1
0

llama-bench.cpp 86 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <clocale>
  7. #include <cmath>
  8. #include <cstdio>
  9. #include <cstdlib>
  10. #include <cstring>
  11. #include <ctime>
  12. #include <iterator>
  13. #include <map>
  14. #include <numeric>
  15. #include <regex>
  16. #include <sstream>
  17. #include <string>
  18. #include <thread>
  19. #include <vector>
  20. #include <unordered_set>
  21. #include "common.h"
  22. #include "ggml.h"
  23. #include "llama.h"
  24. #ifdef _WIN32
  25. # define WIN32_LEAN_AND_MEAN
  26. # ifndef NOMINMAX
  27. # define NOMINMAX
  28. # endif
  29. # include <windows.h>
  30. #endif
  31. // utils
  32. static uint64_t get_time_ns() {
  33. using clock = std::chrono::high_resolution_clock;
  34. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  35. }
  36. static bool tensor_buft_override_equal(const llama_model_tensor_buft_override& a, const llama_model_tensor_buft_override& b) {
  37. if (a.pattern != b.pattern) {
  38. // cString comparison that may be null
  39. if (a.pattern == nullptr || b.pattern == nullptr) {
  40. return false;
  41. }
  42. if (strcmp(a.pattern, b.pattern) != 0) {
  43. return false;
  44. }
  45. }
  46. if (a.buft != b.buft) {
  47. return false;
  48. }
  49. return true;
  50. }
  51. static bool vec_tensor_buft_override_equal(const std::vector<llama_model_tensor_buft_override>& a, const std::vector<llama_model_tensor_buft_override>& b) {
  52. if (a.size() != b.size()) {
  53. return false;
  54. }
  55. for (size_t i = 0; i < a.size(); i++) {
  56. if (!tensor_buft_override_equal(a[i], b[i])) {
  57. return false;
  58. }
  59. }
  60. return true;
  61. }
  62. static bool vec_vec_tensor_buft_override_equal(const std::vector<std::vector<llama_model_tensor_buft_override>>& a, const std::vector<std::vector<llama_model_tensor_buft_override>>& b) {
  63. if (a.size() != b.size()) {
  64. return false;
  65. }
  66. for (size_t i = 0; i < a.size(); i++) {
  67. if (!vec_tensor_buft_override_equal(a[i], b[i])) {
  68. return false;
  69. }
  70. }
  71. return true;
  72. }
  73. template <class T> static std::string join(const std::vector<T> & values, const std::string & delim) {
  74. std::ostringstream str;
  75. for (size_t i = 0; i < values.size(); i++) {
  76. str << values[i];
  77. if (i < values.size() - 1) {
  78. str << delim;
  79. }
  80. }
  81. return str.str();
  82. }
  83. template <typename T, typename F> static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
  84. std::vector<std::string> str_values;
  85. std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
  86. return str_values;
  87. }
  88. template <typename T> static T avg(const std::vector<T> & v) {
  89. if (v.empty()) {
  90. return 0;
  91. }
  92. T sum = std::accumulate(v.begin(), v.end(), T(0));
  93. return sum / (T) v.size();
  94. }
  95. template <typename T> static T stdev(const std::vector<T> & v) {
  96. if (v.size() <= 1) {
  97. return 0;
  98. }
  99. T mean = avg(v);
  100. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  101. T stdev = std::sqrt(sq_sum / (T) (v.size() - 1) - mean * mean * (T) v.size() / (T) (v.size() - 1));
  102. return stdev;
  103. }
  104. static std::string get_cpu_info() {
  105. std::vector<std::string> cpu_list;
  106. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  107. auto * dev = ggml_backend_dev_get(i);
  108. auto dev_type = ggml_backend_dev_type(dev);
  109. if (dev_type == GGML_BACKEND_DEVICE_TYPE_CPU || dev_type == GGML_BACKEND_DEVICE_TYPE_ACCEL) {
  110. cpu_list.push_back(ggml_backend_dev_description(dev));
  111. }
  112. }
  113. return join(cpu_list, ", ");
  114. }
  115. static std::string get_gpu_info() {
  116. std::vector<std::string> gpu_list;
  117. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  118. auto * dev = ggml_backend_dev_get(i);
  119. auto dev_type = ggml_backend_dev_type(dev);
  120. if (dev_type == GGML_BACKEND_DEVICE_TYPE_GPU || dev_type == GGML_BACKEND_DEVICE_TYPE_IGPU) {
  121. gpu_list.push_back(ggml_backend_dev_description(dev));
  122. }
  123. }
  124. return join(gpu_list, ", ");
  125. }
  126. static std::vector<ggml_backend_dev_t> parse_devices_arg(const std::string & value) {
  127. std::vector<ggml_backend_dev_t> devices;
  128. std::string trimmed = string_strip(value);
  129. if (trimmed.empty()) {
  130. throw std::invalid_argument("no devices specified");
  131. }
  132. if (trimmed == "auto") {
  133. return devices;
  134. }
  135. auto dev_names = string_split<std::string>(trimmed, '/');
  136. if (dev_names.size() == 1 && string_strip(dev_names[0]) == "none") {
  137. devices.push_back(nullptr);
  138. return devices;
  139. }
  140. for (auto & name : dev_names) {
  141. std::string dev_name = string_strip(name);
  142. if (dev_name.empty()) {
  143. throw std::invalid_argument("invalid device specification");
  144. }
  145. auto * dev = ggml_backend_dev_by_name(dev_name.c_str());
  146. if (!dev || ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU) {
  147. throw std::invalid_argument(string_format("invalid device: %s", dev_name.c_str()));
  148. }
  149. devices.push_back(dev);
  150. }
  151. devices.push_back(nullptr);
  152. return devices;
  153. }
  154. static void register_rpc_server_list(const std::string & servers) {
  155. auto rpc_servers = string_split<std::string>(servers, ',');
  156. if (rpc_servers.empty()) {
  157. throw std::invalid_argument("no RPC servers specified");
  158. }
  159. auto * rpc_reg = ggml_backend_reg_by_name("RPC");
  160. if (!rpc_reg) {
  161. throw std::invalid_argument("failed to find RPC backend");
  162. }
  163. using add_rpc_server_fn = ggml_backend_reg_t (*)(const char * endpoint);
  164. auto * ggml_backend_rpc_add_server_fn = (add_rpc_server_fn) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_server");
