| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832 |
- #pragma once
- #include "llama-arch.h"
- #include "llama-batch.h"
- #include "llama-hparams.h"
- #include "llama-adapter.h"
- #include <cstdint>
- #include <vector>
- #include <memory>
- #include <set>
- #include <functional>
- struct ggml_cgraph;
- struct ggml_context;
- struct ggml_tensor;
- struct llama_cparams;
- struct llama_memory_context_i;
- class llama_kv_cache_context;
- class llama_kv_cache_iswa_context;
- class llama_memory_recurrent_context;
- class llama_memory_hybrid_context;
- // certain models (typically multi-modal) can produce different types of graphs
- enum llm_graph_type {
- LLM_GRAPH_TYPE_DEFAULT,
- LLM_GRAPH_TYPE_ENCODER,
- LLM_GRAPH_TYPE_DECODER,
- };
- enum llm_ffn_op_type {
- LLM_FFN_SILU,
- LLM_FFN_GELU,
- LLM_FFN_RELU,
- LLM_FFN_RELU_SQR,
- LLM_FFN_SWIGLU,
- LLM_FFN_GEGLU,
- LLM_FFN_REGLU,
- LLM_FFN_SWIGLU_OAI_MOE,
- };
- enum llm_ffn_gate_type {
- LLM_FFN_SEQ,
- LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
- };
- enum llm_norm_type {
- LLM_NORM,
- LLM_NORM_RMS,
- LLM_NORM_GROUP,
- };
- // TODO: tmp - need something better to pass the data from the encoder to the decoder
- struct llama_cross {
- // the output embeddings from the encoder as a ggml tensor
- // TODO: this needs more work to be correct, for now copy the embeddings data to host memory
- // ref: https://github.com/ggml-org/llama.cpp/pull/11213#discussion_r1969892524
- //ggml_tensor * t_embd = nullptr;
- int64_t n_embd = 0;
- int64_t n_enc = 0;
- // embeddings data copied to host memory (tmp)
- std::vector<float> v_embd;
- // needed to construct the cross-attention mask in the decoder
- std::vector<std::set<llama_seq_id>> seq_ids_enc;
- };
- struct llm_graph_params;
- //
- // llm_graph_input
- //
- class llm_graph_input_i {
- public:
- llm_graph_input_i() {
- const char * LLAMA_GRAPH_INPUT_DEBUG = getenv("LLAMA_GRAPH_INPUT_DEBUG");
- debug = LLAMA_GRAPH_INPUT_DEBUG ? atoi(LLAMA_GRAPH_INPUT_DEBUG) : 0;
- }
- virtual ~llm_graph_input_i() = default;
- virtual void set_input(const llama_ubatch * ubatch) = 0;
- // return true if the resulting input tensors using the provided graph parameters would be
- // the same as the previous input tensors that we have currently stored in the object
- virtual bool can_reuse(const llm_graph_params & params) {
- // returning false here by default will prevent from reusing the graph if the check
- // for the input type has not been implemented yet
- GGML_UNUSED(params);
- return false;
- }
- protected:
- // env: LLAMA_GRAPH_INPUT_DEBUG
- int debug = 0;
- };
- using llm_graph_input_ptr = std::unique_ptr<llm_graph_input_i>;
- class llm_graph_input_embd : public llm_graph_input_i {
- public:
- llm_graph_input_embd() = default;
- virtual ~llm_graph_input_embd() = default;
- void set_input(const llama_ubatch * ubatch) override;
- bool can_reuse(const llm_graph_params & params) override;
- ggml_tensor * tokens = nullptr; // I32 [n_batch]
- ggml_tensor * embd = nullptr; // F32 [n_embd, n_batch]
- };
- class llm_graph_input_pos : public llm_graph_input_i {
- public:
- llm_graph_input_pos(uint32_t n_pos_per_embd) : n_pos_per_embd(n_pos_per_embd) {}
- virtual ~llm_graph_input_pos() = default;
- void set_input(const llama_ubatch * ubatch) override;
- bool can_reuse(const llm_graph_params & params) override;
- ggml_tensor * pos = nullptr; // I32 [n_batch]
- const uint32_t n_pos_per_embd = 1;
- };
- // temperature tuning, used by llama4
- class llm_graph_input_attn_temp : public llm_graph_input_i {
- public:
