_pre(tokenizer)
  1268. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
  1269. added_vocab = tokenizer.get_added_vocab()
  1270. added_tokens_decoder = tokenizer.added_tokens_decoder
  1271. for i in range(vocab_size):
  1272. if i not in reverse_vocab:
  1273. tokens.append(f"[PAD{i}]")
  1274. toktypes.append(gguf.TokenType.UNUSED)
  1275. else:
  1276. token: str = reverse_vocab[i]
  1277. if token in added_vocab:
  1278. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  1279. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  1280. if not added_tokens_decoder[i].normalized:
  1281. previous_token = token
  1282. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  1283. if previous_token != token:
  1284. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  1285. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  1286. toktypes.append(gguf.TokenType.CONTROL)
  1287. else:
  1288. toktypes.append(gguf.TokenType.USER_DEFINED)
  1289. else:
  1290. toktypes.append(gguf.TokenType.NORMAL)
  1291. tokens.append(token)
  1292. self.gguf_writer.add_tokenizer_model("gpt2")
  1293. self.gguf_writer.add_tokenizer_pre(tokpre)
  1294. self.gguf_writer.add_token_list(tokens)
  1295. self.gguf_writer.add_token_types(toktypes)
  1296. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1297. special_vocab._set_special_token("bos", 151643)
  1298. special_vocab.add_to_gguf(self.gguf_writer)
  1299. class MmprojModel(ModelBase):
  1300. model_type = ModelType.MMPROJ
  1301. model_arch = gguf.MODEL_ARCH.MMPROJ
  1302. preprocessor_config: dict[str, Any]
  1303. global_config: dict[str, Any]
  1304. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]
  1305. has_vision_encoder: bool = True # by default
  1306. has_audio_encoder: bool = False
  1307. # for models having multiple encoders, we need to separate their hparams
  1308. hparams_vision: dict[str, Any] | None = None
  1309. hparams_audio: dict[str, Any] | None = None
  1310. def __init__(self, *args, **kwargs):
  1311. super().__init__(*args, **kwargs)
  1312. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1313. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1314. # get n_embd of the text model
  1315. if not self.is_mistral_format:
  1316. if "text_config" not in self.hparams:
  1317. self.hparams["text_config"] = {}
  1318. if "audio_config" not in self.hparams:
  1319. self.hparams["audio_config"] = {}
  1320. text_config = {**self.hparams, **self.hparams["text_config"]}
  1321. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1322. else:
  1323. text_config = {
  1324. k: v for k, v in self.hparams.items() if k not in ["vision_encoder", "audio_encoder"]
  1325. }
  1326. self.n_embd_text = text_config.get("hidden_dim", 0)
  1327. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1328. # move vision config to the top level, while preserving the original hparams in global_config
  1329. import copy
  1330. self.global_config = copy.deepcopy(self.hparams)
  1331. self.hparams_vision = self.get_vision_config()
  1332. self.hparams_audio = self.get_audio_config()
  1333. if self.hparams_vision is None and self.hparams_audio is None:
  1334. raise ValueError("vision_config / audio_config not found in hparams")
  1335. # for compat with vision-only models
  1336. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1337. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1338. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1339. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1340. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1341. # load preprocessor config
  1342. self.preprocessor_config = {}
  1343. if not self.is_mistral_format:
  1344. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  1345. self.preprocessor_config = json.load(f)
  1346. def get_vision_config(self) -> dict[str, Any] | None:
  1347. config_name = "vision_config" if not self.is_mistral_format else "vision_encoder"
  1348. return self.global_config.get(config_name)
  1349. def get_audio_config(self) -> dict[str, Any] | None:
  1350. return self.global_config.get("audio_config")
  1351. def set_type(self):
  1352. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1353. def prepare_metadata(self, vocab_only: bool):
  1354. super().prepare_metadata(vocab_only=vocab_only)
  1355. output_type: str = self.ftype.name.partition("_")[2]
  1356. if self.fname_out.is_dir():
  1357. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=output_type, model_type=None)
  1358. self.fname_out = self.fname_out / f"mmproj-{fname_default}.gguf"
  1359. else:
  1360. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  1361. def set_gguf_parameters(self):
  1362. self.gguf_writer.add_file_type(self.ftype)
  1363. if self.has_vision_encoder:
  1364. self.gguf_writer.add_clip_has_vision_encoder(True)
  1365. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1366. # vision config
  1367. self.image_size = self.find_vparam(["image_size"])
  1368. self.gguf_writer.add_vision_image_size(self.image_size)
  1369. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1370. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1371. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1372. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1373. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads", "num_heads"]))
  1374. # preprocessor config
  1375. image_mean = _MISTRAL_COMMON_DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"]
  1376. image_std = _MISTRAL_COMMON_DATASET_STD if self.is_mistral_format else self.preprocessor_config["image_std"]
  1377. self.gguf_writer.add_vision_image_mean(image_mean)
  1378. self.gguf_writer.add_vision_image_std(image_std)
  1379. if self.has_audio_encoder:
  1380. self.gguf_writer.add_clip_has_audio_encoder(True)
  1381. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1382. # audio config
  1383. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1384. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1385. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1386. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1387. if not self.has_vision_encoder and not self.has_audio_encoder:
  1388. raise ValueError("MmprojModel must have either vision or audio encoder")
  1389. def write_vocab(self):
  1390. raise ValueError("MmprojModel does not support vocab writing")
  1391. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1392. assert self.hparams_vision is not None
  1393. return self._find_param(self.hparams_vision, keys, optional)
  1394. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1395. assert self.hparams_audio is not None
  1396. return self._find_param(self.hparams_audio, keys, optional)
  1397. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1398. key = next((k for k in keys if k in obj), None)
  1399. if key is not None:
  1400. return obj[key]
  1401. if optional:
  1402. return None
  1403. raise KeyError(f"could not find any of: {keys}")
  1404. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1405. del bid, name, n_dims # unused
  1406. if ".patch_embd.weight" in new_name:
  1407. return gguf.GGMLQuantizationType.F16 if self.ftype == gguf.LlamaFileType.MOSTLY_F16 else gguf.GGMLQuantizationType.F32
  1408. return False
  1409. @ModelBase.register("GPTNeoXForCausalLM")
  1410. class GPTNeoXModel(TextModel):
  1411. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1412. def set_gguf_parameters(self):
  1413. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1414. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1415. self.gguf_writer.add_block_count(self.block_count)
  1416. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1417. self.gguf_writer.add_rope_dimension_count(
  1418. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1419. )
  1420. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1421. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1422. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1423. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1424. del bid # unused
  1425. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1426. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1427. tensors: list[tuple[str, Tensor]] = []
  1428. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1429. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1430. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1431. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1432. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1433. data_torch = torch.cat(
  1434. (
  1435. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1436. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1437. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1438. ),
  1439. dim=0,
  1440. )
  1441. logger.info("re-format attention.linear_qkv.weight")
  1442. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1443. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1444. data_torch = torch.cat(
  1445. (
  1446. qkv_bias[:, 0, :].reshape((n_embed,)),
  1447. qkv_bias[:, 1, :].reshape((n_embed,)),
  1448. qkv_bias[:, 2, :].reshape((n_embed,)),
  1449. ),
  1450. dim=0,
  1451. )
  1452. logger.info("re-format attention.linear_qkv.bias")
  1453. tensors.append((self.map_tensor_name(name), data_torch))
  1454. return tensors
  1455. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1456. class BloomModel(TextModel):
  1457. model_arch = gguf.MODEL_ARCH.BLOOM
  1458. def set_gguf_parameters(self):
  1459. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1460. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1461. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1462. self.gguf_writer.add_embedding_length(n_embed)
  1463. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1464. self.gguf_writer.add_block_count(self.block_count)
  1465. self.gguf_writer.add_head_count(n_head)
  1466. self.gguf_writer.add_head_count_kv(n_head)
  1467. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1468. self.gguf_writer.add_file_type(self.ftype)
  1469. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1470. del bid # unused
  1471. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1472. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1473. name = re.sub(r'transformer\.', '', name)
  1474. tensors: list[tuple[str, Tensor]] = []
  1475. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1476. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1477. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1478. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1479. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1480. data_torch = torch.cat(
  1481. (
  1482. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1483. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1484. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1485. ),
  1486. dim=0,
  1487. )
  1488. logger.info("re-format attention.linear_qkv.weight")
  1489. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1490. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1491. data_torch = torch.cat(
  1492. (
  1493. qkv_bias[:, 0, :].reshape((n_embed,)),
  1494. qkv_bias[:, 1, :].reshape((n_embed,)),
  1495. qkv_bias[:, 2, :].reshape((n_embed,)),
  1496. ),
  1497. dim=0,
  1498. )
  1499. logger.info("re-format attention.linear_qkv.bias")
  1500. tensors.append((self.map_tensor_name(name), data_torch))
  1501. return tensors
  1502. @ModelBase.register("MPTForCausalLM")
  1503. class MPTModel(TextModel):
  1504. model_arch = gguf.MODEL_ARCH.MPT
  1505. def set_vocab(self):
  1506. try:
  1507. self._set_vocab_gpt2()
  1508. except Exception:
  1509. # Fallback for SEA-LION model
  1510. self._set_vocab_sentencepiece()
  1511. self.gguf_writer.add_add_bos_token(False)
  1512. self.gguf_writer.add_pad_token_id(3)
  1513. self.gguf_writer.add_eos_token_id(1)
  1514. self.gguf_writer.add_unk_token_id(0)
  1515. def set_gguf_parameters(self):
  1516. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1517. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1518. self.gguf_writer.add_block_count(self.block_count)
  1519. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1520. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1521. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1522. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1523. self.gguf_writer.add_layer_norm_eps(1e-5)
  1524. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1525. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1526. if self.hparams["attn_config"]["alibi"]:
  1527. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1528. else:
  1529. self.gguf_writer.add_max_alibi_bias(0.0)
  1530. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1531. del bid # unused
  1532. if "scales" in name:
  1533. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1534. new_name = new_name.replace("scales", "act.scales")
  1535. else:
  1536. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1537. return [(new_name, data_torch)]
  1538. @ModelBase.register("OrionForCausalLM")
  1539. class OrionModel(TextModel):
  1540. model_arch = gguf.MODEL_ARCH.ORION
  1541. def set_vocab(self):
  1542. self._set_vocab_sentencepiece()
  1543. def set_gguf_parameters(self):
  1544. head_count = self.hparams["num_attention_heads"]
  1545. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1546. ctx_length = 0
  1547. if "max_sequence_length" in self.hparams:
  1548. ctx_length = self.hparams["max_sequence_length"]
  1549. elif "max_position_embeddings" in self.hparams:
  1550. ctx_length = self.hparams["max_position_embeddings"]
  1551. elif "model_max_length" in self.hparams:
  1552. ctx_length = self.hparams["model_max_length"]
  1553. else:
  1554. raise ValueError("gguf: can not find ctx length parameter.")
  1555. self.gguf_writer.add_file_type(self.ftype)
  1556. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1557. self.gguf_writer.add_context_length(ctx_length)
  1558. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1559. self.gguf_writer.add_block_count(self.block_count)
  1560. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1561. self.gguf_writer.add_head_count(head_count)
  1562. self.gguf_writer.add_head_count_kv(head_count_kv)
  1563. # note: config provides rms norm but it is actually layer norm
  1564. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1565. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1566. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1567. class BaichuanModel(TextModel):
  1568. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1569. def set_vocab(self):
  1570. self._set_vocab_sentencepiece()
  1571. def set_gguf_parameters(self):
  1572. head_count = self.hparams["num_attention_heads"]
  1573. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1574. ctx_length = 0
  1575. if "max_sequence_length" in self.hparams:
  1576. ctx_length = self.hparams["max_sequence_length"]
  1577. elif "max_position_embeddings" in self.hparams:
  1578. ctx_length = self.hparams["max_position_embeddings"]
  1579. elif "model_max_length" in self.hparams:
  1580. ctx_length = self.hparams["model_max_length"]
  1581. else:
  1582. raise ValueError("gguf: can not find ctx length parameter.")
  1583. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1584. self.gguf_writer.add_context_length(ctx_length)
  1585. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1586. self.gguf_writer.add_block_count(self.block_count)
  1587. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1588. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1589. self.gguf_writer.add_head_count(head_count)
  1590. self.gguf_writer.add_head_count_kv(head_count_kv)
  1591. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1592. self.gguf_writer.add_file_type(self.ftype)
  1593. rope_scaling = self.hparams.get("rope_scaling") or {}
  1594. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1595. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1596. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1597. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1598. head_count = self.hparams["num_attention_heads"]
  1599. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1600. tensors: list[tuple[str, Tensor]] = []
  1601. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1602. logger.info(f"Unpacking and permuting layer {bid}")
  1603. tensors = [
  1604. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1605. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1606. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1607. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1608. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1609. self._reverse_hf_part(data_torch, 2)),
  1610. ]
  1611. else:
  1612. tensors = [(self.map_tensor_name(name), data_torch)]
  1613. return tensors
  1614. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1615. if n_kv_head is not None and n_head != n_kv_head:
  1616. n_head //= n_kv_head
  1617. return (
  1618. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1619. .swapaxes(1, 2)
  1620. .reshape(weights.shape)
  1621. )
  1622. def _reverse_hf_permute_part(
  1623. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1624. ) -> Tensor:
  1625. r = weights.shape[0] // 3
  1626. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1627. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1628. r = weights.shape[0] // 3
  1629. return weights[r * n_part:r * n_part + r, ...]
  1630. @ModelBase.register("XverseForCausalLM")
  1631. class XverseModel(TextModel):
  1632. model_arch = gguf.MODEL_ARCH.XVERSE
  1633. def set_vocab(self):
  1634. assert (self.dir_model / "tokenizer.json").is_file()
  1635. dir_model = self.dir_model
  1636. hparams = self.hparams
  1637. tokens: list[bytes] = []
  1638. toktypes: list[int] = []
  1639. from transformers import AutoTokenizer
  1640. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1641. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1642. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1643. # because vocab_size is the count of items, and indexes start at 0.
  1644. max_vocab_index = max(tokenizer.get_vocab().values())
  1645. if max_vocab_index >= vocab_size:
  1646. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1647. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1648. added_vocab = tokenizer.get_added_vocab()
  1649. for token_id in range(vocab_size):
  1650. token_text = reverse_vocab[token_id].encode('utf-8')
  1651. # replace "\x00" to string with length > 0
  1652. if token_text == b"\x00":
  1653. toktype = gguf.TokenType.BYTE # special
  1654. token_text = f"<{token_text}>".encode('utf-8')
  1655. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1656. toktype = gguf.TokenType.BYTE # special
  1657. elif reverse_vocab[token_id] in added_vocab:
  1658. if tokenizer.added_tokens_decoder[token_id].special:
  1659. toktype = gguf.TokenType.CONTROL
  1660. else:
  1661. toktype = gguf.TokenType.USER_DEFINED
  1662. else:
  1663. toktype = gguf.TokenType.NORMAL
  1664. tokens.append(token_text)
  1665. toktypes.append(toktype)
  1666. self.gguf_writer.add_tokenizer_model("llama")
  1667. self.gguf_writer.add_tokenizer_pre("default")
  1668. self.gguf_writer.add_token_list(tokens)
  1669. self.gguf_writer.add_token_types(toktypes)
  1670. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1671. special_vocab.add_to_gguf(self.gguf_writer)
  1672. def set_gguf_parameters(self):
  1673. head_count = self.hparams["num_attention_heads"]
  1674. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1675. ctx_length = 0
  1676. if "max_sequence_length" in self.hparams:
  1677. ctx_length = self.hparams["max_sequence_length"]
  1678. elif "max_position_embeddings" in self.hparams:
  1679. ctx_length = self.hparams["max_position_embeddings"]
  1680. elif "model_max_length" in self.hparams:
  1681. ctx_length = self.hparams["model_max_length"]
  1682. else:
  1683. raise ValueError("gguf: can not find ctx length parameter.")
  1684. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1685. self.gguf_writer.add_context_length(ctx_length)
  1686. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1687. self.gguf_writer.add_block_count(self.block_count)
  1688. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1689. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1690. self.gguf_writer.add_head_count(head_count)
  1691. self.gguf_writer.add_head_count_kv(head_count_kv)
  1692. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1693. self.gguf_writer.add_file_type(self.ftype)
  1694. rope_scaling = self.hparams.get("rope_scaling") or {}
  1695. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1696. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1697. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1698. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1699. del bid # unused
  1700. head_count = self.hparams["num_attention_heads"]
  1701. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1702. # HF models permute some of the tensors, so we need to undo that
  1703. if name.endswith("q_proj.weight"):
  1704. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1705. if name.endswith("k_proj.weight"):
  1706. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1707. return [(self.map_tensor_name(name), data_torch)]
  1708. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1709. if n_kv_head is not None and n_head != n_kv_head:
  1710. n_head //= n_kv_head
  1711. return (
  1712. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1713. .swapaxes(1, 2)
  1714. .reshape(weights.shape)
  1715. )
  1716. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1717. class FalconModel(TextModel):
  1718. model_arch = gguf.MODEL_ARCH.FALCON
  1719. def set_gguf_parameters(self):
  1720. n_head = self.hparams.get("num_attention_heads")
  1721. if n_head is None:
  1722. n_head = self.hparams["n_head"] # old name
  1723. n_head_kv = self.hparams.get("num_kv_heads")
  1724. if n_head_kv is None:
  1725. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1726. self.gguf_writer.add_context_length(2048) # not in config.json
  1727. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1728. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1729. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1730. self.gguf_writer.add_block_count(self.block_count)
  1731. self.gguf_writer.add_head_count(n_head)
  1732. self.gguf_writer.add_head_count_kv(n_head_kv)
  1733. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1734. self.gguf_writer.add_file_type(self.ftype)
  1735. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1736. del bid # unused
  1737. # QKV tensor transform
  1738. # The original query_key_value tensor contains n_head_kv "kv groups",
  1739. # each consisting of n_head/n_head_kv query weights followed by one key
  1740. # and one value weight (shared by all query heads in the kv group).
  1741. # This layout makes it a big pain to work with in GGML.
  1742. # So we rearrange them here,, so that we have n_head query weights
  1743. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1744. # in contiguous fashion.
  1745. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1746. if "query_key_value" in name:
  1747. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1748. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1749. head_dim = self.hparams["hidden_size"] // n_head
  1750. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1751. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1752. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1753. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1754. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1755. return [(self.map_tensor_name(name), data_torch)]
  1756. @ModelBase.register("GPTBigCodeForCausalLM")
  1757. class StarCoderModel(TextModel):
  1758. model_arch = gguf.MODEL_ARCH.STARCODER
  1759. def set_gguf_parameters(self):
  1760. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1761. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1762. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1763. self.gguf_writer.add_block_count(self.block_count)
  1764. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1765. self.gguf_writer.add_head_count_kv(1)
  1766. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1767. self.gguf_writer.add_file_type(self.ftype)
  1768. @ModelBase.register("GPTRefactForCausalLM")
  1769. class RefactModel(TextModel):
  1770. model_arch = gguf.MODEL_ARCH.REFACT
  1771. def set_vocab(self):
  1772. super().set_vocab()
  1773. # TODO: how to determine special FIM tokens automatically?
  1774. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1775. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1776. special_vocab._set_special_token("prefix", 1)
  1777. special_vocab._set_special_token("suffix", 3)
  1778. special_vocab._set_special_token("middle", 2)
  1779. special_vocab.chat_template = None # do not add it twice
  1780. special_vocab.add_to_gguf(self.gguf_writer)
  1781. def set_gguf_parameters(self):
  1782. hidden_dim = self.hparams["n_embd"]
  1783. inner_dim = 4 * hidden_dim
  1784. hidden_dim = int(2 * inner_dim / 3)
  1785. multiple_of = 256
  1786. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1787. # refact uses Alibi. So this is from config.json which might be used by training.
  1788. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1789. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1790. self.gguf_writer.add_feed_forward_length(ff_dim)
  1791. self.gguf_writer.add_block_count(self.block_count)
  1792. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1793. self.gguf_writer.add_head_count_kv(1)
  1794. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1795. self.gguf_writer.add_file_type(self.ftype)
  1796. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1797. hidden_dim = self.hparams["n_embd"]
  1798. inner_dim = 4 * hidden_dim
  1799. hidden_dim = int(2 * inner_dim / 3)
  1800. multiple_of = 256
  1801. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1802. n_head = self.hparams["n_head"]
  1803. n_head_kv = 1
  1804. head_dim = self.hparams["n_embd"] // n_head
  1805. tensors: list[tuple[str, Tensor]] = []
  1806. if bid is not None:
  1807. if name == f"transformer.h.{bid}.attn.kv.weight":
  1808. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1809. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1810. elif name == f"transformer.h.{bid}.attn.q.weight":
  1811. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1812. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1813. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1814. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1815. if len(tensors) == 0:
  1816. tensors.append((self.map_tensor_name(name), data_torch))
  1817. return tensors
  1818. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1819. class StableLMModel(TextModel):
  1820. model_arch = gguf.MODEL_ARCH.STABLELM
  1821. def set_vocab(self):
  1822. if (self.dir_model / "tokenizer.json").is_file():
  1823. self._set_vocab_gpt2()
  1824. else:
  1825. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1826. self._set_vocab_qwen()
  1827. def set_gguf_parameters(self):
  1828. hparams = self.hparams
  1829. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1830. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1831. self.gguf_writer.add_block_count(self.block_count)
  1832. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1833. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1834. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1835. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1836. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1837. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1838. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1839. self.gguf_writer.add_file_type(self.ftype)
  1840. _q_norms: list[dict[str, Tensor]] | None = None
  1841. _k_norms: list[dict[str, Tensor]] | None = None
  1842. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1843. n_head = self.hparams["num_attention_heads"]
  1844. n_kv_head = self.hparams["num_key_value_heads"]
  1845. if name.find("q_layernorm.norms") != -1:
  1846. assert bid is not None
  1847. if self._q_norms is None:
  1848. self._q_norms = [{} for _ in range(self.block_count)]
  1849. self._q_norms[bid][name] = data_torch
  1850. if len(self._q_norms[bid]) >= n_head:
  1851. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1852. else:
  1853. return []
  1854. if name.find("k_layernorm.norms") != -1:
  1855. assert bid is not None
  1856. if self._k_norms is None:
  1857. self._k_norms = [{} for _ in range(self.block_count)]
  1858. self._k_norms[bid][name] = data_torch
  1859. if len(self._k_norms[bid]) >= n_kv_head:
  1860. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1861. else:
  1862. return []
  1863. return [(self.map_tensor_name(name), data_torch)]
  1864. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1865. datas: list[Tensor] = []
  1866. # extract the norms in order
  1867. for xid in range(n_head):
  1868. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1869. datas.append(norms[ename])
  1870. del norms[ename]
  1871. data_torch = torch.stack(datas, dim=0)
  1872. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1873. new_name = self.map_tensor_name(merged_name)
  1874. return [(new_name, data_torch)]
  1875. def prepare_tensors(self):
  1876. super().prepare_tensors()
  1877. if self._q_norms is not None or self._k_norms is not None:
  1878. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1879. norms = (
  1880. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1881. ) + (
  1882. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1883. )
  1884. if len(norms) > 0:
  1885. raise ValueError(f"Unprocessed norms: {norms}")
  1886. @ModelBase.register(
  1887. "LLaMAForCausalLM",
  1888. "LlamaForCausalLM",
  1889. "MistralForCausalLM",
  1890. "MixtralForCausalLM",
  1891. "VLlama3ForCausalLM",
  1892. "LlavaForConditionalGeneration",
  1893. "VoxtralForConditionalGeneration",
  1894. "LlamaModel")
  1895. class LlamaModel(TextModel):
  1896. model_arch = gguf.MODEL_ARCH.LLAMA
  1897. undo_permute = True
  1898. def __init__(self, *args, **kwargs):
  1899. super().__init__(*args, **kwargs)
  1900. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1901. if self.hf_arch == "VLlama3ForCausalLM":
  1902. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1903. def _set_vocab_mistral(self):
  1904. if not _mistral_common_installed:
  1905. raise ImportError(_mistral_import_error_msg)
  1906. vocab = MistralVocab(self.dir_model)
  1907. logger.info(
  1908. f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
  1909. )
  1910. self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
  1911. tokens = []
  1912. scores = []
  1913. toktypes = []
  1914. for text, score, toktype in vocab.all_tokens():
  1915. tokens.append(text)
  1916. scores.append(score)
  1917. toktypes.append(toktype)
  1918. assert len(tokens) == vocab.vocab_size, (
  1919. f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
  1920. )
  1921. if vocab.tokenizer_type == MistralTokenizerType.tekken:
  1922. self.gguf_writer.add_tokenizer_pre("tekken")
  1923. self.gguf_writer.add_token_merges(
  1924. vocab.extract_vocab_merges_from_model()
  1925. )
  1926. logger.info(
  1927. f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
  1928. )
  1929. self.gguf_writer.add_bos_token_id(vocab.bos_id)
  1930. self.gguf_writer.add_eos_token_id(vocab.eos_id)
  1931. self.gguf_writer.add_unk_token_id(vocab.unk_id)
  1932. self.gguf_writer.add_pad_token_id(vocab.pad_id)
  1933. self.gguf_writer.add_token_list(tokens)
  1934. self.gguf_writer.add_token_scores(scores)
  1935. self.gguf_writer.add_token_types(toktypes)
  1936. self.gguf_writer.add_vocab_size(vocab.vocab_size)
  1937. self.gguf_writer.add_add_bos_token(True)
  1938. self.gguf_writer.add_add_eos_token(False)
  1939. template_dir = Path(__file__).parent / "models/templates/"
  1940. if not self.is_mistral_format or not self.disable_mistral_community_chat_template:
  1941. # Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
  1942. if self.is_mistral_format:
  1943. logger.info(
  1944. "Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
  1945. "Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
  1946. )
  1947. template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
  1948. self.gguf_writer.add_chat_template(template)
  1949. else:
  1950. logger.info("Not using a Mistral community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
  1951. def set_vocab(self):
  1952. if self.is_mistral_format:
  1953. return self._set_vocab_mistral()
  1954. path_tekken_json = self.dir_model / "tekken.json"
  1955. path_tokenizer_json = self.dir_model / "tokenizer.json"
  1956. if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
  1957. self._set_vocab_mistral()
  1958. try:
  1959. self._set_vocab_sentencepiece()
  1960. except FileNotFoundError:
  1961. try:
  1962. self._set_vocab_llama_hf()
  1963. except (FileNotFoundError, TypeError):
  1964. # Llama 3
  1965. self._set_vocab_gpt2()
  1966. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1967. if self.hparams.get("vocab_size", 32000) == 32016:
  1968. special_vocab = gguf.SpecialVocab(
  1969. self.dir_model, load_merges=False,
  1970. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1971. )
  1972. special_vocab._set_special_token("prefix", 32007)
  1973. special_vocab._set_special_token("suffix", 32008)
  1974. special_vocab._set_special_token("middle", 32009)
  1975. special_vocab._set_special_token("eot", 32010)
  1976. special_vocab.add_to_gguf(self.gguf_writer)
  1977. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1978. if tokenizer_config_file.is_file():
  1979. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1980. tokenizer_config_json = json.load(f)
  1981. if "add_prefix_space" in tokenizer_config_json:
  1982. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1983. # Apply to granite small models only
  1984. if self.hparams.get("vocab_size", 32000) == 49152:
  1985. self.gguf_writer.add_add_bos_token(False)
  1986. def set_gguf_parameters(self):
  1987. super().set_gguf_parameters()
  1988. hparams = self.hparams
  1989. if not self.is_mistral_format:
  1990. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1991. if (rope_dim := hparams.get("head_dim")) is None:
  1992. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1993. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1994. rope_scaling = self.hparams.get("rope_scaling") or {}
  1995. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1996. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1997. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1998. @staticmethod
  1999. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2000. if n_head_kv is not None and n_head != n_head_kv:
  2001. n_head = n_head_kv
  2002. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2003. .swapaxes(1, 2)
  2004. .reshape(weights.shape))
  2005. _experts: list[dict[str, Tensor]] | None = None
  2006. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2007. n_head = self.find_hparam(["n_heads", "num_attention_heads"])
  2008. n_kv_head = self.find_hparam(["n_kv_heads", "num_key_value_heads"])
  2009. vision_prefixes = [
  2010. "vision_encoder.",
  2011. "vision_language_adapter.",
  2012. "patch_merger.",
  2013. "pre_mm_projector_norm",
  2014. ]
  2015. is_multimodal_tensor = "vision_tower" in name \
  2016. or "vision_model" in name \
  2017. or "audio_tower" in name \
  2018. or "model.connector" in name \
  2019. or "multi_modal_projector" in name \
  2020. or any(
  2021. name.startswith(prefix)
  2022. for prefix in vision_prefixes
  2023. )
  2024. if is_multimodal_tensor:
  2025. return [] # skip vision tensors
  2026. elif self.hf_arch == "LlamaModel":
  2027. name = "model." + name
  2028. elif name.startswith("model.text_model"):
  2029. name = name.replace("text_model.", "") # for SmolVLM
  2030. elif name.startswith("language_model."):
  2031. name = name.replace("language_model.", "") # for the rest
  2032. if self.undo_permute:
  2033. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2034. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2035. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2036. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2037. # process the experts separately
  2038. if name.find("block_sparse_moe.experts") != -1:
  2039. n_experts = self.hparams["num_local_experts"]
  2040. assert bid is not None
  2041. if self._experts is None:
  2042. self._experts = [{} for _ in range(self.block_count)]
  2043. self._experts[bid][name] = data_torch
  2044. if len(self._experts[bid]) >= n_experts * 3:
  2045. tensors: list[tuple[str, Tensor]] = []
  2046. # merge the experts into a single 3d tensor
  2047. for wid in ["w1", "w2", "w3"]:
  2048. datas: list[Tensor] = []
  2049. for xid in range(n_experts):
  2050. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2051. datas.append(self._experts[bid][ename])
  2052. del self._experts[bid][ename]
  2053. data_torch = torch.stack(datas, dim=0)
  2054. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2055. new_name = self.map_tensor_name(merged_name)
  2056. tensors.append((new_name, data_torch))
  2057. return tensors
  2058. else:
  2059. return []
  2060. return [(self.map_tensor_name(name), data_torch)]
  2061. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2062. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  2063. if rope_scaling.get("rope_type", '').lower() == "llama3":
  2064. base = self.hparams.get("rope_theta", 10000.0)
  2065. if (dim := self.hparams.get("head_dim")) is None:
  2066. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2067. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2068. factor = rope_scaling.get("factor", 8.0)
  2069. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  2070. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  2071. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2072. low_freq_wavelen = old_context_len / low_freq_factor
  2073. high_freq_wavelen = old_context_len / high_freq_factor
  2074. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  2075. rope_factors = []
  2076. for freq in freqs:
  2077. wavelen = 2 * math.pi / freq
  2078. if wavelen < high_freq_wavelen:
  2079. rope_factors.append(1)
  2080. elif wavelen > low_freq_wavelen:
  2081. rope_factors.append(factor)
  2082. else:
  2083. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2084. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2085. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2086. def prepare_tensors(self):
  2087. super().prepare_tensors()
  2088. if self._experts is not None:
  2089. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2090. experts = [k for d in self._experts for k in d.keys()]
  2091. if len(experts) > 0:
  2092. raise ValueError(f"Unprocessed experts: {experts}")
  2093. @ModelBase.register("ArceeForCausalLM")
  2094. class ArceeModel(LlamaModel):
  2095. model_arch = gguf.MODEL_ARCH.ARCEE
  2096. def set_gguf_parameters(self):
  2097. super().set_gguf_parameters()
  2098. self._try_set_pooling_type()
  2099. rope_scaling = self.hparams.get("rope_scaling") or {}
  2100. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2101. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2102. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2103. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2104. @ModelBase.register("AfmoeForCausalLM")
  2105. class AfmoeModel(LlamaModel):
  2106. model_arch = gguf.MODEL_ARCH.AFMOE
  2107. def set_gguf_parameters(self):
  2108. super().set_gguf_parameters()
  2109. # MoE parameters
  2110. if (n_experts := self.hparams.get("num_experts")) is not None:
  2111. self.gguf_writer.add_expert_count(n_experts)
  2112. if (n_shared_experts := self.hparams.get("num_shared_experts")) is not None:
  2113. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  2114. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2115. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2116. if (n_dense_layers := self.hparams.get("num_dense_layers")) is not None:
  2117. self.gguf_writer.add_leading_dense_block_count(n_dense_layers)
  2118. # Route normalization and scaling
  2119. if (route_norm := self.hparams.get("route_norm")) is not None:
  2120. self.gguf_writer.add_expert_weights_norm(route_norm)
  2121. if (route_scale := self.hparams.get("route_scale")) is not None:
  2122. self.gguf_writer.add_expert_weights_scale(route_scale)
  2123. # Sliding window attention
  2124. if (sliding_window := self.hparams.get("sliding_window")) is not None:
  2125. self.gguf_writer.add_sliding_window(sliding_window)
  2126. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2127. # Handle expert weights - they're already merged in the HF format
  2128. # process the experts separately
  2129. if name.find("mlp.experts") != -1:
  2130. n_experts = self.hparams["num_experts"]
  2131. assert bid is not None
  2132. if self._experts is None:
  2133. self._experts = [{} for _ in range(self.block_count)]
  2134. self._experts[bid][name] = data_torch
  2135. if len(self._experts[bid]) >= n_experts * 3:
  2136. tensors: list[tuple[str, Tensor]] = []
  2137. # merge the experts into a single 3d tensor
  2138. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2139. datas: list[Tensor] = []
  2140. for xid in range(n_experts):
  2141. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2142. datas.append(self._experts[bid][ename_to_retrieve])
  2143. del self._experts[bid][ename_to_retrieve]
  2144. data_torch = torch.stack(datas, dim=0)
  2145. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2146. new_name = self.map_tensor_name(merged_name)
  2147. tensors.append((new_name, data_torch))
  2148. return tensors
  2149. else:
  2150. return []
  2151. if name.endswith(".expert_bias"):
  2152. name = name.replace(".expert_bias", ".expert_bias.bias")
  2153. return [(self.map_tensor_name(name), data_torch)]
  2154. @ModelBase.register(
  2155. "LlavaForConditionalGeneration", # pixtral
  2156. "Mistral3ForConditionalGeneration", # mistral small 3.1
  2157. )
  2158. class LlavaVisionModel(MmprojModel):
  2159. img_break_tok_id = -1
  2160. use_break_tok = True
  2161. def __init__(self, *args, **kwargs):
  2162. super().__init__(*args, **kwargs)
  2163. if self.hparams.get("model_type") == "pixtral":
  2164. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  2165. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  2166. if self.use_break_tok:
  2167. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  2168. elif self.is_mistral_format:
  2169. # hparams is already vision config here so norm_eps is only defined in global_config.