  165. if (!ggml_backend_rpc_add_server_fn) {
  166. throw std::invalid_argument("failed to find RPC add server function");
  167. }
  168. for (const auto & server : rpc_servers) {
  169. auto reg = ggml_backend_rpc_add_server_fn(server.c_str());
  170. ggml_backend_register(reg);
  171. }
  172. }
  173. static std::string devices_to_string(const std::vector<ggml_backend_dev_t> & devices) {
  174. if (devices.empty()) {
  175. return "auto";
  176. }
  177. if (devices.size() == 1 && devices[0] == nullptr) {
  178. return "none";
  179. }
  180. std::vector<std::string> names;
  181. for (auto * dev : devices) {
  182. if (dev == nullptr) {
  183. break;
  184. }
  185. names.push_back(ggml_backend_dev_name(dev));
  186. }
  187. return join(names, "/");
  188. }
  189. // command line params
  190. enum output_formats { NONE, CSV, JSON, JSONL, MARKDOWN, SQL };
  191. static const char * output_format_str(output_formats format) {
  192. switch (format) {
  193. case NONE:
  194. return "none";
  195. case CSV:
  196. return "csv";
  197. case JSON:
  198. return "json";
  199. case JSONL:
  200. return "jsonl";
  201. case MARKDOWN:
  202. return "md";
  203. case SQL:
  204. return "sql";
  205. default:
  206. GGML_ABORT("invalid output format");
  207. }
  208. }
  209. static bool output_format_from_str(const std::string & s, output_formats & format) {
  210. if (s == "none") {
  211. format = NONE;
  212. } else if (s == "csv") {
  213. format = CSV;
  214. } else if (s == "json") {
  215. format = JSON;
  216. } else if (s == "jsonl") {
  217. format = JSONL;
  218. } else if (s == "md") {
  219. format = MARKDOWN;
  220. } else if (s == "sql") {
  221. format = SQL;
  222. } else {
  223. return false;
  224. }
  225. return true;
  226. }
  227. static const char * split_mode_str(llama_split_mode mode) {
  228. switch (mode) {
  229. case LLAMA_SPLIT_MODE_NONE:
  230. return "none";
  231. case LLAMA_SPLIT_MODE_LAYER:
  232. return "layer";
  233. case LLAMA_SPLIT_MODE_ROW:
  234. return "row";
  235. default:
  236. GGML_ABORT("invalid split mode");
  237. }
  238. }
  239. static std::string pair_str(const std::pair<int, int> & p) {
  240. static char buf[32];
  241. snprintf(buf, sizeof(buf), "%d,%d", p.first, p.second);
  242. return buf;
  243. }
  244. static std::vector<int> parse_int_range(const std::string & s) {
  245. // first[-last[(+|*)step]]
  246. std::regex range_regex(R"(^(\d+)(?:-(\d+)(?:([\+|\*])(\d+))?)?(?:,|$))");
  247. std::smatch match;
  248. std::string::const_iterator search_start(s.cbegin());
  249. std::vector<int> result;
  250. while (std::regex_search(search_start, s.cend(), match, range_regex)) {
  251. int first = std::stoi(match[1]);
  252. int last = match[2].matched ? std::stoi(match[2]) : first;
  253. char op = match[3].matched ? match[3].str()[0] : '+';
  254. int step = match[4].matched ? std::stoi(match[4]) : 1;
  255. for (int i = first; i <= last;) {
  256. result.push_back(i);
  257. int prev_i = i;
  258. if (op == '+') {
  259. i += step;
  260. } else if (op == '*') {
  261. i *= step;
  262. } else {
  263. throw std::invalid_argument("invalid range format");
  264. }
  265. if (i <= prev_i) {
  266. throw std::invalid_argument("invalid range");
  267. }
  268. }
  269. search_start = match.suffix().first;
  270. }
  271. if (search_start != s.cend()) {
  272. throw std::invalid_argument("invalid range format");
  273. }
  274. return result;
  275. }
  276. struct cmd_params {
  277. std::vector<std::string> model;
  278. std::vector<int> n_prompt;
  279. std::vector<int> n_gen;
  280. std::vector<std::pair<int, int>> n_pg;
  281. std::vector<int> n_depth;
  282. std::vector<int> n_batch;
  283. std::vector<int> n_ubatch;
  284. std::vector<ggml_type> type_k;
  285. std::vector<ggml_type> type_v;
  286. std::vector<int> n_threads;
  287. std::vector<std::string> cpu_mask;
  288. std::vector<bool> cpu_strict;
  289. std::vector<int> poll;
  290. std::vector<int> n_gpu_layers;
  291. std::vector<int> n_cpu_moe;
  292. std::vector<llama_split_mode> split_mode;
  293. std::vector<int> main_gpu;
  294. std::vector<bool> no_kv_offload;
  295. std::vector<bool> flash_attn;
  296. std::vector<std::vector<ggml_backend_dev_t>> devices;
  297. std::vector<std::vector<float>> tensor_split;
  298. std::vector<std::vector<llama_model_tensor_buft_override>> tensor_buft_overrides;
  299. std::vector<bool> use_mmap;
  300. std::vector<bool> embeddings;
  301. std::vector<bool> no_op_offload;
  302. std::vector<bool> no_host;
  303. ggml_numa_strategy numa;
  304. int reps;
  305. ggml_sched_priority prio;
  306. int delay;
  307. bool verbose;
  308. bool progress;
  309. bool no_warmup;
  310. output_formats output_format;
  311. output_formats output_format_stderr;
  312. };
  313. static const cmd_params cmd_params_defaults = {
  314. /* model */ { "models/7B/ggml-model-q4_0.gguf" },
  315. /* n_prompt */ { 512 },
  316. /* n_gen */ { 128 },
  317. /* n_pg */ {},
  318. /* n_depth */ { 0 },
  319. /* n_batch */ { 2048 },
  320. /* n_ubatch */ { 512 },
  321. /* type_k */ { GGML_TYPE_F16 },
  322. /* type_v */ { GGML_TYPE_F16 },
  323. /* n_threads */ { cpu_get_num_math() },
  324. /* cpu_mask */ { "0x0" },
  325. /* cpu_strict */ { false },
  326. /* poll */ { 50 },
  327. /* n_gpu_layers */ { 99 },
  328. /* n_cpu_moe */ { 0 },
  329. /* split_mode */ { LLAMA_SPLIT_MODE_LAYER },
  330. /* main_gpu */ { 0 },
  331. /* no_kv_offload */ { false },
  332. /* flash_attn */ { false },
  333. /* devices */ { {} },
  334. /* tensor_split */ { std::vector<float>(llama_max_devices(), 0.0f) },
  335. /* tensor_buft_overrides*/ { std::vector<llama_model_tensor_buft_override>{ { nullptr, nullptr } } },
  336. /* use_mmap */ { true },
  337. /* embeddings */ { false },
  338. /* no_op_offload */ { false },
  339. /* no_host */ { false },
  340. /* numa */ GGML_NUMA_STRATEGY_DISABLED,