- llm_graph_input_attn_temp(uint32_t n_attn_temp_floor_scale, float f_attn_temp_scale)
- : n_attn_temp_floor_scale(n_attn_temp_floor_scale), f_attn_temp_scale(f_attn_temp_scale) {}
- virtual ~llm_graph_input_attn_temp() = default;
- void set_input(const llama_ubatch * ubatch) override;
- ggml_tensor * attn_scale = nullptr; // F32 [n_batch]
- const uint32_t n_attn_temp_floor_scale;
- const float f_attn_temp_scale;
- };
- class llm_graph_input_pos_bucket : public llm_graph_input_i {
- public:
- llm_graph_input_pos_bucket(const llama_hparams & hparams) : hparams(hparams) {}
- virtual ~llm_graph_input_pos_bucket() = default;
- void set_input(const llama_ubatch * ubatch) override;
- ggml_tensor * pos_bucket = nullptr; // I32 [n_batch, n_batch]
- const llama_hparams hparams;
- };
- class llm_graph_input_pos_bucket_kv : public llm_graph_input_i {
- public:
- llm_graph_input_pos_bucket_kv(
- const llama_hparams & hparams,
- const llama_kv_cache_context * mctx) : hparams(hparams), mctx(mctx) {}
- virtual ~llm_graph_input_pos_bucket_kv() = default;
- void set_input(const llama_ubatch * ubatch) override;
- ggml_tensor * pos_bucket = nullptr; // I32 [n_kv, n_batch]
- const llama_hparams hparams;
- const llama_kv_cache_context * mctx;
- };
- class llm_graph_input_out_ids : public llm_graph_input_i {
- public:
- llm_graph_input_out_ids(
- const llama_hparams & hparams,
- const llama_cparams & cparams,
- uint32_t n_outputs) : hparams(hparams), cparams(cparams), n_outputs(n_outputs) {}
- virtual ~llm_graph_input_out_ids() = default;
- void set_input(const llama_ubatch * ubatch) override;
- bool can_reuse(const llm_graph_params & params) override;
- ggml_tensor * out_ids; // I32 [n_outputs]
- const llama_hparams hparams;
- const llama_cparams cparams;
- const uint32_t n_outputs;
- };
- class llm_graph_input_mean : public llm_graph_input_i {
- public:
- llm_graph_input_mean(const llama_cparams & cparams) : cparams(cparams) {}
- virtual ~llm_graph_input_mean() = default;
- void set_input(const llama_ubatch * ubatch) override;
- ggml_tensor * mean; // F32 [n_batch, n_batch]
- const llama_cparams cparams;
- };
- class llm_graph_input_cls : public llm_graph_input_i {
- public:
- llm_graph_input_cls(const llama_cparams & cparams, const llm_arch arch) : cparams(cparams), arch(arch) {}
- virtual ~llm_graph_input_cls() = default;
- void set_input(const llama_ubatch * ubatch) override;
- ggml_tensor * cls; // I32 [n_batch]
- const llama_cparams cparams;
- const llm_arch arch;
- };
- class llm_graph_input_rs : public llm_graph_input_i {
- public:
- llm_graph_input_rs(const llama_memory_recurrent_context * mctx) : mctx(mctx) {}
- virtual ~llm_graph_input_rs() = default;
- void set_input(const llama_ubatch * ubatch) override;
- ggml_tensor * s_copy; // I32 [n_rs]
- // views of s_copy, computed once per graph
- // and shared across layers which use build_rs
- ggml_tensor * s_copy_main; // I32 [n_seqs]
- ggml_tensor * s_copy_extra; // I32 [n_rs - n_seqs]
- const llama_memory_recurrent_context * mctx;
- };
- class llm_graph_input_cross_embd : public llm_graph_input_i {
- public:
- llm_graph_input_cross_embd(
- const llama_cross * cross) : cross(cross) {}
- virtual ~llm_graph_input_cross_embd() = default;
- void set_input(const llama_ubatch * ubatch) override;
- ggml_tensor * cross_embd; // F32 [n_embd, n_outputs_enc]
- const llama_cross * cross;
- };
- class llm_graph_input_attn_no_cache : public llm_graph_input_i {
- public:
- llm_graph_input_attn_no_cache(const llama_hparams & hparams, const llama_cparams & cparams) :
- hparams(hparams),
- cparams(cparams) {
- }