  2170. self.hparams["norm_eps"] = self.global_config.get("norm_eps", None)
  2171. assert self.hparams["norm_eps"] is not None, "norm_eps not found in params.json"
  2172. if self.use_break_tok:
  2173. self.img_break_tok_id = self.find_vparam(["image_break_token_id"])
  2174. else:
  2175. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  2176. logger.info(f"Image break token id: {self.img_break_tok_id}")
  2177. def get_token_id(self, token: str) -> int:
  2178. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2179. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2180. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  2181. for id_, token_data in added_tokens_decoder.items():
  2182. if token_data["content"] == token:
  2183. return int(id_)
  2184. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  2185. def set_gguf_parameters(self):
  2186. super().set_gguf_parameters()
  2187. hparams = self.hparams
  2188. if hparams.get("model_type") == "pixtral":
  2189. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  2190. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2191. # hidden_act
  2192. if hparams["hidden_act"] == "silu":
  2193. self.gguf_writer.add_vision_use_silu(True)
  2194. elif hparams["hidden_act"] == "gelu":
  2195. self.gguf_writer.add_vision_use_gelu(True)
  2196. else:
  2197. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2198. # spatial_merge_size
  2199. if "spatial_merge_size" in self.global_config:
  2200. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  2201. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2202. del bid # unused
  2203. n_head = (
  2204. self.hparams["num_attention_heads"] if not self.is_mistral_format else self.find_vparam(["num_attention_heads"])
  2205. )
  2206. n_kv_head = n_head
  2207. valid_prefixes = (
  2208. "multi_modal_projector.",
  2209. "vision_tower.",
  2210. "vision_encoder.",
  2211. "vision_language_adapter.",
  2212. "patch_merger.",
  2213. "pre_mm_projector_norm",
  2214. )
  2215. if any(name.startswith(prefix) for prefix in valid_prefixes):
  2216. # process vision tensors
  2217. if name.endswith(("q_proj.weight", "q_proj.bias")) and not self.is_mistral_format:
  2218. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2219. if name.endswith(("k_proj.weight", "k_proj.bias")) and not self.is_mistral_format:
  2220. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2221. return [(self.map_tensor_name(name), data_torch)]
  2222. embed_key = "embed_tokens.weight" if not self.is_mistral_format else "tok_embeddings.weight"
  2223. if self.img_break_tok_id > 0 and embed_key in name:
  2224. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  2225. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  2226. img_break_embd = data_torch[self.img_break_tok_id]
  2227. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  2228. return [(self.map_tensor_name(name), img_break_embd)]
  2229. return [] # skip other tensors
  2230. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  2231. class SmolVLMModel(MmprojModel):
  2232. def __init__(self, *args, **kwargs):
  2233. super().__init__(*args, **kwargs)
  2234. if self.hparams["model_type"] == "smolvlm_vision":
  2235. # fix for SmolVLM2, missing some keys in config.json
  2236. # default values are taken from transformers code
  2237. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  2238. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  2239. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  2240. def set_gguf_parameters(self):
  2241. super().set_gguf_parameters()
  2242. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  2243. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  2244. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  2245. self.gguf_writer.add_vision_use_gelu(True)
  2246. # Add the preprocessor longest edge size
  2247. preproc_image_size = self.preprocessor_config.get("size", {}).get("longest_edge", self.image_size)
  2248. self.gguf_writer.add_vision_preproc_image_size(preproc_image_size)
  2249. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2250. if ".embeddings." in name:
  2251. return gguf.GGMLQuantizationType.F32
  2252. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2253. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2254. del bid # unused
  2255. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  2256. if is_vision_tensor:
  2257. return [(self.map_tensor_name(name), data_torch)]
  2258. return [] # skip other tensors
  2259. @ModelBase.register(
  2260. "Llama4ForConditionalGeneration",
  2261. "Llama4ForCausalLM",
  2262. )
  2263. class Llama4Model(LlamaModel):
  2264. model_arch = gguf.MODEL_ARCH.LLAMA4
  2265. undo_permute = False
  2266. def __init__(self, *args, **kwargs):
  2267. super().__init__(*args, **kwargs)
  2268. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  2269. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  2270. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  2271. def set_vocab(self):
  2272. self._set_vocab_gpt2()
  2273. def set_gguf_parameters(self):
  2274. super().set_gguf_parameters()
  2275. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  2276. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  2277. if "layer_types" in self.hparams:
  2278. if all(lt == "full_attention" for lt in self.hparams["layer_types"]):
  2279. # all layers are full attention (for MobileLLM), disable swa
  2280. self.gguf_writer.add_sliding_window(0)
  2281. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2282. if name.startswith("language_model."):
  2283. name = name.replace("language_model.", "")
  2284. # split the gate_up into gate and up
  2285. if "gate_up_proj" in name:
  2286. name_up = name.replace("gate_up_proj", "up_proj.weight")
  2287. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  2288. dim_half = data_torch.shape[-1] // 2
  2289. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  2290. return [
  2291. (self.map_tensor_name(name_gate), gate_proj_weight),
  2292. (self.map_tensor_name(name_up), up_proj_weight)
  2293. ]
  2294. if name.endswith("down_proj"):
  2295. name += ".weight"
  2296. data_torch = data_torch.transpose(-1, -2)
  2297. if "multi_modal_projector" in name or "vision_model" in name:
  2298. return []
  2299. return super().modify_tensors(data_torch, name, bid)
  2300. @ModelBase.register("Llama4ForConditionalGeneration")
  2301. class Llama4VisionModel(MmprojModel):
  2302. def set_gguf_parameters(self):
  2303. super().set_gguf_parameters()
  2304. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  2305. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  2306. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  2307. assert self.hparams["hidden_act"] == "gelu"
  2308. self.gguf_writer.add_vision_use_gelu(True)
  2309. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2310. del bid # unused
  2311. if "multi_modal_projector" in name or "vision_model" in name:
  2312. # process vision tensors
  2313. if "positional_embedding_vlm" in name and ".weight" not in name:
  2314. name += ".weight"
  2315. if "multi_modal_projector.linear_1" in name:
  2316. # despite the name with number postfix, this is a single fully connected layer
  2317. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  2318. return [(self.map_tensor_name(name), data_torch)]
  2319. return []
  2320. @ModelBase.register("Mistral3ForConditionalGeneration")
  2321. class Mistral3Model(LlamaModel):
  2322. model_arch = gguf.MODEL_ARCH.LLAMA
  2323. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2324. name = name.replace("language_model.", "")
  2325. if "multi_modal_projector" in name or "vision_tower" in name:
  2326. return []
  2327. return super().modify_tensors(data_torch, name, bid)
  2328. @ModelBase.register("DeciLMForCausalLM")
  2329. class DeciModel(TextModel):
  2330. model_arch = gguf.MODEL_ARCH.DECI
  2331. @staticmethod
  2332. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  2333. # DeciLM-specific code
  2334. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  2335. return DeciModel._find_multiple(intermediate_size, 256)
  2336. @staticmethod
  2337. def _find_multiple(n: int, k: int) -> int:
  2338. # DeciLM-specific code
  2339. if n % k == 0:
  2340. return n
  2341. return n + k - (n % k)
  2342. def __init__(self, *args, **kwargs):
  2343. super().__init__(*args, **kwargs)
  2344. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2345. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  2346. assert self.block_count == len(_block_configs)
  2347. self._num_kv_heads = list()
  2348. self._num_heads = list()
  2349. _ffn_multipliers = list()
  2350. # ***linear attention layer***
  2351. # if n_heads_in_group is None and replace_with_linear is True
  2352. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  2353. # ***attention-free layer***
  2354. # if n_heads_in_group is None and replace_with_linear is False
  2355. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  2356. # ***normal attention-layer***
  2357. # if n_heads_in_group is not None, then
  2358. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  2359. # _num_heads[il] is num_attention_head
  2360. # ***dummy layer*** for nemotron 253B
  2361. # if n_heads_in_group is None and ffn_mult is None
  2362. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  2363. for il in range(len(_block_configs)):
  2364. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  2365. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  2366. self._num_kv_heads.append(0)
  2367. self._num_heads.append(self.hparams["num_attention_heads"])
  2368. else:
  2369. self._num_kv_heads.append(0)
  2370. self._num_heads.append(0)
  2371. else:
  2372. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  2373. self._num_heads.append(self.hparams["num_attention_heads"])
  2374. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  2375. _ffn_multipliers.append(0.0)
  2376. else:
  2377. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  2378. assert self.block_count == len(self._num_kv_heads)
  2379. assert self.block_count == len(self._num_heads)
  2380. assert self.block_count == len(_ffn_multipliers)
  2381. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2382. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  2383. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  2384. self._ffn_dims: list[int] = [
  2385. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  2386. for multiplier in _ffn_multipliers
  2387. ]
  2388. def set_vocab(self):
  2389. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  2390. # eos_token from '|eot_id|' to '|end_of_text|'
  2391. if self.hparams.get("vocab_size", 128256) == 128256:
  2392. tokens, toktypes, tokpre = self.get_vocab_base()
  2393. self.gguf_writer.add_tokenizer_model("gpt2")
  2394. self.gguf_writer.add_tokenizer_pre(tokpre)
  2395. self.gguf_writer.add_token_list(tokens)
  2396. self.gguf_writer.add_token_types(toktypes)
  2397. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  2398. special_vocab.add_to_gguf(self.gguf_writer)
  2399. else:
  2400. # DeciLM-7B
  2401. self._set_vocab_llama_hf()
  2402. def set_gguf_parameters(self):
  2403. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2404. assert self.block_count == len(self._num_kv_heads)
  2405. assert self.block_count == len(self._num_heads)
  2406. assert self.block_count == len(self._ffn_dims)
  2407. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  2408. self.gguf_writer.add_rope_freq_base(rope_theta)
  2409. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2410. self.gguf_writer.add_head_count(self._num_heads)
  2411. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2412. self.gguf_writer.add_block_count(self.block_count)
  2413. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2414. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2415. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2416. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2417. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2418. self.gguf_writer.add_file_type(self.ftype)
  2419. else: # DeciLM-7B
  2420. super().set_gguf_parameters()
  2421. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  2422. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  2423. assert self.block_count == len(self._num_kv_heads)
  2424. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2425. hparams = self.hparams
  2426. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2427. if (rope_dim := hparams.get("head_dim")) is None:
  2428. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2429. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2430. rope_scaling = self.hparams.get("rope_scaling") or {}
  2431. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2432. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2433. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2434. @staticmethod
  2435. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2436. if n_head_kv is not None and n_head != n_head_kv:
  2437. n_head = n_head_kv
  2438. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2439. .swapaxes(1, 2)
  2440. .reshape(weights.shape))
  2441. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2442. n_head = self.hparams["num_attention_heads"]
  2443. if bid is not None:
  2444. if "num_key_value_heads_per_layer" in self.hparams:
  2445. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  2446. elif "block_configs" in self.hparams:
  2447. n_kv_head = self._num_kv_heads[bid]
  2448. n_head = self._num_heads[bid]
  2449. else:
  2450. n_kv_head = self.hparams.get("num_key_value_heads")
  2451. else:
  2452. n_kv_head = self.hparams.get("num_key_value_heads")
  2453. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2454. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  2455. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2456. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  2457. return [(self.map_tensor_name(name), data_torch)]
  2458. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2459. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  2460. if rope_scaling.get("rope_type", '').lower() == "llama3":
  2461. base = self.hparams.get("rope_theta", 10000.0)
  2462. if (dim := self.hparams.get("head_dim")) is None:
  2463. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2464. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2465. factor = rope_scaling.get("factor", 8.0)
  2466. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  2467. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  2468. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2469. low_freq_wavelen = old_context_len / low_freq_factor
  2470. high_freq_wavelen = old_context_len / high_freq_factor
  2471. assert low_freq_wavelen != high_freq_wavelen
  2472. rope_factors = []
  2473. for freq in freqs:
  2474. wavelen = 2 * math.pi / freq
  2475. if wavelen < high_freq_wavelen:
  2476. rope_factors.append(1)
  2477. elif wavelen > low_freq_wavelen:
  2478. rope_factors.append(factor)
  2479. else:
  2480. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2481. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2482. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2483. def prepare_tensors(self):
  2484. super().prepare_tensors()
  2485. @ModelBase.register("BitnetForCausalLM")
  2486. class BitnetModel(TextModel):
  2487. model_arch = gguf.MODEL_ARCH.BITNET
  2488. def set_vocab(self):
  2489. self._set_vocab_sentencepiece()
  2490. def set_gguf_parameters(self):
  2491. super().set_gguf_parameters()
  2492. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2493. self.gguf_writer.add_rope_scaling_factor(1.0)
  2494. def weight_quant(self, weight: Tensor) -> Tensor:
  2495. dtype = weight.dtype
  2496. weight = weight.float()
  2497. scale = weight.abs().mean().clamp(min=1e-5)
  2498. iscale = 1 / scale
  2499. # TODO: multiply by the scale directly instead of inverting it twice
  2500. # (this is also unnecessarily doubly inverted upstream)
  2501. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2502. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2503. return result.type(dtype)
  2504. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2505. new_name = self.map_tensor_name(name)
  2506. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2507. gguf.MODEL_TENSOR.ATTN_Q,
  2508. gguf.MODEL_TENSOR.ATTN_K,
  2509. gguf.MODEL_TENSOR.ATTN_V,
  2510. gguf.MODEL_TENSOR.ATTN_OUT,
  2511. gguf.MODEL_TENSOR.FFN_UP,
  2512. gguf.MODEL_TENSOR.FFN_DOWN,
  2513. gguf.MODEL_TENSOR.FFN_GATE,
  2514. ]):
  2515. # transform weight into 1/0/-1 (in fp32)
  2516. data_torch = self.weight_quant(data_torch)
  2517. yield (new_name, data_torch)
  2518. @ModelBase.register("GrokForCausalLM", "Grok1ForCausalLM")
  2519. class GrokModel(TextModel):
  2520. model_arch = gguf.MODEL_ARCH.GROK
  2521. def set_vocab(self):
  2522. if (self.dir_model / 'tokenizer.model').is_file():
  2523. self._set_vocab_sentencepiece()
  2524. return
  2525. if not (self.dir_model / 'tokenizer.json').is_file() or not (self.dir_model / 'chat_template.jinja').is_file():
  2526. logger.error('Error: Missing vocab and chat template, download files from https://huggingface.co/alvarobartt/grok-2-tokenizer')
  2527. sys.exit(1)
  2528. self._set_vocab_gpt2()
  2529. def __init__(self, *args, **kwargs):
  2530. super().__init__(*args, **kwargs)
  2531. def set_gguf_parameters(self):
  2532. super().set_gguf_parameters()
  2533. self.gguf_writer.add_attn_logit_softcapping(self.hparams.get("attn_logit_softcapping", 30.0))
  2534. self.gguf_writer.add_router_logit_softcapping(self.hparams.get("router_logit_softcapping", 30.0))
  2535. if (final_logit_softcap := self.hparams.get("final_logit_softcapping")):
  2536. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  2537. if (rope_dim := self.hparams.get("head_dim")) is None:
  2538. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2539. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2540. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2541. # Treat "original" as "yarn", seems to have been a mistake
  2542. if self.hparams.get("rope_type") in ("yarn", "original"):
  2543. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2544. self.gguf_writer.add_rope_scaling_factor(self.hparams["scaling_factor"])
  2545. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["original_max_position_embeddings"])
  2546. self.gguf_writer.add_rope_scaling_yarn_ext_factor(self.hparams["extrapolation_factor"])
  2547. self.gguf_writer.add_rope_scaling_yarn_attn_factor(self.hparams["attn_factor"])
  2548. self.gguf_writer.add_rope_scaling_yarn_beta_fast(self.hparams["beta_fast"])
  2549. self.gguf_writer.add_rope_scaling_yarn_beta_slow(self.hparams["beta_slow"])
  2550. if temp_len := self.hparams.get("attn_temperature_len"):
  2551. self.gguf_writer.add_attn_temperature_length(temp_len)
  2552. self.gguf_writer.add_attn_output_scale(self.hparams.get("attn_output_multiplier", rope_dim**-0.5))
  2553. self.gguf_writer.add_embedding_scale(self.hparams["embedding_multiplier_scale"])
  2554. self.gguf_writer.add_logit_scale(self.hparams["output_multiplier_scale"])
  2555. _experts: list[dict[str, list[Tensor]]] | None = None
  2556. _cur_expert = ""
  2557. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2558. tensors: list[tuple[str, Tensor]] = []
  2559. is_expert = ".moe." in name or ".block_sparse_moe.experts." in name
  2560. if not is_expert:
  2561. tensors.append((self.map_tensor_name(name), data_torch))
  2562. # process the experts separately
  2563. if is_expert or self._cur_expert:
  2564. n_experts = self.hparams["num_local_experts"]
  2565. assert bid is not None
  2566. if self._experts is None:
  2567. self._experts = [{} for _ in range(self.block_count)]
  2568. # concatenate split tensors
  2569. if name in self._experts[bid]:
  2570. self._cur_expert = name
  2571. self._experts[bid][name].append(data_torch)
  2572. return []
  2573. elif is_expert:
  2574. self._cur_expert = name
  2575. self._experts[bid][name] = [data_torch]
  2576. return []
  2577. else:
  2578. self._cur_expert = ""
  2579. for bid in range(self.block_count):
  2580. if len(self._experts[bid]) >= n_experts * 3:
  2581. # merge the experts into a single 3d tensor
  2582. for wid in [("linear", "w1", 0), ("linear_1", "w2", 1), ("linear_v", "w3", 0)]:
  2583. datas: list[Tensor] = []
  2584. for xid in range(n_experts):
  2585. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid[0]}.weight"
  2586. if ename not in self._experts[bid]:
  2587. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid[1]}.weight"
  2588. tensor_list = self._experts[bid][ename]
  2589. datas.append(torch.cat(tensor_list, dim=wid[2]) if len(tensor_list) > 1 else tensor_list[0])
  2590. del self._experts[bid][ename]
  2591. data_torch = torch.stack(datas, dim=0)
  2592. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid[0]}.weight"
  2593. new_name = self.map_tensor_name(merged_name)
  2594. yield (new_name, data_torch)
  2595. yield from tensors
  2596. @ModelBase.register("DbrxForCausalLM")
  2597. class DbrxModel(TextModel):
  2598. model_arch = gguf.MODEL_ARCH.DBRX
  2599. def set_gguf_parameters(self):
  2600. ffn_config = self.hparams["ffn_config"]
  2601. attn_config = self.hparams["attn_config"]
  2602. self.gguf_writer.add_block_count(self.block_count)
  2603. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2604. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2605. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2606. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2607. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2608. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2609. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2610. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2611. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2612. self.gguf_writer.add_layer_norm_eps(1e-5)
  2613. self.gguf_writer.add_file_type(self.ftype)
  2614. logger.info(f"gguf: file type = {self.ftype}")
  2615. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2616. del bid # unused
  2617. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2618. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2619. n_embd = self.hparams["d_model"]
  2620. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2621. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2622. # But llama.cpp moe graph works differently
  2623. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2624. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2625. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2626. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2627. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2628. experts = False
  2629. for exp_tensor_name in exp_tensor_names.keys():
  2630. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2631. experts = True
  2632. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2633. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2634. data_torch = data_torch.permute(*permute_tensor)
  2635. break
  2636. # map tensor names
  2637. # In MoE models the ffn tensors are typically most of the model weights,
  2638. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2639. # Every other model has the weight names ending in .weight,
  2640. # let's assume that is the convention which is not the case for dbrx:
  2641. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2642. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2643. return [(new_name, data_torch)]
  2644. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2645. del name, new_name, bid # unused
  2646. return n_dims > 1
  2647. @ModelBase.register("MiniCPMForCausalLM")
  2648. class MiniCPMModel(TextModel):
  2649. model_arch = gguf.MODEL_ARCH.MINICPM
  2650. def set_gguf_parameters(self):
  2651. super().set_gguf_parameters()
  2652. embedding_scale = float(self.hparams["scale_emb"])
  2653. self.gguf_writer.add_embedding_scale(embedding_scale)
  2654. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2655. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2656. self.gguf_writer.add_residual_scale(residual_scale)
  2657. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2658. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2659. self.gguf_writer.add_logit_scale(logit_scale)
  2660. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2661. rope_scaling = self.hparams.get("rope_scaling") or {}
  2662. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
  2663. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  2664. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  2665. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2666. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2667. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2668. if rope_scaling is not None:
  2669. long_factors = rope_scaling.get('long_factor', None)
  2670. short_factors = rope_scaling.get('short_factor', None)
  2671. if long_factors is None or short_factors is None:
  2672. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2673. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2674. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2675. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2676. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2677. def set_vocab(self):
  2678. self._set_vocab_sentencepiece()
  2679. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2680. del bid # unused
  2681. n_head = self.hparams["num_attention_heads"]
  2682. n_kv_head = self.hparams.get("num_key_value_heads")
  2683. # HF models permute some of the tensors, so we need to undo that
  2684. if name.endswith(("q_proj.weight")):
  2685. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2686. if name.endswith(("k_proj.weight")):
  2687. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2688. return [(self.map_tensor_name(name), data_torch)]
  2689. @ModelBase.register("MiniCPM3ForCausalLM")
  2690. class MiniCPM3Model(TextModel):
  2691. model_arch = gguf.MODEL_ARCH.MINICPM3
  2692. def set_gguf_parameters(self):
  2693. hparams = self.hparams
  2694. self.gguf_writer.add_file_type(self.ftype)
  2695. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2696. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2697. self.gguf_writer.add_block_count(self.block_count)
  2698. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2699. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2700. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2701. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2702. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2703. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2704. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2705. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2706. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2707. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2708. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2709. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2710. if rope_scaling is not None:
  2711. rope_dims = self.hparams["qk_rope_head_dim"]
  2712. long_factors = rope_scaling.get('long_factor', None)
  2713. short_factors = rope_scaling.get('short_factor', None)
  2714. if long_factors is None or short_factors is None:
  2715. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2716. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2717. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2718. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2719. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2720. def set_vocab(self):
  2721. self._set_vocab_sentencepiece()
  2722. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2723. if n_kv_head is not None and n_head != n_kv_head:
  2724. n_head //= n_kv_head
  2725. return (
  2726. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2727. .swapaxes(1, 2)
  2728. .reshape(weights.shape)
  2729. )
  2730. @ModelBase.register("QWenLMHeadModel")
  2731. class QwenModel(TextModel):
  2732. model_arch = gguf.MODEL_ARCH.QWEN
  2733. @staticmethod
  2734. def token_bytes_to_string(b):
  2735. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2736. byte_encoder = bytes_to_unicode()
  2737. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2738. @staticmethod
  2739. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2740. parts = [bytes([b]) for b in token]
  2741. while True:
  2742. min_idx = None
  2743. min_rank = None
  2744. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2745. rank = mergeable_ranks.get(pair[0] + pair[1])
  2746. if rank is not None and (min_rank is None or rank < min_rank):
  2747. min_idx = i
  2748. min_rank = rank
  2749. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2750. break
  2751. assert min_idx is not None
  2752. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2753. return parts
  2754. def set_vocab(self):
  2755. self._set_vocab_qwen()
  2756. def set_gguf_parameters(self):
  2757. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2758. self.gguf_writer.add_block_count(self.block_count)
  2759. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2760. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2761. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2762. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2763. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2764. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2765. self.gguf_writer.add_file_type(self.ftype)
  2766. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
  2767. class Qwen2Model(TextModel):
  2768. model_arch = gguf.MODEL_ARCH.QWEN2
  2769. def set_vocab(self):
  2770. try:
  2771. self._set_vocab_sentencepiece()
  2772. except FileNotFoundError:
  2773. self._set_vocab_gpt2()
  2774. def set_gguf_parameters(self):
  2775. super().set_gguf_parameters()
  2776. self._try_set_pooling_type()
  2777. rope_scaling = self.hparams.get("rope_scaling") or {}
  2778. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2779. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2780. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2781. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2782. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2783. if self.hf_arch == "Qwen2Model":
  2784. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2785. if "language_model." in name:
  2786. name = name.replace("language_model.", "") # for InternVL
  2787. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2788. or name.startswith("vision_model") or name.startswith("audio_tower") \
  2789. or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  2790. # skip vision and audio tensors
  2791. return []
  2792. yield from super().modify_tensors(data_torch, name, bid)
  2793. @ModelBase.register("DreamModel")
  2794. class DreamModel(TextModel):
  2795. model_arch = gguf.MODEL_ARCH.DREAM
  2796. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2797. tokens: list[str] = []
  2798. toktypes: list[int] = []
  2799. from transformers import AutoTokenizer
  2800. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2801. vocab_dict = tokenizer.get_vocab()
  2802. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2803. assert max(vocab_dict.values()) < vocab_size
  2804. tokpre = self.get_vocab_base_pre(tokenizer)
  2805. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2806. added_vocab = tokenizer.get_added_vocab()
  2807. for i in range(vocab_size):
  2808. if i not in reverse_vocab:
  2809. tokens.append(f"[PAD{i}]")
  2810. toktypes.append(gguf.TokenType.UNUSED)
  2811. elif reverse_vocab[i] in added_vocab:
  2812. tokens.append(reverse_vocab[i])
  2813. # Check if it's a special token - treat special tokens as CONTROL tokens
  2814. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2815. if tokenizer.added_tokens_decoder[i].special:
  2816. toktypes.append(gguf.TokenType.CONTROL)
  2817. else:
  2818. toktypes.append(gguf.TokenType.USER_DEFINED)
  2819. else:
  2820. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2821. toktypes.append(gguf.TokenType.CONTROL)
  2822. else:
  2823. tokens.append(reverse_vocab[i])
  2824. toktypes.append(gguf.TokenType.NORMAL)
  2825. return tokens, toktypes, tokpre
  2826. def set_vocab(self):
  2827. try:
  2828. self._set_vocab_sentencepiece()
  2829. except FileNotFoundError:
  2830. self._set_vocab_gpt2()
  2831. def set_gguf_parameters(self):
  2832. super().set_gguf_parameters()
  2833. self._try_set_pooling_type()
  2834. # Dream models use non-causal attention for diffusion
  2835. self.gguf_writer.add_causal_attention(False)
  2836. # Handle RoPE scaling similar to Qwen2
  2837. rope_scaling = self.hparams.get("rope_scaling") or {}
  2838. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2839. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2840. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2841. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2842. # Add Dream-specific parameters
  2843. mask_token_id = self.hparams.get("mask_token_id")
  2844. if mask_token_id is not None:
  2845. self.gguf_writer.add_mask_token_id(mask_token_id)
  2846. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2847. # Dream model tensors should be mapped directly since it's the base model
  2848. yield from super().modify_tensors(data_torch, name, bid)
  2849. @ModelBase.register("LLaDAModelLM")
  2850. class LLaDAModel(TextModel):
  2851. model_arch = gguf.MODEL_ARCH.LLADA
  2852. undo_permute = True
  2853. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2854. tokens: list[str] = []
  2855. toktypes: list[int] = []
  2856. from transformers import AutoTokenizer
  2857. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2858. vocab_dict = tokenizer.get_vocab()
  2859. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2860. assert max(vocab_dict.values()) < vocab_size
  2861. tokpre = self.get_vocab_base_pre(tokenizer)
  2862. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2863. added_vocab = tokenizer.get_added_vocab()
  2864. for i in range(vocab_size):
  2865. if i not in reverse_vocab:
  2866. tokens.append(f"[PAD{i}]")
  2867. toktypes.append(gguf.TokenType.UNUSED)
  2868. elif reverse_vocab[i] in added_vocab:
  2869. tokens.append(reverse_vocab[i])
  2870. # Check if it's a special token - treat special tokens as CONTROL tokens
  2871. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2872. if tokenizer.added_tokens_decoder[i].special:
  2873. toktypes.append(gguf.TokenType.CONTROL)
  2874. else:
  2875. toktypes.append(gguf.TokenType.USER_DEFINED)
  2876. else:
  2877. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2878. toktypes.append(gguf.TokenType.CONTROL)
  2879. else:
  2880. tokens.append(reverse_vocab[i])
  2881. toktypes.append(gguf.TokenType.NORMAL)
  2882. return tokens, toktypes, tokpre
  2883. def set_vocab(self):
  2884. self._set_vocab_gpt2()
  2885. # LLaDA specific parameters
  2886. self.gguf_writer.add_add_bos_token(True)
  2887. def set_gguf_parameters(self):
  2888. super().set_gguf_parameters()
  2889. self._try_set_pooling_type()
  2890. # Add parameters similar to LlamaModel
  2891. hparams = self.hparams
  2892. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2893. if (rope_dim := hparams.get("head_dim")) is None:
  2894. n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
  2895. rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
  2896. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2897. # Set context length for LLaDA
  2898. context_length = self.hparams.get("max_sequence_length", 4096)
  2899. self.gguf_writer.add_context_length(context_length)
  2900. # Set embedding length (dimension size)
  2901. embedding_length = self.hparams.get("d_model", 4096)
  2902. self.gguf_writer.add_embedding_length(embedding_length)
  2903. # Set feed forward length (MLP hidden size)
  2904. feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
  2905. self.gguf_writer.add_feed_forward_length(feed_forward_length)
  2906. # LLaDA models use non-causal attention for diffusion, similar to Dream
  2907. self.gguf_writer.add_causal_attention(False)
  2908. # LLaDA models don't shift their logits
  2909. self.gguf_writer.add_diffusion_shift_logits(False)
  2910. @staticmethod
  2911. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2912. if n_head_kv is not None and n_head != n_head_kv:
  2913. n_head = n_head_kv
  2914. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2915. .swapaxes(1, 2)
  2916. .reshape(weights.shape))
  2917. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2918. n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
  2919. n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
  2920. if self.undo_permute:
  2921. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2922. data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
  2923. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2924. data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
  2925. # LLaDA model tensors should be mapped directly since it's the base model
  2926. yield from super().modify_tensors(data_torch, name, bid)
  2927. @ModelBase.register("Ernie4_5_ForCausalLM", "Ernie4_5ForCausalLM")
  2928. class Ernie4_5Model(TextModel):
  2929. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  2930. def set_vocab(self):
  2931. self._set_vocab_sentencepiece()
  2932. def set_gguf_parameters(self):
  2933. super().set_gguf_parameters()
  2934. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2935. num_heads = self.hparams["num_attention_heads"]
  2936. num_kv_heads = self.hparams["num_key_value_heads"]
  2937. if (head_dim := self.hparams.get("head_dim")) is None:
  2938. head_dim = self.hparams["hidden_size"] // num_heads
  2939. if "ernie." in name:
  2940. name = name.replace("ernie.", "model.")