  341. /* reps */ 5,
  342. /* prio */ GGML_SCHED_PRIO_NORMAL,
  343. /* delay */ 0,
  344. /* verbose */ false,
  345. /* progress */ false,
  346. /* no_warmup */ false,
  347. /* output_format */ MARKDOWN,
  348. /* output_format_stderr */ NONE,
  349. };
  350. static void print_usage(int /* argc */, char ** argv) {
  351. printf("usage: %s [options]\n", argv[0]);
  352. printf("\n");
  353. printf("options:\n");
  354. printf(" -h, --help\n");
  355. printf(" --numa <distribute|isolate|numactl> numa mode (default: disabled)\n");
  356. printf(" -r, --repetitions <n> number of times to repeat each test (default: %d)\n",
  357. cmd_params_defaults.reps);
  358. printf(" --prio <-1|0|1|2|3> process/thread priority (default: %d)\n",
  359. cmd_params_defaults.prio);
  360. printf(" --delay <0...N> (seconds) delay between each test (default: %d)\n",
  361. cmd_params_defaults.delay);
  362. printf(" -o, --output <csv|json|jsonl|md|sql> output format printed to stdout (default: %s)\n",
  363. output_format_str(cmd_params_defaults.output_format));
  364. printf(" -oe, --output-err <csv|json|jsonl|md|sql> output format printed to stderr (default: %s)\n",
  365. output_format_str(cmd_params_defaults.output_format_stderr));
  366. printf(" --list-devices list available devices and exit\n");
  367. printf(" -v, --verbose verbose output\n");
  368. printf(" --progress print test progress indicators\n");
  369. printf(" --no-warmup skip warmup runs before benchmarking\n");
  370. if (llama_supports_rpc()) {
  371. printf(" -rpc, --rpc <rpc_servers> register RPC devices (comma separated)\n");
  372. }
  373. printf("\n");
  374. printf("test parameters:\n");
  375. printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  376. printf(" -p, --n-prompt <n> (default: %s)\n",
  377. join(cmd_params_defaults.n_prompt, ",").c_str());
  378. printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  379. printf(" -pg <pp,tg> (default: %s)\n",
  380. join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str());
  381. printf(" -d, --n-depth <n> (default: %s)\n",
  382. join(cmd_params_defaults.n_depth, ",").c_str());
  383. printf(" -b, --batch-size <n> (default: %s)\n",
  384. join(cmd_params_defaults.n_batch, ",").c_str());
  385. printf(" -ub, --ubatch-size <n> (default: %s)\n",
  386. join(cmd_params_defaults.n_ubatch, ",").c_str());
  387. printf(" -ctk, --cache-type-k <t> (default: %s)\n",
  388. join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
  389. printf(" -ctv, --cache-type-v <t> (default: %s)\n",
  390. join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
  391. printf(" -t, --threads <n> (default: %s)\n",
  392. join(cmd_params_defaults.n_threads, ",").c_str());
  393. printf(" -C, --cpu-mask <hex,hex> (default: %s)\n",
  394. join(cmd_params_defaults.cpu_mask, ",").c_str());
  395. printf(" --cpu-strict <0|1> (default: %s)\n",
  396. join(cmd_params_defaults.cpu_strict, ",").c_str());
  397. printf(" --poll <0...100> (default: %s)\n", join(cmd_params_defaults.poll, ",").c_str());
  398. printf(" -ngl, --n-gpu-layers <n> (default: %s)\n",
  399. join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  400. printf(" -ncmoe, --n-cpu-moe <n> (default: %s)\n",
  401. join(cmd_params_defaults.n_cpu_moe, ",").c_str());
  402. printf(" -sm, --split-mode <none|layer|row> (default: %s)\n",
  403. join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
  404. printf(" -mg, --main-gpu <i> (default: %s)\n",
  405. join(cmd_params_defaults.main_gpu, ",").c_str());
  406. printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n",
  407. join(cmd_params_defaults.no_kv_offload, ",").c_str());
  408. printf(" -fa, --flash-attn <0|1> (default: %s)\n",
  409. join(cmd_params_defaults.flash_attn, ",").c_str());
  410. printf(" -dev, --device <dev0/dev1/...> (default: auto)\n");
  411. printf(" -mmp, --mmap <0|1> (default: %s)\n",
  412. join(cmd_params_defaults.use_mmap, ",").c_str());
  413. printf(" -embd, --embeddings <0|1> (default: %s)\n",
  414. join(cmd_params_defaults.embeddings, ",").c_str());
  415. printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
  416. printf(" -ot --override-tensor <tensor name pattern>=<buffer type>;...\n");
  417. printf(" (default: disabled)\n");
  418. printf(" -nopo, --no-op-offload <0|1> (default: 0)\n");
  419. printf(" --no-host <0|1> (default: %s)\n",
  420. join(cmd_params_defaults.no_host, ",").c_str());
  421. printf("\n");
  422. printf(
  423. "Multiple values can be given for each parameter by separating them with ','\n"
  424. "or by specifying the parameter multiple times. Ranges can be given as\n"
  425. "'first-last' or 'first-last+step' or 'first-last*mult'.\n");
  426. }
  427. static ggml_type ggml_type_from_name(const std::string & s) {
  428. if (s == "f16") {
  429. return GGML_TYPE_F16;
  430. }
  431. if (s == "bf16") {
  432. return GGML_TYPE_BF16;
  433. }
  434. if (s == "q8_0") {
  435. return GGML_TYPE_Q8_0;
  436. }
  437. if (s == "q4_0") {
  438. return GGML_TYPE_Q4_0;
  439. }
  440. if (s == "q4_1") {
  441. return GGML_TYPE_Q4_1;
  442. }
  443. if (s == "q5_0") {
  444. return GGML_TYPE_Q5_0;
  445. }
  446. if (s == "q5_1") {
  447. return GGML_TYPE_Q5_1;
  448. }
  449. if (s == "iq4_nl") {
  450. return GGML_TYPE_IQ4_NL;
  451. }
  452. return GGML_TYPE_COUNT;
  453. }
  454. static cmd_params parse_cmd_params(int argc, char ** argv) {
  455. cmd_params params;
  456. std::string arg;
  457. bool invalid_param = false;
  458. const std::string arg_prefix = "--";
  459. const char split_delim = ',';
  460. params.verbose = cmd_params_defaults.verbose;
  461. params.output_format = cmd_params_defaults.output_format;
  462. params.output_format_stderr = cmd_params_defaults.output_format_stderr;
  463. params.reps = cmd_params_defaults.reps;
  464. params.numa = cmd_params_defaults.numa;