- ~llm_graph_input_attn_no_cache() = default;
- void set_input(const llama_ubatch * ubatch) override;
- ggml_tensor * get_kq_mask() const { return self_kq_mask_cnv; }
- ggml_tensor * get_kq_mask_swa() const { return self_kq_mask_swa_cnv; }
- // n_tokens == n_batch
- ggml_tensor * self_kq_mask = nullptr; // F32 [n_tokens, n_batch/n_stream, 1, n_stream]
- ggml_tensor * self_kq_mask_cnv = nullptr; // [n_tokens, n_batch/n_stream, 1, n_stream]
- ggml_tensor * self_kq_mask_swa = nullptr; // F32 [n_tokens, n_batch/n_stream, 1, n_stream]
- ggml_tensor * self_kq_mask_swa_cnv = nullptr; // [n_tokens, n_batch/n_stream, 1, n_stream]
- const llama_hparams hparams;
- const llama_cparams cparams;
- };
- class llm_graph_input_attn_kv : public llm_graph_input_i {
- public:
- llm_graph_input_attn_kv(
- const llama_hparams & hparams,
- const llama_cparams & cparams,
- const llama_kv_cache_context * mctx) :
- hparams(hparams),
- cparams(cparams),
- mctx(mctx) {
- }
- ~llm_graph_input_attn_kv() = default;
- void set_input(const llama_ubatch * ubatch) override;
- bool can_reuse(const llm_graph_params & params) override;
- ggml_tensor * get_k_idxs() const { return self_k_idxs; }
- ggml_tensor * get_v_idxs() const { return self_v_idxs; }
- ggml_tensor * get_kq_mask() const { return self_kq_mask_cnv; }
- ggml_tensor * self_k_idxs = nullptr; // I64 [n_batch]
- ggml_tensor * self_v_idxs = nullptr; // I64 [n_batch] or [n_batch*n_embd_v_gqa]
- ggml_tensor * self_kq_mask = nullptr; // F32 [n_kv, n_batch/n_stream, 1, n_stream]
- ggml_tensor * self_kq_mask_cnv = nullptr; // [n_kv, n_batch/n_stream, 1, n_stream]
- // note: these have to be copies because in order to be able to reuse a graph, its inputs
- // need to carry these parameters with them. otherwise, they can point to freed
- // llm_graph_params from a previous batch, causing stack-use-after-return
- const llama_hparams hparams;
- const llama_cparams cparams;
- const llama_kv_cache_context * mctx;
- };
- class llm_graph_input_attn_kv_iswa : public llm_graph_input_i {
- public:
- llm_graph_input_attn_kv_iswa(
- const llama_hparams & hparams,
- const llama_cparams & cparams,
- const llama_kv_cache_iswa_context * mctx) :
- hparams(hparams),
- cparams(cparams),
- mctx(mctx) {
- }
- ~llm_graph_input_attn_kv_iswa() = default;
- void set_input(const llama_ubatch * ubatch) override;
- bool can_reuse(const llm_graph_params & params) override;
- ggml_tensor * get_k_idxs() const { return self_k_idxs; }
- ggml_tensor * get_v_idxs() const { return self_v_idxs; }
- ggml_tensor * get_k_idxs_swa() const { return self_k_idxs_swa; }
- ggml_tensor * get_v_idxs_swa() const { return self_v_idxs_swa; }
- ggml_tensor * get_kq_mask() const { return self_kq_mask_cnv; }
- ggml_tensor * get_kq_mask_swa() const { return self_kq_mask_swa_cnv; }
- ggml_tensor * self_k_idxs = nullptr; // I64 [n_batch]
- ggml_tensor * self_v_idxs = nullptr; // I64 [n_batch] or [n_batch*n_embd_v_gqa]
- ggml_tensor * self_k_idxs_swa = nullptr; // I64 [n_batch]
- ggml_tensor * self_v_idxs_swa = nullptr; // I64 [n_batch] or [n_batch*n_embd_v_gqa]
- ggml_tensor * self_kq_mask = nullptr; // F32 [n_kv, n_batch/n_stream, 1, n_stream]
- ggml_tensor * self_kq_mask_cnv = nullptr; // [n_kv, n_batch/n_stream, 1, n_stream]
- ggml_tensor * self_kq_mask_swa = nullptr; // F32 [n_kv, n_batch/n_stream, 1, n_stream]
- ggml_tensor * self_kq_mask_swa_cnv = nullptr; // [n_kv, n_batch/n_stream, 1, n_stream]
- const llama_hparams hparams;
- const llama_cparams cparams;
- const llama_kv_cache_iswa_context * mctx;
- };
- class llm_graph_input_attn_cross : public llm_graph_input_i {