  2941. # split the qkv weights
  2942. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  2943. if "qkv_proj" in name:
  2944. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  2945. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  2946. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  2947. total_q_dim = num_heads * head_dim
  2948. total_k_dim = num_kv_heads * head_dim
  2949. total_v_dim = num_kv_heads * head_dim
  2950. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  2951. return [
  2952. (self.map_tensor_name(name_q), q_proj_weight),
  2953. (self.map_tensor_name(name_k), k_proj_weight),
  2954. (self.map_tensor_name(name_v), v_proj_weight)
  2955. ]
  2956. # split the up_gate_proj into gate and up
  2957. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  2958. if "up_gate_proj" in name:
  2959. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  2960. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  2961. dim_half = data_torch.shape[0] // 2
  2962. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  2963. return [
  2964. (self.map_tensor_name(name_gate), gate_proj_weight),
  2965. (self.map_tensor_name(name_up), up_proj_weight)
  2966. ]
  2967. return [(self.map_tensor_name(name), data_torch)]
  2968. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  2969. class Ernie4_5MoeModel(Ernie4_5Model):
  2970. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  2971. _experts: list[dict[str, Tensor]] | None = None
  2972. def __init__(self, *args, **kwargs):
  2973. super().__init__(*args, **kwargs)
  2974. self._experts = [{} for _ in range(self.block_count)]
  2975. def set_gguf_parameters(self):
  2976. super().set_gguf_parameters()
  2977. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  2978. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  2979. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  2980. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  2981. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2982. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2983. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  2984. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  2985. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  2986. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  2987. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2988. # Modify correction bias name as in DeepseekV2
  2989. if name.endswith("e_score_correction_bias"):
  2990. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  2991. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  2992. match = re.match(r"model.mtp_block.(\d+)", name)
  2993. if match:
  2994. return []
  2995. # skip all other MTP tensors for now
  2996. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  2997. if match:
  2998. return []
  2999. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  3000. if match:
  3001. return []
  3002. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  3003. if match:
  3004. return []
  3005. # process the experts separately
  3006. if name.find("mlp.experts") != -1:
  3007. n_experts = self.hparams["moe_num_experts"]
  3008. assert bid is not None
  3009. if self._experts is None:
  3010. self._experts = [{} for _ in range(self.block_count)]
  3011. self._experts[bid][name] = data_torch
  3012. if len(self._experts[bid]) >= n_experts * 3:
  3013. tensors: list[tuple[str, Tensor]] = []
  3014. # merge the experts into a single 3d tensor
  3015. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  3016. datas: list[Tensor] = []
  3017. for xid in range(n_experts):
  3018. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3019. datas.append(self._experts[bid][ename_to_retrieve])
  3020. del self._experts[bid][ename_to_retrieve]
  3021. data_torch = torch.stack(datas, dim=0)
  3022. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3023. new_name = self.map_tensor_name(merged_name)
  3024. tensors.append((new_name, data_torch))
  3025. return tensors
  3026. else:
  3027. return []
  3028. return [(self.map_tensor_name(name), data_torch)]
  3029. def prepare_tensors(self):
  3030. super().prepare_tensors()
  3031. if self._experts is not None:
  3032. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3033. experts = [k for d in self._experts for k in d.keys()]
  3034. if len(experts) > 0:
  3035. raise ValueError(f"Unprocessed experts: {experts}")
  3036. @ModelBase.register(
  3037. "Qwen2VLModel",
  3038. "Qwen2VLForConditionalGeneration",
  3039. "Qwen2_5_VLForConditionalGeneration",
  3040. "Qwen2_5OmniModel",
  3041. )
  3042. class Qwen2VLModel(TextModel):
  3043. model_arch = gguf.MODEL_ARCH.QWEN2VL
  3044. def set_gguf_parameters(self):
  3045. super().set_gguf_parameters()
  3046. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  3047. mrope_section += [0] * max(0, 4 - len(mrope_section))
  3048. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  3049. def set_vocab(self):
  3050. try:
  3051. self._set_vocab_sentencepiece()
  3052. except FileNotFoundError:
  3053. self._set_vocab_gpt2()
  3054. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3055. del bid # unused
  3056. if name.startswith("thinker."):
  3057. name = name.replace("thinker.", "")
  3058. if name.startswith("visual") or name.startswith("audio") or \
  3059. name.startswith("talker") or name.startswith("token2wav"):
  3060. # skip multimodal tensors
  3061. return []
  3062. return [(self.map_tensor_name(name), data_torch)]
  3063. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  3064. class Qwen2VLVisionModel(MmprojModel):
  3065. def __init__(self, *args, **kwargs):
  3066. super().__init__(*args, **kwargs)
  3067. assert self.hparams_vision is not None
  3068. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  3069. # rename config.json values
  3070. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3071. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3072. if "embed_dim" in self.hparams_vision: # qwen2vl
  3073. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  3074. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  3075. def set_gguf_parameters(self):
  3076. super().set_gguf_parameters()
  3077. assert self.hparams_vision is not None
  3078. hparams = self.hparams_vision
  3079. model_type = self.global_config['model_type']
  3080. if model_type == 'qwen2_vl':
  3081. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  3082. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  3083. if model_type == 'qwen2_5_omni':
  3084. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  3085. else:
  3086. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  3087. self.gguf_writer.add_vision_use_silu(True)
  3088. # find n_wa_pattern (window attention pattern)
  3089. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  3090. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  3091. n_wa_pattern = fullatt_block_indexes[0] + 1
  3092. # validate n_wa_pattern
  3093. for i in range(1, len(fullatt_block_indexes)):
  3094. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  3095. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  3096. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  3097. else:
  3098. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  3099. # default values below are taken from HF tranformers code
  3100. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  3101. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3102. if ".position_embd." in new_name:
  3103. return gguf.GGMLQuantizationType.F32
  3104. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3105. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3106. del bid # unused
  3107. if name.startswith("visual."):
  3108. # process visual tensors
  3109. # split QKV tensors if needed
  3110. if ".qkv." in name:
  3111. if data_torch.ndim == 2: # weight
  3112. c3, _ = data_torch.shape
  3113. else: # bias
  3114. c3 = data_torch.shape[0]
  3115. assert c3 % 3 == 0
  3116. c = c3 // 3
  3117. wq = data_torch[:c]
  3118. wk = data_torch[c: c * 2]
  3119. wv = data_torch[c * 2:]
  3120. return [
  3121. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  3122. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  3123. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  3124. ]
  3125. elif 'patch_embed.proj.weight' in name:
  3126. # split Conv3D into Conv2Ds
  3127. c1, c2, kt, kh, kw = data_torch.shape
  3128. del c1, c2, kh, kw # unused
  3129. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  3130. return [
  3131. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  3132. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3133. ]
  3134. else:
  3135. return [(self.map_tensor_name(name), data_torch)]
  3136. return [] # skip other tensors
  3137. @ModelBase.register("Qwen2_5OmniModel")
  3138. class Qwen25OmniModel(Qwen2VLVisionModel):
  3139. has_vision_encoder = True
  3140. has_audio_encoder = True
  3141. def __init__(self, *args, **kwargs):
  3142. super().__init__(*args, **kwargs)
  3143. assert self.hparams_audio is not None
  3144. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  3145. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  3146. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  3147. def set_gguf_parameters(self):
  3148. super().set_gguf_parameters()
  3149. assert self.hparams_audio is not None
  3150. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  3151. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  3152. def get_vision_config(self) -> dict[str, Any] | None:
  3153. return self.global_config["thinker_config"].get("vision_config")
  3154. def get_audio_config(self) -> dict[str, Any] | None:
  3155. return self.global_config["thinker_config"].get("audio_config")
  3156. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3157. # SinusoidsPositionEmbedding
  3158. assert self.hparams_audio is not None
  3159. max_timescale = 10000
  3160. length = 1500
  3161. channels = self.hparams_audio["hidden_size"]
  3162. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  3163. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  3164. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  3165. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  3166. yield ("audio_tower.embed_positions.weight", pos_embd)
  3167. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3168. if ".conv" in name and ".weight" in name:
  3169. return gguf.GGMLQuantizationType.F16
  3170. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3171. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3172. if name.startswith("thinker."):
  3173. name = name.replace("thinker.", "")
  3174. if name.startswith("audio_tower"):
  3175. # process audio tensors
  3176. if "conv1.bias" in name or "conv2.bias" in name:
  3177. # transpose conv1 and conv2 bias
  3178. data_torch = data_torch.unsqueeze(-1)
  3179. if "audio_bos_eos_token" in name:
  3180. # this tensor is left unused in transformers code
  3181. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  3182. return []
  3183. return [(self.map_tensor_name(name), data_torch)]
  3184. return super().modify_tensors(data_torch, name, bid)
  3185. @ModelBase.register("InternVisionModel")
  3186. class InternVisionModel(MmprojModel):
  3187. def set_gguf_parameters(self):
  3188. assert self.hparams_vision is not None
  3189. if isinstance(self.hparams_vision['image_size'], list):
  3190. self.hparams_vision['image_size'] = self.hparams_vision['image_size'][0]
  3191. if isinstance(self.hparams_vision['patch_size'], list):
  3192. self.hparams_vision['patch_size'] = self.hparams_vision['patch_size'][0]
  3193. super().set_gguf_parameters()
  3194. hparams = self.hparams
  3195. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  3196. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  3197. # hidden_act
  3198. if hparams["hidden_act"] == "silu":
  3199. self.gguf_writer.add_vision_use_silu(True)
  3200. elif hparams["hidden_act"] == "gelu":
  3201. self.gguf_writer.add_vision_use_gelu(True)
  3202. else:
  3203. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  3204. # downsample_ratio
  3205. downsample_ratio = self.global_config.get("downsample_ratio")
  3206. assert downsample_ratio is not None
  3207. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  3208. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3209. if ".position_embd." in new_name:
  3210. return gguf.GGMLQuantizationType.F32
  3211. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3212. def _mapping_interns1_name(self, name):
  3213. names_map = {
  3214. "model.multi_modal_projector.layer_norm.bias": "mlp1.0.bias",
  3215. "model.multi_modal_projector.layer_norm.weight": "mlp1.0.weight",
  3216. "model.multi_modal_projector.linear_1.bias": "mlp1.1.bias",
  3217. "model.multi_modal_projector.linear_1.weight": "mlp1.1.weight",
  3218. "model.multi_modal_projector.linear_2.bias": "mlp1.3.bias",
  3219. "model.multi_modal_projector.linear_2.weight": "mlp1.3.weight",
  3220. }
  3221. if name in names_map:
  3222. name = names_map[name]
  3223. return name
  3224. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3225. del bid # unused
  3226. vision_prefix = ['vision_model', 'mlp', 'model.vision_tower', 'model.multi_modal_projector']
  3227. # deal with intern-s1 special case
  3228. name = self._mapping_interns1_name(name)
  3229. if any([name.startswith(prefix) for prefix in vision_prefix]):
  3230. # process visual tensors
  3231. # correct name
  3232. if name.startswith("vision_model"):
  3233. name = "vision_tower." + name
  3234. if (".ls" in name or ".lambda_" in name or "position_embedding" in name) and not name.endswith(".weight"):
  3235. name += ".weight"
  3236. # split QKV tensors if needed
  3237. if ".qkv." in name:
  3238. if data_torch.ndim == 2: # weight
  3239. c3, _ = data_torch.shape
  3240. else: # bias
  3241. c3 = data_torch.shape[0]
  3242. assert c3 % 3 == 0
  3243. c = c3 // 3
  3244. wq = data_torch[:c]
  3245. wk = data_torch[c: c * 2]
  3246. wv = data_torch[c * 2:]
  3247. return [
  3248. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  3249. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  3250. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  3251. ]
  3252. return [(self.map_tensor_name(name), data_torch)]
  3253. return [] # skip other tensors
  3254. @ModelBase.register("WavTokenizerDec")
  3255. class WavTokenizerDecModel(TextModel):
  3256. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  3257. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3258. del bid # unused
  3259. if \
  3260. name.endswith("codebook.cluster_size") or \
  3261. name.endswith("codebook.embed_avg") or \
  3262. name.endswith("codebook.inited"):
  3263. logger.debug(f"Skipping {name!r}")
  3264. return []
  3265. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  3266. return [(self.map_tensor_name(name), data_torch)]
  3267. def set_vocab(self):
  3268. self._set_vocab_none()
  3269. def set_gguf_parameters(self):
  3270. super().set_gguf_parameters()
  3271. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  3272. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  3273. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  3274. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  3275. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  3276. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  3277. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  3278. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  3279. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  3280. self.gguf_writer.add_causal_attention(False)
  3281. @ModelBase.register("Qwen2MoeForCausalLM")
  3282. class Qwen2MoeModel(TextModel):
  3283. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  3284. def set_gguf_parameters(self):
  3285. super().set_gguf_parameters()
  3286. if (n_experts := self.hparams.get("num_experts")) is not None:
  3287. self.gguf_writer.add_expert_count(n_experts)
  3288. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3289. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3290. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  3291. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  3292. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  3293. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  3294. # YaRN is not enabled by default
  3295. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  3296. rope_scaling = self.hparams.get("rope_scaling") or {}
  3297. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  3298. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  3299. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3300. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  3301. _experts: list[dict[str, Tensor]] | None = None
  3302. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3303. # process the experts separately
  3304. name = name.replace("language_model.", "") # InternVL
  3305. # handle aggregated expert tensors
  3306. # GGUF stores dimensions reversed from PyTorch, so:
  3307. # PyTorch (A,B,C) -> GGUF writes [C,B,A] -> GGML reads ne={C,B,A}
  3308. # Input shapes from HF: (n_expert, n_ff_exp, n_embd) or (n_expert, n_embd, n_ff_exp)
  3309. # Expected GGML ne: {n_embd, n_ff_exp, n_expert} for gate/up, {n_ff_exp, n_embd, n_expert} for down
  3310. if name.endswith("mlp.experts.down_proj") or name.endswith("mlp.experts.down_proj.weight"):
  3311. mapped = f"{name}.weight" if not name.endswith(".weight") else name
  3312. # Input: (n_expert=128, n_ff_exp=768, n_embd=2048)
  3313. # Want GGML ne: {n_ff_exp, n_embd, n_expert} = {768, 2048, 128}
  3314. # Need PyTorch: (128, 2048, 768) [reversed of GGML]
  3315. # So: permute(0, 2, 1): (128, 768, 2048) -> (128, 2048, 768)
  3316. permuted = data_torch.permute(0, 2, 1).contiguous()
  3317. return [(self.map_tensor_name(mapped), permuted)]
  3318. if name.endswith("mlp.experts.gate_up_proj") or name.endswith("mlp.experts.gate_up_proj.weight"):
  3319. if data_torch.ndim < 3 or data_torch.shape[-1] % 2 != 0:
  3320. raise ValueError(f"Unexpected gate_up_proj shape for {name}: {tuple(data_torch.shape)}")
  3321. split_dim = data_torch.shape[-1] // 2
  3322. gate = data_torch[..., :split_dim].contiguous()
  3323. up = data_torch[..., split_dim:].contiguous()
  3324. # Input gate/up: (n_expert=128, n_embd=2048, n_ff_exp=768)
  3325. # Want GGML ne: {n_embd, n_ff_exp, n_expert} = {2048, 768, 128}
  3326. # Need PyTorch: (128, 768, 2048) [reversed of GGML]
  3327. # So: permute(0, 2, 1): (128, 2048, 768) -> (128, 768, 2048)
  3328. base_name = name.removesuffix(".weight")
  3329. base = base_name.rsplit('.', 1)[0]
  3330. mapped_gate = f"{base}.gate_proj.weight"
  3331. mapped_up = f"{base}.up_proj.weight"
  3332. perm_gate = gate.permute(0, 2, 1).contiguous()
  3333. perm_up = up.permute(0, 2, 1).contiguous()
  3334. return [
  3335. (self.map_tensor_name(mapped_gate), perm_gate),
  3336. (self.map_tensor_name(mapped_up), perm_up),
  3337. ]
  3338. if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector") or name.startswith("model.visual"):
  3339. # skip visual tensors
  3340. return []
  3341. if name.find("experts") != -1:
  3342. n_experts = self.hparams["num_experts"]
  3343. assert bid is not None
  3344. if self._experts is None:
  3345. self._experts = [{} for _ in range(self.block_count)]
  3346. self._experts[bid][name] = data_torch
  3347. if len(self._experts[bid]) >= n_experts * 3:
  3348. tensors: list[tuple[str, Tensor]] = []
  3349. # merge the experts into a single 3d tensor
  3350. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3351. datas: list[Tensor] = []
  3352. for xid in range(n_experts):
  3353. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3354. datas.append(self._experts[bid][ename])
  3355. del self._experts[bid][ename]
  3356. data_torch = torch.stack(datas, dim=0)
  3357. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3358. new_name = self.map_tensor_name(merged_name)
  3359. tensors.append((new_name, data_torch))
  3360. return tensors
  3361. else:
  3362. return []
  3363. return [(self.map_tensor_name(name), data_torch)]
  3364. def prepare_tensors(self):
  3365. super().prepare_tensors()
  3366. if self._experts is not None:
  3367. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3368. experts = [k for d in self._experts for k in d.keys()]
  3369. if len(experts) > 0:
  3370. raise ValueError(f"Unprocessed experts: {experts}")
  3371. @ModelBase.register("Qwen3ForCausalLM")
  3372. class Qwen3Model(Qwen2Model):
  3373. model_arch = gguf.MODEL_ARCH.QWEN3
  3374. # extra logic for rerank models
  3375. is_rerank: bool = False
  3376. is_tied_embeddings: bool = False
  3377. token_false_id: int | None = None
  3378. token_true_id: int | None = None
  3379. def __init__(self, *args, **kwargs):
  3380. super().__init__(*args, **kwargs)
  3381. # track for intern-s1-mini
  3382. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  3383. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3384. # a bit hacky, but currently the only way to detect if this is a rerank model
  3385. # ref: https://huggingface.co/Qwen/Qwen3-Reranker-0.6B
  3386. readme_path = self.dir_model / "README.md"
  3387. readme_text = ""
  3388. if readme_path.exists():
  3389. with readme_path.open("r", encoding="utf-8") as f:
  3390. readme_text = f.read()
  3391. if "# Qwen3-Reranker" in readme_text:
  3392. self._find_rerank_config()
  3393. def set_vocab(self):
  3394. # deal with intern-s1-mini
  3395. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3396. self._set_vocab_interns1()
  3397. return
  3398. super().set_vocab()
  3399. def _find_rerank_config(self):
  3400. from transformers import AutoTokenizer
  3401. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3402. self.is_rerank = True
  3403. self.is_tied_embeddings = self.hparams.get("tie_word_embeddings", False)
  3404. self.token_false_id = tokenizer.convert_tokens_to_ids("no")
  3405. self.token_true_id = tokenizer.convert_tokens_to_ids("yes")
  3406. self.sep_token_id = tokenizer.convert_tokens_to_ids("|")
  3407. assert self.token_false_id is not None and self.token_true_id is not None
  3408. def set_gguf_parameters(self):
  3409. super().set_gguf_parameters()
  3410. if self.is_rerank:
  3411. self.gguf_writer.add_pooling_type(gguf.PoolingType.RANK)
  3412. self.gguf_writer.add_classifier_output_labels(["yes", "no"])
  3413. self.gguf_writer.add_chat_template([{
  3414. "name": "rerank",
  3415. "template": "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n"
  3416. "<|im_start|>user\n<Instruct>: Given a web search query, retrieve relevant passages that answer the query\n<Query>: {query}\n<Document>: {document}<|im_end|>\n"
  3417. "<|im_start|>assistant\n<think>\n\n</think>\n\n"
  3418. }])
  3419. def _get_cls_out_tensor(self, data_torch: Tensor) -> Tensor:
  3420. # extract "yes" and "no" tokens from the output lm_head tensor
  3421. false_row = data_torch[self.token_false_id]
  3422. true_row = data_torch[self.token_true_id]
  3423. return torch.stack([true_row, false_row], dim=0)
  3424. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3425. if "model.vision_" in name:
  3426. # skip multimodal tensors
  3427. return []
  3428. if self.is_rerank:
  3429. is_tied_head = self.is_tied_embeddings and "embed_tokens" in name
  3430. is_real_head = not self.is_tied_embeddings and "lm_head" in name
  3431. if is_tied_head or is_real_head:
  3432. cls_out_head = (
  3433. gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.CLS_OUT] + ".weight",
  3434. self._get_cls_out_tensor(data_torch),
  3435. )
  3436. if is_tied_head:
  3437. embed = (self.map_tensor_name(name), data_torch)
  3438. return [cls_out_head, embed]
  3439. if is_real_head:
  3440. return [cls_out_head]
  3441. return super().modify_tensors(data_torch, name, bid)
  3442. @ModelBase.register("Qwen3MoeForCausalLM")
  3443. class Qwen3MoeModel(Qwen2MoeModel):
  3444. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  3445. def __init__(self, *args, **kwargs):
  3446. super().__init__(*args, **kwargs)
  3447. hparams = ModelBase.load_hparams(self.dir_model, False)
  3448. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3449. def set_vocab(self):
  3450. # deal with intern-s1
  3451. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3452. self._set_vocab_interns1()
  3453. return
  3454. super().set_vocab()
  3455. @ModelBase.register("Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration")
  3456. class Qwen3VLVisionModel(MmprojModel):
  3457. def __init__(self, *args, **kwargs):
  3458. super().__init__(*args, **kwargs)
  3459. assert self.hparams_vision is not None
  3460. # Compute image_size if not present
  3461. if "image_size" not in self.hparams_vision:
  3462. # For Qwen3VL/Qwen3VLMoe, compute from num_position_embeddings
  3463. num_pos = self.hparams_vision.get("num_position_embeddings", 2304)
  3464. patch_size = self.hparams_vision.get("patch_size", 16)
  3465. # num_position_embeddings = (image_size / patch_size) ** 2
  3466. # So image_size = sqrt(num_position_embeddings) * patch_size
  3467. image_size = int(num_pos**0.5 * patch_size)
  3468. self.hparams_vision["image_size"] = image_size
  3469. # Rename config values for compatibility
  3470. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3471. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3472. self.is_deepstack_layers = [False] * int(self.hparams_vision["num_hidden_layers"] or 0)
  3473. for idx in self.hparams_vision.get("deepstack_visual_indexes", []):
  3474. self.is_deepstack_layers[idx] = True
  3475. def set_gguf_parameters(self):
  3476. super().set_gguf_parameters()
  3477. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN3VL)
  3478. self.gguf_writer.add_vision_use_gelu(True)
  3479. if self.hparams_vision is not None:
  3480. merge_size = self.hparams_vision.get("spatial_merge_size")
  3481. if merge_size is not None:
  3482. self.gguf_writer.add_vision_spatial_merge_size(int(merge_size))
  3483. # Use text config's rms_norm_eps for vision attention layernorm eps
  3484. rms_norm_eps = self.global_config.get("text_config", {}).get("rms_norm_eps", 1e-6)
  3485. self.gguf_writer.add_vision_attention_layernorm_eps(rms_norm_eps)
  3486. if self.is_deepstack_layers:
  3487. self.gguf_writer.add_vision_is_deepstack_layers(self.is_deepstack_layers)
  3488. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3489. assert self.hparams_vision is not None
  3490. # Skip text model tensors - they go in the text model file
  3491. if name.startswith("model.language_model.") or name.startswith("lm_head."):
  3492. return []
  3493. if name.startswith("model.visual."):
  3494. name = name.replace("model.visual.", "visual.", 1)
  3495. if name.startswith("visual.deepstack_merger_list."):
  3496. prefix, rest = name.split(".", maxsplit=3)[2:]
  3497. # prefix is the layer index, convert to absolute clip layer index!
  3498. idx = self.hparams_vision.get("deepstack_visual_indexes", [])[int(prefix)]
  3499. target = rest
  3500. tensor_type: gguf.MODEL_TENSOR
  3501. if target.startswith("norm."):
  3502. tensor_type = gguf.MODEL_TENSOR.V_DS_NORM
  3503. suffix = target.split(".", 1)[1]
  3504. elif target.startswith("linear_fc1."):
  3505. tensor_type = gguf.MODEL_TENSOR.V_DS_FC1
  3506. suffix = target.split(".", 1)[1]
  3507. elif target.startswith("linear_fc2."):
  3508. tensor_type = gguf.MODEL_TENSOR.V_DS_FC2
  3509. suffix = target.split(".", 1)[1]
  3510. else:
  3511. raise ValueError(f"Unexpected deepstack tensor: {name}")
  3512. new_name = self.format_tensor_name(tensor_type, idx, suffix=f".{suffix}")
  3513. return [(new_name, data_torch)]
  3514. if name.startswith("visual.merger."):
  3515. suffix = name.split(".", 2)[2]
  3516. if suffix.startswith("linear_fc"):
  3517. fc_idx_str, tail = suffix.split(".", 1)
  3518. fc_num = int(fc_idx_str.replace("linear_fc", ""))
  3519. # Qwen3VL has linear_fc1 and linear_fc2
  3520. # Map to indices 0 and 2 (matching Qwen2VL which uses indices 0 and 2)
  3521. if fc_num == 1:
  3522. fc_idx = 0
  3523. elif fc_num == 2:
  3524. fc_idx = 2
  3525. else:
  3526. raise ValueError(f"unexpected fc index {fc_num} in {name}")
  3527. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, fc_idx, suffix=f".{tail}")
  3528. elif suffix.startswith("norm."):
  3529. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_POST_NORM, suffix=f".{suffix.split('.', 1)[1]}")
  3530. else:
  3531. raise ValueError(f"Unexpected merger tensor: {name}")
  3532. return [(new_name, data_torch)]
  3533. if name == "visual.patch_embed.proj.weight":
  3534. # split Conv3D into Conv2Ds along temporal dimension
  3535. c1, c2, kt, _, _ = data_torch.shape
  3536. del c1, c2
  3537. if kt != 2:
  3538. raise ValueError("Current implementation only supports temporal_patch_size of 2")
  3539. return [
  3540. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight", data_torch[:, :, 0, ...]),
  3541. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3542. ]
  3543. if name == "visual.patch_embed.proj.bias":
  3544. # Include the bias - it's used by the C++ code
  3545. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".bias", data_torch)]
  3546. if name.startswith("visual."):
  3547. return [(self.map_tensor_name(name), data_torch)]
  3548. # Fall back to parent class for other tensors
  3549. return super().modify_tensors(data_torch, name, bid)
  3550. @ModelBase.register("Qwen3VLForConditionalGeneration")
  3551. class Qwen3VLTextModel(Qwen3Model):
  3552. model_arch = gguf.MODEL_ARCH.QWEN3VL
  3553. def set_gguf_parameters(self):
  3554. super().set_gguf_parameters()
  3555. # Handle MRoPE (Multi-axis Rotary Position Embedding) for Qwen3-VL
  3556. text_config = self.hparams.get("text_config", {})
  3557. # rope_scaling is deprecated in V5, use rope_parameters instead
  3558. rope_scaling = text_config.get("rope_scaling") or text_config.get("rope_parameters") or {}
  3559. if rope_scaling.get("mrope_section"):
  3560. # mrope_section contains [time, height, width] dimensions
  3561. mrope_section = rope_scaling["mrope_section"]
  3562. # Pad to 4 dimensions [time, height, width, extra]
  3563. while len(mrope_section) < 4:
  3564. mrope_section.append(0)
  3565. self.gguf_writer.add_rope_dimension_sections(mrope_section[:4])
  3566. logger.info(f"MRoPE sections: {mrope_section[:4]}")
  3567. vision_config = self.hparams.get("vision_config", {})
  3568. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3569. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3570. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3571. # Skip vision tensors - they go in the mmproj file
  3572. if name.startswith("model.visual."):
  3573. return []
  3574. return super().modify_tensors(data_torch, name, bid)
  3575. @ModelBase.register("Qwen3VLMoeForConditionalGeneration")
  3576. class Qwen3VLMoeTextModel(Qwen3MoeModel):
  3577. model_arch = gguf.MODEL_ARCH.QWEN3VLMOE
  3578. def set_gguf_parameters(self):
  3579. super().set_gguf_parameters()
  3580. # Handle MRoPE (Multi-axis Rotary Position Embedding) for Qwen3-VL
  3581. text_config = self.hparams.get("text_config", {})
  3582. # rope_scaling is deprecated in V5, use rope_parameters instead
  3583. rope_scaling = text_config.get("rope_scaling") or text_config.get("rope_parameters") or {}
  3584. if rope_scaling.get("mrope_section"):
  3585. # mrope_section contains [time, height, width] dimensions
  3586. mrope_section = rope_scaling["mrope_section"]
  3587. # Pad to 4 dimensions [time, height, width, extra]
  3588. while len(mrope_section) < 4:
  3589. mrope_section.append(0)
  3590. self.gguf_writer.add_rope_dimension_sections(mrope_section[:4])
  3591. logger.info(f"MRoPE sections: {mrope_section[:4]}")
  3592. vision_config = self.hparams.get("vision_config", {})
  3593. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3594. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3595. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3596. # Skip vision tensors - they go in the mmproj file
  3597. if name.startswith("model.visual."):
  3598. return []
  3599. return super().modify_tensors(data_torch, name, bid)
  3600. @ModelBase.register("GPT2LMHeadModel")
  3601. class GPT2Model(TextModel):
  3602. model_arch = gguf.MODEL_ARCH.GPT2
  3603. def set_gguf_parameters(self):
  3604. self.gguf_writer.add_block_count(self.block_count)
  3605. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  3606. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3607. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3608. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3609. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3610. self.gguf_writer.add_file_type(self.ftype)
  3611. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3612. del bid # unused
  3613. tensors: list[tuple[str, Tensor]] = []
  3614. # we don't need these
  3615. if name.endswith((".attn.bias", ".attn.masked_bias")):
  3616. return tensors
  3617. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  3618. data_torch = data_torch.transpose(1, 0)
  3619. new_name = self.map_tensor_name(name)
  3620. tensors.append((new_name, data_torch))
  3621. return tensors
  3622. @ModelBase.register("PhiForCausalLM")
  3623. class Phi2Model(TextModel):
  3624. model_arch = gguf.MODEL_ARCH.PHI2
  3625. def set_gguf_parameters(self):
  3626. rot_pct = self.find_hparam(["partial_rotary_factor"])
  3627. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3628. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3629. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  3630. self.gguf_writer.add_embedding_length(n_embd)
  3631. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  3632. self.gguf_writer.add_block_count(self.block_count)
  3633. self.gguf_writer.add_head_count(n_head)
  3634. self.gguf_writer.add_head_count_kv(n_head)
  3635. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  3636. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3637. self.gguf_writer.add_file_type(self.ftype)
  3638. self.gguf_writer.add_add_bos_token(False)
  3639. @ModelBase.register("Phi3ForCausalLM")
  3640. class Phi3MiniModel(TextModel):
  3641. model_arch = gguf.MODEL_ARCH.PHI3
  3642. def set_vocab(self):
  3643. # Phi-4 model uses GPT2Tokenizer
  3644. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3645. if tokenizer_config_file.is_file():
  3646. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3647. tokenizer_config_json = json.load(f)
  3648. tokenizer_class = tokenizer_config_json['tokenizer_class']
  3649. if tokenizer_class == 'GPT2Tokenizer':
  3650. return self._set_vocab_gpt2()
  3651. from sentencepiece import SentencePieceProcessor
  3652. tokenizer_path = self.dir_model / 'tokenizer.model'
  3653. if not tokenizer_path.is_file():
  3654. raise ValueError(f'Error: Missing {tokenizer_path}')
  3655. tokenizer = SentencePieceProcessor()
  3656. tokenizer.LoadFromFile(str(tokenizer_path))
  3657. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3658. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3659. scores: list[float] = [-10000.0] * vocab_size
  3660. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3661. for token_id in range(tokenizer.vocab_size()):
  3662. piece = tokenizer.IdToPiece(token_id)
  3663. text = piece.encode("utf-8")
  3664. score = tokenizer.GetScore(token_id)
  3665. toktype = SentencePieceTokenTypes.NORMAL
  3666. if tokenizer.IsUnknown(token_id):
  3667. toktype = SentencePieceTokenTypes.UNKNOWN
  3668. elif tokenizer.IsControl(token_id):
  3669. toktype = SentencePieceTokenTypes.CONTROL
  3670. elif tokenizer.IsUnused(token_id):
  3671. toktype = SentencePieceTokenTypes.UNUSED
  3672. elif tokenizer.IsByte(token_id):
  3673. toktype = SentencePieceTokenTypes.BYTE
  3674. tokens[token_id] = text
  3675. scores[token_id] = score
  3676. toktypes[token_id] = toktype
  3677. added_tokens_file = self.dir_model / 'added_tokens.json'
  3678. if added_tokens_file.is_file():
  3679. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3680. added_tokens_json = json.load(f)
  3681. for key in added_tokens_json:
  3682. token_id = added_tokens_json[key]
  3683. if token_id >= vocab_size:
  3684. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3685. continue
  3686. tokens[token_id] = key.encode("utf-8")
  3687. scores[token_id] = -1000.0
  3688. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3689. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3690. if tokenizer_config_file.is_file():
  3691. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3692. tokenizer_config_json = json.load(f)
  3693. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3694. for token_id, foken_data in added_tokens_decoder.items():
  3695. token_id = int(token_id)
  3696. token = foken_data["content"].encode("utf-8")
  3697. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3698. if tokens[token_id] != token:
  3699. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3700. tokens[token_id] = token
  3701. scores[token_id] = -1000.0
  3702. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3703. if foken_data.get("special"):
  3704. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3705. tokenizer_file = self.dir_model / 'tokenizer.json'
  3706. if tokenizer_file.is_file():
  3707. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3708. tokenizer_json = json.load(f)
  3709. added_tokens = tokenizer_json.get("added_tokens", [])
  3710. for foken_data in added_tokens:
  3711. token_id = int(foken_data["id"])
  3712. token = foken_data["content"].encode("utf-8")
  3713. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3714. if tokens[token_id] != token:
  3715. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3716. tokens[token_id] = token
  3717. scores[token_id] = -1000.0
  3718. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3719. if foken_data.get("special"):
  3720. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3721. self.gguf_writer.add_tokenizer_model("llama")
  3722. self.gguf_writer.add_tokenizer_pre("default")
  3723. self.gguf_writer.add_token_list(tokens)
  3724. self.gguf_writer.add_token_scores(scores)
  3725. self.gguf_writer.add_token_types(toktypes)
  3726. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3727. special_vocab.add_to_gguf(self.gguf_writer)
  3728. def set_gguf_parameters(self):
  3729. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3730. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3731. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  3732. rms_eps = self.find_hparam(["rms_norm_eps"])
  3733. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3734. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3735. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3736. rope_dims = int(rot_pct * n_embd) // n_head
  3737. self.gguf_writer.add_context_length(max_pos_embds)
  3738. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  3739. self.gguf_writer.add_embedding_length(n_embd)
  3740. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  3741. self.gguf_writer.add_block_count(self.block_count)
  3742. self.gguf_writer.add_head_count(n_head)
  3743. self.gguf_writer.add_head_count_kv(n_head_kv)
  3744. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  3745. self.gguf_writer.add_rope_dimension_count(rope_dims)
  3746. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  3747. self.gguf_writer.add_file_type(self.ftype)
  3748. sliding_window = self.hparams.get("sliding_window")
  3749. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  3750. if sliding_window is None:
  3751. sliding_window = 0
  3752. self.gguf_writer.add_sliding_window(sliding_window)
  3753. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3754. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3755. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3756. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3757. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3758. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3759. rope_dims = int(rot_pct * n_embd) // n_head
  3760. # write rope scaling for long context (128k) model
  3761. rope_scaling = self.find_hparam(['rope_scaling'], True)
  3762. if rope_scaling is None:
  3763. return
  3764. scale = max_pos_embds / orig_max_pos_embds
  3765. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  3766. if len(rope_scaling_type) == 0:
  3767. raise KeyError('Missing the required key rope_scaling.type')
  3768. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  3769. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  3770. elif rope_scaling_type == 'yarn':
  3771. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  3772. else:
  3773. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  3774. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  3775. long_factors = rope_scaling.get('long_factor', None)
  3776. short_factors = rope_scaling.get('short_factor', None)
  3777. if long_factors is None or short_factors is None:
  3778. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  3779. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  3780. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  3781. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  3782. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  3783. @ModelBase.register("PhiMoEForCausalLM")
  3784. class PhiMoeModel(Phi3MiniModel):
  3785. model_arch = gguf.MODEL_ARCH.PHIMOE
  3786. _experts: list[dict[str, Tensor]] | None = None
  3787. def set_gguf_parameters(self):
  3788. super().set_gguf_parameters()
  3789. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  3790. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  3791. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3792. # process the experts separately
  3793. if name.find("block_sparse_moe.experts") != -1:
  3794. n_experts = self.hparams["num_local_experts"]
  3795. assert bid is not None
  3796. if self._experts is None:
  3797. self._experts = [{} for _ in range(self.block_count)]
  3798. self._experts[bid][name] = data_torch
  3799. if len(self._experts[bid]) >= n_experts * 3:
  3800. tensors: list[tuple[str, Tensor]] = []
  3801. # merge the experts into a single 3d tensor
  3802. for w_name in ["w1", "w2", "w3"]:
  3803. datas: list[Tensor] = []
  3804. for xid in range(n_experts):
  3805. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  3806. datas.append(self._experts[bid][ename])
  3807. del self._experts[bid][ename]
  3808. data_torch = torch.stack(datas, dim=0)
  3809. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  3810. new_name = self.map_tensor_name(merged_name)
  3811. tensors.append((new_name, data_torch))
  3812. return tensors
  3813. else:
  3814. return []
  3815. return [(self.map_tensor_name(name), data_torch)]
  3816. def prepare_tensors(self):
  3817. super().prepare_tensors()
  3818. if self._experts is not None:
  3819. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3820. experts = [k for d in self._experts for k in d.keys()]
  3821. if len(experts) > 0:
  3822. raise ValueError(f"Unprocessed experts: {experts}")
  3823. @ModelBase.register("PlamoForCausalLM")
  3824. class PlamoModel(TextModel):
  3825. model_arch = gguf.MODEL_ARCH.PLAMO
  3826. def set_vocab(self):
  3827. self._set_vocab_sentencepiece()
  3828. def set_gguf_parameters(self):
  3829. hparams = self.hparams
  3830. self.gguf_writer.add_context_length(4096) # not in config.json
  3831. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3832. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3833. self.gguf_writer.add_block_count(self.block_count)
  3834. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3835. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  3836. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  3837. self.gguf_writer.add_file_type(self.ftype)
  3838. def shuffle_attn_q_weight(self, data_torch):
  3839. assert data_torch.size() == (5120, 5120)
  3840. data_torch = data_torch.reshape(8, 5, 128, 5120)
  3841. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  3842. data_torch = torch.reshape(data_torch, (5120, 5120))
  3843. return data_torch
  3844. def shuffle_attn_output_weight(self, data_torch):
  3845. assert data_torch.size() == (5120, 5120)
  3846. data_torch = data_torch.reshape(5120, 8, 5, 128)
  3847. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  3848. data_torch = torch.reshape(data_torch, (5120, 5120))
  3849. return data_torch
  3850. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3851. del bid # unused
  3852. new_name = self.map_tensor_name(name)
  3853. # shuffle for broadcasting of gqa in ggml_mul_mat
  3854. if new_name.endswith("attn_q.weight"):
  3855. data_torch = self.shuffle_attn_q_weight(data_torch)
  3856. elif new_name.endswith("attn_output.weight"):
  3857. data_torch = self.shuffle_attn_output_weight(data_torch)
  3858. return [(new_name, data_torch)]
  3859. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  3860. class Plamo2Model(TextModel):
  3861. model_arch = gguf.MODEL_ARCH.PLAMO2
  3862. def set_vocab(self):
  3863. # PLaMo 2 uses a custom tokenizer with a .jsonl file
  3864. # We need to handle this specially
  3865. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  3866. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  3867. if not tokenizer_jsonl_path.is_file():
  3868. raise FileNotFoundError(f"PLaMo 2 tokenizer file not found: {tokenizer_jsonl_path}")
  3869. # Load tokenizer config
  3870. with open(tokenizer_config_path, 'r', encoding='utf-8') as f:
  3871. tokenizer_config = json.load(f)
  3872. # Load tokens from JSONL file (actually a list format)
  3873. tokens = []
  3874. scores = []
  3875. toktypes = []
  3876. with open(tokenizer_jsonl_path, 'r', encoding='utf-8') as f:
  3877. for line_num, line in enumerate(f):
  3878. if line.strip():
  3879. token_data = json.loads(line)
  3880. # Format: [token, score, type, ?, ?, ?, ?]
  3881. token = token_data[0].encode("utf-8")
  3882. score = float(token_data[1])
  3883. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  3884. tokens.append(token)
  3885. scores.append(score)
  3886. # Map token type strings to GGUF token types
  3887. if token_type_str == "UNKNOWN":
  3888. toktypes.append(gguf.TokenType.UNKNOWN)
  3889. elif token_type_str == "CONTROL":
  3890. toktypes.append(gguf.TokenType.CONTROL)
  3891. elif token_type_str == "BYTE":
  3892. toktypes.append(gguf.TokenType.BYTE)
  3893. else:
  3894. # Check for PLaMo-2 special tokens
  3895. token_str = token_data[0]
  3896. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  3897. toktypes.append(gguf.TokenType.CONTROL)
  3898. else:
  3899. toktypes.append(gguf.TokenType.NORMAL)
  3900. vocab_size = self.hparams["vocab_size"]
  3901. if vocab_size > len(tokens):
  3902. pad_count = vocab_size - len(tokens)
  3903. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3904. for i in range(1, pad_count + 1):
  3905. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3906. scores.append(-1000.0)
  3907. toktypes.append(gguf.TokenType.UNUSED)
  3908. # Use "plamo2" tokenizer type for PLaMo-2's custom Aho-Corasick tokenizer
  3909. self.gguf_writer.add_tokenizer_model("plamo2")
  3910. self.gguf_writer.add_tokenizer_pre("default")
  3911. self.gguf_writer.add_token_list(tokens)
  3912. self.gguf_writer.add_token_scores(scores)
  3913. self.gguf_writer.add_token_types(toktypes)
  3914. # Add special tokens from config
  3915. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  3916. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  3917. self.gguf_writer.add_bos_token_id(token_id)
  3918. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  3919. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  3920. self.gguf_writer.add_eos_token_id(token_id)
  3921. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  3922. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  3923. self.gguf_writer.add_pad_token_id(token_id)
  3924. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  3925. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  3926. self.gguf_writer.add_sep_token_id(token_id)
  3927. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  3928. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  3929. self.gguf_writer.add_unk_token_id(token_id)
  3930. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  3931. self.gguf_writer.add_eot_token_id(4)
  3932. self.gguf_writer.add_add_space_prefix(False)
  3933. def set_gguf_parameters(self):
  3934. hparams = self.hparams
  3935. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3936. # Which layers are Mamba layers
  3937. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  3938. # This logic matches modeling_plamo.py's is_mamba function
  3939. mamba_step = hparams.get("mamba_step", 2)
  3940. mamba_enabled = hparams.get("mamba_enabled", True)
  3941. num_key_value_heads = []
  3942. num_attention_heads = []
  3943. if mamba_enabled:
  3944. for i in range(self.block_count):
  3945. if self.block_count <= (mamba_step // 2):
  3946. # use attention in last layer
  3947. is_mamba = (i != self.block_count - 1)
  3948. else:
  3949. is_mamba = (i % mamba_step) != (mamba_step // 2)
  3950. if is_mamba:
  3951. num_key_value_heads.append(0)
  3952. num_attention_heads.append(0)
  3953. else:
  3954. num_key_value_heads.append(hparams.get("num_key_value_heads", 4))
  3955. num_attention_heads.append(hparams.get("num_attention_heads", 32))
  3956. if num_key_value_heads and num_attention_heads:
  3957. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  3958. self.gguf_writer.add_head_count(num_attention_heads)
  3959. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  3960. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  3961. self.gguf_writer.add_key_length(hparams.get("hidden_size_per_head", 128))
  3962. self.gguf_writer.add_value_length(hparams.get("hidden_size_per_head", 128))
  3963. self.gguf_writer.add_block_count(self.block_count)
  3964. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  3965. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 10000))
  3966. # Mamba parameters
  3967. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  3968. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  3969. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  3970. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  3971. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  3972. self.gguf_writer.add_ssm_group_count(0)
  3973. # MLP feed forward parameters (for attention layers)
  3974. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
  3975. self.gguf_writer.add_file_type(self.ftype)
  3976. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3977. del bid # unused
  3978. if name.endswith(".A_log"):
  3979. data_torch = -torch.exp(data_torch)
  3980. elif name.endswith(".dt_bias"):
  3981. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3982. elif name.endswith(".dt_norm_weight"):
  3983. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  3984. elif name.endswith(".B_norm_weight"):
  3985. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  3986. elif name.endswith(".C_norm_weight"):
  3987. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  3988. elif name.endswith(".k_weight"):
  3989. name = name.rpartition(".k_weight")[0] + ".k.weight"
  3990. elif name.endswith(".q_weight"):
  3991. name = name.rpartition(".q_weight")[0] + ".q.weight"
  3992. elif name.endswith(".conv1d.weight"):
  3993. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  3994. assert data_torch.ndim == 2
  3995. elif name.endswith(".pre_mixer_norm.weight"):
  3996. data_torch += 1.0
  3997. elif name.endswith(".post_mixer_norm.weight"):
  3998. data_torch += 1.0 / 5
  3999. elif name.endswith(".pre_mlp_norm.weight"):
  4000. data_torch += 1.0
  4001. elif name.endswith(".post_mlp_norm.weight"):
  4002. data_torch += 1.0 / (5**1.5)
  4003. elif name.endswith(".norm.weight"):
  4004. data_torch += 1.0
  4005. new_name = self.map_tensor_name(name)
  4006. return [(new_name, data_torch)]
  4007. @ModelBase.register("CodeShellForCausalLM")
  4008. class CodeShellModel(TextModel):
  4009. model_arch = gguf.MODEL_ARCH.CODESHELL
  4010. def set_gguf_parameters(self):
  4011. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  4012. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  4013. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  4014. self.gguf_writer.add_block_count(self.block_count)
  4015. self.gguf_writer.add_head_count(self.hparams["n_head"])
  4016. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  4017. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4018. self.gguf_writer.add_file_type(self.ftype)
  4019. self.gguf_writer.add_rope_freq_base(10000.0)
  4020. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4021. self.gguf_writer.add_rope_scaling_factor(1.0)
  4022. @ModelBase.register("InternLM2ForCausalLM")
  4023. class InternLM2Model(TextModel):
  4024. model_arch = gguf.MODEL_ARCH.INTERNLM2
  4025. def set_vocab(self):
  4026. # (TODO): Is there a better way?