  465. params.prio = cmd_params_defaults.prio;
  466. params.delay = cmd_params_defaults.delay;
  467. params.progress = cmd_params_defaults.progress;
  468. params.no_warmup = cmd_params_defaults.no_warmup;
  469. for (int i = 1; i < argc; i++) {
  470. arg = argv[i];
  471. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  472. std::replace(arg.begin(), arg.end(), '_', '-');
  473. }
  474. try {
  475. if (arg == "-h" || arg == "--help") {
  476. print_usage(argc, argv);
  477. exit(0);
  478. } else if (arg == "-m" || arg == "--model") {
  479. if (++i >= argc) {
  480. invalid_param = true;
  481. break;
  482. }
  483. auto p = string_split<std::string>(argv[i], split_delim);
  484. params.model.insert(params.model.end(), p.begin(), p.end());
  485. } else if (arg == "-p" || arg == "--n-prompt") {
  486. if (++i >= argc) {
  487. invalid_param = true;
  488. break;
  489. }
  490. auto p = parse_int_range(argv[i]);
  491. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  492. } else if (arg == "-n" || arg == "--n-gen") {
  493. if (++i >= argc) {
  494. invalid_param = true;
  495. break;
  496. }
  497. auto p = parse_int_range(argv[i]);
  498. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  499. } else if (arg == "-pg") {
  500. if (++i >= argc) {
  501. invalid_param = true;
  502. break;
  503. }
  504. auto p = string_split<std::string>(argv[i], ',');
  505. if (p.size() != 2) {
  506. invalid_param = true;
  507. break;
  508. }
  509. params.n_pg.push_back({ std::stoi(p[0]), std::stoi(p[1]) });
  510. } else if (arg == "-d" || arg == "--n-depth") {
  511. if (++i >= argc) {
  512. invalid_param = true;
  513. break;
  514. }
  515. auto p = parse_int_range(argv[i]);
  516. params.n_depth.insert(params.n_depth.end(), p.begin(), p.end());
  517. } else if (arg == "-b" || arg == "--batch-size") {
  518. if (++i >= argc) {
  519. invalid_param = true;
  520. break;
  521. }
  522. auto p = parse_int_range(argv[i]);
  523. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  524. } else if (arg == "-ub" || arg == "--ubatch-size") {
  525. if (++i >= argc) {
  526. invalid_param = true;
  527. break;
  528. }
  529. auto p = parse_int_range(argv[i]);
  530. params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end());
  531. } else if (arg == "-ctk" || arg == "--cache-type-k") {
  532. if (++i >= argc) {
  533. invalid_param = true;
  534. break;
  535. }
  536. auto p = string_split<std::string>(argv[i], split_delim);
  537. std::vector<ggml_type> types;
  538. for (const auto & t : p) {
  539. ggml_type gt = ggml_type_from_name(t);
  540. if (gt == GGML_TYPE_COUNT) {
  541. invalid_param = true;
  542. break;
  543. }
  544. types.push_back(gt);
  545. }
  546. if (invalid_param) {
  547. break;
  548. }
  549. params.type_k.insert(params.type_k.end(), types.begin(), types.end());
  550. } else if (arg == "-ctv" || arg == "--cache-type-v") {
  551. if (++i >= argc) {
  552. invalid_param = true;
  553. break;
  554. }
  555. auto p = string_split<std::string>(argv[i], split_delim);
  556. std::vector<ggml_type> types;
  557. for (const auto & t : p) {
  558. ggml_type gt = ggml_type_from_name(t);
  559. if (gt == GGML_TYPE_COUNT) {
  560. invalid_param = true;
  561. break;
  562. }
  563. types.push_back(gt);
  564. }
  565. if (invalid_param) {
  566. break;
  567. }
  568. params.type_v.insert(params.type_v.end(), types.begin(), types.end());
  569. } else if (arg == "-dev" || arg == "--device") {
  570. if (++i >= argc) {
  571. invalid_param = true;
  572. break;
  573. }
  574. auto combos = string_split<std::string>(argv[i], split_delim);
  575. for (const auto & combo : combos) {
  576. try {
  577. params.devices.push_back(parse_devices_arg(combo));
  578. } catch (const std::exception & e) {
  579. fprintf(stderr, "error: %s\n", e.what());
  580. invalid_param = true;
  581. break;
  582. }
  583. }
  584. if (invalid_param) {
  585. break;
  586. }
  587. } else if (arg == "--list-devices") {
  588. std::vector<ggml_backend_dev_t> devices;
  589. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  590. auto * dev = ggml_backend_dev_get(i);
  591. if (ggml_backend_dev_type(dev) != GGML_BACKEND_DEVICE_TYPE_CPU) {
  592. devices.push_back(dev);
  593. }
  594. }
  595. printf("Available devices:\n");
  596. if (devices.empty()) {
  597. printf(" (none)\n");
  598. }
  599. for (auto * dev : devices) {
  600. size_t free, total;
  601. ggml_backend_dev_memory(dev, &free, &total);
  602. printf(" %s: %s (%zu MiB, %zu MiB free)\n", ggml_backend_dev_name(dev), ggml_backend_dev_description(dev), total / 1024 / 1024, free / 1024 / 1024);
  603. }
  604. exit(0);
  605. } else if (arg == "-t" || arg == "--threads") {
  606. if (++i >= argc) {
  607. invalid_param = true;
  608. break;
  609. }
  610. auto p = parse_int_range(argv[i]);
  611. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  612. } else if (arg == "-C" || arg == "--cpu-mask") {
  613. if (++i >= argc) {
  614. invalid_param = true;
  615. break;
  616. }
  617. auto p = string_split<std::string>(argv[i], split_delim);
  618. params.cpu_mask.insert(params.cpu_mask.end(), p.begin(), p.end());
  619. } else if (arg == "--cpu-strict") {
  620. if (++i >= argc) {
  621. invalid_param = true;
  622. break;
  623. }
  624. auto p = string_split<bool>(argv[i], split_delim);
  625. params.cpu_strict.insert(params.cpu_strict.end(), p.begin(), p.end());
  626. } else if (arg == "--poll") {
  627. if (++i >= argc) {
  628. invalid_param = true;
  629. break;
  630. }
  631. auto p = parse_int_range(argv[i]);
  632. params.poll.insert(params.poll.end(), p.begin(), p.end());
  633. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  634. if (++i >= argc) {
  635. invalid_param = true;
  636. break;
  637. }
  638. auto p = parse_int_range(argv[i]);