- public:
- llm_graph_input_attn_cross(const llama_cross * cross) : cross(cross) {}
- ~llm_graph_input_attn_cross() = default;
- void set_input(const llama_ubatch * ubatch) override;
- ggml_tensor * get_kq_mask_cross() const { return cross_kq_mask_cnv; }
- ggml_tensor * cross_kq_mask = nullptr; // F32 [n_outputs_enc, n_batch, 1, 1]
- ggml_tensor * cross_kq_mask_cnv = nullptr; // F32 [n_outputs_enc, n_batch, 1, 1]
- const llama_cross * cross = nullptr;
- };
- class llm_graph_input_mem_hybrid : public llm_graph_input_i {
- public:
- llm_graph_input_mem_hybrid(
- std::unique_ptr<llm_graph_input_attn_kv> inp_attn,
- std::unique_ptr<llm_graph_input_rs> inp_rs,
- const llama_memory_hybrid_context * mctx) :
- inp_attn(std::move(inp_attn)),
- inp_rs(std::move(inp_rs)),
- mctx(mctx) { }
- virtual ~llm_graph_input_mem_hybrid() = default;
- void set_input(const llama_ubatch * ubatch) override;
- std::unique_ptr<llm_graph_input_attn_kv> inp_attn;
- std::unique_ptr<llm_graph_input_rs> inp_rs;
- llm_graph_input_attn_kv * get_attn() const { return inp_attn.get(); }
- llm_graph_input_rs * get_recr() const { return inp_rs.get(); }
- const llama_memory_hybrid_context * mctx;
- };
- //
- // llm_graph_result
- //
- // these objects deliver the result from the graph build process back to the llama_context
- // note that the input tensors created for the graph are referenced here - the goal is to be able to populate their
- // specific data, by calling the set_inputs() method
- // along with the input tensors, the object also provides commonly used outputs tensors, such as logits, embeddings, etc.
- // these are used by the llama_context to extact the relevant data, based on the compute parameters
- // callback that allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
- using llm_graph_cb = std::function<void(const llama_ubatch & ubatch, ggml_tensor * cur, const char * name, int il)>;
- class llm_graph_result;
- struct llm_graph_params {
- llm_arch arch = LLM_ARCH_UNKNOWN;
- llama_hparams hparams;
- llama_cparams cparams;
- llama_ubatch ubatch; // note: intentionally make a copy
- llm_graph_type gtype;
- ggml_backend_sched_t sched;
- ggml_backend_t backend_cpu;
- const llama_adapter_cvec * cvec;
- const llama_adapter_loras * loras;
- const llama_memory_context_i * mctx;
- const llama_cross * cross;
- uint32_t n_outputs;
- llm_graph_cb cb;
- llm_graph_result * res;
- // return true if the "other" params would result in a graph with the same topology as with the current params
- // having the same topology allows us to reuse the graph in some cases
- bool allow_reuse(const llm_graph_params & other) const {
- // first check the ubatch
- bool can_reuse_ubatch =
- ubatch.equal_seqs() == other.ubatch.equal_seqs() &&
- ubatch.n_tokens == other.ubatch.n_tokens &&
- ubatch.n_seq_tokens == other.ubatch.n_seq_tokens &&
- ubatch.n_seqs == other.ubatch.n_seqs &&
- ubatch.n_seqs_unq == other.ubatch.n_seqs_unq &&
- (
- (!ubatch.token && !other.ubatch.token) ||
- (!ubatch.embd && !other.ubatch.embd)
- );
- // when we split the batch using "equal_seqs" we have to verify that the participating sequences are the same
- // the reason is because the set of attention streams would be different for different sequences
- if (can_reuse_ubatch && ubatch.equal_seqs()) {
- if (!ubatch.data) {
- // if the old ubatch does not own it's data, then we cannot guarantee that it is still alive, and
- // therefore we cannot perform the sequence id check. normally should never happen
- can_reuse_ubatch = false;
- } else {
- for (uint32_t s = 0; s < ubatch.n_seqs_unq; ++s) {