  4027. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  4028. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  4029. # recognized as an empty string in C++.
  4030. from sentencepiece import SentencePieceProcessor
  4031. from sentencepiece import sentencepiece_model_pb2 as model
  4032. tokenizer_path = self.dir_model / 'tokenizer.model'
  4033. tokens: list[bytes] = []
  4034. scores: list[float] = []
  4035. toktypes: list[int] = []
  4036. if not tokenizer_path.is_file():
  4037. logger.error(f'Error: Missing {tokenizer_path}')
  4038. sys.exit(1)
  4039. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4040. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4041. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4042. tokenizer = SentencePieceProcessor()
  4043. tokenizer.LoadFromFile(str(tokenizer_path))
  4044. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4045. for token_id in range(vocab_size):
  4046. piece = tokenizer.IdToPiece(token_id)
  4047. text = piece.encode("utf-8")
  4048. score = tokenizer.GetScore(token_id)
  4049. if text == b"\x00":
  4050. # (TODO): fixme
  4051. # Hack here and replace the \x00 characters.
  4052. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  4053. text = "🐉".encode("utf-8")
  4054. toktype = SentencePieceTokenTypes.NORMAL
  4055. if tokenizer.IsUnknown(token_id):
  4056. toktype = SentencePieceTokenTypes.UNKNOWN
  4057. elif tokenizer.IsControl(token_id):
  4058. toktype = SentencePieceTokenTypes.CONTROL
  4059. elif tokenizer.IsUnused(token_id):
  4060. toktype = SentencePieceTokenTypes.UNUSED
  4061. elif tokenizer.IsByte(token_id):
  4062. toktype = SentencePieceTokenTypes.BYTE
  4063. # take care of ununsed raw token
  4064. if piece.startswith('[UNUSED'):
  4065. toktype = SentencePieceTokenTypes.UNUSED
  4066. tokens.append(text)
  4067. scores.append(score)
  4068. toktypes.append(toktype)
  4069. added_tokens_file = self.dir_model / 'added_tokens.json'
  4070. if added_tokens_file.is_file():
  4071. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4072. added_tokens_json = json.load(f)
  4073. for key in added_tokens_json:
  4074. tokens.append(key.encode("utf-8"))
  4075. scores.append(-1000.0)
  4076. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  4077. chat_eos_token = '<|im_end|>'
  4078. chat_eos_token_id = None
  4079. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4080. if tokenizer_config_file.is_file():
  4081. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4082. tokenizer_config_json = json.load(f)
  4083. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  4084. for token_id, foken_data in added_tokens_decoder.items():
  4085. token_id = int(token_id)
  4086. token = foken_data["content"]
  4087. if token == chat_eos_token:
  4088. chat_eos_token_id = token_id
  4089. token = token.encode("utf-8")
  4090. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4091. if tokens[token_id] != token:
  4092. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4093. tokens[token_id] = token
  4094. scores[token_id] = -1000.0
  4095. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4096. if foken_data.get("special"):
  4097. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4098. tokenizer_file = self.dir_model / 'tokenizer.json'
  4099. if tokenizer_file.is_file():
  4100. with open(tokenizer_file, "r", encoding="utf-8") as f:
  4101. tokenizer_json = json.load(f)
  4102. added_tokens = tokenizer_json.get("added_tokens", [])
  4103. for foken_data in added_tokens:
  4104. token_id = int(foken_data["id"])
  4105. token = foken_data["content"]
  4106. if token == chat_eos_token:
  4107. chat_eos_token_id = token_id
  4108. token = token.encode("utf-8")
  4109. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4110. if tokens[token_id] != token:
  4111. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4112. tokens[token_id] = token
  4113. scores[token_id] = -1000.0
  4114. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4115. if foken_data.get("special"):
  4116. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4117. self.gguf_writer.add_tokenizer_model("llama")
  4118. self.gguf_writer.add_tokenizer_pre("default")
  4119. self.gguf_writer.add_token_list(tokens)
  4120. self.gguf_writer.add_token_scores(scores)
  4121. self.gguf_writer.add_token_types(toktypes)
  4122. self.gguf_writer.add_add_space_prefix(add_prefix)
  4123. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4124. old_eos = special_vocab.special_token_ids["eos"]
  4125. if chat_eos_token_id is not None:
  4126. # For the chat model, we replace the eos with '<|im_end|>'.
  4127. # TODO: this is a hack, should be fixed
  4128. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  4129. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  4130. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  4131. " in chat mode so that the conversation can end normally.")
  4132. special_vocab.add_to_gguf(self.gguf_writer)
  4133. def set_gguf_parameters(self):
  4134. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  4135. self.gguf_writer.add_block_count(self.block_count)
  4136. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  4137. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  4138. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  4139. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  4140. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4141. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  4142. self.gguf_writer.add_file_type(self.ftype)
  4143. rope_scaling = self.hparams.get("rope_scaling") or {}
  4144. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  4145. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4146. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4147. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4148. num_heads = self.hparams["num_attention_heads"]
  4149. num_kv_heads = self.hparams["num_key_value_heads"]
  4150. n_embd = self.hparams["hidden_size"]
  4151. q_per_kv = num_heads // num_kv_heads
  4152. head_dim = n_embd // num_heads
  4153. num_groups = num_heads // q_per_kv
  4154. name = name.replace("language_model.", "") # InternVL
  4155. if name.startswith("mlp") or name.startswith("vision_model"):
  4156. # skip visual tensors
  4157. return []
  4158. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  4159. qkv = data_torch
  4160. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  4161. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  4162. # The model weights of q and k equire additional reshape.
  4163. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  4164. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  4165. v = v.reshape((-1, v.shape[-1]))
  4166. return [
  4167. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  4168. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  4169. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  4170. ]
  4171. else:
  4172. return [(self.map_tensor_name(name), data_torch)]
  4173. @ModelBase.register("InternLM3ForCausalLM")
  4174. class InternLM3Model(TextModel):
  4175. model_arch = gguf.MODEL_ARCH.LLAMA
  4176. def set_vocab(self):
  4177. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  4178. self.gguf_writer.add_tokenizer_model("llama")
  4179. self.gguf_writer.add_tokenizer_pre("default")
  4180. self.gguf_writer.add_token_list(tokens)
  4181. self.gguf_writer.add_token_scores(scores)
  4182. self.gguf_writer.add_token_types(toktypes)
  4183. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4184. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4185. if tokenizer_config_file.is_file():
  4186. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4187. tokenizer_config_json = json.load(f)
  4188. if "add_prefix_space" in tokenizer_config_json:
  4189. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  4190. if "added_tokens_decoder" in tokenizer_config_json:
  4191. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  4192. if token_data.get("special"):
  4193. token_id = int(token_id)
  4194. token = token_data["content"]
  4195. special_vocab._set_special_token(token, token_id)
  4196. # update eos token
  4197. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  4198. special_vocab.special_token_ids["eos"] = token_id
  4199. special_vocab.add_to_gguf(self.gguf_writer)
  4200. def set_gguf_parameters(self):
  4201. super().set_gguf_parameters()
  4202. hparams = self.hparams
  4203. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4204. if (rope_dim := hparams.get("head_dim")) is None:
  4205. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4206. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4207. rope_scaling = self.hparams.get("rope_scaling") or {}
  4208. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  4209. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4210. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4211. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4212. n_head = self.hparams["num_attention_heads"]
  4213. n_kv_head = self.hparams.get("num_key_value_heads")
  4214. name = name.replace("language_model.", "") # InternVL
  4215. if name.startswith("mlp") or name.startswith("vision_model"):
  4216. # skip visual tensors
  4217. return []
  4218. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4219. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4220. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4221. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4222. return [(self.map_tensor_name(name), data_torch)]
  4223. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  4224. class BertModel(TextModel):
  4225. model_arch = gguf.MODEL_ARCH.BERT
  4226. def __init__(self, *args, **kwargs):
  4227. super().__init__(*args, **kwargs)
  4228. self.vocab_size = None
  4229. if cls_out_labels := self.hparams.get("id2label"):
  4230. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  4231. # Remove dummy labels added by AutoConfig
  4232. cls_out_labels = None
  4233. self.cls_out_labels = cls_out_labels
  4234. def set_gguf_parameters(self):
  4235. super().set_gguf_parameters()
  4236. self.gguf_writer.add_causal_attention(False)
  4237. self._try_set_pooling_type()
  4238. if self.cls_out_labels:
  4239. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  4240. def set_vocab(self):
  4241. tokens, toktypes, tokpre = self.get_vocab_base()
  4242. self.vocab_size = len(tokens)
  4243. # we need this to validate the size of the token_type embeddings
  4244. # though currently we are passing all zeros to the token_type embeddings
  4245. # "Sequence A" or "Sequence B"
  4246. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4247. # convert to phantom space vocab
  4248. def phantom(tok):
  4249. if tok.startswith("[") and tok.endswith("]"):
  4250. return tok
  4251. if tok.startswith("##"):
  4252. return tok[2:]
  4253. return "\u2581" + tok
  4254. tokens = list(map(phantom, tokens))
  4255. # add vocab to gguf
  4256. self.gguf_writer.add_tokenizer_model("bert")
  4257. self.gguf_writer.add_tokenizer_pre(tokpre)
  4258. self.gguf_writer.add_token_list(tokens)
  4259. self.gguf_writer.add_token_types(toktypes)
  4260. # handle special tokens
  4261. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4262. special_vocab.add_to_gguf(self.gguf_writer)
  4263. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4264. del bid # unused
  4265. if name.startswith("bert."):
  4266. name = name[5:]
  4267. if name.endswith(".gamma"):
  4268. name = name[:-6] + ".weight"
  4269. if name.endswith(".beta"):
  4270. name = name[:-5] + ".bias"
  4271. # we are only using BERT for embeddings so we don't need the pooling layer
  4272. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  4273. return [] # we don't need these
  4274. if name.startswith("cls.predictions"):
  4275. return []
  4276. if name.startswith("cls.seq_relationship"):
  4277. return []
  4278. if self.cls_out_labels:
  4279. # For BertForSequenceClassification (direct projection layer)
  4280. if name == "classifier.weight":
  4281. name = "classifier.out_proj.weight"
  4282. if name == "classifier.bias":
  4283. name = "classifier.out_proj.bias"
  4284. return [(self.map_tensor_name(name), data_torch)]
  4285. def _xlmroberta_tokenizer_init(self) -> None:
  4286. # we need the pad_token_id to know how to chop down position_embd matrix
  4287. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4288. self._position_offset = 1 + pad_token_id
  4289. if "max_position_embeddings" in self.hparams:
  4290. self.hparams["max_position_embeddings"] -= self._position_offset
  4291. else:
  4292. self._position_offset = None
  4293. def _xlmroberta_set_vocab(self) -> None:
  4294. # to avoid TypeError: Descriptors cannot be created directly
  4295. # exception when importing sentencepiece_model_pb2
  4296. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4297. from sentencepiece import SentencePieceProcessor
  4298. from sentencepiece import sentencepiece_model_pb2 as model
  4299. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  4300. tokenizer_json = {}
  4301. tokenizer_config_json = {}
  4302. if not tokenizer_path.is_file():
  4303. tokenizer_path = self.dir_model / 'tokenizer.json'
  4304. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  4305. if not tokenizer_path.is_file():
  4306. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4307. from base64 import b64decode
  4308. from transformers import AutoTokenizer
  4309. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  4310. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  4311. tokenizer_json = json.load(fp)
  4312. if tokenizer_config_path.is_file():
  4313. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  4314. tokenizer_config_json = json.load(fp)
  4315. add_prefix = tokenizer.add_prefix_space
  4316. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  4317. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  4318. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  4319. else:
  4320. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4321. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4322. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4323. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4324. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4325. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4326. tokenizer = SentencePieceProcessor()
  4327. tokenizer.LoadFromFile(str(tokenizer_path))
  4328. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  4329. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4330. scores: list[float] = [-10000.0] * vocab_size
  4331. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4332. if isinstance(tokenizer, SentencePieceProcessor):
  4333. for token_id in range(tokenizer.vocab_size()):
  4334. piece = tokenizer.IdToPiece(token_id)
  4335. text = piece.encode("utf-8")
  4336. score = tokenizer.GetScore(token_id)
  4337. toktype = SentencePieceTokenTypes.NORMAL
  4338. if tokenizer.IsUnknown(token_id):
  4339. toktype = SentencePieceTokenTypes.UNKNOWN
  4340. elif tokenizer.IsControl(token_id):
  4341. toktype = SentencePieceTokenTypes.CONTROL
  4342. elif tokenizer.IsUnused(token_id):
  4343. toktype = SentencePieceTokenTypes.UNUSED
  4344. elif tokenizer.IsByte(token_id):
  4345. toktype = SentencePieceTokenTypes.BYTE
  4346. tokens[token_id] = text
  4347. scores[token_id] = score
  4348. toktypes[token_id] = toktype
  4349. else:
  4350. added_vocab = tokenizer.get_added_vocab()
  4351. unk_token = tokenizer_config_json.get("unk_token")
  4352. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  4353. for token_id in range(tokenizer.vocab_size):
  4354. piece = tokenizer._convert_id_to_token(token_id)
  4355. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  4356. text = piece.encode("utf-8")
  4357. score = tokenizer_json["model"]["vocab"][token_id][1]
  4358. toktype = SentencePieceTokenTypes.NORMAL
  4359. if token_id == unk_token_id:
  4360. toktype = SentencePieceTokenTypes.UNKNOWN
  4361. elif token_id in tokenizer.all_special_ids:
  4362. toktype = SentencePieceTokenTypes.CONTROL
  4363. elif token_id in added_vocab.values():
  4364. toktype = SentencePieceTokenTypes.USER_DEFINED
  4365. # No reliable way to detect this, but jina doesn't have any
  4366. # elif tokenizer.IsByte(token_id):
  4367. # toktype = SentencePieceTokenTypes.BYTE
  4368. tokens[token_id] = text
  4369. scores[token_id] = score
  4370. toktypes[token_id] = toktype
  4371. if isinstance(tokenizer, SentencePieceProcessor):
  4372. # realign tokens (see HF tokenizer code)
  4373. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  4374. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  4375. toktypes = [
  4376. SentencePieceTokenTypes.CONTROL,
  4377. SentencePieceTokenTypes.CONTROL,
  4378. SentencePieceTokenTypes.CONTROL,
  4379. SentencePieceTokenTypes.UNKNOWN,
  4380. ] + toktypes[3:-1]
  4381. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  4382. # Add mask token missing from sentencepiece.bpe.model
  4383. tokens[250001] = b'<mask>'
  4384. scores[250001] = 0.0
  4385. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  4386. self.gguf_writer.add_tokenizer_model("t5")
  4387. self.gguf_writer.add_tokenizer_pre("default")
  4388. self.gguf_writer.add_token_list(tokens)
  4389. self.gguf_writer.add_token_scores(scores)
  4390. self.gguf_writer.add_token_types(toktypes)
  4391. self.gguf_writer.add_add_space_prefix(add_prefix)
  4392. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4393. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4394. if precompiled_charsmap:
  4395. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4396. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4397. special_vocab.add_to_gguf(self.gguf_writer)
  4398. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  4399. class DistilBertModel(BertModel):
  4400. model_arch = gguf.MODEL_ARCH.BERT
  4401. def set_gguf_parameters(self):
  4402. self.gguf_writer.add_layer_norm_eps(1e-12)
  4403. logger.info("gguf: layer norm epsilon = 1e-12")
  4404. super().set_gguf_parameters()
  4405. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4406. if name.startswith("distilbert."):
  4407. name = name[11:]
  4408. # These layers act as MLM head, so we don't need them
  4409. if name.startswith("vocab_"):
  4410. return []
  4411. return super().modify_tensors(data_torch, name, bid)
  4412. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  4413. class RobertaModel(BertModel):
  4414. model_arch = gguf.MODEL_ARCH.BERT
  4415. def __init__(self, *args, **kwargs):
  4416. super().__init__(*args, **kwargs)
  4417. # we need the pad_token_id to know how to chop down position_embd matrix
  4418. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4419. self._position_offset = 1 + pad_token_id
  4420. if "max_position_embeddings" in self.hparams:
  4421. self.hparams["max_position_embeddings"] -= self._position_offset
  4422. else:
  4423. self._position_offset = None
  4424. def set_vocab(self):
  4425. """Support BPE tokenizers for roberta models"""
  4426. bpe_tok_path = self.dir_model / "tokenizer.json"
  4427. if bpe_tok_path.exists():
  4428. self._set_vocab_gpt2()
  4429. # we need this to validate the size of the token_type embeddings
  4430. # though currently we are passing all zeros to the token_type embeddings
  4431. # "Sequence A" or "Sequence B"
  4432. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4433. else:
  4434. return super().set_vocab()
  4435. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4436. # if name starts with "roberta.", remove the prefix
  4437. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4438. if name.startswith("roberta."):
  4439. name = name[8:]
  4440. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4441. if name == "embeddings.position_embeddings.weight":
  4442. if self._position_offset is not None:
  4443. data_torch = data_torch[self._position_offset:,:]
  4444. return super().modify_tensors(data_torch, name, bid)
  4445. @ModelBase.register("NomicBertModel")
  4446. class NomicBertModel(BertModel):
  4447. model_arch = gguf.MODEL_ARCH.BERT
  4448. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4449. hparams = kwargs.pop("hparams", None)
  4450. if hparams is None:
  4451. hparams = ModelBase.load_hparams(dir_model, False)
  4452. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  4453. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  4454. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4455. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  4456. if self._tokenizer_is_xlmroberta:
  4457. self._xlmroberta_tokenizer_init()
  4458. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  4459. if npos == 8192 and mtp == 2048:
  4460. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  4461. elif npos == 2048 and mtp == 2048:
  4462. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  4463. else:
  4464. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  4465. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  4466. # this doesn't do anything in the HF version
  4467. assert self.hparams["causal"] is False
  4468. # no bias tensors unless MoE
  4469. assert self.hparams["qkv_proj_bias"] == self.is_moe
  4470. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  4471. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  4472. # norm at end of layer
  4473. assert self.hparams["prenorm"] is False
  4474. # standard RoPE
  4475. assert self.hparams["rotary_emb_fraction"] == 1.0
  4476. assert self.hparams["rotary_emb_interleaved"] is False
  4477. assert self.hparams["rotary_emb_scale_base"] is None
  4478. def set_vocab(self) -> None:
  4479. if self._tokenizer_is_xlmroberta:
  4480. return self._xlmroberta_set_vocab()
  4481. return super().set_vocab()
  4482. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  4483. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  4484. if "mlp.experts.bias" in name:
  4485. return [] # Explicitly return an empty list.
  4486. if "mlp.experts.mlp.w1" in name:
  4487. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4488. name += ".weight"
  4489. if "mlp.experts.mlp.w2" in name:
  4490. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4491. data_torch = data_torch.transpose(1, 2)
  4492. name += ".weight"
  4493. return [(self.map_tensor_name(name), data_torch)]
  4494. def set_gguf_parameters(self):
  4495. super().set_gguf_parameters()
  4496. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  4497. if self.is_moe:
  4498. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  4499. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4500. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  4501. def _is_tokenizer_xlmroberta(self) -> bool:
  4502. with open(self.dir_model / "tokenizer.json") as f:
  4503. tokenizer_json = json.load(f)
  4504. toktyp = tokenizer_json["model"]["type"]
  4505. if toktyp == "Unigram":
  4506. return True
  4507. if toktyp == "WordPiece":
  4508. return False
  4509. raise ValueError(f"unknown tokenizer: {toktyp}")
  4510. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  4511. class NeoBert(BertModel):
  4512. model_arch = gguf.MODEL_ARCH.NEO_BERT
  4513. def set_gguf_parameters(self):
  4514. super().set_gguf_parameters()
  4515. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  4516. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  4517. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  4518. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4519. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  4520. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  4521. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  4522. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  4523. def modify_tensors(self, data_torch, name, bid):
  4524. if name.startswith("decoder."):
  4525. return []
  4526. if name.startswith("model."):
  4527. name = name[6:]
  4528. return super().modify_tensors(data_torch, name, bid)
  4529. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  4530. class XLMRobertaModel(BertModel):
  4531. model_arch = gguf.MODEL_ARCH.BERT
  4532. _lora_files = {}
  4533. _lora_names = []
  4534. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4535. hparams = kwargs.pop("hparams", None)
  4536. if hparams is None:
  4537. hparams = ModelBase.load_hparams(dir_model, False)
  4538. if lora_names := hparams.get("lora_adaptations"):
  4539. self._lora_names = lora_names
  4540. self.model_arch = gguf.MODEL_ARCH.JINA_BERT_V3
  4541. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4542. self._xlmroberta_tokenizer_init()
  4543. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4544. if self._lora_names:
  4545. for name in self._lora_names:
  4546. fname = self.add_prefix_to_filename(self.fname_out, f"lora-{name}-")
  4547. self._lora_files[name] = gguf.GGUFWriter(fname, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file, dry_run=self.dry_run)
  4548. return super().generate_extra_tensors()
  4549. def set_type(self):
  4550. for lora_writer in self._lora_files.values():
  4551. lora_writer.add_type(gguf.GGUFType.ADAPTER)
  4552. lora_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
  4553. super().set_type()
  4554. def set_vocab(self):
  4555. self._xlmroberta_set_vocab()
  4556. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4557. # if name starts with "roberta.", remove the prefix
  4558. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4559. if name.startswith("roberta."):
  4560. name = name[8:]
  4561. # jina-embeddings-v3
  4562. if ".parametrizations." in name:
  4563. name = name.replace(".parametrizations.", ".")
  4564. if name.endswith(".original"):
  4565. name = name[:-9]
  4566. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4567. if name == "embeddings.position_embeddings.weight":
  4568. if self._position_offset is not None:
  4569. data_torch = data_torch[self._position_offset:,:]
  4570. if name.endswith(".0.lora_A") or name.endswith(".0.lora_B"):
  4571. if name.startswith("pooler.dense"):
  4572. return []
  4573. num_loras = data_torch.size(0)
  4574. assert num_loras == len(self._lora_names)
  4575. # Split out each LoRA in their own GGUF
  4576. for i, lora_writer in enumerate(self._lora_files.values()):
  4577. new_name = self.map_tensor_name(name[:-9]) + name[-7:].lower()
  4578. data = data_torch[i, :, :]
  4579. # Transpose/flip token_embd/types into correct shape
  4580. if new_name == "token_embd.weight.lora_b":
  4581. data = data.T
  4582. elif new_name.startswith("token_types.weight."):
  4583. new_name = new_name[:-1] + ("a" if new_name[-1:] == "b" else "b")
  4584. lora_writer.add_tensor(new_name, data.float().numpy(), raw_dtype=gguf.GGMLQuantizationType.F32)
  4585. return []
  4586. return super().modify_tensors(data_torch, name, bid)
  4587. def set_gguf_parameters(self):
  4588. super().set_gguf_parameters()
  4589. # jina-embeddings-v3
  4590. if rotary_emb_base := self.hparams.get("rotary_emb_base"):
  4591. self.gguf_writer.add_rope_freq_base(rotary_emb_base)
  4592. lora_alpha = self.hparams.get("lora_alpha")
  4593. if lora_prompt_prefixes := self.hparams.get("task_instructions"):
  4594. assert self._lora_files and all(lora_name in lora_prompt_prefixes for lora_name in self._lora_files.keys())
  4595. for lora_name, lora_writer in self._lora_files.items():
  4596. lora_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, lora_alpha if lora_alpha is not None else 1.0)
  4597. lora_writer.add_string(gguf.Keys.Adapter.LORA_TASK_NAME, lora_name)
  4598. if lora_prompt_prefixes:
  4599. lora_writer.add_string(gguf.Keys.Adapter.LORA_PROMPT_PREFIX, lora_prompt_prefixes[lora_name])
  4600. def write(self):
  4601. super().write()
  4602. for lora_writer in self._lora_files.values():
  4603. lora_writer.write_header_to_file()
  4604. lora_writer.write_kv_data_to_file()
  4605. lora_writer.write_tensors_to_file(progress=True)
  4606. lora_writer.close()
  4607. @ModelBase.register("GemmaForCausalLM")
  4608. class GemmaModel(TextModel):
  4609. model_arch = gguf.MODEL_ARCH.GEMMA
  4610. def set_vocab(self):
  4611. self._set_vocab_sentencepiece()
  4612. # TODO: these special tokens should be exported only for the CodeGemma family
  4613. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  4614. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  4615. special_vocab._set_special_token("prefix", 67)
  4616. special_vocab._set_special_token("suffix", 69)
  4617. special_vocab._set_special_token("middle", 68)
  4618. special_vocab._set_special_token("fsep", 70)
  4619. special_vocab._set_special_token("eot", 107)
  4620. special_vocab.chat_template = None # do not add it twice
  4621. special_vocab.add_to_gguf(self.gguf_writer)
  4622. self.gguf_writer.add_add_space_prefix(False)
  4623. def set_gguf_parameters(self):
  4624. hparams = self.hparams
  4625. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4626. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4627. self.gguf_writer.add_block_count(self.block_count)
  4628. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4629. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4630. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4631. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4632. self.gguf_writer.add_key_length(hparams["head_dim"])
  4633. self.gguf_writer.add_value_length(hparams["head_dim"])
  4634. self.gguf_writer.add_file_type(self.ftype)
  4635. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4636. del bid # unused
  4637. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4638. # To prevent errors, skip loading lm_head.weight.
  4639. if name == "lm_head.weight":
  4640. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4641. return []
  4642. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4643. if name.endswith("norm.weight"):
  4644. data_torch = data_torch + 1
  4645. return [(self.map_tensor_name(name), data_torch)]
  4646. @ModelBase.register("Gemma2ForCausalLM")
  4647. class Gemma2Model(TextModel):
  4648. model_arch = gguf.MODEL_ARCH.GEMMA2
  4649. def set_vocab(self):
  4650. self._set_vocab_sentencepiece()
  4651. self.gguf_writer.add_add_space_prefix(False)
  4652. def set_gguf_parameters(self):
  4653. hparams = self.hparams
  4654. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4655. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4656. self.gguf_writer.add_block_count(self.block_count)
  4657. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4658. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4659. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4660. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4661. self.gguf_writer.add_key_length(hparams["head_dim"])
  4662. self.gguf_writer.add_value_length(hparams["head_dim"])
  4663. self.gguf_writer.add_file_type(self.ftype)
  4664. self.gguf_writer.add_attn_logit_softcapping(
  4665. self.hparams["attn_logit_softcapping"]
  4666. )
  4667. self.gguf_writer.add_final_logit_softcapping(
  4668. self.hparams["final_logit_softcapping"]
  4669. )
  4670. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4671. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4672. del bid # unused
  4673. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4674. # To prevent errors, skip loading lm_head.weight.
  4675. if name == "lm_head.weight":
  4676. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4677. return []
  4678. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4679. if name.endswith("norm.weight"):
  4680. data_torch = data_torch + 1
  4681. return [(self.map_tensor_name(name), data_torch)]
  4682. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  4683. class Gemma3Model(TextModel):
  4684. model_arch = gguf.MODEL_ARCH.GEMMA3
  4685. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  4686. def set_vocab(self):
  4687. self._set_vocab_sentencepiece()
  4688. self.gguf_writer.add_add_space_prefix(False)
  4689. def set_gguf_parameters(self):
  4690. hparams = self.hparams
  4691. # some default values are not specified in the hparams
  4692. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  4693. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4694. self.gguf_writer.add_block_count(self.block_count)
  4695. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4696. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  4697. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  4698. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  4699. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  4700. self.gguf_writer.add_file_type(self.ftype)
  4701. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  4702. # attn_logit_softcapping is removed in Gemma3
  4703. assert hparams.get("attn_logit_softcapping") is None
  4704. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  4705. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  4706. if hparams.get("rope_scaling") is not None:
  4707. assert hparams["rope_scaling"]["rope_type"] == "linear"
  4708. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  4709. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4710. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  4711. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4712. del bid # unused
  4713. if "language_model." in name:
  4714. name = name.replace("language_model.", "")
  4715. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4716. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4717. return [] # skip vision tensors
  4718. # remove OOV (out-of-vocabulary) rows in token_embd
  4719. if "embed_tokens.weight" in name:
  4720. vocab = self._create_vocab_sentencepiece()
  4721. tokens = vocab[0]
  4722. data_torch = data_torch[:len(tokens)]
  4723. # ref code in Gemma3RMSNorm
  4724. # output = output * (1.0 + self.weight.float())
  4725. # note: this is not the case on gemma3n
  4726. if name.endswith("norm.weight"):
  4727. data_torch = data_torch + self.norm_shift
  4728. return [(self.map_tensor_name(name), data_torch)]
  4729. @ModelBase.register("Gemma3TextModel")
  4730. class EmbeddingGemma(Gemma3Model):
  4731. model_arch = gguf.MODEL_ARCH.GEMMA_EMBEDDING
  4732. module_paths = []
  4733. dense_features_dims = {}
  4734. def __init__(self, *args, **kwargs):
  4735. super().__init__(*args, **kwargs)
  4736. if self.sentence_transformers_dense_modules:
  4737. # read modules.json to determine if model has Dense layers
  4738. modules_file = self.dir_model / "modules.json"
  4739. if modules_file.is_file():
  4740. with open(modules_file, encoding="utf-8") as modules_json_file:
  4741. mods = json.load(modules_json_file)
  4742. for mod in mods:
  4743. if mod["type"] == "sentence_transformers.models.Dense":
  4744. mod_path = mod["path"]
  4745. # check if model.safetensors file for Dense layer exists
  4746. model_tensors_file = self.dir_model / mod_path / "model.safetensors"
  4747. if model_tensors_file.is_file():
  4748. self.module_paths.append(mod_path)
  4749. # read config.json of the Dense layer to get in/out features
  4750. mod_conf_file = self.dir_model / mod_path / "config.json"
  4751. if mod_conf_file.is_file():
  4752. with open(mod_conf_file, encoding="utf-8") as mod_conf_json_file:
  4753. mod_conf = json.load(mod_conf_json_file)
  4754. # hparams dense_2_feat_out and dense_3_feat_in are required when loading model's dense weights
  4755. prefix = self._get_dense_prefix(mod_path)
  4756. if mod_conf["in_features"] is not None and mod_conf["out_features"] is not None:
  4757. self.dense_features_dims[prefix] = (mod_conf["in_features"], mod_conf["out_features"])
  4758. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4759. from safetensors.torch import load_file
  4760. module_paths = list(self.module_paths)
  4761. for i, module_path in enumerate(module_paths):
  4762. tensors_file = self.dir_model / module_path / "model.safetensors"
  4763. local_tensors = load_file(tensors_file)
  4764. tensor_name = self._get_dense_prefix(module_path)
  4765. for name, local_tensor in local_tensors.items():
  4766. if not name.endswith(".weight"):
  4767. continue
  4768. orig_name = name.replace("linear", tensor_name)
  4769. name = self.map_tensor_name(orig_name)
  4770. yield name, local_tensor.clone()
  4771. @staticmethod
  4772. def _get_dense_prefix(module_path) -> str:
  4773. """Get the tensor name prefix for the Dense layer from module path."""
  4774. tensor_name = "dense_2" if module_path == "2_Dense" else "dense_3"
  4775. return tensor_name
  4776. def set_gguf_parameters(self):
  4777. super().set_gguf_parameters()
  4778. # Override the sliding window size as it gets adjusted by the Gemma3TextConfig
  4779. # constructor. We want to use the value from the original model's config.json.