  639. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  640. } else if (arg == "-ncmoe" || arg == "--n-cpu-moe") {
  641. if (++i >= argc) {
  642. invalid_param = true;
  643. break;
  644. }
  645. auto p = parse_int_range(argv[i]);
  646. params.n_cpu_moe.insert(params.n_cpu_moe.end(), p.begin(), p.end());
  647. } else if (llama_supports_rpc() && (arg == "-rpc" || arg == "--rpc")) {
  648. if (++i >= argc) {
  649. invalid_param = true;
  650. break;
  651. }
  652. try {
  653. register_rpc_server_list(argv[i]);
  654. } catch (const std::exception & e) {
  655. fprintf(stderr, "error: %s\n", e.what());
  656. invalid_param = true;
  657. break;
  658. }
  659. } else if (arg == "-sm" || arg == "--split-mode") {
  660. if (++i >= argc) {
  661. invalid_param = true;
  662. break;
  663. }
  664. auto p = string_split<std::string>(argv[i], split_delim);
  665. std::vector<llama_split_mode> modes;
  666. for (const auto & m : p) {
  667. llama_split_mode mode;
  668. if (m == "none") {
  669. mode = LLAMA_SPLIT_MODE_NONE;
  670. } else if (m == "layer") {
  671. mode = LLAMA_SPLIT_MODE_LAYER;
  672. } else if (m == "row") {
  673. mode = LLAMA_SPLIT_MODE_ROW;
  674. } else {
  675. invalid_param = true;
  676. break;
  677. }
  678. modes.push_back(mode);
  679. }
  680. if (invalid_param) {
  681. break;
  682. }
  683. params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
  684. } else if (arg == "-mg" || arg == "--main-gpu") {
  685. if (++i >= argc) {
  686. invalid_param = true;
  687. break;
  688. }
  689. params.main_gpu = parse_int_range(argv[i]);
  690. } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
  691. if (++i >= argc) {
  692. invalid_param = true;
  693. break;
  694. }
  695. auto p = string_split<bool>(argv[i], split_delim);
  696. params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
  697. } else if (arg == "--numa") {
  698. if (++i >= argc) {
  699. invalid_param = true;
  700. break;
  701. }
  702. std::string value(argv[i]);
  703. if (value == "distribute" || value == "") {
  704. params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE;
  705. } else if (value == "isolate") {
  706. params.numa = GGML_NUMA_STRATEGY_ISOLATE;
  707. } else if (value == "numactl") {
  708. params.numa = GGML_NUMA_STRATEGY_NUMACTL;
  709. } else {
  710. invalid_param = true;
  711. break;
  712. }
  713. } else if (arg == "-fa" || arg == "--flash-attn") {
  714. if (++i >= argc) {
  715. invalid_param = true;
  716. break;
  717. }
  718. auto p = string_split<bool>(argv[i], split_delim);
  719. params.flash_attn.insert(params.flash_attn.end(), p.begin(), p.end());
  720. } else if (arg == "-mmp" || arg == "--mmap") {
  721. if (++i >= argc) {
  722. invalid_param = true;
  723. break;
  724. }
  725. auto p = string_split<bool>(argv[i], split_delim);
  726. params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
  727. } else if (arg == "-embd" || arg == "--embeddings") {
  728. if (++i >= argc) {
  729. invalid_param = true;
  730. break;
  731. }
  732. auto p = string_split<bool>(argv[i], split_delim);
  733. params.embeddings.insert(params.embeddings.end(), p.begin(), p.end());
  734. } else if (arg == "-nopo" || arg == "--no-op-offload") {
  735. if (++i >= argc) {
  736. invalid_param = true;
  737. break;
  738. }
  739. auto p = string_split<bool>(argv[i], split_delim);
  740. params.no_op_offload.insert(params.no_op_offload.end(), p.begin(), p.end());
  741. } else if (arg == "--no-host") {
  742. if (++i >= argc) {
  743. invalid_param = true;
  744. break;
  745. }
  746. auto p = string_split<bool>(argv[i], split_delim);
  747. params.no_host.insert(params.no_host.end(), p.begin(), p.end());
  748. } else if (arg == "-ts" || arg == "--tensor-split") {
  749. if (++i >= argc) {
  750. invalid_param = true;
  751. break;
  752. }
  753. for (auto ts : string_split<std::string>(argv[i], split_delim)) {
  754. // split string by ; and /
  755. const std::regex regex{ R"([;/]+)" };
  756. std::sregex_token_iterator it{ ts.begin(), ts.end(), regex, -1 };
  757. std::vector<std::string> split_arg{ it, {} };
  758. GGML_ASSERT(split_arg.size() <= llama_max_devices());
  759. std::vector<float> tensor_split(llama_max_devices());
  760. for (size_t i = 0; i < llama_max_devices(); ++i) {
  761. if (i < split_arg.size()) {
  762. tensor_split[i] = std::stof(split_arg[i]);
  763. } else {
  764. tensor_split[i] = 0.0f;
  765. }
  766. }
  767. params.tensor_split.push_back(tensor_split);
  768. }
  769. } else if (arg == "-ot" || arg == "--override-tensor") {
  770. if (++i >= argc) {
  771. invalid_param = true;
  772. break;
  773. }
  774. auto * value = argv[i];
  775. /* static */ std::map<std::string, ggml_backend_buffer_type_t> buft_list;
  776. if (buft_list.empty()) {
  777. // enumerate all the devices and add their buffer types to the list
  778. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  779. auto * dev = ggml_backend_dev_get(i);
  780. auto * buft = ggml_backend_dev_buffer_type(dev);
  781. if (buft) {
  782. buft_list[ggml_backend_buft_name(buft)] = buft;
  783. }
  784. }
  785. }
  786. auto override_group_span_len = std::strcspn(value, ",");
  787. bool last_group = false;
  788. do {
  789. if (override_group_span_len == 0) {
  790. // Adds an empty override-tensors for an empty span
  791. params.tensor_buft_overrides.push_back({{}});
  792. if (value[override_group_span_len] == '\0') {
  793. value = &value[override_group_span_len];
  794. last_group = true;
  795. } else {
  796. value = &value[override_group_span_len + 1];
  797. override_group_span_len = std::strcspn(value, ",");
  798. }
  799. continue;
  800. }
  801. // Stamps null terminators into the argv
  802. // value for this option to avoid the
  803. // memory leak present in the implementation
  804. // over in arg.cpp. Acceptable because we
  805. // only parse these args once in this program.