- can_reuse_ubatch &= ubatch.seq_id_unq[s] == other.ubatch.seq_id_unq[s];
- }
- }
- }
- if (!can_reuse_ubatch) {
- return false;
- }
- return
- cparams.embeddings == other.cparams.embeddings &&
- cparams.causal_attn == other.cparams.causal_attn &&
- arch == other.arch &&
- gtype == other.gtype &&
- cvec == other.cvec &&
- loras == other.loras &&
- cross == other.cross &&
- n_outputs == other.n_outputs;
- }
- };
- class llm_graph_result {
- public:
- llm_graph_result(int64_t max_nodes);
- virtual ~llm_graph_result() = default;
- ggml_tensor * get_tokens() const { return t_tokens; }
- ggml_tensor * get_logits() const { return t_logits; }
- ggml_tensor * get_embd() const { return t_embd; }
- ggml_tensor * get_embd_pooled() const { return t_embd_pooled; }
- ggml_cgraph * get_gf() const { return gf; }
- ggml_context * get_ctx() const { return ctx_compute.get(); }
- int64_t get_max_nodes() const;
- void reset();
- void set_inputs(const llama_ubatch * ubatch);
- // try to update the existing graph result using the new graph parameters in order to reuse it
- // this can only be done if we determine that the resulting graph using the new graph parameters
- // would be identical to the existing graph. in that case, we simply have to update the memory
- // contexts of the input tensors of the graph and we can reuse it for another computation
- // return true if the graph was updated and can be reused
- bool can_reuse(const llm_graph_params & params);
- llm_graph_input_i * add_input(llm_graph_input_ptr input);
- void set_params(const llm_graph_params & params);
- // important graph nodes
- ggml_tensor * t_tokens = nullptr;
- ggml_tensor * t_logits = nullptr;
- ggml_tensor * t_embd = nullptr;
- ggml_tensor * t_embd_pooled = nullptr;
- std::vector<llm_graph_input_ptr> inputs;
- ggml_context_ptr ctx_compute;
- // memory buffers used to evaluate the model
- std::vector<uint8_t> buf_compute_meta;
- ggml_cgraph * gf;
- int64_t max_nodes;
- private:
- // keep a copy of the previous graph parameters
- // we will use this to determine whether the graph can be reused by comparing them with the new parameters
- // note: these are updated after constructing the new graph
- llm_graph_params params;
- // env: LLAMA_GRAPH_RESULT_DEBUG
- int debug = 0;
- };
- using llm_graph_result_ptr = std::unique_ptr<llm_graph_result>;
- //
- // llm_graph_context
- //
- // used in build_rs to properly order writes and avoid unnecessary copies
- using llm_graph_get_rows_fn = std::function<ggml_tensor * (ggml_context *, ggml_tensor * states, ggml_tensor * ids)>;
- struct llm_graph_context {
- const llm_arch arch;
- const llama_hparams & hparams;
- const llama_cparams & cparams;
- const llama_ubatch & ubatch;
- const int64_t n_embd;
- const int64_t n_layer;
- const int64_t n_rot;
- const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
- const int64_t n_head;
- const int64_t n_head_kv;
- const int64_t n_embd_head_k;
- const int64_t n_embd_k_gqa;
- const int64_t n_embd_head_v;
- const int64_t n_embd_v_gqa;
- const int64_t n_expert;
- const int64_t n_expert_used;
- const float freq_base;
- const float freq_scale;
- const float ext_factor;
- const float attn_factor;
- const float beta_fast;
- const float beta_slow;
- const float norm_eps;
- const float norm_rms_eps;
- const int64_t n_tokens;
- const int64_t n_outputs;
- const int32_t n_ctx_orig; // yarn
- const enum llama_pooling_type pooling_type;
- const enum llama_rope_type rope_type;
- ggml_backend_sched_t sched;
- ggml_backend_t backend_cpu; // TODO: needed by build_attn_mha, figure out a way to remove?