  4780. # ref: https://github.com/huggingface/transformers/pull/40700
  4781. with open(self.dir_model / "config.json", "r", encoding="utf-8") as f:
  4782. config = json.load(f)
  4783. orig_sliding_window = config.get("sliding_window")
  4784. if orig_sliding_window is None:
  4785. raise ValueError("sliding_window not found in model config - this is required for the model")
  4786. logger.info(f"Using original sliding_window from config: {orig_sliding_window} "
  4787. f"instead of {self.hparams['sliding_window']}")
  4788. self.gguf_writer.add_sliding_window(orig_sliding_window)
  4789. if self.sentence_transformers_dense_modules:
  4790. for dense, dims in self.dense_features_dims.items():
  4791. logger.info(f"Setting dense layer {dense} in/out features to {dims}")
  4792. self.gguf_writer.add_dense_features_dims(dense, dims[0], dims[1])
  4793. self._try_set_pooling_type()
  4794. @ModelBase.register("Gemma3ForConditionalGeneration")
  4795. class Gemma3VisionModel(MmprojModel):
  4796. def set_gguf_parameters(self):
  4797. super().set_gguf_parameters()
  4798. hparams = self.hparams
  4799. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  4800. # default values below are taken from HF tranformers code
  4801. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  4802. self.gguf_writer.add_vision_use_gelu(True)
  4803. # calculate proj_scale_factor (used by tinygemma3 test model)
  4804. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  4805. n_per_side = int(image_seq_length ** 0.5)
  4806. image_size = self.hparams["image_size"]
  4807. patch_size = self.hparams["patch_size"]
  4808. proj_scale_factor = (image_size // patch_size) // n_per_side
  4809. if proj_scale_factor > 0 and proj_scale_factor != 4:
  4810. # we only need to write this if it's not the default value
  4811. # in this case, we are converting a test model
  4812. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  4813. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4814. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  4815. if "input_projection" in name:
  4816. return gguf.GGMLQuantizationType.F16
  4817. if ".embeddings." in name:
  4818. return gguf.GGMLQuantizationType.F32
  4819. return super().tensor_force_quant(name, new_name, bid, n_dims)
  4820. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4821. del bid # unused
  4822. if "vision_model.head." in name:
  4823. return [] # skip redundant tensors for tinygemma3
  4824. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4825. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4826. # process vision tensors
  4827. name = name.replace("_weight", ".weight")
  4828. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  4829. # the other norm values are part of SigLIP model, and they are already correct
  4830. # ref code: Gemma3RMSNorm
  4831. if "soft_emb_norm.weight" in name:
  4832. logger.info(f"Correcting norm value for '{name}'")
  4833. data_torch = data_torch + 1
  4834. return [(self.map_tensor_name(name), data_torch)]
  4835. return [] # skip other tensors
  4836. @ModelBase.register("Gemma3nForConditionalGeneration")
  4837. class Gemma3NModel(Gemma3Model):
  4838. model_arch = gguf.MODEL_ARCH.GEMMA3N
  4839. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  4840. _altup_proj: list[Tensor] = []
  4841. _altup_unembd: list[Tensor] = []
  4842. def __init__(self, *args, **kwargs):
  4843. super().__init__(*args, **kwargs)
  4844. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  4845. self._altup_proj = [
  4846. torch.Tensor(), # to be replaced
  4847. torch.Tensor(), # to be replaced
  4848. torch.Tensor(), # to be replaced
  4849. ]
  4850. self._altup_unembd = [
  4851. torch.Tensor(), # to be replaced
  4852. torch.Tensor(), # to be replaced
  4853. torch.Tensor(), # to be replaced
  4854. ]
  4855. def set_vocab(self):
  4856. super().set_vocab()
  4857. def set_gguf_parameters(self):
  4858. super().set_gguf_parameters()
  4859. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  4860. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  4861. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  4862. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  4863. activation_sparsity_scale = []
  4864. for s in self.hparams["activation_sparsity_pattern"]:
  4865. normal_dist = torch.distributions.normal.Normal(0, 1)
  4866. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  4867. activation_sparsity_scale.append(std_multiplier.item())
  4868. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  4869. sliding_window_pattern = []
  4870. for t in self.hparams["layer_types"]:
  4871. sliding_window_pattern.append(t == "sliding_attention")
  4872. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  4873. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  4874. has_all = all(m.numel() > 0 for m in matrices)
  4875. if not has_all:
  4876. return None
  4877. else:
  4878. return torch.stack(matrices, dim=0)
  4879. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4880. if name.endswith("_scale"):
  4881. name = name + ".weight"
  4882. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  4883. if "language_model." not in name:
  4884. return [] # skip non-language model tensors
  4885. if "altup_unembed_projections" in name:
  4886. data_torch = data_torch.to(device="cpu")
  4887. if ".0." in name:
  4888. self._altup_unembd[0] = data_torch
  4889. elif ".1." in name:
  4890. self._altup_unembd[1] = data_torch
  4891. elif ".2." in name:
  4892. self._altup_unembd[2] = data_torch
  4893. else:
  4894. raise ValueError(f"Unknown name: {name}")
  4895. out = self._stack_matrices(self._altup_unembd)
  4896. if out is not None:
  4897. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  4898. else:
  4899. return []
  4900. if "altup_projections" in name:
  4901. data_torch = data_torch.to(device="cpu")
  4902. if ".0." in name:
  4903. self._altup_proj[0] = data_torch
  4904. elif ".1." in name:
  4905. self._altup_proj[1] = data_torch
  4906. elif ".2." in name:
  4907. self._altup_proj[2] = data_torch
  4908. else:
  4909. raise ValueError(f"Unknown name: {name}")
  4910. out = self._stack_matrices(self._altup_proj)
  4911. if out is not None:
  4912. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  4913. else:
  4914. return []
  4915. return super().modify_tensors(data_torch, name, bid)
  4916. @ModelBase.register("Starcoder2ForCausalLM")
  4917. class StarCoder2Model(TextModel):
  4918. model_arch = gguf.MODEL_ARCH.STARCODER2
  4919. @ModelBase.register("Rwkv6ForCausalLM")
  4920. class Rwkv6Model(TextModel):
  4921. model_arch = gguf.MODEL_ARCH.RWKV6
  4922. def set_vocab(self):
  4923. self._set_vocab_rwkv_world()
  4924. def set_gguf_parameters(self):
  4925. head_size = self.hparams["head_size"]
  4926. hidden_size = self.hparams["hidden_size"]
  4927. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4928. rescale_every_n_layers = self.hparams["rescale_every"]
  4929. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  4930. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  4931. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  4932. # RWKV isn't context limited
  4933. self.gguf_writer.add_context_length(1048576)
  4934. self.gguf_writer.add_embedding_length(hidden_size)
  4935. self.gguf_writer.add_block_count(self.block_count)
  4936. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4937. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  4938. self.gguf_writer.add_wkv_head_size(head_size)
  4939. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4940. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4941. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4942. self.gguf_writer.add_file_type(self.ftype)
  4943. # required by llama.cpp, unused
  4944. self.gguf_writer.add_head_count(0)
  4945. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4946. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4947. new_name = self.map_tensor_name(name)
  4948. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4949. new_name += ".weight"
  4950. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  4951. data_torch = data_torch.transpose(0, 1)
  4952. if new_name.endswith("time_mix_w2.weight"):
  4953. data_torch = data_torch.permute(0, 2, 1)
  4954. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  4955. data_torch = data_torch.squeeze()
  4956. try:
  4957. rescale_every_n_layers = self.hparams["rescale_every"]
  4958. if rescale_every_n_layers > 0:
  4959. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  4960. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  4961. except KeyError:
  4962. pass
  4963. # concat time_mix_lerp weights to reduce some cpu overhead
  4964. # also reduces the number of tensors in the model
  4965. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  4966. try:
  4967. self.lerp_weights[bid][new_name] = data_torch
  4968. except KeyError:
  4969. self.lerp_weights[bid] = {new_name: data_torch}
  4970. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  4971. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4972. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  4973. yield (new_name, data)
  4974. return
  4975. yield (new_name, data_torch)
  4976. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  4977. class RWKV6Qwen2Model(Rwkv6Model):
  4978. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  4979. def set_vocab(self):
  4980. try:
  4981. self._set_vocab_sentencepiece()
  4982. except FileNotFoundError:
  4983. self._set_vocab_gpt2()
  4984. def set_gguf_parameters(self):
  4985. num_attention_heads = self.hparams["num_attention_heads"]
  4986. num_key_value_heads = self.hparams["num_key_value_heads"]
  4987. hidden_size = self.hparams["hidden_size"]
  4988. head_size = hidden_size // num_attention_heads
  4989. rms_norm_eps = self.hparams["rms_norm_eps"]
  4990. intermediate_size = self.hparams["intermediate_size"]
  4991. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  4992. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  4993. # RWKV isn't context limited
  4994. self.gguf_writer.add_context_length(1048576)
  4995. self.gguf_writer.add_embedding_length(hidden_size)
  4996. self.gguf_writer.add_block_count(self.block_count)
  4997. self.gguf_writer.add_wkv_head_size(head_size)
  4998. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4999. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  5000. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5001. self.gguf_writer.add_file_type(self.ftype)
  5002. # special parameters for time_mixing in RWKV6QWEN2
  5003. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5004. self.gguf_writer.add_token_shift_count(1)
  5005. # RWKV6QWEN2 use grouped key/value like GQA
  5006. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  5007. # required by llama.cpp, unused
  5008. self.gguf_writer.add_head_count(0)
  5009. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5010. for new_name, data in super().modify_tensors(data_torch, name, bid):
  5011. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  5012. data = data.view(5, -1, data.shape[-1])
  5013. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  5014. # permute them here to avoid code changes
  5015. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  5016. if "w2" in new_name:
  5017. data = data.view(5, -1, data.shape[-1])
  5018. yield (new_name, data)
  5019. continue
  5020. yield (new_name, data)
  5021. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  5022. class Rwkv7Model(TextModel):
  5023. model_arch = gguf.MODEL_ARCH.RWKV7
  5024. def set_vocab(self):
  5025. self._set_vocab_rwkv_world()
  5026. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  5027. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  5028. def set_gguf_parameters(self):
  5029. try:
  5030. head_size = self.hparams["head_size"]
  5031. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  5032. except KeyError:
  5033. head_size = self.hparams["head_dim"]
  5034. layer_norm_eps = self.hparams["norm_eps"]
  5035. hidden_size = self.hparams["hidden_size"]
  5036. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  5037. # ICLR: In-Context-Learning-Rate
  5038. try:
  5039. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5040. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5041. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5042. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5043. except KeyError:
  5044. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5045. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5046. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5047. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5048. # RWKV isn't context limited
  5049. self.gguf_writer.add_context_length(1048576)
  5050. self.gguf_writer.add_embedding_length(hidden_size)
  5051. self.gguf_writer.add_block_count(self.block_count)
  5052. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  5053. self.gguf_writer.add_wkv_head_size(head_size)
  5054. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5055. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5056. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5057. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5058. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5059. self.gguf_writer.add_file_type(self.ftype)
  5060. # required by llama.cpp, unused
  5061. self.gguf_writer.add_head_count(0)
  5062. lerp_weights: dict[int, dict[str, Tensor]] = {}
  5063. lora_needs_transpose: bool = True
  5064. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5065. # unify tensor names here to make life easier
  5066. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  5067. name = name.replace("self_attn", "attention").replace("attn", "attention")
  5068. name = name.replace("time_mixer.", "")
  5069. # lora layer names in fla-hub's impl
  5070. if "_lora.lora" in name:
  5071. self.lora_needs_transpose = False
  5072. name = name.replace("_lora.lora.0.weight", "1.weight")
  5073. name = name.replace("_lora.lora.2.weight", "2.weight")
  5074. name = name.replace("_lora.lora.2.bias", "0.weight")
  5075. name = name.replace("feed_forward_norm", "ln2")
  5076. name = name.replace("g_norm", "ln_x")
  5077. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  5078. # some models have dummy v0/v1/v2 on first layer while others don't
  5079. # ignore them all since they are not used
  5080. return
  5081. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  5082. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  5083. if bid is not None and "attention.x_" in name:
  5084. if "attention.x_x" in name:
  5085. # already concatenated
  5086. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5087. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  5088. yield (new_name, data)
  5089. else:
  5090. try:
  5091. self.lerp_weights[bid][name] = data_torch
  5092. except KeyError:
  5093. self.lerp_weights[bid] = {name: data_torch}
  5094. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  5095. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5096. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  5097. yield (new_name, data)
  5098. return
  5099. else:
  5100. data_torch = data_torch.squeeze()
  5101. new_name = self.map_tensor_name(name)
  5102. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  5103. new_name += ".weight"
  5104. if self.lora_needs_transpose and any(
  5105. new_name.endswith(t) for t in [
  5106. "time_mix_w1.weight", "time_mix_w2.weight",
  5107. "time_mix_a1.weight", "time_mix_a2.weight",
  5108. "time_mix_v1.weight", "time_mix_v2.weight",
  5109. "time_mix_g1.weight", "time_mix_g2.weight",
  5110. ]
  5111. ):
  5112. data_torch = data_torch.transpose(0, 1)
  5113. if 'r_k' in new_name:
  5114. data_torch = data_torch.flatten()
  5115. if bid == 0 and "time_mix_a" in new_name:
  5116. # dummy v0/v1/v2 on first layer
  5117. # easist way to make llama happy
  5118. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  5119. yield (new_name, data_torch)
  5120. @ModelBase.register("RwkvHybridForCausalLM")
  5121. class ARwkv7Model(Rwkv7Model):
  5122. model_arch = gguf.MODEL_ARCH.ARWKV7
  5123. def set_vocab(self):
  5124. try:
  5125. self._set_vocab_sentencepiece()
  5126. except FileNotFoundError:
  5127. self._set_vocab_gpt2()
  5128. def set_gguf_parameters(self):
  5129. hidden_size = self.hparams["hidden_size"]
  5130. head_size = self.hparams["head_size"]
  5131. rms_norm_eps = self.hparams["rms_norm_eps"]
  5132. intermediate_size = self.hparams["intermediate_size"]
  5133. wkv_has_gate = self.hparams["wkv_has_gate"]
  5134. assert self.hparams["wkv_version"] == 7
  5135. # ICLR: In-Context-Learning-Rate
  5136. lora_rank_decay = 64
  5137. lora_rank_iclr = 64
  5138. lora_rank_value_residual_mix = 32
  5139. lora_rank_gate = 128 if wkv_has_gate else 0
  5140. # RWKV isn't context limited
  5141. self.gguf_writer.add_context_length(1048576)
  5142. self.gguf_writer.add_embedding_length(hidden_size)
  5143. self.gguf_writer.add_block_count(self.block_count)
  5144. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5145. self.gguf_writer.add_wkv_head_size(head_size)
  5146. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5147. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5148. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5149. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5150. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5151. self.gguf_writer.add_file_type(self.ftype)
  5152. self.gguf_writer.add_token_shift_count(1)
  5153. # required by llama.cpp, unused
  5154. self.gguf_writer.add_head_count(0)
  5155. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  5156. class MambaModel(TextModel):
  5157. model_arch = gguf.MODEL_ARCH.MAMBA
  5158. def __init__(self, dir_model: Path, *args, **kwargs):
  5159. # Avoid using AutoConfig for hparams
  5160. hparams = kwargs.pop("hparams", None)
  5161. if hparams is None:
  5162. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5163. hparams = json.load(f)
  5164. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5165. def set_vocab(self):
  5166. vocab_size = self.hparams["vocab_size"]
  5167. # Round vocab size to next multiple of 8
  5168. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  5169. # pad using ceiling division
  5170. # ref: https://stackoverflow.com/a/17511341/22827863
  5171. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5172. self.hparams["vocab_size"] = vocab_size
  5173. if (self.dir_model / "tokenizer.json").is_file():
  5174. self._set_vocab_gpt2()
  5175. elif (self.dir_model / "tokenizer.model").is_file():
  5176. self._set_vocab_sentencepiece()
  5177. else:
  5178. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5179. self._set_vocab_builtin("gpt-neox", vocab_size)
  5180. def set_gguf_parameters(self):
  5181. d_model = self.find_hparam(["hidden_size", "d_model"])
  5182. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5183. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  5184. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  5185. # ceiling division
  5186. # ref: https://stackoverflow.com/a/17511341/22827863
  5187. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5188. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  5189. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5190. use_dt_b_c_norm = False
  5191. # For falconmamba we do apply RMS norm on B / DT and C layers
  5192. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  5193. use_dt_b_c_norm = True
  5194. # Fail early for models which don't have a block expansion factor of 2
  5195. assert d_inner == 2 * d_model
  5196. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5197. self.gguf_writer.add_embedding_length(d_model)
  5198. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5199. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5200. self.gguf_writer.add_block_count(self.block_count)
  5201. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5202. self.gguf_writer.add_ssm_inner_size(d_inner)
  5203. self.gguf_writer.add_ssm_state_size(d_state)
  5204. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5205. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5206. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  5207. self.gguf_writer.add_file_type(self.ftype)
  5208. _tok_embd = None
  5209. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5210. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  5211. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  5212. new_name = self.map_tensor_name(name)
  5213. if name.endswith(".A_log"):
  5214. logger.debug("A_log --> A ==> " + new_name)
  5215. data_torch = -torch.exp(data_torch)
  5216. # [4 1 8192 1] -> [4 8192 1 1]
  5217. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5218. data_torch = data_torch.squeeze()
  5219. # assuming token_embd.weight is seen before output.weight
  5220. if self._tok_embd is not None and new_name == output_name:
  5221. if torch.equal(self._tok_embd, data_torch):
  5222. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  5223. return []
  5224. elif new_name == tok_embd_name:
  5225. self._tok_embd = data_torch
  5226. return [(new_name, data_torch)]
  5227. @ModelBase.register("Mamba2ForCausalLM")
  5228. class Mamba2Model(TextModel):
  5229. model_arch = gguf.MODEL_ARCH.MAMBA2
  5230. def __init__(self, dir_model: Path, *args, **kwargs):
  5231. # Avoid using AutoConfig for hparams
  5232. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  5233. hparams = kwargs.pop("hparams", None)
  5234. if hparams is None:
  5235. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5236. hparams = json.load(f)
  5237. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5238. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  5239. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  5240. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  5241. def set_vocab(self):
  5242. vocab_size = self.hparams["vocab_size"]
  5243. # Round vocab size to next multiple of 16
  5244. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  5245. # pad using ceiling division
  5246. # ref: https://stackoverflow.com/a/17511341/22827863
  5247. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5248. self.hparams["vocab_size"] = vocab_size
  5249. if (self.dir_model / "tokenizer.model").is_file():
  5250. self._set_vocab_sentencepiece()
  5251. elif (self.dir_model / "tokenizer.model.v3").is_file():
  5252. # mamba-codestral
  5253. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  5254. elif (self.dir_model / "tokenizer.json").is_file():
  5255. self._set_vocab_gpt2()
  5256. else:
  5257. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5258. self._set_vocab_builtin("gpt-neox", vocab_size)
  5259. def set_gguf_parameters(self):
  5260. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5261. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  5262. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  5263. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5264. # Fail early for models which don't have a block expansion factor of 2
  5265. # TODO: does this really matter?
  5266. # skip the assertion for FalconH1 Model
  5267. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  5268. assert self.d_inner == 2 * self.d_model
  5269. assert self.d_inner % head_dim == 0
  5270. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5271. self.gguf_writer.add_embedding_length(self.d_model)
  5272. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5273. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5274. self.gguf_writer.add_block_count(self.block_count)
  5275. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5276. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  5277. self.gguf_writer.add_ssm_state_size(d_state)
  5278. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  5279. self.gguf_writer.add_ssm_group_count(self.n_group)
  5280. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5281. self.gguf_writer.add_file_type(self.ftype)
  5282. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5283. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  5284. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  5285. name = name.removeprefix("model.")
  5286. if name.endswith(".dt_bias"):
  5287. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  5288. new_name = self.map_tensor_name(name)
  5289. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5290. data_torch = data_torch.squeeze()
  5291. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  5292. gguf.MODEL_TENSOR.SSM_A,
  5293. gguf.MODEL_TENSOR.SSM_D,
  5294. ]):
  5295. # unsqueeze A to use similar shape semantics as Mamba-1
  5296. # (D is also unsqueezed, but for more straightforward broadcast internally)
  5297. data_torch = data_torch.reshape((*data_torch.shape, 1))
  5298. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  5299. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  5300. if name.endswith(".A_log"):
  5301. logger.debug("A_log --> A ==> " + new_name)
  5302. data_torch = -torch.exp(data_torch)
  5303. yield (new_name, data_torch)
  5304. @ModelBase.register("JambaForCausalLM")
  5305. class JambaModel(TextModel):
  5306. model_arch = gguf.MODEL_ARCH.JAMBA
  5307. def set_vocab(self):
  5308. if (self.dir_model / "tokenizer.model").is_file():
  5309. self._set_vocab_sentencepiece()
  5310. else:
  5311. self._set_vocab_llama_hf()
  5312. self.gguf_writer.add_add_space_prefix(False)
  5313. def set_gguf_parameters(self):
  5314. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  5315. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  5316. d_inner = self.hparams["mamba_expand"] * d_model
  5317. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  5318. # ceiling division
  5319. # ref: https://stackoverflow.com/a/17511341/22827863
  5320. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5321. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  5322. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  5323. n_kv_head = self.hparams["num_key_value_heads"]
  5324. attn_offset = self.hparams["attn_layer_offset"]
  5325. attn_period = self.hparams["attn_layer_period"]
  5326. n_kv_vec = [0 for _ in range(attn_offset)] + [
  5327. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  5328. ]
  5329. self.gguf_writer.add_block_count(self.block_count)
  5330. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  5331. self.gguf_writer.add_embedding_length(d_model)
  5332. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  5333. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  5334. self.gguf_writer.add_head_count_kv(n_kv_vec)
  5335. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5336. self.gguf_writer.add_ssm_inner_size(d_inner)
  5337. self.gguf_writer.add_ssm_state_size(d_state)
  5338. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5339. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5340. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  5341. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  5342. self.gguf_writer.add_file_type(self.ftype)
  5343. _experts: list[dict[str, Tensor]] | None = None
  5344. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5345. # Mini-Jamba
  5346. name = name.replace(".moe.", ".feed_forward.")
  5347. if bid is not None:
  5348. moe_offset = self.hparams["expert_layer_offset"]
  5349. moe_period = self.hparams["expert_layer_period"]
  5350. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  5351. name = name.replace(".experts.0.", ".")
  5352. # process the experts separately
  5353. if ".feed_forward.experts." in name:
  5354. n_experts = self.hparams["num_experts"]
  5355. assert bid is not None
  5356. if self._experts is None:
  5357. self._experts = [{} for _ in range(self.block_count)]
  5358. self._experts[bid][name] = data_torch
  5359. if len(self._experts[bid]) >= n_experts * 3:
  5360. # merge the experts into a single 3d tensor
  5361. for wid in ["down_proj", "gate_proj", "up_proj"]:
  5362. datas: list[Tensor] = []
  5363. for xid in range(n_experts):
  5364. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  5365. datas.append(self._experts[bid][ename])
  5366. del self._experts[bid][ename]
  5367. data_torch = torch.stack(datas, dim=0)
  5368. # using the same merged name as qwen2moe
  5369. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  5370. new_name = self.map_tensor_name(merged_name)
  5371. yield new_name, data_torch
  5372. return
  5373. new_name = self.map_tensor_name(name)
  5374. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5375. data_torch = data_torch.squeeze()
  5376. if name.endswith(".A_log"):
  5377. logger.debug("A_log --> A ==> " + new_name)
  5378. data_torch = -torch.exp(data_torch)
  5379. yield (new_name, data_torch)
  5380. def prepare_tensors(self):
  5381. super().prepare_tensors()
  5382. if self._experts is not None:
  5383. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5384. experts = [k for d in self._experts for k in d.keys()]
  5385. if len(experts) > 0:
  5386. raise ValueError(f"Unprocessed experts: {experts}")
  5387. @ModelBase.register("CohereForCausalLM")
  5388. class CommandR2Model(TextModel):
  5389. model_arch = gguf.MODEL_ARCH.COMMAND_R
  5390. def __init__(self, *args, **kwargs):
  5391. super().__init__(*args, **kwargs)
  5392. # max_position_embeddings = 8192 in config.json but model was actually
  5393. # trained on 128k context length
  5394. # aya-23 models don't have model_max_length specified
  5395. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  5396. def set_gguf_parameters(self):
  5397. super().set_gguf_parameters()
  5398. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5399. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5400. @ModelBase.register("Cohere2ForCausalLM")
  5401. class Cohere2Model(TextModel):
  5402. model_arch = gguf.MODEL_ARCH.COHERE2
  5403. def set_gguf_parameters(self):
  5404. super().set_gguf_parameters()
  5405. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5406. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5407. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  5408. rotary_pct = self.hparams["rotary_pct"]
  5409. hidden_size = self.hparams["hidden_size"]
  5410. num_attention_heads = self.hparams["num_attention_heads"]
  5411. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  5412. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5413. @ModelBase.register("OlmoForCausalLM")
  5414. @ModelBase.register("OLMoForCausalLM")
  5415. class OlmoModel(TextModel):
  5416. model_arch = gguf.MODEL_ARCH.OLMO
  5417. def set_gguf_parameters(self):
  5418. super().set_gguf_parameters()
  5419. self.gguf_writer.add_layer_norm_eps(1e-5)
  5420. clip_qkv = self.hparams.get("clip_qkv")
  5421. if clip_qkv is not None:
  5422. self.gguf_writer.add_clamp_kqv(clip_qkv)
  5423. # Same as super class, but permuting q_proj, k_proj
  5424. # Copied from: LlamaModel
  5425. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5426. del bid # unused
  5427. n_head = self.hparams["num_attention_heads"]
  5428. n_kv_head = self.hparams.get("num_key_value_heads")
  5429. if name.endswith("q_proj.weight"):
  5430. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5431. if name.endswith("k_proj.weight"):
  5432. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5433. return [(self.map_tensor_name(name), data_torch)]
  5434. @ModelBase.register("SeedOssForCausalLM")
  5435. class SeedOssModel(TextModel):
  5436. model_arch = gguf.MODEL_ARCH.SEED_OSS
  5437. @ModelBase.register("Olmo2ForCausalLM")
  5438. @ModelBase.register("Olmo3ForCausalLM")
  5439. class Olmo2Model(TextModel):
  5440. model_arch = gguf.MODEL_ARCH.OLMO2
  5441. def set_gguf_parameters(self):
  5442. super().set_gguf_parameters()
  5443. rope_scaling = self.hparams.get("rope_scaling") or {}
  5444. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5445. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5446. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5447. self.gguf_writer.add_rope_scaling_attn_factors(rope_scaling["attention_factor"])
  5448. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5449. if "sliding_window" in self.hparams:
  5450. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5451. sliding_window_pattern = []
  5452. if "layer_types" in self.hparams:
  5453. sliding_window_pattern = [t == "sliding_attention" for t in self.hparams["layer_types"]]
  5454. else:
  5455. # Olmo2 does not use sliding window attention.
  5456. # Olmo3 defaults to using sliding window for all layers except every 4th.
  5457. for i in range(self.hparams["num_hidden_layers"]):
  5458. sliding_window_pattern.append((i + 1) % 4 != 0)
  5459. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5460. @ModelBase.register("OlmoeForCausalLM")
  5461. class OlmoeModel(TextModel):
  5462. model_arch = gguf.MODEL_ARCH.OLMOE
  5463. def set_gguf_parameters(self):
  5464. super().set_gguf_parameters()
  5465. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  5466. if (n_experts := self.hparams.get("num_experts")) is not None:
  5467. self.gguf_writer.add_expert_count(n_experts)
  5468. _experts: list[dict[str, Tensor]] | None = None
  5469. # Copied from: Qwen2MoeModel
  5470. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5471. # process the experts separately
  5472. if name.find("experts") != -1:
  5473. n_experts = self.hparams["num_experts"]
  5474. assert bid is not None
  5475. if self._experts is None:
  5476. self._experts = [{} for _ in range(self.block_count)]
  5477. self._experts[bid][name] = data_torch
  5478. if len(self._experts[bid]) >= n_experts * 3:
  5479. tensors: list[tuple[str, Tensor]] = []
  5480. # merge the experts into a single 3d tensor
  5481. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5482. datas: list[Tensor] = []
  5483. for xid in range(n_experts):
  5484. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5485. datas.append(self._experts[bid][ename])
  5486. del self._experts[bid][ename]
  5487. data_torch = torch.stack(datas, dim=0)
  5488. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5489. new_name = self.map_tensor_name(merged_name)
  5490. tensors.append((new_name, data_torch))
  5491. return tensors
  5492. else:
  5493. return []
  5494. return [(self.map_tensor_name(name), data_torch)]
  5495. # Copied from: Qwen2MoeModel
  5496. def prepare_tensors(self):
  5497. super().prepare_tensors()
  5498. if self._experts is not None:
  5499. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5500. experts = [k for d in self._experts for k in d.keys()]
  5501. if len(experts) > 0:
  5502. raise ValueError(f"Unprocessed experts: {experts}")
  5503. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  5504. class JinaBertV2Model(BertModel):
  5505. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  5506. def set_vocab(self):
  5507. tokenizer_class = 'BertTokenizer'
  5508. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  5509. tokenizer_class = json.load(f)['tokenizer_class']
  5510. if tokenizer_class == 'BertTokenizer':
  5511. super().set_vocab()
  5512. elif tokenizer_class == 'RobertaTokenizer':
  5513. self._set_vocab_gpt2()
  5514. self.gguf_writer.add_token_type_count(2)
  5515. else:
  5516. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  5517. @ModelBase.register("OpenELMForCausalLM")
  5518. class OpenELMModel(TextModel):
  5519. model_arch = gguf.MODEL_ARCH.OPENELM
  5520. @staticmethod
  5521. def _make_divisible(v: float | int, divisor: int) -> int:
  5522. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  5523. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  5524. # Make sure that round down does not go down by more than 10%.
  5525. if new_v < 0.9 * v:
  5526. new_v += divisor
  5527. return new_v
  5528. def __init__(self, *args, **kwargs):
  5529. super().__init__(*args, **kwargs)
  5530. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  5531. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  5532. self._n_embd: int = self.hparams["model_dim"]
  5533. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  5534. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  5535. self._ffn_dims: list[int] = [
  5536. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  5537. for multiplier in ffn_multipliers
  5538. ]
  5539. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  5540. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  5541. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  5542. def set_vocab(self):
  5543. try:
  5544. self._set_vocab_sentencepiece()
  5545. except FileNotFoundError:
  5546. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  5547. def set_gguf_parameters(self):
  5548. n_embd = self._n_embd
  5549. head_dim = self.hparams["head_dim"]
  5550. rot_pct = 1.0
  5551. assert self.block_count == len(self._num_kv_heads)
  5552. assert self.block_count == len(self._num_query_heads)
  5553. assert self.block_count == len(self._ffn_dims)
  5554. self.gguf_writer.add_block_count(self.block_count)
  5555. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  5556. self.gguf_writer.add_embedding_length(n_embd)
  5557. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  5558. self.gguf_writer.add_head_count(self._num_query_heads)
  5559. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  5560. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  5561. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  5562. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  5563. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  5564. self.gguf_writer.add_key_length(head_dim)
  5565. self.gguf_writer.add_value_length(head_dim)
  5566. self.gguf_writer.add_file_type(self.ftype)
  5567. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  5568. if "n_layers" in keys:
  5569. return self.hparams["num_transformer_layers"]
  5570. return super().find_hparam(keys, optional)
  5571. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5572. # split ff
  5573. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  5574. ff_dim = self._ffn_dims[bid]
  5575. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  5576. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  5577. return
  5578. yield (self.map_tensor_name(name), data_torch)
  5579. @ModelBase.register("ArcticForCausalLM")
  5580. class ArcticModel(TextModel):
  5581. model_arch = gguf.MODEL_ARCH.ARCTIC
  5582. def set_vocab(self):
  5583. # The reason for using a custom implementation here is that the
  5584. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  5585. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  5586. from sentencepiece import SentencePieceProcessor
  5587. tokenizer_path = self.dir_model / 'tokenizer.model'
  5588. if not tokenizer_path.is_file():
  5589. logger.error(f'Error: Missing {tokenizer_path}')
  5590. sys.exit(1)
  5591. # Read the whole vocabulary from the tokenizer.model file
  5592. tokenizer = SentencePieceProcessor()
  5593. tokenizer.LoadFromFile(str(tokenizer_path))
  5594. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5595. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5596. scores: list[float] = [-10000.0] * vocab_size
  5597. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5598. for token_id in range(tokenizer.vocab_size()):
  5599. piece = tokenizer.IdToPiece(token_id)
  5600. text = piece.encode("utf-8")
  5601. score = tokenizer.GetScore(token_id)
  5602. toktype = SentencePieceTokenTypes.NORMAL
  5603. if tokenizer.IsUnknown(token_id):
  5604. toktype = SentencePieceTokenTypes.UNKNOWN
  5605. elif tokenizer.IsControl(token_id):
  5606. toktype = SentencePieceTokenTypes.CONTROL
  5607. elif tokenizer.IsUnused(token_id):
  5608. toktype = SentencePieceTokenTypes.UNUSED
  5609. elif tokenizer.IsByte(token_id):
  5610. toktype = SentencePieceTokenTypes.BYTE
  5611. tokens[token_id] = text
  5612. scores[token_id] = score
  5613. toktypes[token_id] = toktype
  5614. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  5615. # of information about added/redefined tokens and modify them accordingly.