  806. auto * override_group = value;
  807. if (value[override_group_span_len] == '\0') {
  808. value = &value[override_group_span_len];
  809. last_group = true;
  810. } else {
  811. value[override_group_span_len] = '\0';
  812. value = &value[override_group_span_len + 1];
  813. }
  814. std::vector<llama_model_tensor_buft_override> group_tensor_buft_overrides{};
  815. auto override_span_len = std::strcspn(override_group, ";");
  816. while (override_span_len > 0) {
  817. auto * override = override_group;
  818. if (override_group[override_span_len] != '\0') {
  819. override_group[override_span_len] = '\0';
  820. override_group = &override_group[override_span_len + 1];
  821. } else {
  822. override_group = &override_group[override_span_len];
  823. }
  824. auto tensor_name_span_len = std::strcspn(override, "=");
  825. if (tensor_name_span_len >= override_span_len) {
  826. invalid_param = true;
  827. break;
  828. }
  829. override[tensor_name_span_len] = '\0';
  830. auto * tensor_name = override;
  831. auto * buffer_type = &override[tensor_name_span_len + 1];
  832. if (buft_list.find(buffer_type) == buft_list.end()) {
  833. printf("error: unrecognized buffer type '%s'\n", buffer_type);
  834. printf("Available buffer types:\n");
  835. for (const auto & it : buft_list) {
  836. printf(" %s\n", ggml_backend_buft_name(it.second));
  837. }
  838. invalid_param = true;
  839. break;
  840. }
  841. group_tensor_buft_overrides.push_back({tensor_name, buft_list.at(buffer_type)});
  842. override_span_len = std::strcspn(override_group, ";");
  843. }
  844. if (invalid_param) {
  845. break;
  846. }
  847. group_tensor_buft_overrides.push_back({nullptr,nullptr});
  848. params.tensor_buft_overrides.push_back(group_tensor_buft_overrides);
  849. override_group_span_len = std::strcspn(value, ",");
  850. } while (!last_group);
  851. } else if (arg == "-r" || arg == "--repetitions") {
  852. if (++i >= argc) {
  853. invalid_param = true;
  854. break;
  855. }
  856. params.reps = std::stoi(argv[i]);
  857. } else if (arg == "--prio") {
  858. if (++i >= argc) {
  859. invalid_param = true;
  860. break;
  861. }
  862. params.prio = (enum ggml_sched_priority) std::stoi(argv[i]);
  863. } else if (arg == "--delay") {
  864. if (++i >= argc) {
  865. invalid_param = true;
  866. break;
  867. }
  868. params.delay = std::stoi(argv[i]);
  869. } else if (arg == "-o" || arg == "--output") {
  870. if (++i >= argc) {
  871. invalid_param = true;
  872. break;
  873. }
  874. invalid_param = !output_format_from_str(argv[i], params.output_format);
  875. } else if (arg == "-oe" || arg == "--output-err") {
  876. if (++i >= argc) {
  877. invalid_param = true;
  878. break;
  879. }
  880. invalid_param = !output_format_from_str(argv[i], params.output_format_stderr);
  881. } else if (arg == "-v" || arg == "--verbose") {
  882. params.verbose = true;
  883. } else if (arg == "--progress") {
  884. params.progress = true;
  885. } else if (arg == "--no-warmup") {
  886. params.no_warmup = true;
  887. } else {
  888. invalid_param = true;
  889. break;
  890. }
  891. } catch (const std::exception & e) {
  892. fprintf(stderr, "error: %s\n", e.what());
  893. invalid_param = true;
  894. break;
  895. }
  896. }
  897. if (invalid_param) {
  898. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  899. print_usage(argc, argv);
  900. exit(1);
  901. }
  902. // set defaults
  903. if (params.model.empty()) {
  904. params.model = cmd_params_defaults.model;
  905. }
  906. if (params.n_prompt.empty()) {
  907. params.n_prompt = cmd_params_defaults.n_prompt;
  908. }
  909. if (params.n_gen.empty()) {
  910. params.n_gen = cmd_params_defaults.n_gen;
  911. }
  912. if (params.n_pg.empty()) {
  913. params.n_pg = cmd_params_defaults.n_pg;
  914. }
  915. if (params.n_depth.empty()) {
  916. params.n_depth = cmd_params_defaults.n_depth;
  917. }
  918. if (params.n_batch.empty()) {
  919. params.n_batch = cmd_params_defaults.n_batch;
  920. }
  921. if (params.n_ubatch.empty()) {
  922. params.n_ubatch = cmd_params_defaults.n_ubatch;
  923. }
  924. if (params.type_k.empty()) {
  925. params.type_k = cmd_params_defaults.type_k;
  926. }
  927. if (params.type_v.empty()) {
  928. params.type_v = cmd_params_defaults.type_v;
  929. }
  930. if (params.n_gpu_layers.empty()) {
  931. params.n_gpu_layers = cmd_params_defaults.n_gpu_layers;
  932. }
  933. if (params.n_cpu_moe.empty()) {
  934. params.n_cpu_moe = cmd_params_defaults.n_cpu_moe;
  935. }
  936. if (params.split_mode.empty()) {
  937. params.split_mode = cmd_params_defaults.split_mode;
  938. }
  939. if (params.main_gpu.empty()) {
  940. params.main_gpu = cmd_params_defaults.main_gpu;
  941. }
  942. if (params.no_kv_offload.empty()) {
  943. params.no_kv_offload = cmd_params_defaults.no_kv_offload;
  944. }
  945. if (params.flash_attn.empty()) {
  946. params.flash_attn = cmd_params_defaults.flash_attn;
  947. }
  948. if (params.devices.empty()) {
  949. params.devices = cmd_params_defaults.devices;
  950. }
  951. if (params.tensor_split.empty()) {
  952. params.tensor_split = cmd_params_defaults.tensor_split;
  953. }
  954. if (params.tensor_buft_overrides.empty()) {
  955. params.tensor_buft_overrides = cmd_params_defaults.tensor_buft_overrides;
  956. }
  957. if (params.use_mmap.empty()) {
  958. params.use_mmap = cmd_params_defaults.use_mmap;
  959. }
  960. if (params.embeddings.empty()) {
  961. params.embeddings = cmd_params_defaults.embeddings;
  962. }
  963. if (params.no_op_offload.empty()) {
  964. params.no_op_offload = cmd_params_defaults.no_op_offload;
  965. }
  966. if (params.no_host.empty()) {
  967. params.no_host = cmd_params_defaults.no_host;
  968. }
  969. if (params.n_threads.empty()) {
  970. params.n_threads = cmd_params_defaults.n_threads;
  971. }
  972. if (params.cpu_mask.empty()) {
  973. params.cpu_mask = cmd_params_defaults.cpu_mask;
  974. }
  975. if (params.cpu_strict.empty()) {