- const llama_adapter_cvec * cvec;
- const llama_adapter_loras * loras;
- const llama_memory_context_i * mctx;
- const llama_cross * cross;
- const llm_graph_cb & cb_func;
- llm_graph_result * res;
- ggml_context * ctx0 = nullptr;
- ggml_cgraph * gf = nullptr;
- llm_graph_context(const llm_graph_params & params);
- virtual ~llm_graph_context() = default;
- void cb(ggml_tensor * cur, const char * name, int il) const;
- //
- // common
- //
- ggml_tensor * build_cvec(
- ggml_tensor * cur,
- int il) const;
- // do mat_mul, while optionally apply lora
- ggml_tensor * build_lora_mm(
- ggml_tensor * w,
- ggml_tensor * cur) const;
- // do mat_mul_id, while optionally apply lora
- ggml_tensor * build_lora_mm_id(
- ggml_tensor * w, // ggml_tensor * as
- ggml_tensor * cur, // ggml_tensor * b
- ggml_tensor * ids) const;
- ggml_tensor * build_norm(
- ggml_tensor * cur,
- ggml_tensor * mw,
- ggml_tensor * mb,
- llm_norm_type type,
- int il) const;
- ggml_tensor * build_ffn(
- ggml_tensor * cur,
- ggml_tensor * up,
- ggml_tensor * up_b,
- ggml_tensor * up_s,
- ggml_tensor * gate,
- ggml_tensor * gate_b,
- ggml_tensor * gate_s,
- ggml_tensor * down,
- ggml_tensor * down_b,
- ggml_tensor * down_s,
- ggml_tensor * act_scales,
- llm_ffn_op_type type_op,
- llm_ffn_gate_type type_gate,
- int il) const;
- // build MoE FFN without bias tensors
- ggml_tensor * build_moe_ffn(
- ggml_tensor * cur,
- ggml_tensor * gate_inp,
- ggml_tensor * up_exps,
- ggml_tensor * gate_exps,
- ggml_tensor * down_exps,
- ggml_tensor * exp_probs_b,
- int64_t n_expert,
- int64_t n_expert_used,
- llm_ffn_op_type type_op,
- bool norm_w,
- bool scale_w,
- float w_scale,
- llama_expert_gating_func_type gating_op,
- int il,
- ggml_tensor * probs_in = nullptr) const;
- ggml_tensor * build_moe_ffn(
- ggml_tensor * cur,
- ggml_tensor * gate_inp,
- ggml_tensor * gate_inp_b,
- ggml_tensor * up_exps,
- ggml_tensor * up_exps_b,
- ggml_tensor * gate_exps,
- ggml_tensor * gate_exps_b,
- ggml_tensor * down_exps,
- ggml_tensor * down_exps_b,
- ggml_tensor * exp_probs_b,
- int64_t n_expert,
- int64_t n_expert_used,
- llm_ffn_op_type type_op,
- bool norm_w,
- bool scale_w,
- float w_scale,
- llama_expert_gating_func_type gating_op,
- int il,
- ggml_tensor * probs_in = nullptr) const;
- //
- // inputs
- //
- ggml_tensor * build_inp_embd(ggml_tensor * tok_embd) const;
- ggml_tensor * build_inp_pos() const;
- ggml_tensor * build_inp_attn_scale() const;
- ggml_tensor * build_inp_out_ids() const;
- ggml_tensor * build_inp_mean() const;
- ggml_tensor * build_inp_cls() const;
- ggml_tensor * build_inp_cross_embd() const;
- ggml_tensor * build_inp_pos_bucket_enc() const;
- ggml_tensor * build_inp_pos_bucket_dec() const;
- ggml_tensor * build_pos_bias(ggml_tensor * pos_bucket, ggml_tensor * attn_rel_b) const;
- //
- // attention
- //
- ggml_tensor * build_attn_mha(
- ggml_tensor * q, // [n_embd_head_q, n_head_q, n_tokens]
- ggml_tensor * k, // [n_embd_head_k, n_head_k, n_tokens]
- ggml_tensor * v, // [n_embd_head_v, n_head_v, n_tokens] (v_trans == false)
- ggml_tensor * kq_b,
- ggml_tensor * kq_mask,
- ggml_tensor * sinks, // [n_head_q]
- ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
- float kq_scale,
- int il) const;
- llm_graph_input_attn_no_cache * build_attn_inp_no_cache() const;
- ggml_tensor * build_attn(
- llm_graph_input_attn_no_cache * inp,
- ggml_tensor * wo,
- ggml_tensor * wo_b,
- ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens]
- ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens]
- ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens]
- ggml_tensor * kq_b,
- ggml_tensor * sinks, // [n_head_q]
- ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
- float kq_scale,
- int il) const;
- llm_graph_input_attn_kv * build_attn_inp_kv() const;
- ggml_tensor * build_attn(
- llm_graph_input_attn_kv * inp,
- ggml_tensor * wo,
- ggml_tensor * wo_b,
- ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens]
- ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens]
- ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens]
- ggml_tensor * kq_b,
- ggml_tensor * sinks, // [n_head_q]
- ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
- float kq_scale,
- int il) const;
- llm_graph_input_attn_kv_iswa * build_attn_inp_kv_iswa() const;
- // note: if k_cur or v_cur are not provided, they will not be stored in the memory
- ggml_tensor * build_attn(
- llm_graph_input_attn_kv_iswa * inp,
- ggml_tensor * wo,
- ggml_tensor * wo_b,
- ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens]
- ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens] optional
- ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens] optional
- ggml_tensor * kq_b,
- ggml_tensor * sinks, // [n_head_q]
- ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
- float kq_scale,
- int il) const;
- llm_graph_input_attn_cross * build_attn_inp_cross() const;
- ggml_tensor * build_attn(
- llm_graph_input_attn_cross * inp,
- ggml_tensor * wo,
- ggml_tensor * wo_b,
- ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens]
- ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens]
- ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens]
- ggml_tensor * kq_b,
- ggml_tensor * sinks, // [n_head_q]
- ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
- float kq_scale,
- int il) const;
- //
- // recurrent
- //
- // TODO: move this implementation to llama_memory_recurrent.
- // this is analogous to llama_kv_cache::cpy_k / cpy_v
- // when moving, avoid passing `ggml_cgraph` - only pass `ggml_context`. would likely need to split the
- // implementation in 2 separate methods. the goal is to avoid calling `ggml_build_forward_expand` in
- // `llama_memory_recurrent`
- ggml_tensor * build_rs(
- ggml_tensor * s,
- ggml_tensor * state_copy_main,
- ggml_tensor * state_copy_extra,
- int32_t state_size,
- int32_t n_seqs,
- uint32_t n_rs,
- uint32_t rs_head,
- uint32_t rs_size,
- int32_t rs_zero,
- const llm_graph_get_rows_fn & get_state_rows = ggml_get_rows) const;
- llm_graph_input_rs * build_rs_inp() const;
- ggml_tensor * build_rs(
- llm_graph_input_rs * inp,
- ggml_tensor * s,
- int32_t state_size,
- int32_t n_seqs,
- const llm_graph_get_rows_fn & get_state_rows = ggml_get_rows) const;
- ggml_tensor * build_rwkv_token_shift_load(
- llm_graph_input_rs * inp,
- const llama_ubatch & ubatch,
- int il) const;
- ggml_tensor * build_rwkv_token_shift_store(
- ggml_tensor * token_shift,
- const llama_ubatch & ubatch,
- int il) const;
- //
- // hybrid
- //
- llm_graph_input_mem_hybrid * build_inp_mem_hybrid() const;
- //
- // pooling
- //
- void build_pooling(
- ggml_tensor * cls,
- ggml_tensor * cls_b,
- ggml_tensor * cls_out,
- ggml_tensor * cls_out_b) const;
- //
- // dense (out)
- //
- void build_dense_out(
- ggml_tensor * dense_2,
- ggml_tensor * dense_3) const;
- };
- // TODO: better name
- int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional);
|