  5616. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  5617. if tokenizer_config_file.is_file():
  5618. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  5619. tokenizer_config_json = json.load(f)
  5620. if "added_tokens_decoder" in tokenizer_config_json:
  5621. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  5622. for token_id, token_json in added_tokens_decoder.items():
  5623. token_id = int(token_id)
  5624. if token_id >= vocab_size:
  5625. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5626. continue
  5627. token_content = token_json["content"]
  5628. token_type = SentencePieceTokenTypes.USER_DEFINED
  5629. token_score = -10000.0
  5630. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  5631. # Set the score to 0.0 as in the original tokenizer.model
  5632. if ("special" in token_json) and token_json["special"]:
  5633. if token_content == tokenizer_config_json["unk_token"]:
  5634. token_type = SentencePieceTokenTypes.UNKNOWN
  5635. else:
  5636. token_type = SentencePieceTokenTypes.CONTROL
  5637. token_score = 0.0
  5638. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  5639. tokens[token_id] = token_content.encode("utf-8")
  5640. toktypes[token_id] = token_type
  5641. scores[token_id] = token_score
  5642. self.gguf_writer.add_tokenizer_model("llama")
  5643. self.gguf_writer.add_tokenizer_pre("default")
  5644. self.gguf_writer.add_token_list(tokens)
  5645. self.gguf_writer.add_token_scores(scores)
  5646. self.gguf_writer.add_token_types(toktypes)
  5647. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5648. special_vocab.add_to_gguf(self.gguf_writer)
  5649. def set_gguf_parameters(self):
  5650. super().set_gguf_parameters()
  5651. hparams = self.hparams
  5652. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5653. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  5654. _experts: list[dict[str, Tensor]] | None = None
  5655. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5656. n_head = self.hparams["num_attention_heads"]
  5657. n_kv_head = self.hparams.get("num_key_value_heads")
  5658. if name.endswith("q_proj.weight"):
  5659. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5660. if name.endswith("k_proj.weight"):
  5661. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5662. # process the experts separately
  5663. if name.find("block_sparse_moe.experts") != -1:
  5664. n_experts = self.hparams["num_local_experts"]
  5665. assert bid is not None
  5666. if self._experts is None:
  5667. self._experts = [{} for _ in range(self.block_count)]
  5668. self._experts[bid][name] = data_torch
  5669. if len(self._experts[bid]) >= n_experts * 3:
  5670. tensors: list[tuple[str, Tensor]] = []
  5671. # merge the experts into a single 3d tensor
  5672. for wid in ["w1", "w2", "w3"]:
  5673. datas: list[Tensor] = []
  5674. for xid in range(n_experts):
  5675. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  5676. datas.append(self._experts[bid][ename])
  5677. del self._experts[bid][ename]
  5678. data_torch = torch.stack(datas, dim=0)
  5679. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  5680. new_name = self.map_tensor_name(merged_name)
  5681. tensors.append((new_name, data_torch))
  5682. return tensors
  5683. else:
  5684. return []
  5685. return [(self.map_tensor_name(name), data_torch)]
  5686. def prepare_tensors(self):
  5687. super().prepare_tensors()
  5688. if self._experts is not None:
  5689. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5690. experts = [k for d in self._experts for k in d.keys()]
  5691. if len(experts) > 0:
  5692. raise ValueError(f"Unprocessed experts: {experts}")
  5693. @ModelBase.register("DeepseekForCausalLM")
  5694. class DeepseekModel(TextModel):
  5695. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  5696. def set_vocab(self):
  5697. try:
  5698. self._set_vocab_sentencepiece()
  5699. except FileNotFoundError:
  5700. self._set_vocab_gpt2()
  5701. def set_gguf_parameters(self):
  5702. super().set_gguf_parameters()
  5703. hparams = self.hparams
  5704. if (rope_dim := hparams.get("head_dim")) is None:
  5705. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5706. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5707. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5708. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5709. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5710. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5711. self.gguf_writer.add_expert_weights_scale(1.0)
  5712. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5713. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5714. _experts: list[dict[str, Tensor]] | None = None
  5715. @staticmethod
  5716. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5717. if n_head_kv is not None and n_head != n_head_kv:
  5718. n_head = n_head_kv
  5719. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5720. .swapaxes(1, 2)
  5721. .reshape(weights.shape))
  5722. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5723. n_head = self.hparams["num_attention_heads"]
  5724. n_kv_head = self.hparams.get("num_key_value_heads")
  5725. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5726. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  5727. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5728. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  5729. # process the experts separately
  5730. if name.find("mlp.experts") != -1:
  5731. n_experts = self.hparams["n_routed_experts"]
  5732. assert bid is not None
  5733. if self._experts is None:
  5734. self._experts = [{} for _ in range(self.block_count)]
  5735. self._experts[bid][name] = data_torch
  5736. if len(self._experts[bid]) >= n_experts * 3:
  5737. tensors: list[tuple[str, Tensor]] = []
  5738. # merge the experts into a single 3d tensor
  5739. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5740. datas: list[Tensor] = []
  5741. for xid in range(n_experts):
  5742. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5743. datas.append(self._experts[bid][ename])
  5744. del self._experts[bid][ename]
  5745. data_torch = torch.stack(datas, dim=0)
  5746. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5747. new_name = self.map_tensor_name(merged_name)
  5748. tensors.append((new_name, data_torch))
  5749. return tensors
  5750. else:
  5751. return []
  5752. return [(self.map_tensor_name(name), data_torch)]
  5753. def prepare_tensors(self):
  5754. super().prepare_tensors()
  5755. if self._experts is not None:
  5756. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5757. experts = [k for d in self._experts for k in d.keys()]
  5758. if len(experts) > 0:
  5759. raise ValueError(f"Unprocessed experts: {experts}")
  5760. @ModelBase.register(
  5761. "DeepseekV2ForCausalLM",
  5762. "DeepseekV3ForCausalLM",
  5763. "KimiVLForConditionalGeneration",
  5764. )
  5765. class DeepseekV2Model(TextModel):
  5766. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  5767. def set_vocab(self):
  5768. try:
  5769. self._set_vocab_gpt2()
  5770. return
  5771. except Exception:
  5772. pass
  5773. from transformers import AutoTokenizer
  5774. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5775. tokpre = self.get_vocab_base_pre(tokenizer)
  5776. if tokpre == "kimi-k2":
  5777. # Build merges list using the approach similar to HunYuanMoE
  5778. merges = []
  5779. vocab = {}
  5780. mergeable_ranks = tokenizer.model._mergeable_ranks
  5781. for token, rank in mergeable_ranks.items():
  5782. vocab[QwenModel.token_bytes_to_string(token)] = rank
  5783. if len(token) == 1:
  5784. continue
  5785. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  5786. if len(merged) == 2:
  5787. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  5788. # Build token list
  5789. vocab_size = self.hparams["vocab_size"]
  5790. special_tokens = tokenizer.special_tokens
  5791. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  5792. tokens: list[str] = []
  5793. toktypes: list[int] = []
  5794. for i in range(vocab_size):
  5795. if i not in reverse_vocab:
  5796. tokens.append(f"[PAD{i}]")
  5797. toktypes.append(gguf.TokenType.UNUSED)
  5798. else:
  5799. token = reverse_vocab[i]
  5800. tokens.append(token)
  5801. if i in special_tokens.values():
  5802. toktypes.append(gguf.TokenType.CONTROL)
  5803. else:
  5804. toktypes.append(gguf.TokenType.NORMAL)
  5805. self.gguf_writer.add_tokenizer_model("gpt2")
  5806. self.gguf_writer.add_tokenizer_pre(tokpre)
  5807. self.gguf_writer.add_token_list(tokens)
  5808. self.gguf_writer.add_token_types(toktypes)
  5809. self.gguf_writer.add_token_merges(merges)
  5810. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  5811. special_vocab.add_to_gguf(self.gguf_writer)
  5812. else:
  5813. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  5814. def set_gguf_parameters(self):
  5815. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  5816. self.hparams["num_key_value_heads"] = 1
  5817. super().set_gguf_parameters()
  5818. hparams = self.hparams
  5819. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5820. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5821. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  5822. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  5823. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5824. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  5825. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  5826. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  5827. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5828. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  5829. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5830. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5831. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5832. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  5833. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  5834. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5835. rope_scaling = self.hparams.get("rope_scaling") or {}
  5836. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5837. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5838. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5839. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5840. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
  5841. _experts: list[dict[str, Tensor]] | None = None
  5842. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5843. # skip vision tensors and remove "language_model." for Kimi-VL
  5844. if "vision_tower" in name or "multi_modal_projector" in name:
  5845. return []
  5846. if name.startswith("language_model."):
  5847. name = name.replace("language_model.", "")
  5848. # rename e_score_correction_bias tensors
  5849. if name.endswith("e_score_correction_bias"):
  5850. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5851. # skip Multi-Token Prediction (MTP) layers
  5852. block_count = self.hparams["num_hidden_layers"]
  5853. match = re.match(r"model.layers.(\d+)", name)
  5854. if match and int(match.group(1)) >= block_count:
  5855. return []
  5856. # process the experts separately
  5857. if name.find("mlp.experts") != -1:
  5858. n_experts = self.hparams["n_routed_experts"]
  5859. assert bid is not None
  5860. if self._experts is None:
  5861. self._experts = [{} for _ in range(self.block_count)]
  5862. self._experts[bid][name] = data_torch
  5863. if len(self._experts[bid]) >= n_experts * 3:
  5864. tensors: list[tuple[str, Tensor]] = []
  5865. # merge the experts into a single 3d tensor
  5866. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5867. datas: list[Tensor] = []
  5868. for xid in range(n_experts):
  5869. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5870. datas.append(self._experts[bid][ename])
  5871. del self._experts[bid][ename]
  5872. data_torch = torch.stack(datas, dim=0)
  5873. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5874. new_name = self.map_tensor_name(merged_name)
  5875. tensors.append((new_name, data_torch))
  5876. return tensors
  5877. else:
  5878. return []
  5879. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  5880. if name.endswith("kv_b_proj.weight"):
  5881. name_kb = name.replace("kv_b_proj", "k_b_proj")
  5882. name_vb = name.replace("kv_b_proj", "v_b_proj")
  5883. n_head_kv = self.hparams["num_key_value_heads"]
  5884. v_head_dim = self.hparams["v_head_dim"]
  5885. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  5886. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  5887. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  5888. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  5889. k_b = k_b.transpose(1, 2)
  5890. return [
  5891. (self.map_tensor_name(name_kb), k_b),
  5892. (self.map_tensor_name(name_vb), v_b)
  5893. ]
  5894. return [(self.map_tensor_name(name), data_torch)]
  5895. def prepare_tensors(self):
  5896. super().prepare_tensors()
  5897. if self._experts is not None:
  5898. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5899. experts = [k for d in self._experts for k in d.keys()]
  5900. if len(experts) > 0:
  5901. raise ValueError(f"Unprocessed experts: {experts}")
  5902. @ModelBase.register("MiniMaxM2ForCausalLM")
  5903. class MiniMaxM2Model(TextModel):
  5904. model_arch = gguf.MODEL_ARCH.MINIMAXM2
  5905. _experts_cache: dict[int, dict[str, Tensor]] = {}
  5906. def __init__(self, *args, **kwargs):
  5907. super().__init__(*args, **kwargs)
  5908. self.hparams["num_experts"] = self.hparams["num_local_experts"]
  5909. def set_gguf_parameters(self):
  5910. super().set_gguf_parameters()
  5911. self.gguf_writer.add_expert_feed_forward_length(self.find_hparam(["intermediate_size"]))
  5912. self.gguf_writer.add_rope_dimension_count(self.find_hparam(["rotary_dim"]))
  5913. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  5914. if name.endswith("e_score_correction_bias"):
  5915. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5916. # merge expert weights
  5917. if 'experts' in name:
  5918. n_experts = self.hparams["num_experts"]
  5919. assert bid is not None
  5920. expert_cache = self._experts_cache.setdefault(bid, {})
  5921. expert_cache[name] = data_torch
  5922. expert_weights = ["w1", "w2", "w3"]
  5923. # not enough expert weights to merge
  5924. if len(expert_cache) < n_experts * len(expert_weights):
  5925. return []
  5926. tensors: list[tuple[str, Tensor]] = []
  5927. for w_name in expert_weights:
  5928. datas: list[Tensor] = []
  5929. for xid in range(n_experts):
  5930. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  5931. datas.append(expert_cache[ename])
  5932. del expert_cache[ename]
  5933. data_torch = torch.stack(datas, dim=0)
  5934. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  5935. new_name = self.map_tensor_name(merged_name)
  5936. tensors.append((new_name, data_torch))
  5937. del self._experts_cache[bid]
  5938. return tensors
  5939. return super().modify_tensors(data_torch, name, bid)
  5940. @ModelBase.register("PanguEmbeddedForCausalLM")
  5941. class PanguEmbeddedModel(TextModel):
  5942. model_arch = gguf.MODEL_ARCH.PANGU_EMBED
  5943. def set_vocab(self):
  5944. self._set_vocab_sentencepiece()
  5945. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  5946. if tokenizer_config_file.is_file():
  5947. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  5948. tokenizer_config_json = json.load(f)
  5949. if "add_prefix_space" in tokenizer_config_json:
  5950. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  5951. def set_gguf_parameters(self):
  5952. super().set_gguf_parameters()
  5953. hparams = self.hparams
  5954. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5955. # PanguEmbedded's hparam loaded from config.json without head_dim
  5956. if (rope_dim := hparams.get("head_dim")) is None:
  5957. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5958. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5959. if hparams.get("head_dim") is None:
  5960. self.gguf_writer.add_key_length(rope_dim)
  5961. self.gguf_writer.add_value_length(rope_dim)
  5962. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5963. if name == "lm_head.weight":
  5964. if self.hparams.get("tie_word_embeddings", False):
  5965. logger.info("Skipping tied output layer 'lm_head.weight'")
  5966. return []
  5967. return [(self.map_tensor_name(name), data_torch)]
  5968. @ModelBase.register("Dots1ForCausalLM")
  5969. class Dots1Model(Qwen2MoeModel):
  5970. model_arch = gguf.MODEL_ARCH.DOTS1
  5971. def __init__(self, *args, **kwargs):
  5972. super().__init__(*args, **kwargs)
  5973. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  5974. def set_gguf_parameters(self):
  5975. super().set_gguf_parameters()
  5976. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  5977. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  5978. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  5979. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  5980. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  5981. if name.endswith("e_score_correction_bias"):
  5982. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5983. if "shared_experts" in name:
  5984. return [(self.map_tensor_name(name), data_torch)]
  5985. return super().modify_tensors(data_torch, name, bid)
  5986. @ModelBase.register("PLMForCausalLM")
  5987. class PLMModel(TextModel):
  5988. model_arch = gguf.MODEL_ARCH.PLM
  5989. def set_vocab(self):
  5990. self._set_vocab_gpt2()
  5991. def set_gguf_parameters(self):
  5992. super().set_gguf_parameters()
  5993. hparams = self.hparams
  5994. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5995. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5996. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5997. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  5998. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5999. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6000. return [(self.map_tensor_name(name), data_torch)]
  6001. def prepare_tensors(self):
  6002. super().prepare_tensors()
  6003. @ModelBase.register("T5WithLMHeadModel")
  6004. @ModelBase.register("T5ForConditionalGeneration")
  6005. @ModelBase.register("MT5ForConditionalGeneration")
  6006. @ModelBase.register("UMT5ForConditionalGeneration")
  6007. @ModelBase.register("UMT5Model")
  6008. class T5Model(TextModel):
  6009. model_arch = gguf.MODEL_ARCH.T5
  6010. def __init__(self, *args, **kwargs):
  6011. super().__init__(*args, **kwargs)
  6012. self.shared_token_embeddings_found = False
  6013. def set_vocab(self):
  6014. # to avoid TypeError: Descriptors cannot be created directly
  6015. # exception when importing sentencepiece_model_pb2
  6016. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6017. from sentencepiece import SentencePieceProcessor
  6018. from sentencepiece import sentencepiece_model_pb2 as model
  6019. tokenizer_path = self.dir_model / 'tokenizer.model'
  6020. # many older models use spiece.model tokenizer model filename
  6021. if not tokenizer_path.is_file():
  6022. tokenizer_path = self.dir_model / 'spiece.model'
  6023. if not tokenizer_path.is_file():
  6024. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6025. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6026. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6027. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6028. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6029. # assure the tokenizer model file name is correct
  6030. assert tokenizer_path.name == 'tokenizer.model'
  6031. return self._set_vocab_sentencepiece()
  6032. else:
  6033. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6034. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6035. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6036. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6037. tokenizer = SentencePieceProcessor()
  6038. tokenizer.LoadFromFile(str(tokenizer_path))
  6039. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6040. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6041. scores: list[float] = [-10000.0] * vocab_size
  6042. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6043. for token_id in range(tokenizer.vocab_size()):
  6044. piece = tokenizer.IdToPiece(token_id)
  6045. text = piece.encode("utf-8")
  6046. score = tokenizer.GetScore(token_id)
  6047. toktype = SentencePieceTokenTypes.NORMAL
  6048. if tokenizer.IsUnknown(token_id):
  6049. toktype = SentencePieceTokenTypes.UNKNOWN
  6050. elif tokenizer.IsControl(token_id):
  6051. toktype = SentencePieceTokenTypes.CONTROL
  6052. elif tokenizer.IsUnused(token_id):
  6053. toktype = SentencePieceTokenTypes.UNUSED
  6054. elif tokenizer.IsByte(token_id):
  6055. toktype = SentencePieceTokenTypes.BYTE
  6056. tokens[token_id] = text
  6057. scores[token_id] = score
  6058. toktypes[token_id] = toktype
  6059. added_tokens_file = self.dir_model / 'added_tokens.json'
  6060. if added_tokens_file.is_file():
  6061. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6062. added_tokens_json = json.load(f)
  6063. for key in added_tokens_json:
  6064. token_id = added_tokens_json[key]
  6065. if token_id >= vocab_size:
  6066. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6067. continue
  6068. tokens[token_id] = key.encode("utf-8")
  6069. scores[token_id] = -1000.0
  6070. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6071. if vocab_size > len(tokens):
  6072. pad_count = vocab_size - len(tokens)
  6073. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6074. for i in range(1, pad_count + 1):
  6075. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6076. scores.append(-1000.0)
  6077. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6078. self.gguf_writer.add_tokenizer_model("t5")
  6079. self.gguf_writer.add_tokenizer_pre("default")
  6080. self.gguf_writer.add_token_list(tokens)
  6081. self.gguf_writer.add_token_scores(scores)
  6082. self.gguf_writer.add_token_types(toktypes)
  6083. self.gguf_writer.add_add_space_prefix(add_prefix)
  6084. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6085. if precompiled_charsmap:
  6086. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6087. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6088. special_vocab.add_to_gguf(self.gguf_writer)
  6089. def set_gguf_parameters(self):
  6090. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6091. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6092. n_ctx = 512
  6093. self.gguf_writer.add_context_length(n_ctx)
  6094. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6095. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6096. self.gguf_writer.add_block_count(self.block_count)
  6097. if (dec_n_layer := self.hparams.get("num_decoder_layers")) is not None:
  6098. self.gguf_writer.add_decoder_block_count(dec_n_layer)
  6099. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6100. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6101. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6102. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6103. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6104. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6105. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  6106. self.gguf_writer.add_file_type(self.ftype)
  6107. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6108. del bid # unused
  6109. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6110. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6111. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6112. # and decoder and ignore the remaining ones.
  6113. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6114. if not self.shared_token_embeddings_found:
  6115. name = "shared.weight"
  6116. self.shared_token_embeddings_found = True
  6117. else:
  6118. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6119. return []
  6120. return [(self.map_tensor_name(name), data_torch)]
  6121. @ModelBase.register("T5EncoderModel")
  6122. class T5EncoderModel(TextModel):
  6123. model_arch = gguf.MODEL_ARCH.T5ENCODER
  6124. def __init__(self, *args, **kwargs):
  6125. super().__init__(*args, **kwargs)
  6126. self.shared_token_embeddings_found = False
  6127. def set_vocab(self):
  6128. # to avoid TypeError: Descriptors cannot be created directly
  6129. # exception when importing sentencepiece_model_pb2
  6130. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6131. from sentencepiece import SentencePieceProcessor
  6132. from sentencepiece import sentencepiece_model_pb2 as model
  6133. tokenizer_path = self.dir_model / 'tokenizer.model'
  6134. # many older models use spiece.model tokenizer model filename
  6135. if not tokenizer_path.is_file():
  6136. tokenizer_path = self.dir_model / 'spiece.model'
  6137. if not tokenizer_path.is_file():
  6138. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6139. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6140. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6141. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6142. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6143. # assure the tokenizer model file name is correct
  6144. assert tokenizer_path.name == 'tokenizer.model'
  6145. return self._set_vocab_sentencepiece()
  6146. else:
  6147. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6148. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6149. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6150. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6151. tokenizer = SentencePieceProcessor()
  6152. tokenizer.LoadFromFile(str(tokenizer_path))
  6153. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6154. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6155. scores: list[float] = [-10000.0] * vocab_size
  6156. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6157. for token_id in range(tokenizer.vocab_size()):
  6158. piece = tokenizer.IdToPiece(token_id)
  6159. text = piece.encode("utf-8")
  6160. score = tokenizer.GetScore(token_id)
  6161. toktype = SentencePieceTokenTypes.NORMAL
  6162. if tokenizer.IsUnknown(token_id):
  6163. toktype = SentencePieceTokenTypes.UNKNOWN
  6164. elif tokenizer.IsControl(token_id):
  6165. toktype = SentencePieceTokenTypes.CONTROL
  6166. elif tokenizer.IsUnused(token_id):
  6167. toktype = SentencePieceTokenTypes.UNUSED
  6168. elif tokenizer.IsByte(token_id):
  6169. toktype = SentencePieceTokenTypes.BYTE
  6170. tokens[token_id] = text
  6171. scores[token_id] = score
  6172. toktypes[token_id] = toktype
  6173. added_tokens_file = self.dir_model / 'added_tokens.json'
  6174. if added_tokens_file.is_file():
  6175. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6176. added_tokens_json = json.load(f)
  6177. for key in added_tokens_json:
  6178. token_id = added_tokens_json[key]
  6179. if token_id >= vocab_size:
  6180. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6181. continue
  6182. tokens[token_id] = key.encode("utf-8")
  6183. scores[token_id] = -1000.0
  6184. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6185. if vocab_size > len(tokens):
  6186. pad_count = vocab_size - len(tokens)
  6187. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6188. for i in range(1, pad_count + 1):
  6189. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6190. scores.append(-1000.0)
  6191. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6192. self.gguf_writer.add_tokenizer_model("t5")
  6193. self.gguf_writer.add_tokenizer_pre("default")
  6194. self.gguf_writer.add_token_list(tokens)
  6195. self.gguf_writer.add_token_scores(scores)
  6196. self.gguf_writer.add_token_types(toktypes)
  6197. self.gguf_writer.add_add_space_prefix(add_prefix)
  6198. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6199. if precompiled_charsmap:
  6200. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6201. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6202. special_vocab.add_to_gguf(self.gguf_writer)
  6203. def set_gguf_parameters(self):
  6204. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6205. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6206. n_ctx = 512
  6207. self.gguf_writer.add_context_length(n_ctx)
  6208. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6209. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6210. self.gguf_writer.add_block_count(self.block_count)
  6211. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6212. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6213. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6214. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6215. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6216. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6217. self.gguf_writer.add_file_type(self.ftype)
  6218. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6219. del bid # unused
  6220. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6221. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6222. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6223. # and decoder and ignore the remaining ones.
  6224. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6225. if not self.shared_token_embeddings_found:
  6226. name = "shared.weight"
  6227. self.shared_token_embeddings_found = True
  6228. else:
  6229. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6230. return []
  6231. return [(self.map_tensor_name(name), data_torch)]
  6232. @ModelBase.register("JAISLMHeadModel")
  6233. class JaisModel(TextModel):
  6234. model_arch = gguf.MODEL_ARCH.JAIS
  6235. def __init__(self, *args, **kwargs):
  6236. super().__init__(*args, **kwargs)
  6237. # SwigLU activation
  6238. assert self.hparams["activation_function"] == "swiglu"
  6239. # ALiBi position embedding
  6240. assert self.hparams["position_embedding_type"] == "alibi"
  6241. # Embeddings scale
  6242. self.embeddings_scale = 1.0
  6243. if 'mup_embeddings_scale' in self.hparams:
  6244. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  6245. elif 'embeddings_scale' in self.hparams:
  6246. self.embeddings_scale = self.hparams['embeddings_scale']
  6247. else:
  6248. assert False
  6249. self.width_scale = 1.0
  6250. if 'mup_output_alpha' in self.hparams:
  6251. assert 'mup_width_scale' in self.hparams
  6252. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  6253. elif 'width_scale' in self.hparams:
  6254. self.width_scale = self.hparams['width_scale']
  6255. else:
  6256. assert False
  6257. self.max_alibi_bias = 8.0
  6258. def set_vocab(self):
  6259. self._set_vocab_gpt2()
  6260. def set_gguf_parameters(self):
  6261. self.gguf_writer.add_block_count(self.block_count)
  6262. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  6263. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  6264. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  6265. self.gguf_writer.add_head_count(self.hparams["n_head"])
  6266. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6267. self.gguf_writer.add_file_type(self.ftype)
  6268. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6269. del bid # unused
  6270. tensors: list[tuple[str, Tensor]] = []
  6271. # we don't need these
  6272. if name.endswith((".attn.bias")):
  6273. return tensors
  6274. if name.endswith(("relative_pe.slopes")):
  6275. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  6276. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  6277. # but Jais's PyTorch model simply precalculates the slope values and places them
  6278. # in relative_pes.slopes
  6279. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  6280. first_val = float(data_torch[0].item())
  6281. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  6282. return tensors
  6283. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  6284. data_torch = data_torch.transpose(1, 0)
  6285. new_name = self.map_tensor_name(name)
  6286. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  6287. tensors.append((new_name, data_torch * self.embeddings_scale))
  6288. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  6289. tensors.append((new_name, data_torch * self.width_scale))
  6290. else:
  6291. tensors.append((new_name, data_torch))
  6292. return tensors
  6293. def prepare_tensors(self):
  6294. super().prepare_tensors()
  6295. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  6296. @ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
  6297. class Glm4Model(TextModel):
  6298. model_arch = gguf.MODEL_ARCH.GLM4
  6299. def set_vocab(self):
  6300. from transformers import AutoTokenizer
  6301. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6302. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6303. tokens, toktypes, tokpre = self.get_vocab_base()
  6304. self.gguf_writer.add_tokenizer_model("gpt2")
  6305. self.gguf_writer.add_tokenizer_pre(tokpre)
  6306. self.gguf_writer.add_token_list(tokens)
  6307. self.gguf_writer.add_token_types(toktypes)
  6308. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6309. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6310. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6311. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6312. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6313. special_vocab.add_to_gguf(self.gguf_writer)
  6314. def set_gguf_parameters(self):
  6315. super().set_gguf_parameters()
  6316. if (rope_dim := self.hparams.get("head_dim")) is None:
  6317. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6318. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6319. rope_scaling = self.hparams.get("rope_scaling") or {}
  6320. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6321. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6322. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6323. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6324. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6325. if name.startswith("model.visual."): # ignore visual part of Glm4v
  6326. return []
  6327. elif name.startswith("model.language_model."):
  6328. name = name.replace("language_model.", "") # for Glm4v
  6329. return super().modify_tensors(data_torch, name, bid)
  6330. @ModelBase.register("Glm4MoeForCausalLM")
  6331. class Glm4MoeModel(TextModel):
  6332. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  6333. def __init__(self, *args, **kwargs):
  6334. super().__init__(*args, **kwargs)
  6335. # GLM4_MOE has num_hidden_layers + 1 actual layers (including NextN layer)
  6336. self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
  6337. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  6338. def set_vocab(self):
  6339. from transformers import AutoTokenizer
  6340. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  6341. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6342. tokens, toktypes, tokpre = self.get_vocab_base()
  6343. self.gguf_writer.add_tokenizer_model("gpt2")
  6344. self.gguf_writer.add_tokenizer_pre(tokpre)
  6345. self.gguf_writer.add_token_list(tokens)
  6346. self.gguf_writer.add_token_types(toktypes)
  6347. # Special tokens
  6348. # Note: Using <|endoftext|> (151329) for eot causes endless generation
  6349. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
  6350. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
  6351. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
  6352. special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
  6353. special_vocab.add_to_gguf(self.gguf_writer)
  6354. def set_gguf_parameters(self):
  6355. super().set_gguf_parameters()
  6356. if (rope_dim := self.hparams.get("head_dim")) is None:
  6357. rope_dim = (
  6358. self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6359. )
  6360. self.gguf_writer.add_rope_dimension_count(
  6361. int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))
  6362. )
  6363. # MoE parameters - Use only routed expert count (shared experts handled separately)
  6364. if (n_routed_experts := self.hparams.get("n_routed_experts")) is not None:
  6365. self.gguf_writer.add_expert_count(n_routed_experts)
  6366. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  6367. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6368. if (n_shared_experts := self.hparams.get("n_shared_experts")) is not None:
  6369. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  6370. if (first_k_dense_replace := self.hparams.get("first_k_dense_replace")) is not None:
  6371. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  6372. # Expert gating function (sigmoid for GLM4_MOE)
  6373. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6374. # Routed scaling factor
  6375. if (routed_scaling_factor := self.hparams.get("routed_scaling_factor")) is not None:
  6376. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  6377. # Normalise topk probabilities
  6378. if (norm_topk_prob := self.hparams.get("norm_topk_prob")) is not None:
  6379. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  6380. # NextN/MTP prediction layers
  6381. if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  6382. self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
  6383. _experts: list[dict[str, Tensor]] | None = None
  6384. def modify_tensors(
  6385. self, data_torch: Tensor, name: str, bid: int | None
  6386. ) -> Iterable[tuple[str, Tensor]]:
  6387. if name.startswith("model.visual."): # ignore visual part
  6388. return []
  6389. elif name.startswith("model.language_model."):
  6390. name = name.replace("language_model.", "") # for multimodal variants
  6391. # Handle main token embedding (but not layer-specific NextN embeddings)
  6392. if name == "model.embed_tokens.weight" and ".layers." not in name:
  6393. return [(self.map_tensor_name("token_embd.weight"), data_torch)]
  6394. # Handle routed experts
  6395. if name.find("mlp.experts") != -1:
  6396. n_experts = self.hparams["n_routed_experts"]
  6397. assert bid is not None
  6398. if self._experts is None:
  6399. self._experts = [{} for _ in range(self.block_count)]
  6400. self._experts[bid][name] = data_torch
  6401. if len(self._experts[bid]) >= n_experts * 3:
  6402. tensors: list[tuple[str, Tensor]] = []
  6403. # merge the experts into a single 3d tensor
  6404. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6405. datas: list[Tensor] = []
  6406. for xid in range(n_experts):
  6407. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6408. datas.append(self._experts[bid][ename])
  6409. del self._experts[bid][ename]
  6410. data_torch = torch.stack(datas, dim=0)
  6411. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6412. new_name = self.map_tensor_name(merged_name)
  6413. tensors.append((new_name, data_torch))
  6414. return tensors
  6415. else:
  6416. return []
  6417. if name.endswith("e_score_correction_bias"):
  6418. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6419. new_name = self.map_tensor_name(name)
  6420. return [(new_name, data_torch)]
  6421. def prepare_tensors(self):
  6422. super().prepare_tensors()
  6423. if self._experts is not None:
  6424. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6425. experts = [k for d in self._experts for k in d.keys()]
  6426. if len(experts) > 0:
  6427. raise ValueError(f"Unprocessed experts: {experts}")
  6428. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  6429. class ChatGLMModel(TextModel):
  6430. model_arch = gguf.MODEL_ARCH.CHATGLM
  6431. def set_vocab_chatglm3(self):
  6432. dir_model = self.dir_model
  6433. hparams = self.hparams
  6434. tokens: list[bytes] = []
  6435. toktypes: list[int] = []
  6436. scores: list[float] = []
  6437. from transformers import AutoTokenizer
  6438. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6439. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  6440. assert max(tokenizer.get_vocab().values()) < vocab_size
  6441. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  6442. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  6443. for token_id in range(vocab_size):
  6444. piece = tokenizer._convert_id_to_token(token_id)
  6445. if token_id == 0:
  6446. piece = "<unk>"
  6447. elif token_id == 1:
  6448. piece = "<bos>"
  6449. elif token_id == 2:
  6450. piece = "<eos>"
  6451. text = piece.encode("utf-8")
  6452. score = 0.0
  6453. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  6454. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  6455. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  6456. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  6457. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  6458. if piece in special_tokens:
  6459. toktype = SentencePieceTokenTypes.CONTROL
  6460. elif len(piece) == 0:
  6461. text = f"[PAD{token_id}]".encode("utf-8")
  6462. toktype = SentencePieceTokenTypes.UNUSED
  6463. else:
  6464. toktype = SentencePieceTokenTypes.USER_DEFINED
  6465. tokens.append(text)
  6466. scores.append(score)
  6467. toktypes.append(toktype)
  6468. continue
  6469. toktype = SentencePieceTokenTypes.NORMAL
  6470. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  6471. toktype = SentencePieceTokenTypes.UNKNOWN
  6472. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  6473. toktype = SentencePieceTokenTypes.CONTROL
  6474. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  6475. toktype = SentencePieceTokenTypes.UNUSED
  6476. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  6477. toktype = SentencePieceTokenTypes.BYTE
  6478. tokens.append(text)
  6479. scores.append(score)
  6480. toktypes.append(toktype)
  6481. self.gguf_writer.add_tokenizer_model("llama")
  6482. # glm3 needs prefix and suffix formatted as:
  6483. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  6484. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  6485. self.gguf_writer.add_token_list(tokens)
  6486. self.gguf_writer.add_token_scores(scores)
  6487. self.gguf_writer.add_token_types(toktypes)
  6488. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6489. special_vocab.add_to_gguf(self.gguf_writer)
  6490. @staticmethod
  6491. def token_bytes_to_string(b):
  6492. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  6493. byte_encoder = bytes_to_unicode()
  6494. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  6495. @staticmethod
  6496. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  6497. parts = [bytes([b]) for b in token]
  6498. while True:
  6499. min_idx = None
  6500. min_rank = None
  6501. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  6502. rank = mergeable_ranks.get(pair[0] + pair[1])
  6503. if rank is not None and (min_rank is None or rank < min_rank):
  6504. min_idx = i
  6505. min_rank = rank
  6506. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  6507. break
  6508. assert min_idx is not None
  6509. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  6510. return parts
  6511. def set_vocab(self):
  6512. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  6513. self.set_vocab_chatglm3()
  6514. return
  6515. dir_model = self.dir_model
  6516. hparams = self.hparams
  6517. tokens: list[str] = []
  6518. toktypes: list[int] = []
  6519. from transformers import AutoTokenizer
  6520. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6521. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  6522. assert max(tokenizer.get_vocab().values()) < vocab_size
  6523. tokens, toktypes, tokpre = self.get_vocab_base()
  6524. self.gguf_writer.add_tokenizer_model("gpt2")
  6525. self.gguf_writer.add_tokenizer_pre(tokpre)
  6526. self.gguf_writer.add_token_list(tokens)
  6527. self.gguf_writer.add_token_types(toktypes)
  6528. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6529. # only add special tokens when they were not already loaded from config.json
  6530. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6531. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6532. # this one is usually not in config.json anyway
  6533. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6534. special_vocab.add_to_gguf(self.gguf_writer)
  6535. def set_gguf_parameters(self):
  6536. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  6537. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  6538. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  6539. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  6540. self.gguf_writer.add_embedding_length(n_embed)
  6541. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  6542. self.gguf_writer.add_block_count(self.block_count)
  6543. self.gguf_writer.add_head_count(n_head)
  6544. self.gguf_writer.add_head_count_kv(n_head_kv)
  6545. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  6546. self.gguf_writer.add_file_type(self.ftype)
  6547. if "attention_dim" in self.hparams:
  6548. rope_dim = self.hparams["attention_dim"]
  6549. else:
  6550. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6551. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6552. self.gguf_writer.add_add_bos_token(False)
  6553. rope_freq = 10000
  6554. if "rope_ratio" in self.hparams:
  6555. rope_freq = rope_freq * self.hparams["rope_ratio"]
  6556. self.gguf_writer.add_rope_freq_base(rope_freq)
  6557. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6558. del bid # unused
  6559. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  6560. return []
  6561. name = name.removeprefix("transformer.")
  6562. return [(self.map_tensor_name(name), data_torch)]
  6563. @ModelBase.register("NemotronForCausalLM")
  6564. class NemotronModel(TextModel):
  6565. model_arch = gguf.MODEL_ARCH.NEMOTRON
  6566. def set_vocab(self):
  6567. self._set_vocab_sentencepiece()
  6568. self.gguf_writer.add_pad_token_id(0)
  6569. self.gguf_writer.add_unk_token_id(1)
  6570. def set_gguf_parameters(self):
  6571. super().set_gguf_parameters()
  6572. hparams = self.hparams
  6573. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6574. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  6575. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  6576. # * Partial RoPE
  6577. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  6578. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  6579. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  6580. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  6581. # * RopeScaling for Nemotron
  6582. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  6583. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6584. else:
  6585. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6586. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  6587. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6588. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  6589. # model.layers.{l}.input_layernorm.weight
  6590. # model.layers.{l}.post_attention_layernorm.weight
  6591. # model.norm.weight
  6592. if name.endswith("norm.weight"):
  6593. data_torch = data_torch + 1
  6594. return [(self.map_tensor_name(name), data_torch)]
  6595. @ModelBase.register("ExaoneForCausalLM")
  6596. class ExaoneModel(TextModel):
  6597. model_arch = gguf.MODEL_ARCH.EXAONE
  6598. def set_gguf_parameters(self):
  6599. hparams = self.hparams
  6600. assert (hparams["activation_function"] == "silu")
  6601. max_position_embeddings = hparams["max_position_embeddings"]
  6602. embed_dim = hparams["hidden_size"]
  6603. num_heads = hparams["num_attention_heads"]
  6604. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  6605. layer_norm_eps = hparams["layer_norm_epsilon"]
  6606. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  6607. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  6608. # attention_dropout_rate = hparams["attention_dropout"]
  6609. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  6610. # embed_dropout_rate = hparams["embed_dropout"]
  6611. self.gguf_writer.add_embedding_length(embed_dim)
  6612. self.gguf_writer.add_head_count(num_heads)
  6613. self.gguf_writer.add_head_count_kv(num_kv_heads)
  6614. self.gguf_writer.add_context_length(max_position_embeddings)
  6615. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  6616. self.gguf_writer.add_feed_forward_length(intermediate_size)
  6617. self.gguf_writer.add_block_count(self.block_count)
  6618. self.gguf_writer.add_file_type(self.ftype)
  6619. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  6620. self.gguf_writer.add_rope_freq_base(rope_theta)
  6621. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  6622. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  6623. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  6624. rope_scaling = self.hparams.get("rope_scaling") or {}
  6625. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  6626. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6627. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6628. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6629. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  6630. if rope_scaling.get("rope_type", '').lower() == "llama3":
  6631. base = self.hparams.get("rope_theta", 10000.0)
  6632. if (dim := self.hparams.get("head_dim")) is None:
  6633. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6634. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6635. factor = rope_scaling.get("factor", 8.0)
  6636. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  6637. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  6638. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6639. low_freq_wavelen = old_context_len / low_freq_factor
  6640. high_freq_wavelen = old_context_len / high_freq_factor
  6641. assert low_freq_wavelen != high_freq_wavelen
  6642. rope_factors = []
  6643. for freq in freqs:
  6644. wavelen = 2 * math.pi / freq
  6645. if wavelen < high_freq_wavelen:
  6646. rope_factors.append(1)
  6647. elif wavelen > low_freq_wavelen:
  6648. rope_factors.append(factor)
  6649. else:
  6650. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6651. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6652. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6653. @ModelBase.register("Exaone4ForCausalLM")
  6654. class Exaone4Model(TextModel):
  6655. model_arch = gguf.MODEL_ARCH.EXAONE4
  6656. def set_vocab(self):
  6657. tokens, toktypes, tokpre = self.get_vocab_base()
  6658. self.gguf_writer.add_tokenizer_model("gpt2")
  6659. self.gguf_writer.add_tokenizer_pre(tokpre)
  6660. self.gguf_writer.add_token_list(tokens)
  6661. self.gguf_writer.add_token_types(toktypes)
  6662. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6663. special_vocab.add_to_gguf(self.gguf_writer)
  6664. def set_gguf_parameters(self):
  6665. super().set_gguf_parameters()
  6666. hparams = self.hparams
  6667. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6668. if hparams.get("sliding_window") is not None:
  6669. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  6670. if "layer_types" in hparams:
  6671. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  6672. elif "sliding_window_pattern" in hparams:
  6673. sliding_window_pattern = []
  6674. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  6675. for i in range(hparams["num_hidden_layers"]):
  6676. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  6677. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  6678. for i in range(hparams["num_hidden_layers"]):
  6679. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  6680. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  6681. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  6682. rope_scaling = self.hparams.get("rope_scaling") or {}
  6683. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  6684. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6685. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6686. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6687. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  6688. if rope_scaling.get("rope_type", '').lower() == "llama3":
  6689. base = self.hparams.get("rope_theta", 10_000.0)
  6690. if (dim := self.hparams.get("head_dim")) is None:
  6691. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6692. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6693. factor = rope_scaling.get("factor", 16.0)
  6694. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  6695. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  6696. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6697. low_freq_wavelen = old_context_len / low_freq_factor
  6698. high_freq_wavelen = old_context_len / high_freq_factor
  6699. rope_factors = []
  6700. for freq in freqs:
  6701. wavelen = 2 * math.pi / freq
  6702. if wavelen < high_freq_wavelen:
  6703. rope_factors.append(1)
  6704. elif wavelen > low_freq_wavelen:
  6705. rope_factors.append(factor)
  6706. else:
  6707. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6708. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6709. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6710. @ModelBase.register("GraniteForCausalLM")
  6711. class GraniteModel(LlamaModel):
  6712. """Conversion for IBM's GraniteForCausalLM"""
  6713. model_arch = gguf.MODEL_ARCH.GRANITE
  6714. def set_gguf_parameters(self):
  6715. """Granite uses standard llama parameters with the following differences:
  6716. - No head_dim support
  6717. - New multiplier params:
  6718. - attention_scale
  6719. - embedding_scale
  6720. - residual_scale
  6721. - logits_scaling
  6722. """
  6723. if head_dim := self.hparams.pop("head_dim", None):
  6724. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  6725. super().set_gguf_parameters()
  6726. # NOTE: Convert _multiplier params to _scale params for naming
  6727. # consistency
  6728. if attention_scale := self.hparams.get("attention_multiplier"):
  6729. self.gguf_writer.add_attention_scale(attention_scale)
  6730. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  6731. if embedding_scale := self.hparams.get("embedding_multiplier"):
  6732. self.gguf_writer.add_embedding_scale(embedding_scale)
  6733. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  6734. if residual_scale := self.hparams.get("residual_multiplier"):
  6735. self.gguf_writer.add_residual_scale(residual_scale)
  6736. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  6737. if logits_scale := self.hparams.get("logits_scaling"):
  6738. self.gguf_writer.add_logit_scale(logits_scale)
  6739. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  6740. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  6741. class GraniteMoeModel(GraniteModel):
  6742. """Conversion for IBM's GraniteMoeForCausalLM"""
  6743. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  6744. def set_gguf_parameters(self):
  6745. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  6746. - shared_intermediate_size
  6747. """
  6748. super().set_gguf_parameters()
  6749. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  6750. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  6751. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  6752. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6753. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  6754. is used. This essentially merges w1 and w3 into a single tensor with 2x
  6755. the hidden size that is then split during forward. To keep compatibility
  6756. with existing mixtral support, we pull them apart here.