  976. params.cpu_strict = cmd_params_defaults.cpu_strict;
  977. }
  978. if (params.poll.empty()) {
  979. params.poll = cmd_params_defaults.poll;
  980. }
  981. return params;
  982. }
  983. struct cmd_params_instance {
  984. std::string model;
  985. int n_prompt;
  986. int n_gen;
  987. int n_depth;
  988. int n_batch;
  989. int n_ubatch;
  990. ggml_type type_k;
  991. ggml_type type_v;
  992. int n_threads;
  993. std::string cpu_mask;
  994. bool cpu_strict;
  995. int poll;
  996. int n_gpu_layers;
  997. int n_cpu_moe;
  998. llama_split_mode split_mode;
  999. int main_gpu;
  1000. bool no_kv_offload;
  1001. bool flash_attn;
  1002. std::vector<ggml_backend_dev_t> devices;
  1003. std::vector<float> tensor_split;
  1004. std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
  1005. bool use_mmap;
  1006. bool embeddings;
  1007. bool no_op_offload;
  1008. bool no_host;
  1009. llama_model_params to_llama_mparams() const {
  1010. llama_model_params mparams = llama_model_default_params();
  1011. mparams.n_gpu_layers = n_gpu_layers;
  1012. if (!devices.empty()) {
  1013. mparams.devices = const_cast<ggml_backend_dev_t *>(devices.data());
  1014. }
  1015. mparams.split_mode = split_mode;
  1016. mparams.main_gpu = main_gpu;
  1017. mparams.tensor_split = tensor_split.data();
  1018. mparams.use_mmap = use_mmap;
  1019. mparams.no_host = no_host;
  1020. if (n_cpu_moe <= 0) {
  1021. if (tensor_buft_overrides.empty()) {
  1022. mparams.tensor_buft_overrides = nullptr;
  1023. } else {
  1024. GGML_ASSERT(tensor_buft_overrides.back().pattern == nullptr &&
  1025. "Tensor buffer overrides not terminated with empty pattern");
  1026. mparams.tensor_buft_overrides = tensor_buft_overrides.data();
  1027. }
  1028. } else {
  1029. static std::vector<llama_model_tensor_buft_override> merged;
  1030. static std::vector<std::string> patterns;
  1031. merged.clear();
  1032. patterns.clear();
  1033. auto first = tensor_buft_overrides.begin();
  1034. auto last = tensor_buft_overrides.end();
  1035. if (first != last && (last - 1)->pattern == nullptr) {
  1036. --last;
  1037. }
  1038. merged.insert(merged.end(), first, last);
  1039. patterns.reserve((size_t) n_cpu_moe);
  1040. merged.reserve(merged.size() + (size_t) n_cpu_moe + 1);
  1041. for (int i = 0; i < n_cpu_moe; ++i) {
  1042. patterns.push_back(llm_ffn_exps_block_regex(i));
  1043. merged.push_back({ patterns.back().c_str(),
  1044. ggml_backend_cpu_buffer_type() });
  1045. }
  1046. merged.push_back({ nullptr, nullptr });
  1047. mparams.tensor_buft_overrides = merged.data();
  1048. }
  1049. return mparams;
  1050. }
  1051. bool equal_mparams(const cmd_params_instance & other) const {
  1052. return model == other.model && n_gpu_layers == other.n_gpu_layers && n_cpu_moe == other.n_cpu_moe &&
  1053. split_mode == other.split_mode &&
  1054. main_gpu == other.main_gpu && use_mmap == other.use_mmap && tensor_split == other.tensor_split &&
  1055. devices == other.devices &&
  1056. no_host == other.no_host &&
  1057. vec_tensor_buft_override_equal(tensor_buft_overrides, other.tensor_buft_overrides);
  1058. }
  1059. llama_context_params to_llama_cparams() const {
  1060. llama_context_params cparams = llama_context_default_params();
  1061. cparams.n_ctx = n_prompt + n_gen + n_depth;
  1062. cparams.n_batch = n_batch;
  1063. cparams.n_ubatch = n_ubatch;
  1064. cparams.type_k = type_k;
  1065. cparams.type_v = type_v;
  1066. cparams.offload_kqv = !no_kv_offload;
  1067. cparams.flash_attn_type = flash_attn ? LLAMA_FLASH_ATTN_TYPE_ENABLED : LLAMA_FLASH_ATTN_TYPE_DISABLED;
  1068. cparams.embeddings = embeddings;
  1069. cparams.op_offload = !no_op_offload;
  1070. cparams.swa_full = false;
  1071. return cparams;
  1072. }
  1073. };
  1074. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  1075. std::vector<cmd_params_instance> instances;
  1076. // this ordering minimizes the number of times that each model needs to be reloaded
  1077. // clang-format off
  1078. for (const auto & m : params.model)
  1079. for (const auto & nl : params.n_gpu_layers)
  1080. for (const auto & ncmoe : params.n_cpu_moe)
  1081. for (const auto & sm : params.split_mode)
  1082. for (const auto & mg : params.main_gpu)
  1083. for (const auto & devs : params.devices)
  1084. for (const auto & ts : params.tensor_split)
  1085. for (const auto & ot : params.tensor_buft_overrides)
  1086. for (const auto & mmp : params.use_mmap)
  1087. for (const auto & noh : params.no_host)
  1088. for (const auto & embd : params.embeddings)
  1089. for (const auto & nopo : params.no_op_offload)
  1090. for (const auto & nb : params.n_batch)
  1091. for (const auto & nub : params.n_ubatch)
  1092. for (const auto & tk : params.type_k)
  1093. for (const auto & tv : params.type_v)
  1094. for (const auto & nkvo : params.no_kv_offload)
  1095. for (const auto & fa : params.flash_attn)
  1096. for (const auto & nt : params.n_threads)
  1097. for (const auto & cm : params.cpu_mask)
  1098. for (const auto & cs : params.cpu_strict)
  1099. for (const auto & nd : params.n_depth)
  1100. for (const auto & pl : params.poll) {
  1101. for (const auto & n_prompt : params.n_prompt) {
  1102. if (n_prompt == 0) {
  1103. continue;
  1104. }
  1105. cmd_params_instance instance = {
  1106. /* .model = */ m,
  1107. /* .n_prompt = */ n_prompt,
  1108. /* .n_gen = */ 0,
  1109. /* .n_depth = */ nd,
  1110. /* .n_batch = */ nb,
  1111. /* .n_ubatch = */ nub,
  1112. /* .type_k = */ tk,
  1113. /* .type_v = */ tv,
  1114. /* .n_threads = */ nt,
  1115. /* .cpu_mask = */ cm,
  1116. /* .cpu_strict = */ cs,
  1117. /* .poll = */ pl,
  1118. /* .n_gpu_layers = */ nl,
  1119. /* .n_cpu_moe = */ ncmoe,
  1120. /* .split_mode = */ sm,
  1121. /* .main_gpu = */ mg,
  1122. /* .no_kv_offload= */ nkvo,
  1123. /* .flash_attn = */ fa,
  1124. /* .devices = */ devs,
  1125. /* .tensor_split = */ ts,
  1126. /* .tensor_buft_overrides = */ ot,
  1127. /* .use_mmap = */ mmp,
  1128. /* .embeddings = */ embd,