  6757. """
  6758. if name.endswith("block_sparse_moe.input_linear.weight"):
  6759. ffn_dim = self.hparams["intermediate_size"]
  6760. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  6761. gate, up = data_torch.split(ffn_dim, dim=-2)
  6762. return [
  6763. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  6764. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  6765. ]
  6766. has_experts = bool(self.hparams.get('num_local_experts'))
  6767. if name.endswith("shared_mlp.input_linear.weight"):
  6768. ffn_dim = self.hparams["shared_intermediate_size"]
  6769. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  6770. gate, up = data_torch.split(ffn_dim, dim=-2)
  6771. if has_experts:
  6772. return [
  6773. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  6774. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  6775. ]
  6776. return [
  6777. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  6778. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  6779. ]
  6780. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  6781. return [
  6782. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  6783. ]
  6784. return super().modify_tensors(data_torch, name, bid)
  6785. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  6786. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  6787. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  6788. layers and optionally uses MoE w/ a shared expert"""
  6789. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  6790. undo_permute = True
  6791. def __init__(self, *args, **kwargs):
  6792. # Hybrid mamba models use a prefix for the mamba-specific params.
  6793. # TODO: Extend this if the prefix(es) need to be configurable
  6794. self.hparam_prefixes = ["mamba"]
  6795. super().__init__(*args, **kwargs)
  6796. # Lists of which layers use ssm vs attention
  6797. self._attn_layers = self.get_attn_layers()
  6798. self._ssm_layers = [
  6799. i for i in range(self.block_count)
  6800. if i not in self._attn_layers
  6801. ]
  6802. # There are some models in this family that are non-hybrid, but keep the
  6803. # same parent class by setting all layers to "attention." If this is the
  6804. # case, the model architecture needs to be updated to a standard
  6805. # "granite" or "granitemoe" model
  6806. if not self._ssm_layers:
  6807. has_experts = self.find_hparam(["num_experts_per_tok"], optional=True)
  6808. new_arch = (
  6809. gguf.MODEL_ARCH.GRANITE_MOE
  6810. if has_experts else
  6811. gguf.MODEL_ARCH.GRANITE
  6812. )
  6813. self.model_arch = new_arch
  6814. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[new_arch]
  6815. self.gguf_writer.add_architecture()
  6816. # n_group and d_inner are used during reshape_tensors for mamba2
  6817. # NOTE: Explicitly include hparam prefix prefix for d_model to
  6818. # disambiguate with top-level head_dim
  6819. # NOTE 2: If needed for future models, this can be isolated in a method
  6820. # to separate the prefix setting and teh keys used
  6821. self.d_model = self.find_hparam([f"{self.hparam_prefixes[0]}_head_dim", "hidden_size", "d_model"])
  6822. self.n_group = self.find_hparam(["n_groups", "num_groups"])
  6823. self.d_inner = self.find_hparam(["expand", "num_heads"]) * self.d_model
  6824. def get_attn_layers(self):
  6825. # Explicit list of layer type names
  6826. if layer_types := self.hparams.get("layer_types"):
  6827. return [
  6828. i for i, typ in enumerate(layer_types)
  6829. if typ == "attention"
  6830. ]
  6831. # Layer types indicated by index or period
  6832. attn_layers = self.hparams.get("attn_layer_indices", [])
  6833. if not attn_layers:
  6834. attn_period = self.hparams.get("attn_layer_period")
  6835. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  6836. attn_offset = self.hparams.get("attn_layer_offset")
  6837. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  6838. attn_layers = [
  6839. i for i in range(self.block_count)
  6840. if i % attn_period == attn_offset
  6841. ]
  6842. return attn_layers
  6843. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6844. prefixed = []
  6845. for pfx in self.hparam_prefixes:
  6846. prefixed.extend(
  6847. "_".join([pfx, k])
  6848. for k in keys
  6849. )
  6850. keys = list(keys) + prefixed
  6851. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  6852. def modify_tensors(
  6853. self, data_torch: Tensor, name: str, bid: int | None
  6854. ) -> Iterable[tuple[str, Tensor]]:
  6855. if (
  6856. name.endswith("block_sparse_moe.input_linear.weight")
  6857. or "shared_mlp" in name
  6858. ):
  6859. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6860. # Determine whether this is a mamba layer or an attention layer
  6861. if bid in self._ssm_layers:
  6862. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  6863. elif bid in self._attn_layers:
  6864. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6865. return [(self.map_tensor_name(name), data_torch)]
  6866. def set_gguf_parameters(self):
  6867. """This method merges params from both parents and some that are
  6868. specific to this model. The result is some duplication of how the params
  6869. get set. The following warnings are expected during conversion:
  6870. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  6871. WARNING:Duplicated key name 'granitehybrid.context_length'
  6872. """
  6873. GraniteMoeModel.set_gguf_parameters(self)
  6874. ## Mamba mixer params ##
  6875. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  6876. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state", "state_dim", "ssm_state_size"]))
  6877. self.gguf_writer.add_ssm_group_count(self.n_group)
  6878. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  6879. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  6880. # in llama.cpp
  6881. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads", "num_heads"]))
  6882. ## Attention params ##
  6883. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  6884. head_count_kv_vec = [
  6885. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  6886. ]
  6887. if rope_dim := self.hparams.get("attn_rotary_emb"):
  6888. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6889. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  6890. ## If Bamba or non-hybrid, use rope, otherwise don't
  6891. use_rope = (
  6892. "BambaForCausalLM" in self.hparams["architectures"]
  6893. or not self._ssm_layers
  6894. )
  6895. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  6896. if not use_rope:
  6897. self.gguf_writer.add_context_length(2**20)
  6898. ## Validation ##
  6899. d_head = self.find_hparam(["d_head"], optional=True) or 64
  6900. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  6901. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  6902. def set_vocab(self):
  6903. self.hparams["pad_vocab_size_multiple"] = 8
  6904. Mamba2Model.set_vocab(self)
  6905. @ModelBase.register("NemotronHForCausalLM")
  6906. class NemotronHModel(GraniteHybridModel):
  6907. """Hybrid mamba2/attention model from NVIDIA"""
  6908. model_arch = gguf.MODEL_ARCH.NEMOTRON_H
  6909. def __init__(self, *args, **kwargs):
  6910. super().__init__(*args, **kwargs)
  6911. # Save the top-level head_dim for later
  6912. self.head_dim = self.hparams.get("head_dim", self.hparams.get("attention_head_dim"))
  6913. assert self.head_dim is not None, "Could not find the attention head dim in config"
  6914. # Don't use expand to calculate d_inner
  6915. self.d_inner = self.find_hparam(["num_heads"]) * self.d_model
  6916. # Update the ssm / attn / mlp layers
  6917. # M: Mamba2, *: Attention, -: MLP
  6918. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  6919. self._ssm_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "M"]
  6920. self._mlp_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "-"]
  6921. def get_attn_layers(self):
  6922. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  6923. assert len(hybrid_override_pattern) == self.block_count, "Mismatch between hybrid override and num_hidden_layers!"
  6924. return [i for i, val in enumerate(hybrid_override_pattern) if val == "*"]
  6925. def set_gguf_parameters(self):
  6926. super().set_gguf_parameters()
  6927. self.gguf_writer.add_key_length(self.head_dim)
  6928. self.gguf_writer.add_value_length(self.head_dim)
  6929. # Set feed_forward_length
  6930. # NOTE: This will trigger an override warning. This is preferrable to
  6931. # duplicating all the parent logic
  6932. n_ff = self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"])
  6933. self.gguf_writer.add_feed_forward_length([
  6934. n_ff if i in self._mlp_layers else 0 for i in range(self.block_count)
  6935. ])
  6936. def set_vocab(self):
  6937. super().set_vocab()
  6938. # The tokenizer _does_ add a BOS token (via post_processor type
  6939. # TemplateProcessing) but does not set add_bos_token to true in the
  6940. # config, so we need to explicitly override it here.
  6941. self.gguf_writer.add_add_bos_token(True)
  6942. @ModelBase.register("BailingMoeForCausalLM")
  6943. class BailingMoeModel(TextModel):
  6944. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  6945. def set_vocab(self):
  6946. self._set_vocab_gpt2()
  6947. def set_gguf_parameters(self):
  6948. super().set_gguf_parameters()
  6949. hparams = self.hparams
  6950. if (rope_dim := hparams.get("head_dim")) is None:
  6951. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  6952. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6953. rope_scaling = self.hparams.get("rope_scaling") or {}
  6954. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6955. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6956. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6957. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6958. else:
  6959. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6960. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  6961. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6962. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  6963. self.gguf_writer.add_expert_weights_scale(1.0)
  6964. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6965. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  6966. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  6967. _experts: list[dict[str, Tensor]] | None = None
  6968. @staticmethod
  6969. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  6970. if n_head_kv is not None and n_head != n_head_kv:
  6971. n_head = n_head_kv
  6972. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  6973. .swapaxes(1, 2)
  6974. .reshape(weights.shape))
  6975. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6976. n_head = self.hparams["num_attention_heads"]
  6977. n_kv_head = self.hparams.get("num_key_value_heads")
  6978. n_embd = self.hparams["hidden_size"]
  6979. if (head_dim := self.hparams.get("head_dim")) is None:
  6980. head_dim = n_embd // n_head
  6981. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  6982. if name.endswith("attention.dense.weight"):
  6983. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  6984. elif name.endswith("query_key_value.weight"):
  6985. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  6986. return [
  6987. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  6988. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  6989. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  6990. ]
  6991. elif name.find("mlp.experts") != -1:
  6992. n_experts = self.hparams["num_experts"]
  6993. assert bid is not None
  6994. tensors: list[tuple[str, Tensor]] = []
  6995. if self._experts is None:
  6996. self._experts = [{} for _ in range(self.block_count)]
  6997. self._experts[bid][name] = data_torch
  6998. if len(self._experts[bid]) >= n_experts * 3:
  6999. # merge the experts into a single 3d tensor
  7000. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7001. datas: list[Tensor] = []
  7002. for xid in range(n_experts):
  7003. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7004. datas.append(self._experts[bid][ename])
  7005. del self._experts[bid][ename]
  7006. data_torch = torch.stack(datas, dim=0)
  7007. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7008. new_name = self.map_tensor_name(merged_name)
  7009. tensors.append((new_name, data_torch))
  7010. return tensors
  7011. new_name = self.map_tensor_name(name)
  7012. if new_name == output_name and self.hparams.get("norm_head"):
  7013. data_torch = data_torch.float()
  7014. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  7015. return [(new_name, data_torch)]
  7016. def prepare_tensors(self):
  7017. super().prepare_tensors()
  7018. if self._experts is not None:
  7019. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7020. experts = [k for d in self._experts for k in d.keys()]
  7021. if len(experts) > 0:
  7022. raise ValueError(f"Unprocessed experts: {experts}")
  7023. @ModelBase.register("BailingMoeV2ForCausalLM")
  7024. class BailingMoeV2Model(TextModel):
  7025. model_arch = gguf.MODEL_ARCH.BAILINGMOE2
  7026. def __init__(self, *args, **kwargs):
  7027. super().__init__(*args, **kwargs)
  7028. if nextn_layers := self.hparams.get("num_nextn_predict_layers", 0):
  7029. self.block_count = self.hparams["num_hidden_layers"] + nextn_layers
  7030. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  7031. def set_vocab(self):
  7032. self._set_vocab_gpt2()
  7033. def set_gguf_parameters(self):
  7034. super().set_gguf_parameters()
  7035. hparams = self.hparams
  7036. if (rope_dim := hparams.get("head_dim")) is None:
  7037. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  7038. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  7039. rope_scaling = self.hparams.get("rope_scaling") or {}
  7040. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  7041. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7042. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7043. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  7044. else:
  7045. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7046. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  7047. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7048. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  7049. self.gguf_writer.add_expert_shared_feed_forward_length(hparams.get("moe_shared_expert_intermediate_size", hparams["moe_intermediate_size"] * hparams["num_shared_experts"]))
  7050. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  7051. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7052. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  7053. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  7054. if (nextn_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  7055. self.gguf_writer.add_nextn_predict_layers(nextn_layers)
  7056. _experts: list[dict[str, Tensor]] | None = None
  7057. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7058. if "mlp.experts" in name:
  7059. n_experts = self.hparams["num_experts"]
  7060. assert bid is not None
  7061. tensors: list[tuple[str, Tensor]] = []
  7062. if self._experts is None:
  7063. self._experts = [{} for _ in range(self.block_count)]
  7064. self._experts[bid][name] = data_torch
  7065. if len(self._experts[bid]) >= n_experts * 3:
  7066. # merge the experts into a single 3d tensor
  7067. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7068. datas: list[Tensor] = []
  7069. for xid in range(n_experts):
  7070. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7071. datas.append(self._experts[bid][ename])
  7072. del self._experts[bid][ename]
  7073. data_torch = torch.stack(datas, dim=0)
  7074. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7075. new_name = self.map_tensor_name(merged_name)
  7076. tensors.append((new_name, data_torch))
  7077. return tensors
  7078. if name.endswith(".expert_bias"):
  7079. name = name.replace(".expert_bias", ".expert_bias.bias")
  7080. return [(self.map_tensor_name(name), data_torch)]
  7081. def prepare_tensors(self):
  7082. super().prepare_tensors()
  7083. if self._experts is not None:
  7084. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7085. experts = [k for d in self._experts for k in d.keys()]
  7086. if len(experts) > 0:
  7087. raise ValueError(f"Unprocessed experts: {experts}")
  7088. @ModelBase.register("GroveMoeForCausalLM", "modeling_grove_moe.GroveMoeForCausalLM")
  7089. class GroveMoeModel(TextModel):
  7090. model_arch = gguf.MODEL_ARCH.GROVEMOE
  7091. def set_gguf_parameters(self):
  7092. super().set_gguf_parameters()
  7093. if (n_experts := self.hparams.get("num_experts")) is not None:
  7094. self.gguf_writer.add_expert_count(n_experts)
  7095. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  7096. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7097. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  7098. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L299
  7099. self.gguf_writer.add_expert_chunk_feed_forward_length(self.hparams.get("head_dim") or 128)
  7100. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L298
  7101. self.gguf_writer.add_experts_per_group(2)
  7102. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L376
  7103. self.gguf_writer.add_expert_group_scale(0.05)
  7104. # YaRN is not enabled by default
  7105. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  7106. rope_scaling = self.hparams.get("rope_scaling") or {}
  7107. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  7108. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7109. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7110. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  7111. _experts: list[dict[str, Tensor]] | None = None
  7112. _chunk_experts: list[dict[str, Tensor]] | None = None
  7113. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7114. if name.endswith(".expert_bias"):
  7115. # FIXME?: Unused https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L303
  7116. return []
  7117. # process the experts separately
  7118. if name.find("chunk_experts") != -1:
  7119. n_experts = self.hparams["num_experts"] // 2 # see add_experts_per_group
  7120. assert bid is not None
  7121. if self._chunk_experts is None:
  7122. self._chunk_experts = [{} for _ in range(self.block_count)]
  7123. self._chunk_experts[bid][name] = data_torch
  7124. if len(self._chunk_experts[bid]) >= n_experts * 3:
  7125. tensors: list[tuple[str, Tensor]] = []
  7126. # merge the experts into a single 3d tensor
  7127. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7128. datas: list[Tensor] = []
  7129. for xid in range(n_experts):
  7130. ename = f"model.layers.{bid}.mlp.chunk_experts.{xid}.{w_name}.weight"
  7131. datas.append(self._chunk_experts[bid][ename])
  7132. del self._chunk_experts[bid][ename]
  7133. data_torch = torch.stack(datas, dim=0)
  7134. merged_name = f"model.layers.{bid}.mlp.chunk_experts.{w_name}.weight"
  7135. new_name = self.map_tensor_name(merged_name)
  7136. tensors.append((new_name, data_torch))
  7137. return tensors
  7138. else:
  7139. return []
  7140. elif name.find("experts") != -1:
  7141. n_experts = self.hparams["num_experts"]
  7142. assert bid is not None
  7143. if self._experts is None:
  7144. self._experts = [{} for _ in range(self.block_count)]
  7145. self._experts[bid][name] = data_torch
  7146. if len(self._experts[bid]) >= n_experts * 3:
  7147. tensors: list[tuple[str, Tensor]] = []
  7148. # merge the experts into a single 3d tensor
  7149. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7150. datas: list[Tensor] = []
  7151. for xid in range(n_experts):
  7152. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7153. datas.append(self._experts[bid][ename])
  7154. del self._experts[bid][ename]
  7155. data_torch = torch.stack(datas, dim=0)
  7156. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7157. new_name = self.map_tensor_name(merged_name)
  7158. tensors.append((new_name, data_torch))
  7159. return tensors
  7160. else:
  7161. return []
  7162. return [(self.map_tensor_name(name), data_torch)]
  7163. def prepare_tensors(self):
  7164. super().prepare_tensors()
  7165. if self._chunk_experts is not None:
  7166. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7167. chunk_experts = [k for d in self._chunk_experts for k in d.keys()]
  7168. if len(chunk_experts) > 0:
  7169. raise ValueError(f"Unprocessed adjugate experts: {chunk_experts}")
  7170. if self._experts is not None:
  7171. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7172. experts = [k for d in self._experts for k in d.keys()]
  7173. if len(experts) > 0:
  7174. raise ValueError(f"Unprocessed experts: {experts}")
  7175. @ModelBase.register("ChameleonForConditionalGeneration")
  7176. @ModelBase.register("ChameleonForCausalLM") # obsolete
  7177. class ChameleonModel(TextModel):
  7178. model_arch = gguf.MODEL_ARCH.CHAMELEON
  7179. def set_gguf_parameters(self):
  7180. super().set_gguf_parameters()
  7181. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  7182. def set_vocab(self):
  7183. self._set_vocab_gpt2()
  7184. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7185. # ignore image tokenizer for now
  7186. # TODO: remove this once image support is implemented for Chameleon
  7187. if name.startswith("model.vqmodel"):
  7188. return []
  7189. n_head = self.hparams["num_attention_heads"]
  7190. n_kv_head = self.hparams.get("num_key_value_heads")
  7191. hidden_dim = self.hparams.get("hidden_size")
  7192. if name.endswith(("q_proj.weight", "q_proj.bias")):
  7193. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  7194. if name.endswith(("k_proj.weight", "k_proj.bias")):
  7195. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  7196. if name.endswith(("q_norm.weight", "q_norm.bias")):
  7197. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  7198. if name.endswith(("k_norm.weight", "k_norm.bias")):
  7199. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  7200. return [(self.map_tensor_name(name), data_torch)]
  7201. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  7202. @staticmethod
  7203. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  7204. head_dim = hidden_dim // n_heads
  7205. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  7206. data_torch = data_torch.repeat_interleave(n_heads, 0)
  7207. return data_torch
  7208. @ModelBase.register("UltravoxModel")
  7209. class UltravoxModel(TextModel):
  7210. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  7211. def __init__(self, *args, **kwargs):
  7212. super().__init__(*args, **kwargs)
  7213. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  7214. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  7215. class WhisperEncoderModel(MmprojModel):
  7216. has_vision_encoder = False # no vision encoder
  7217. has_audio_encoder = True
  7218. def __init__(self, *args, **kwargs):
  7219. super().__init__(*args, **kwargs)
  7220. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  7221. self.hparams["hidden_size"] = self.hparams["d_model"]
  7222. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  7223. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  7224. def set_gguf_parameters(self):
  7225. super().set_gguf_parameters()
  7226. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  7227. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  7228. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  7229. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7230. if ".conv" in name and ".weight" in name:
  7231. return gguf.GGMLQuantizationType.F16
  7232. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7233. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7234. del bid # unused
  7235. if name.startswith("language_model."):
  7236. # skip language model tensors
  7237. return []
  7238. # prevent clash naming with vision tensors
  7239. if name.startswith("multi_modal_projector"):
  7240. name = "audio." + name
  7241. if "conv1.bias" in name or "conv2.bias" in name:
  7242. # transpose conv1 and conv2 bias
  7243. data_torch = data_torch.unsqueeze(-1)
  7244. return [(self.map_tensor_name(name), data_torch)]
  7245. @ModelBase.register("UltravoxModel")
  7246. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  7247. has_vision_encoder = False # no vision encoder
  7248. has_audio_encoder = True
  7249. def set_gguf_parameters(self):
  7250. super().set_gguf_parameters()
  7251. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  7252. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  7253. @ModelBase.register("VoxtralForConditionalGeneration")
  7254. class VoxtralWhisperEncoderModel(WhisperEncoderModel):
  7255. has_vision_encoder = False # no vision encoder
  7256. has_audio_encoder = True
  7257. def set_gguf_parameters(self):
  7258. super().set_gguf_parameters()
  7259. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
  7260. self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
  7261. @ModelBase.register("FalconH1ForCausalLM")
  7262. class FalconH1Model(Mamba2Model):
  7263. model_arch = gguf.MODEL_ARCH.FALCON_H1
  7264. def __init__(self, *args, **kwargs):
  7265. # Set the hparam prefixes for Falcon Mamba2
  7266. self.hparam_prefixes = ["mamba"]
  7267. # Initialize the base Mamba2Model
  7268. super().__init__(*args, **kwargs)
  7269. # Use Llama conversion for attention
  7270. self._transformer_model_class = LlamaModel
  7271. # n_group and d_inner are used during reshape_tensors for mamba2
  7272. self.n_group = self.find_hparam(["n_groups"])
  7273. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  7274. self.d_head = self.find_hparam(["d_head"])
  7275. # Initialize any Falcon Mamba2 specific attributes
  7276. self.has_attention = True # Falcon Mamba2 has attention components
  7277. # Load Falcon-H1 multipliers from hyperparameters
  7278. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  7279. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  7280. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  7281. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  7282. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  7283. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  7284. self.intermediate_size = self.find_hparam(["intermediate_size"])
  7285. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  7286. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  7287. prefixed = []
  7288. for pfx in self.hparam_prefixes:
  7289. prefixed.extend(
  7290. "_".join([pfx, k])
  7291. for k in keys
  7292. )
  7293. keys = list(keys) + prefixed
  7294. return super().find_hparam(keys, *args, **kwargs)
  7295. def set_vocab(self):
  7296. self._set_vocab_gpt2()
  7297. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7298. tensors = list(super().modify_tensors(data_torch, name, bid))
  7299. tensor = tensors[0][1]
  7300. if "down_proj" in name:
  7301. tensor = tensor * self.mlp_multipliers[1]
  7302. elif "gate_proj" in name:
  7303. tensor = tensor * self.mlp_multipliers[0]
  7304. elif "k_proj" in name:
  7305. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  7306. elif "q_proj" in name:
  7307. tensor = tensor * self.attention_in_multiplier
  7308. elif "v_proj" in name:
  7309. tensor = tensor * self.attention_in_multiplier
  7310. elif "o_proj" in name:
  7311. tensor = tensor * self.attention_out_multiplier
  7312. elif "out_proj" in name:
  7313. tensor = tensor * self.ssm_out_multiplier
  7314. elif "in_proj" in name:
  7315. tensor = tensor * self.ssm_in_multiplier
  7316. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  7317. intermediate_size = self.hparams["mamba_d_ssm"]
  7318. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  7319. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  7320. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  7321. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  7322. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  7323. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  7324. elif "lm_head" in name:
  7325. tensor = tensor * self.hparams["lm_head_multiplier"]
  7326. elif "embed_tokens" in name:
  7327. tensor = tensor * self.hparams["embedding_multiplier"]
  7328. elif "mamba.norm" in name:
  7329. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  7330. tensors = [(tensors[0][0], tensor)]
  7331. return tensors
  7332. def set_gguf_parameters(self):
  7333. super().set_gguf_parameters()
  7334. ## General Params ##
  7335. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7336. # Override some Mamba2 defaults
  7337. self.gguf_writer.add_block_count(self.block_count)
  7338. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  7339. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  7340. ## Attention params ##
  7341. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  7342. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  7343. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  7344. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  7345. ## Validation ##
  7346. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  7347. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  7348. # Add any other Falcon Mamba2 specific configuration
  7349. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  7350. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  7351. class HunYuanMoEModel(TextModel):
  7352. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  7353. def set_vocab(self):
  7354. from transformers import AutoTokenizer
  7355. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7356. # 1. Get the pre-tokenizer identifier hash
  7357. tokpre = self.get_vocab_base_pre(tokenizer)
  7358. # 2. Reverse-engineer the merges list from mergeable_ranks
  7359. merges = []
  7360. vocab = {}
  7361. mergeable_ranks = tokenizer.mergeable_ranks
  7362. for token, rank in mergeable_ranks.items():
  7363. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7364. if len(token) == 1:
  7365. continue
  7366. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7367. if len(merged) == 2: # todo this is an assert in Qwen, why?
  7368. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7369. # 3. Generate the tokens and toktypes lists
  7370. vocab_size = self.hparams["vocab_size"]
  7371. assert tokenizer.vocab_size == vocab_size
  7372. special_tokens = tokenizer.special_tokens
  7373. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7374. tokens: list[str] = []
  7375. toktypes: list[int] = []
  7376. for i in range(vocab_size):
  7377. if i not in reverse_vocab:
  7378. tokens.append(f"[PAD{i}]")
  7379. toktypes.append(gguf.TokenType.UNUSED)
  7380. else:
  7381. token = reverse_vocab[i]
  7382. tokens.append(token)
  7383. if i in special_tokens.values():
  7384. toktypes.append(gguf.TokenType.CONTROL)
  7385. else:
  7386. toktypes.append(gguf.TokenType.NORMAL)
  7387. # 4. Write all vocab-related fields to the GGUF writer
  7388. self.gguf_writer.add_tokenizer_model("gpt2")
  7389. self.gguf_writer.add_tokenizer_pre(tokpre)
  7390. self.gguf_writer.add_token_list(tokens)
  7391. self.gguf_writer.add_token_types(toktypes)
  7392. self.gguf_writer.add_token_merges(merges)
  7393. # 5. Add special tokens and chat templates
  7394. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7395. special_vocab.add_to_gguf(self.gguf_writer)
  7396. # FIX for BOS token: Overwrite incorrect id read from config.json
  7397. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  7398. def set_gguf_parameters(self):
  7399. super().set_gguf_parameters()
  7400. hparams = self.hparams
  7401. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7402. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  7403. moe_intermediate_size = hparams["moe_intermediate_size"]
  7404. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  7405. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  7406. moe_topk = hparams["moe_topk"]
  7407. assert all(topk == moe_topk[0] for topk in moe_topk)
  7408. self.gguf_writer.add_expert_used_count(moe_topk[0])
  7409. moe_shared_expert = hparams["num_shared_expert"]
  7410. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  7411. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  7412. # Rope
  7413. rope_scaling = hparams.get("rope_scaling", {})
  7414. if rope_scaling.get("type") == "dynamic":
  7415. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7416. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7417. alpha = rope_scaling.get("alpha", 1000)
  7418. base = hparams.get("rope_theta", 10000.0)
  7419. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  7420. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  7421. self.gguf_writer.add_rope_freq_base(scaled_base)
  7422. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7423. self.gguf_writer.add_rope_scaling_factor(1)
  7424. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7425. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7426. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7427. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7428. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7429. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7430. _experts: list[dict[str, Tensor]] | None = None
  7431. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7432. if name == "lm_head.weight":
  7433. if self.hparams.get("tie_word_embeddings", False):
  7434. logger.info("Skipping tied output layer 'lm_head.weight'")
  7435. return []
  7436. if name.find("mlp.experts") != -1:
  7437. n_experts = self.hparams["num_experts"]
  7438. assert bid is not None
  7439. if self._experts is None:
  7440. self._experts = [{} for _ in range(self.block_count)]
  7441. self._experts[bid][name] = data_torch
  7442. if len(self._experts[bid]) >= n_experts * 3:
  7443. # merge the experts into a single 3d tensor
  7444. tensors: list[tuple[str, Tensor]] = []
  7445. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7446. datas: list[Tensor] = []
  7447. for xid in range(n_experts):
  7448. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7449. datas.append(self._experts[bid][ename])
  7450. del self._experts[bid][ename]
  7451. data_torch = torch.stack(datas, dim=0)
  7452. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7453. new_name = self.map_tensor_name(merged_name)
  7454. tensors.append((new_name, data_torch))
  7455. return tensors
  7456. else:
  7457. return []
  7458. return [(self.map_tensor_name(name), data_torch)]
  7459. def prepare_tensors(self):
  7460. super().prepare_tensors()
  7461. if self._experts is not None:
  7462. experts = [k for d in self._experts for k in d.keys()]
  7463. if len(experts) > 0:
  7464. raise ValueError(f"Unprocessed experts: {experts}")
  7465. @ModelBase.register("LLaDAMoEModel", "LLaDAMoEModelLM")
  7466. class LLaDAMoEModel(TextModel):
  7467. model_arch = gguf.MODEL_ARCH.LLADA_MOE
  7468. def set_gguf_parameters(self):
  7469. super().set_gguf_parameters()
  7470. if (n_experts := self.hparams.get("num_experts")) is not None:
  7471. self.gguf_writer.add_expert_count(n_experts)
  7472. if (expert_intermediate_size := self.hparams.get("expert_intermediate_size")) is not None:
  7473. self.gguf_writer.add_expert_feed_forward_length(expert_intermediate_size)
  7474. # number of experts used per token (top-k)
  7475. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  7476. self.gguf_writer.add_expert_used_count(n_experts_used)
  7477. self.gguf_writer.add_mask_token_id(156895)
  7478. self.gguf_writer.add_causal_attention(False)
  7479. self.gguf_writer.add_diffusion_shift_logits(False)
  7480. _experts: list[dict[str, Tensor]] | None = None
  7481. # Copied from: Qwen2MoeModel
  7482. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7483. # process the experts separately
  7484. if name.find("experts") != -1:
  7485. n_experts = self.hparams["num_experts"]
  7486. assert bid is not None
  7487. if self._experts is None:
  7488. self._experts = [{} for _ in range(self.block_count)]
  7489. self._experts[bid][name] = data_torch
  7490. if len(self._experts[bid]) >= n_experts * 3:
  7491. tensors: list[tuple[str, Tensor]] = []
  7492. # merge the experts into a single 3d tensor
  7493. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7494. datas: list[Tensor] = []
  7495. for xid in range(n_experts):
  7496. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7497. datas.append(self._experts[bid][ename])
  7498. del self._experts[bid][ename]
  7499. data_torch = torch.stack(datas, dim=0)
  7500. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7501. new_name = self.map_tensor_name(merged_name)
  7502. tensors.append((new_name, data_torch))
  7503. return tensors
  7504. else:
  7505. return []
  7506. return [(self.map_tensor_name(name), data_torch)]
  7507. # Copied from: Qwen2MoeModel
  7508. def prepare_tensors(self):
  7509. super().prepare_tensors()
  7510. if self._experts is not None:
  7511. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7512. experts = [k for d in self._experts for k in d.keys()]
  7513. if len(experts) > 0:
  7514. raise ValueError(f"Unprocessed experts: {experts}")
  7515. @ModelBase.register("HunYuanDenseV1ForCausalLM")
  7516. class HunYuanModel(TextModel):
  7517. model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
  7518. def set_vocab(self):
  7519. if (self.dir_model / "tokenizer.json").is_file():
  7520. self._set_vocab_gpt2()
  7521. else:
  7522. from transformers import AutoTokenizer
  7523. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7524. # 1. Get the pre-tokenizer identifier hash
  7525. tokpre = self.get_vocab_base_pre(tokenizer)
  7526. # 2. Reverse-engineer the merges list from mergeable_ranks
  7527. merges = []
  7528. vocab = {}
  7529. mergeable_ranks = tokenizer.mergeable_ranks
  7530. for token, rank in mergeable_ranks.items():
  7531. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7532. if len(token) == 1:
  7533. continue
  7534. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7535. if len(merged) == 2:
  7536. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7537. # 3. Generate the tokens and toktypes lists
  7538. vocab_size = self.hparams["vocab_size"]
  7539. assert tokenizer.vocab_size == vocab_size
  7540. special_tokens = tokenizer.special_tokens
  7541. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7542. tokens: list[str] = []
  7543. toktypes: list[int] = []
  7544. for i in range(vocab_size):
  7545. if i not in reverse_vocab:
  7546. tokens.append(f"[PAD{i}]")
  7547. toktypes.append(gguf.TokenType.UNUSED)
  7548. else:
  7549. token = reverse_vocab[i]
  7550. tokens.append(token)
  7551. if i in special_tokens.values():
  7552. toktypes.append(gguf.TokenType.CONTROL)
  7553. else:
  7554. toktypes.append(gguf.TokenType.NORMAL)
  7555. # 4. Write all vocab-related fields to the GGUF writer
  7556. self.gguf_writer.add_tokenizer_model("gpt2")
  7557. self.gguf_writer.add_tokenizer_pre(tokpre)
  7558. self.gguf_writer.add_token_list(tokens)
  7559. self.gguf_writer.add_token_types(toktypes)
  7560. self.gguf_writer.add_token_merges(merges)
  7561. # 5. Add special tokens and chat templates
  7562. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7563. special_vocab.add_to_gguf(self.gguf_writer)
  7564. # FIX for BOS token: Overwrite incorrect id read from config.json
  7565. if self.hparams['hidden_size'] == 4096:
  7566. self.gguf_writer.add_bos_token_id(127958) # only for 7b dense, fix <|bos|> token
  7567. def set_gguf_parameters(self):
  7568. super().set_gguf_parameters()
  7569. hparams = self.hparams
  7570. # Rope
  7571. rope_scaling = hparams.get("rope_scaling", {})
  7572. if rope_scaling.get("type") == "dynamic":
  7573. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7574. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7575. alpha = rope_scaling.get("alpha", 50)
  7576. base = hparams.get("rope_theta", 10000.0)
  7577. dim = hparams["head_dim"]
  7578. scaled_base = base * (alpha ** (dim / (dim - 2)))
  7579. self.gguf_writer.add_rope_freq_base(scaled_base)
  7580. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7581. self.gguf_writer.add_rope_scaling_factor(1)
  7582. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7583. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7584. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7585. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7586. assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7587. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7588. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7589. if name == "lm_head.weight":
  7590. if self.hparams.get("tie_word_embeddings", False):
  7591. logger.info("Skipping tied output layer 'lm_head.weight'")
  7592. return []
  7593. return [(self.map_tensor_name(name), data_torch)]
  7594. @ModelBase.register("SmolLM3ForCausalLM")
  7595. class SmolLM3Model(LlamaModel):
  7596. model_arch = gguf.MODEL_ARCH.SMOLLM3
  7597. @ModelBase.register("GptOssForCausalLM")
  7598. class GptOssModel(TextModel):
  7599. model_arch = gguf.MODEL_ARCH.GPT_OSS
  7600. # TODO: remove once MXFP4 is supported more generally
  7601. def dequant_model(self):
  7602. quant_config = self.hparams.get("quantization_config")
  7603. if quant_config is not None and quant_config.get("quant_method") == "mxfp4":
  7604. return
  7605. return super().dequant_model()
  7606. def transform_nibble_layout(self, tensor):
  7607. assert tensor.dtype == torch.uint8
  7608. assert tensor.shape[-1] == 16
  7609. # swap nibbles
  7610. t_lo = tensor & 0x0F
  7611. t_hi = tensor & 0xF0
  7612. t_swapped = (t_lo << 4) | (t_hi >> 4)
  7613. tensor = t_swapped
  7614. # transform aaaa...bbbb... to abababab...
  7615. blk_a, blk_b = tensor.chunk(2, dim=-1)
  7616. # get a_
  7617. blk_a0 = (blk_a & 0xF0).view(-1, 1)
  7618. blk_a1 = (blk_a << 4).view(-1, 1)
  7619. blk_a = torch.stack((blk_a0, blk_a1), dim=2).view(tensor.shape)
  7620. # get _b
  7621. blk_b0 = (blk_b >> 4).view(-1, 1)
  7622. blk_b1 = (blk_b & 0x0F).view(-1, 1)
  7623. blk_b = torch.stack((blk_b0, blk_b1), dim=2).view(tensor.shape)
  7624. # swap once more
  7625. out = blk_a | blk_b
  7626. out_h = out & 0xF0
  7627. out_l = out & 0x0F
  7628. out = (out_h >> 4) | (out_l << 4)
  7629. return out
  7630. def repack_mxfp4(self, new_name: str, blocks: Tensor, scales: Tensor):
  7631. assert blocks.dtype == torch.uint8
  7632. assert scales.dtype == torch.uint8
  7633. scales = scales.unsqueeze(-1)
  7634. assert len(blocks.shape) == 4
  7635. assert len(scales.shape) == 4
  7636. blocks = self.transform_nibble_layout(blocks)
  7637. new_data = torch.concat((scales, blocks), dim=-1)
  7638. new_shape = [new_data.shape[0], new_data.shape[1], new_data.shape[2] * 32]
  7639. logger.info(f"Repacked {new_name} with shape {new_shape} and quantization MXFP4")
  7640. # flatten last dim
  7641. new_data = new_data.view(new_data.shape[0], new_data.shape[1], new_data.shape[2] * new_data.shape[3])
  7642. new_data = new_data.numpy()
  7643. self.gguf_writer.add_tensor(new_name, new_data, raw_dtype=gguf.GGMLQuantizationType.MXFP4)
  7644. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  7645. blocks0: Tensor = torch.zeros(1)
  7646. blocks1: Tensor = torch.zeros(1)
  7647. # we assume that tensors are loaded in the correct order
  7648. for name, data_torch in self.get_tensors():
  7649. if "mlp.experts.down_proj_blocks" in name:
  7650. blocks0 = data_torch
  7651. elif "mlp.experts.down_proj_scales" in name:
  7652. new_name = self.map_tensor_name(name.replace("_scales", ".weight"))
  7653. self.repack_mxfp4(new_name, blocks0, data_torch)
  7654. elif "mlp.experts.gate_up_proj_blocks" in name:
  7655. blocks0, blocks1 = data_torch[:, ::2, :, :], data_torch[:, 1::2, :, :]
  7656. elif "mlp.experts.gate_up_proj_scales" in name:
  7657. scales0, scales1 = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7658. new_name_gate = self.map_tensor_name(name.replace("gate_up_proj_scales", "gate_proj.weight"))
  7659. new_name_up = self.map_tensor_name(name.replace("gate_up_proj_scales", "up_proj.weight"))
  7660. self.repack_mxfp4(new_name_gate, blocks0, scales0)
  7661. self.repack_mxfp4(new_name_up, blocks1, scales1)
  7662. return []
  7663. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7664. del bid # unused
  7665. if "sinks" in name:
  7666. name += ".weight"
  7667. # correct naming for down_proj
  7668. if "down_proj" in name:
  7669. if name.endswith("_bias"):
  7670. name = name.replace("down_proj_bias", "down_proj.bias")
  7671. elif "_blocks" not in name and "_scales" not in name:
  7672. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7673. name = name.replace("down_proj", "down_proj.weight")
  7674. data_torch = data_torch.transpose(-1, -2)
  7675. else:
  7676. # otherwise, it should already be repacked to ggml MXFP4 format
  7677. return []
  7678. # split the gate_up into gate and up
  7679. if "gate_up_proj" in name:
  7680. if name.endswith("_bias"):
  7681. name_up = name.replace("gate_up_proj_bias", "up_proj.bias")
  7682. name_gate = name.replace("gate_up_proj_bias", "gate_proj.bias")
  7683. gate_proj_bias, up_proj_bias = data_torch[..., ::2], data_torch[..., 1::2]
  7684. return [
  7685. (self.map_tensor_name(name_gate), gate_proj_bias),
  7686. (self.map_tensor_name(name_up), up_proj_bias)
  7687. ]
  7688. elif "_blocks" not in name and "_scales" not in name:
  7689. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7690. name_up = name.replace("gate_up_proj", "up_proj.weight")
  7691. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  7692. data_torch = data_torch.transpose(-1, -2)
  7693. gate_proj_weight, up_proj_weight = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7694. return [
  7695. (self.map_tensor_name(name_gate), gate_proj_weight),
  7696. (self.map_tensor_name(name_up), up_proj_weight)
  7697. ]
  7698. else:
  7699. # otherwise, it should already be repacked to ggml MXFP4 format
  7700. return []
  7701. return [(self.map_tensor_name(name), data_torch)]
  7702. def set_vocab(self):
  7703. self._set_vocab_gpt2()
  7704. def set_gguf_parameters(self):
  7705. super().set_gguf_parameters()
  7706. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  7707. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size"])
  7708. rope_scaling = self.hparams.get("rope_scaling") or {}
  7709. rope_type = rope_scaling.get("rope_type", rope_scaling.get("type"))
  7710. assert rope_type == "yarn", f"GPT-OSS only supports yarn rope scaling, got {rope_type}"
  7711. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7712. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7713. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling.get("original_max_position_embeddings", 4096))
  7714. @ModelBase.register("Lfm2ForCausalLM", "LFM2ForCausalLM")
  7715. class LFM2Model(TextModel):
  7716. model_arch = gguf.MODEL_ARCH.LFM2
  7717. def _add_feed_forward_length(self):
  7718. ff_dim = self.hparams["block_ff_dim"]
  7719. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  7720. ff_dim = self.hparams["block_ff_dim"]
  7721. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  7722. multiple_of = self.hparams["block_multiple_of"]
  7723. if auto_adjust_ff_dim:
  7724. ff_dim = int(2 * ff_dim / 3)
  7725. # custom dim factor multiplier
  7726. if ffn_dim_multiplier is not None:
  7727. ff_dim = int(ffn_dim_multiplier * ff_dim)
  7728. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  7729. self.gguf_writer.add_feed_forward_length(ff_dim)
  7730. def set_gguf_parameters(self):
  7731. # set num_key_value_heads only for attention layers
  7732. self.hparams["num_key_value_heads"] = [
  7733. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  7734. for layer_type in self.hparams["layer_types"]
  7735. ]
  7736. super().set_gguf_parameters()
  7737. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7738. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  7739. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  7740. self._add_feed_forward_length()
  7741. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7742. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7743. if is_vision_tensor:
  7744. # skip vision tensors
  7745. return []
  7746. name = name.replace("language_model.", "")
  7747. # conv op requires 2d tensor
  7748. if 'conv.conv' in name:
  7749. data_torch = data_torch.squeeze(1)
  7750. return [(self.map_tensor_name(name), data_torch)]
  7751. @ModelBase.register("Lfm2MoeForCausalLM")
  7752. class LFM2MoeModel(TextModel):
  7753. model_arch = gguf.MODEL_ARCH.LFM2MOE
  7754. def set_gguf_parameters(self):
  7755. # set num_key_value_heads only for attention layers
  7756. self.hparams["num_key_value_heads"] = [
  7757. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  7758. for layer_type in self.hparams["layer_types"]
  7759. ]
  7760. super().set_gguf_parameters()
  7761. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  7762. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  7763. self.gguf_writer.add_leading_dense_block_count(self.hparams["num_dense_layers"])
  7764. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  7765. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7766. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  7767. # cache for experts weights for merging
  7768. _experts_cache: dict[int, dict[str, Tensor]] = {}
  7769. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7770. # conv op requires 2d tensor
  7771. if 'conv.conv' in name:
  7772. data_torch = data_torch.squeeze(1)
  7773. if name.endswith(".expert_bias"):
  7774. name = name.replace(".expert_bias", ".expert_bias.bias")
  7775. # merge expert weights
  7776. if 'experts' in name:
  7777. n_experts = self.hparams["num_experts"]
  7778. assert bid is not None
  7779. expert_cache = self._experts_cache.setdefault(bid, {})
  7780. expert_cache[name] = data_torch
  7781. expert_weights = ["w1", "w2", "w3"]
  7782. # not enough expert weights to merge
  7783. if len(expert_cache) < n_experts * len(expert_weights):
  7784. return []
  7785. tensors: list[tuple[str, Tensor]] = []
  7786. for w_name in expert_weights:
  7787. datas: list[Tensor] = []
  7788. for xid in range(n_experts):
  7789. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{w_name}.weight"
  7790. datas.append(expert_cache[ename])
  7791. del expert_cache[ename]
  7792. data_torch = torch.stack(datas, dim=0)
  7793. merged_name = f"layers.{bid}.feed_forward.experts.{w_name}.weight"
  7794. new_name = self.map_tensor_name(merged_name)
  7795. tensors.append((new_name, data_torch))
  7796. del self._experts_cache[bid]
  7797. return tensors
  7798. return [(self.map_tensor_name(name), data_torch)]
  7799. def prepare_tensors(self):
  7800. super().prepare_tensors()
  7801. assert not self._experts_cache
  7802. @ModelBase.register("Lfm2VlForConditionalGeneration")
  7803. class LFM2VLModel(MmprojModel):
  7804. def __init__(self, *args, **kwargs):
  7805. super().__init__(*args, **kwargs)
  7806. assert self.hparams_vision is not None
  7807. # TODO(tarek): for dynamic resolution image_size is not specified, setting here for compatibility
  7808. self.hparams_vision["image_size"] = 256
  7809. def set_gguf_parameters(self):
  7810. super().set_gguf_parameters()
  7811. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2)
  7812. self.gguf_writer.add_vision_attention_layernorm_eps(self.find_vparam(["layer_norm_eps"]))
  7813. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("downsample_factor", 2))
  7814. self.gguf_writer.add_vision_use_gelu(True)
  7815. # python notation, e.g. for vision_feature_layer == -1, we pick last layer -> vision_feature_layers_to_drop = 0
  7816. vision_feature_layers_to_drop = -(self.global_config.get("vision_feature_layer", -1) + 1)
  7817. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys) - vision_feature_layers_to_drop)
  7818. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7819. del bid # unused
  7820. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7821. if is_vision_tensor:
  7822. # remove "model." prefix
  7823. name = name.replace("model.vision_tower.", "vision_tower.")
  7824. name = name.replace("model.multi_modal_projector.", "multi_modal_projector.")
  7825. if "patch_embedding.weight" in name:
  7826. data_torch = data_torch.view(data_torch.shape[0], 16, 16, 3).permute(0, 3, 1, 2)
  7827. return [(self.map_tensor_name(name), data_torch)]
  7828. return [] # skip other tensors
  7829. @ModelBase.register("SmallThinkerForCausalLM")
  7830. class SmallThinkerModel(TextModel):
  7831. model_arch = gguf.MODEL_ARCH.SMALLTHINKER
  7832. def set_gguf_parameters(self):
  7833. super().set_gguf_parameters()
  7834. if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
  7835. self.gguf_writer.add_expert_count(n_experts)
  7836. if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
  7837. self.gguf_writer.add_expert_used_count(n_experts_used)
  7838. if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
  7839. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7840. self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
  7841. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  7842. if (self.hparams.get('moe_primary_router_apply_softmax')):
  7843. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  7844. else:
  7845. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  7846. # YaRN is not enabled by default
  7847. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  7848. rope_scaling = self.hparams.get("rope_scaling") or {}
  7849. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  7850. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7851. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7852. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  7853. sliding_window_layout = self.hparams.get("sliding_window_layout")
  7854. if sliding_window_layout:
  7855. for i in sliding_window_layout:
  7856. if i != 0:
  7857. sliding_window = self.hparams.get("sliding_window_size")
  7858. if sliding_window:
  7859. self.gguf_writer.add_sliding_window(sliding_window)
  7860. break
  7861. _experts: list[dict[str, Tensor]] | None = None
  7862. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7863. # process the experts separately
  7864. if name.find("experts") != -1:
  7865. n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
  7866. assert bid is not None
  7867. if self._experts is None:
  7868. self._experts = [{} for _ in range(self.block_count)]
  7869. self._experts[bid][name] = data_torch
  7870. if len(self._experts[bid]) >= n_experts * 3:
  7871. tensors: list[tuple[str, Tensor]] = []
  7872. # merge the experts into a single 3d tensor
  7873. for w_name in ["down", "gate", "up"]:
  7874. datas: list[Tensor] = []
  7875. for xid in range(n_experts):
  7876. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  7877. datas.append(self._experts[bid][ename])
  7878. del self._experts[bid][ename]
  7879. data_torch = torch.stack(datas, dim=0)
  7880. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  7881. new_name = self.map_tensor_name(merged_name)
  7882. tensors.append((new_name, data_torch))
  7883. return tensors
  7884. else:
  7885. return []
  7886. return [(self.map_tensor_name(name), data_torch)]
  7887. def prepare_tensors(self):
  7888. super().prepare_tensors()
  7889. if self._experts is not None:
  7890. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7891. experts = [k for d in self._experts for k in d.keys()]
  7892. if len(experts) > 0:
  7893. raise ValueError(f"Unprocessed experts: {experts}")
  7894. @ModelBase.register("ApertusForCausalLM")
  7895. class ApertusModel(LlamaModel):
  7896. model_arch = gguf.MODEL_ARCH.APERTUS
  7897. undo_permute = False
  7898. _alpha_n = {}
  7899. _alpha_p = {}
  7900. _beta = {}
  7901. _eps = {}
  7902. def modify_tensors(self, data_torch, name, bid):
  7903. # Handle xIELU activation parameters
  7904. n_layers = self.hparams["num_hidden_layers"]
  7905. if name.endswith(".act_fn.alpha_n"):
  7906. self._alpha_n[bid] = data_torch.to("cpu").float().item()
  7907. if (len(self._alpha_n) == n_layers):
  7908. self.gguf_writer.add_xielu_alpha_n([self._alpha_n[k] for k in sorted(self._alpha_n)])
  7909. return []
  7910. if name.endswith(".act_fn.alpha_p"):
  7911. self._alpha_p[bid] = data_torch.to("cpu").float().item()
  7912. if (len(self._alpha_p) == n_layers):
  7913. self.gguf_writer.add_xielu_alpha_p([self._alpha_p[k] for k in sorted(self._alpha_p)])
  7914. return []
  7915. if name.endswith(".act_fn.beta"):
  7916. self._beta[bid] = data_torch.to("cpu").float().item()
  7917. if (len(self._beta) == n_layers):
  7918. self.gguf_writer.add_xielu_beta([self._beta[k] for k in sorted(self._beta)])
  7919. return []
  7920. if name.endswith(".act_fn.eps"):
  7921. self._eps[bid] = data_torch.to("cpu").float().item()
  7922. if (len(self._eps) == n_layers):
  7923. self.gguf_writer.add_xielu_eps([self._eps[k] for k in sorted(self._eps)])
  7924. return []
  7925. return super().modify_tensors(data_torch, name, bid)
  7926. class MistralModel(LlamaModel):
  7927. model_arch = gguf.MODEL_ARCH.LLAMA
  7928. model_name = "Mistral"
  7929. hf_arch = ""
  7930. is_mistral_format = True
  7931. undo_permute = False
  7932. @staticmethod
  7933. def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool):
  7934. assert TokenizerVersion is not None and Tekkenizer is not None and SentencePieceTokenizer is not None, _mistral_import_error_msg
  7935. assert isinstance(vocab.tokenizer, (Tekkenizer, SentencePieceTokenizer)), (
  7936. f"Expected Tekkenizer or SentencePieceTokenizer, got {type(vocab.tokenizer)}"
  7937. )
  7938. if vocab.tokenizer.version == TokenizerVersion.v1:
  7939. return "mistral-v1"
  7940. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.spm:
  7941. return "mistral-v3"
  7942. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  7943. return "mistral-v3-tekken"
  7944. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.spm:
  7945. return "mistral-v7"
  7946. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  7947. return "mistral-v7-tekken"
  7948. elif vocab.tokenizer.version == TokenizerVersion.v11:
  7949. template_file = "Mistral-Small-3.2-24B-Instruct-2506.jinja"
  7950. elif vocab.tokenizer.version == TokenizerVersion.v13:
  7951. template_file = "unsloth-mistral-Devstral-Small-2507.jinja"
  7952. else:
  7953. err_message = f"Unknown tokenizer type: {vocab.tokenizer_type} and version {vocab.tokenizer.version}"
  7954. if is_mistral_format:
  7955. err_message += (
  7956. " . Please pass --disable-mistral-community-chat-template argument to the CLI "
  7957. "if you want to skip this error and use the Mistral official `mistral-common` pre-processing library."
  7958. )
  7959. raise ValueError(err_message)
  7960. template_path = templates_dir / template_file
  7961. if not template_path.exists():
  7962. raise FileNotFoundError(f"Template file not found: {template_path}")
  7963. with open(template_path, "r", encoding="utf-8") as f:
  7964. template = f.read()
  7965. return template
  7966. class PixtralModel(LlavaVisionModel):
  7967. model_name = "Pixtral"
  7968. hf_arch = ""
  7969. is_mistral_format = True
  7970. def set_gguf_parameters(self):
  7971. super().set_gguf_parameters()
  7972. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  7973. self.gguf_writer.add_vision_attention_layernorm_eps(
  7974. self.find_hparam(["norm_eps"])
  7975. )
  7976. self.gguf_writer.add_rope_freq_base(self.find_vparam(["rope_theta"]))
  7977. self.gguf_writer.add_vision_use_silu(True)
  7978. # spatial_merge_size
  7979. if self.find_vparam(["mm_projector_id"]) == "patch_merge":
  7980. self.gguf_writer.add_vision_spatial_merge_size(
  7981. self.find_vparam(["spatial_merge_size"])
  7982. )
  7983. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  7984. if name == "vision_language_adapter.w_in.weight":
  7985. return "mm.1.weight"
  7986. elif name == "vision_language_adapter.w_out.weight":
  7987. return "mm.2.weight"
  7988. return super().map_tensor_name(name, try_suffixes)
  7989. @ModelBase.register("LightOnOCRForConditionalGeneration")
  7990. class LightOnOCRVisionModel(LlavaVisionModel):
  7991. is_mistral_format = False
  7992. use_break_tok = False
  7993. def set_gguf_parameters(self):
  7994. super().set_gguf_parameters()
  7995. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LIGHTONOCR)
  7996. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  7997. name = name.replace("model.vision_encoder.", "vision_tower.")
  7998. name = name.replace("model.vision_projection.", "multi_modal_projector.")
  7999. return super().modify_tensors(data_torch, name, bid)
  8000. @ModelBase.register("KimiVLForConditionalGeneration")
  8001. class KimiVLModel(MmprojModel):
  8002. def __init__(self, *args, **kwargs):
  8003. super().__init__(*args, **kwargs)
  8004. assert self.hparams_vision is not None
  8005. self.hparams_vision["image_size"] = 64 * 14 # for compatibility
  8006. def set_gguf_parameters(self):
  8007. super().set_gguf_parameters()
  8008. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.KIMIVL)
  8009. self.gguf_writer.add_vision_use_gelu(True)
  8010. self.gguf_writer.add_vision_projector_scale_factor(2)
  8011. # eps is the same as pytorch's default value
  8012. assert self.hparams_vision is not None
  8013. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-5))
  8014. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8015. del bid # unused
  8016. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  8017. if is_vision_tensor:
  8018. if "pos_emb.weight" in name:
  8019. data_torch = data_torch.view(data_torch.shape[0] * data_torch.shape[1], data_torch.shape[2])
  8020. elif "wqkv" in name:
  8021. split_dim = 0 if "weight" in name else -1
  8022. wq, wk, wv = data_torch.chunk(3, dim=split_dim)
  8023. return [
  8024. (self.map_tensor_name(name.replace("wqkv", "wq")), wq),
  8025. (self.map_tensor_name(name.replace("wqkv", "wk")), wk),
  8026. (self.map_tensor_name(name.replace("wqkv", "wv")), wv)
  8027. ]
  8028. return [(self.map_tensor_name(name), data_torch)]
  8029. return [] # skip other tensors
  8030. @ModelBase.register("CogVLMForCausalLM")
  8031. class CogVLMVisionModel(MmprojModel):
  8032. def set_gguf_parameters(self):
  8033. super().set_gguf_parameters()
  8034. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-6))
  8035. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.COGVLM)
  8036. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8037. del bid # unused
  8038. if not name.startswith("model.vision."):
  8039. return []
  8040. return [(self.map_tensor_name(name), data_torch)]
  8041. @ModelBase.register("CogVLMForCausalLM")
  8042. class CogVLMModel(LlamaModel):
  8043. model_arch = gguf.MODEL_ARCH.COGVLM
  8044. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8045. del bid # unused
  8046. # block vision tensors
  8047. if name.startswith("model.vision."):
  8048. return []
  8049. return [(self.map_tensor_name(name), data_torch)]
  8050. @ModelBase.register("JanusForConditionalGeneration")
  8051. class JanusProModel(LlamaModel):
  8052. model_arch = gguf.MODEL_ARCH.LLAMA # reuse Llama arch
  8053. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8054. # Skip vision, aligner, and generation tensors
  8055. skip_prefixes = (
  8056. 'model.vision_model.',
  8057. 'model.aligner.',
  8058. 'model.vqmodel.',
  8059. 'model.generation_embeddings.',
  8060. 'model.generation_aligner.',
  8061. 'model.generation_head.',
  8062. )
  8063. if name.startswith(skip_prefixes):
  8064. return []
  8065. if name.startswith('model.language_model.'):
  8066. name = name.replace('model.language_model.', 'model.')
  8067. elif name.startswith('language_model.'):
  8068. name = name.replace('language_model.', '')
  8069. return super().modify_tensors(data_torch, name, bid)
  8070. @ModelBase.register("JanusForConditionalGeneration")
  8071. class JanusProVisionModel(MmprojModel):
  8072. def __init__(self, *args, **kwargs):
  8073. super().__init__(*args, **kwargs)
  8074. assert self.hparams_vision is not None
  8075. if "intermediate_size" not in self.hparams_vision:
  8076. mlp_ratio = self.hparams_vision.get("mlp_ratio")
  8077. hidden_size = self.hparams_vision.get("hidden_size")
  8078. if mlp_ratio is not None and hidden_size is not None:
  8079. self.hparams_vision["intermediate_size"] = int(round(hidden_size * mlp_ratio))
  8080. def set_gguf_parameters(self):
  8081. super().set_gguf_parameters()
  8082. assert self.hparams_vision is not None
  8083. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.JANUS_PRO)
  8084. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-6))
  8085. hidden_act = str(self.hparams_vision.get("hidden_act", "")).lower()
  8086. if hidden_act == "gelu":
  8087. self.gguf_writer.add_vision_use_gelu(True)
  8088. elif hidden_act == "silu":
  8089. self.gguf_writer.add_vision_use_silu(True)
  8090. def _map_aligner_tensor(self, data_torch: Tensor, name: str) -> Iterable[tuple[str, Tensor]]:
  8091. """Map aligner tensors to projector format"""
  8092. suffix = ".bias" if name.endswith(".bias") else ".weight"
  8093. if name.startswith("model.aligner."):
  8094. local_name = name[len("model.aligner."):]
  8095. elif name.startswith("aligner."):
  8096. local_name = name[len("aligner."):]
  8097. else:
  8098. raise ValueError(f"Unsupported Janus aligner prefix: {name}")
  8099. if local_name.startswith("fc1."):
  8100. mm_index = 0
  8101. elif local_name.startswith("hidden_layers."):
  8102. parts = local_name.split(".", 2)
  8103. if len(parts) < 3:
  8104. raise ValueError(f"Unexpected Janus aligner tensor name: {name}")
  8105. mm_index = int(parts[1]) + 1
  8106. else:
  8107. raise ValueError(f"Unsupported Janus aligner tensor: {name}")
  8108. tensor_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, mm_index, suffix=suffix)
  8109. return [(tensor_name, data_torch)]
  8110. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8111. del bid # unused
  8112. # Skip language model tensors as they will be handled by `JanusProModel`
  8113. if name.startswith(('model.language_model.', 'language_model.')):
  8114. return []
  8115. # Skip generation-related components
  8116. skip_generation_prefixes = (
  8117. 'model.vqmodel.',
  8118. 'vqmodel.',
  8119. 'model.generation_embeddings.',
  8120. 'generation_embeddings.',
  8121. 'model.generation_aligner.',
  8122. 'generation_aligner.',
  8123. 'model.generation_head.',
  8124. 'generation_head.',
  8125. )
  8126. if name.startswith(skip_generation_prefixes):
  8127. return []
  8128. # Handle aligner tensors
  8129. if name.startswith(('model.aligner.', 'aligner.')):
  8130. return list(self._map_aligner_tensor(data_torch, name))
  8131. # Handle vision tensors
  8132. if name.startswith(('model.vision_model.', 'vision_model.')):
  8133. return [(self.map_tensor_name(name), data_torch)]
  8134. return []
  8135. ###### CONVERSION LOGIC ######
  8136. # tree of lazy tensors
  8137. class LazyTorchTensor(gguf.LazyBase):
  8138. _tensor_type = torch.Tensor
  8139. # to keep the type-checker happy
  8140. dtype: torch.dtype
  8141. shape: torch.Size
  8142. # only used when converting a torch.Tensor to a np.ndarray
  8143. _dtype_map: dict[torch.dtype, type] = {
  8144. torch.float16: np.float16,
  8145. torch.float32: np.float32,
  8146. torch.uint8: np.uint8,
  8147. }
  8148. # used for safetensors slices
  8149. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  8150. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  8151. _dtype_str_map: dict[str, torch.dtype] = {
  8152. "F64": torch.float64,
  8153. "F32": torch.float32,
  8154. "BF16": torch.bfloat16,
  8155. "F16": torch.float16,
  8156. # "U64": torch.uint64,
  8157. "I64": torch.int64,
  8158. # "U32": torch.uint32,
  8159. "I32": torch.int32,
  8160. # "U16": torch.uint16,
  8161. "I16": torch.int16,
  8162. "U8": torch.uint8,
  8163. "I8": torch.int8,
  8164. "BOOL": torch.bool,
  8165. "F8_E4M3": torch.float8_e4m3fn,
  8166. "F8_E5M2": torch.float8_e5m2,
  8167. }
  8168. def numpy(self) -> gguf.LazyNumpyTensor:
  8169. dtype = self._dtype_map[self.dtype]
  8170. return gguf.LazyNumpyTensor(
  8171. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  8172. args=(self,),
  8173. func=(lambda s: s.numpy())
  8174. )
  8175. @classmethod
  8176. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  8177. return torch.empty(size=shape, dtype=dtype, device="meta")
  8178. @classmethod
  8179. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  8180. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  8181. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  8182. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[...] if len(s.get_shape()) == 0 else s[:])
  8183. return cast(torch.Tensor, lazy)
  8184. @classmethod
  8185. def from_local_tensor(cls, t: gguf.utility.LocalTensor) -> Tensor:
  8186. def load_tensor(tensor: gguf.utility.LocalTensor) -> Tensor:
  8187. dtype = cls._dtype_str_map[tensor.dtype]
  8188. return torch.from_numpy(tensor.mmap_bytes()).view(dtype).reshape(tensor.shape)
  8189. dtype = cls._dtype_str_map[t.dtype]
  8190. shape = t.shape
  8191. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(t,), func=lambda r: load_tensor(r))
  8192. return cast(torch.Tensor, lazy)
  8193. @classmethod
  8194. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  8195. dtype = cls._dtype_str_map[remote_tensor.dtype]
  8196. shape = remote_tensor.shape
  8197. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  8198. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  8199. return cast(torch.Tensor, lazy)
  8200. @classmethod
  8201. def __torch_function__(cls, func, types, args=(), kwargs=None):
  8202. del types # unused
  8203. if kwargs is None:
  8204. kwargs = {}
  8205. if func is torch.Tensor.numpy:
  8206. return args[0].numpy()
  8207. return cls._wrap_fn(func)(*args, **kwargs)
  8208. def parse_args() -> argparse.Namespace:
  8209. parser = argparse.ArgumentParser(
  8210. description="Convert a huggingface model to a GGML compatible file")
  8211. parser.add_argument(
  8212. "--vocab-only", action="store_true",
  8213. help="extract only the vocab",
  8214. )
  8215. parser.add_argument(
  8216. "--outfile", type=Path,
  8217. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  8218. )
  8219. parser.add_argument(
  8220. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  8221. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  8222. )
  8223. parser.add_argument(
  8224. "--bigendian", action="store_true",
  8225. help="model is executed on big endian machine",
  8226. )
  8227. parser.add_argument(
  8228. "model", type=str,
  8229. help="directory containing model file or huggingface repository ID (if --remote)",
  8230. nargs="?",
  8231. )
  8232. parser.add_argument(
  8233. "--use-temp-file", action="store_true",
  8234. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  8235. )
  8236. parser.add_argument(
  8237. "--no-lazy", action="store_true",
  8238. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  8239. )
  8240. parser.add_argument(
  8241. "--model-name", type=str, default=None,
  8242. help="name of the model",
  8243. )
  8244. parser.add_argument(
  8245. "--verbose", action="store_true",
  8246. help="increase output verbosity",
  8247. )
  8248. parser.add_argument(
  8249. "--split-max-tensors", type=int, default=0,
  8250. help="max tensors in each split",
  8251. )
  8252. parser.add_argument(
  8253. "--split-max-size", type=str, default="0",
  8254. help="max size per split N(M|G)",
  8255. )
  8256. parser.add_argument(
  8257. "--dry-run", action="store_true",
  8258. help="only print out a split plan and exit, without writing any new files",
  8259. )
  8260. parser.add_argument(
  8261. "--no-tensor-first-split", action="store_true",
  8262. help="do not add tensors to the first split (disabled by default)"
  8263. )
  8264. parser.add_argument(
  8265. "--metadata", type=Path,
  8266. help="Specify the path for an authorship metadata override file"
  8267. )
  8268. parser.add_argument(
  8269. "--print-supported-models", action="store_true",
  8270. help="Print the supported models"
  8271. )
  8272. parser.add_argument(
  8273. "--remote", action="store_true",
  8274. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  8275. )
  8276. parser.add_argument(
  8277. "--mmproj", action="store_true",
  8278. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  8279. )
  8280. parser.add_argument(
  8281. "--mistral-format", action="store_true",
  8282. help="Whether the model is stored following the Mistral format.",
  8283. )
  8284. parser.add_argument(
  8285. "--disable-mistral-community-chat-template", action="store_true",
  8286. help=(
  8287. "Whether to disable usage of Mistral community chat templates. If set, use the Mistral official `mistral-common` library for tokenization and detokenization of Mistral models. "
  8288. "Using `mistral-common` ensure correctness and zero-day support of tokenization for models converted from the Mistral format but requires to manually setup the tokenization server."
  8289. )
  8290. )
  8291. parser.add_argument(
  8292. "--sentence-transformers-dense-modules", action="store_true",
  8293. help=("Whether to include sentence-transformers dense modules."
  8294. "It can be used for sentence-transformers models, like google/embeddinggemma-300m"
  8295. "Default these modules are not included.")
  8296. )
  8297. args = parser.parse_args()
  8298. if not args.print_supported_models and args.model is None:
  8299. parser.error("the following arguments are required: model")
  8300. return args
  8301. def split_str_to_n_bytes(split_str: str) -> int:
  8302. if split_str.endswith("K"):
  8303. n = int(split_str[:-1]) * 1000
  8304. elif split_str.endswith("M"):
  8305. n = int(split_str[:-1]) * 1000 * 1000
  8306. elif split_str.endswith("G"):
  8307. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  8308. elif split_str.isnumeric():
  8309. n = int(split_str)
  8310. else:
  8311. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  8312. if n < 0:
  8313. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  8314. return n
  8315. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  8316. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  8317. # maybe we should fallback to text model's arch in that case, since not many models have both
  8318. text_config = hparams.get("text_config", {})
  8319. vision_config = hparams.get("vision_config", {})
  8320. arch = None
  8321. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  8322. arch = arches[0]
  8323. elif "ssm_cfg" in hparams:
  8324. # For non-hf Mamba and Mamba2 models
  8325. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  8326. # if "architectures" is found in the sub-config, use that instead
  8327. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  8328. arch = text_config["architectures"][0]
  8329. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  8330. arch = vision_config["architectures"][0]
  8331. if arch is None:
  8332. raise ValueError("Failed to detect model architecture")
  8333. return arch
  8334. def main() -> None:
  8335. args = parse_args()
  8336. if args.print_supported_models:
  8337. logger.error("Supported models:")
  8338. ModelBase.print_registered_models()
  8339. sys.exit(0)
  8340. if args.verbose:
  8341. logging.basicConfig(level=logging.DEBUG)
  8342. else:
  8343. logging.basicConfig(level=logging.INFO)
  8344. if args.remote:
  8345. hf_repo_id = args.model
  8346. from huggingface_hub import snapshot_download
  8347. allowed_patterns = ["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"]
  8348. if args.sentence_transformers_dense_modules:
  8349. # include sentence-transformers dense modules safetensors files
  8350. allowed_patterns.append("*.safetensors")
  8351. local_dir = snapshot_download(
  8352. repo_id=hf_repo_id,
  8353. allow_patterns=allowed_patterns)
  8354. dir_model = Path(local_dir)
  8355. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  8356. else:
  8357. hf_repo_id = None
  8358. dir_model = Path(args.model)
  8359. if not dir_model.is_dir():
  8360. logger.error(f'Error: {dir_model} is not a directory')
  8361. sys.exit(1)
  8362. ftype_map: dict[str, gguf.LlamaFileType] = {
  8363. "f32": gguf.LlamaFileType.ALL_F32,
  8364. "f16": gguf.LlamaFileType.MOSTLY_F16,
  8365. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  8366. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  8367. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  8368. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  8369. "auto": gguf.LlamaFileType.GUESSED,
  8370. }
  8371. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  8372. if args.use_temp_file and is_split:
  8373. logger.error("Error: Cannot use temp file when splitting")
  8374. sys.exit(1)
  8375. if args.outfile is not None:
  8376. fname_out = args.outfile
  8377. elif hf_repo_id:
  8378. # if remote, use the model ID as the output file name
  8379. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  8380. else:
  8381. fname_out = dir_model
  8382. logger.info(f"Loading model: {dir_model.name}")
  8383. is_mistral_format = args.mistral_format
  8384. if is_mistral_format and not _mistral_common_installed:
  8385. raise ImportError(_mistral_import_error_msg)
  8386. disable_mistral_community_chat_template = args.disable_mistral_community_chat_template
  8387. with torch.inference_mode():
  8388. output_type = ftype_map[args.outtype]
  8389. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  8390. hparams = ModelBase.load_hparams(dir_model, is_mistral_format)
  8391. if not is_mistral_format:
  8392. model_architecture = get_model_architecture(hparams, model_type)
  8393. logger.info(f"Model architecture: {model_architecture}")
  8394. try:
  8395. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  8396. except NotImplementedError:
  8397. logger.error(f"Model {model_architecture} is not supported")
  8398. sys.exit(1)
  8399. elif args.mmproj:
  8400. assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
  8401. model_class = PixtralModel
  8402. else:
  8403. model_class = MistralModel
  8404. model_instance = model_class(dir_model, output_type, fname_out,
  8405. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  8406. eager=args.no_lazy,
  8407. metadata_override=args.metadata, model_name=args.model_name,
  8408. split_max_tensors=args.split_max_tensors,
  8409. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  8410. small_first_shard=args.no_tensor_first_split,
  8411. remote_hf_model_id=hf_repo_id, disable_mistral_community_chat_template=disable_mistral_community_chat_template,
  8412. sentence_transformers_dense_modules=args.sentence_transformers_dense_modules
  8413. )
  8414. if args.vocab_only:
  8415. logger.info("Exporting model vocab...")
  8416. model_instance.write_vocab()
  8417. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  8418. else:
  8419. logger.info("Exporting model...")
  8420. model_instance.write()
  8421. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  8422. logger.info(f"Model successfully exported to {out_path}")
  8423. if __name__ == '__main__':
  8424. main()