  1129. /* .no_op_offload= */ nopo,
  1130. /* .no_host = */ noh,
  1131. };
  1132. instances.push_back(instance);
  1133. }
  1134. for (const auto & n_gen : params.n_gen) {
  1135. if (n_gen == 0) {
  1136. continue;
  1137. }
  1138. cmd_params_instance instance = {
  1139. /* .model = */ m,
  1140. /* .n_prompt = */ 0,
  1141. /* .n_gen = */ n_gen,
  1142. /* .n_depth = */ nd,
  1143. /* .n_batch = */ nb,
  1144. /* .n_ubatch = */ nub,
  1145. /* .type_k = */ tk,
  1146. /* .type_v = */ tv,
  1147. /* .n_threads = */ nt,
  1148. /* .cpu_mask = */ cm,
  1149. /* .cpu_strict = */ cs,
  1150. /* .poll = */ pl,
  1151. /* .n_gpu_layers = */ nl,
  1152. /* .n_cpu_moe = */ ncmoe,
  1153. /* .split_mode = */ sm,
  1154. /* .main_gpu = */ mg,
  1155. /* .no_kv_offload= */ nkvo,
  1156. /* .flash_attn = */ fa,
  1157. /* .devices = */ devs,
  1158. /* .tensor_split = */ ts,
  1159. /* .tensor_buft_overrides = */ ot,
  1160. /* .use_mmap = */ mmp,
  1161. /* .embeddings = */ embd,
  1162. /* .no_op_offload= */ nopo,
  1163. /* .no_host = */ noh,
  1164. };
  1165. instances.push_back(instance);
  1166. }
  1167. for (const auto & n_pg : params.n_pg) {
  1168. if (n_pg.first == 0 && n_pg.second == 0) {
  1169. continue;
  1170. }
  1171. cmd_params_instance instance = {
  1172. /* .model = */ m,
  1173. /* .n_prompt = */ n_pg.first,
  1174. /* .n_gen = */ n_pg.second,
  1175. /* .n_depth = */ nd,
  1176. /* .n_batch = */ nb,
  1177. /* .n_ubatch = */ nub,
  1178. /* .type_k = */ tk,
  1179. /* .type_v = */ tv,
  1180. /* .n_threads = */ nt,
  1181. /* .cpu_mask = */ cm,
  1182. /* .cpu_strict = */ cs,
  1183. /* .poll = */ pl,
  1184. /* .n_gpu_layers = */ nl,
  1185. /* .n_cpu_moe = */ ncmoe,
  1186. /* .split_mode = */ sm,
  1187. /* .main_gpu = */ mg,
  1188. /* .no_kv_offload= */ nkvo,
  1189. /* .flash_attn = */ fa,
  1190. /* .devices = */ devs,
  1191. /* .tensor_split = */ ts,
  1192. /* .tensor_buft_overrides = */ ot,
  1193. /* .use_mmap = */ mmp,
  1194. /* .embeddings = */ embd,
  1195. /* .no_op_offload= */ nopo,
  1196. /* .no_host = */ noh,
  1197. };
  1198. instances.push_back(instance);
  1199. }
  1200. }
  1201. // clang-format on
  1202. return instances;
  1203. }
  1204. struct test {
  1205. static const std::string build_commit;
  1206. static const int build_number;
  1207. const std::string cpu_info;
  1208. const std::string gpu_info;
  1209. std::string model_filename;
  1210. std::string model_type;
  1211. uint64_t model_size;
  1212. uint64_t model_n_params;
  1213. int n_batch;
  1214. int n_ubatch;
  1215. int n_threads;
  1216. std::string cpu_mask;
  1217. bool cpu_strict;
  1218. int poll;
  1219. ggml_type type_k;
  1220. ggml_type type_v;
  1221. int n_gpu_layers;
  1222. int n_cpu_moe;
  1223. llama_split_mode split_mode;
  1224. int main_gpu;
  1225. bool no_kv_offload;
  1226. bool flash_attn;
  1227. std::vector<ggml_backend_dev_t> devices;
  1228. std::vector<float> tensor_split;
  1229. std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
  1230. bool use_mmap;
  1231. bool embeddings;
  1232. bool no_op_offload;
  1233. bool no_host;
  1234. int n_prompt;
  1235. int n_gen;
  1236. int n_depth;
  1237. std::string test_time;
  1238. std::vector<uint64_t> samples_ns;
  1239. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) :
  1240. cpu_info(get_cpu_info()),
  1241. gpu_info(get_gpu_info()) {
  1242. model_filename = inst.model;
  1243. char buf[128];
  1244. llama_model_desc(lmodel, buf, sizeof(buf));
  1245. model_type = buf;
  1246. model_size = llama_model_size(lmodel);
  1247. model_n_params = llama_model_n_params(lmodel);
  1248. n_batch = inst.n_batch;
  1249. n_ubatch = inst.n_ubatch;
  1250. n_threads = inst.n_threads;
  1251. cpu_mask = inst.cpu_mask;
  1252. cpu_strict = inst.cpu_strict;
  1253. poll = inst.poll;
  1254. type_k = inst.type_k;
  1255. type_v = inst.type_v;
  1256. n_gpu_layers = inst.n_gpu_layers;
  1257. n_cpu_moe = inst.n_cpu_moe;
  1258. split_mode = inst.split_mode;
  1259. main_gpu = inst.main_gpu;
  1260. no_kv_offload = inst.no_kv_offload;
  1261. flash_attn = inst.flash_attn;
  1262. devices = inst.devices;
  1263. tensor_split = inst.tensor_split;
  1264. tensor_buft_overrides = inst.tensor_buft_overrides;
  1265. use_mmap = inst.use_mmap;
  1266. embeddings = inst.embeddings;
  1267. no_op_offload = inst.no_op_offload;
  1268. no_host = inst.no_host;
  1269. n_prompt = inst.n_prompt;
  1270. n_gen = inst.n_gen;
  1271. n_depth = inst.n_depth;
  1272. // RFC 3339 date-time format
  1273. time_t t = time(NULL);
  1274. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  1275. test_time = buf;
  1276. (void) ctx;
  1277. }
  1278. uint64_t avg_ns() const { return ::avg(samples_ns); }
  1279. uint64_t stdev_ns() const { return ::stdev(samples_ns); }
  1280. std::vector<double> get_ts() const {
  1281. int n_tokens = n_prompt + n_gen;
  1282. std::vector<double> ts;
  1283. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts),
  1284. [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  1285. return ts;
  1286. }
  1287. double avg_ts() const { return ::avg(get_ts()); }
  1288. double stdev_ts() const { return ::stdev(get_ts()); }
  1289. static std::string get_backend() {
  1290. std::vector<std::string> backends;
  1291. bool rpc_used = false;
  1292. for (size_t i = 0; i < ggml_backend_reg_count(); i++) {
  1293. auto * reg = ggml_backend_reg_get(i);
  1294. std::string name = ggml_backend_reg_name(reg);
  1295. if (string_starts_with(name, "RPC")) {
  1296. if (ggml_backend_reg_dev_count(reg) > 0) {
  1297. rpc_used = true;
  1298. }
  1299. } else {
  1300. if (name != "CPU") {
  1301. backends.push_back(ggml_backend_reg_name(reg));
  1302. }
  1303. }
  1304. }
  1305. if (rpc_used) {
  1306. backends.push_back("RPC");
  1307. }
  1308. return backends.empty() ? "CPU" : join(backends, ",");
  1309. }
  1310. static const std::vector<std::string> & get_fields() {
  1311. static const std::vector<std::string> fields = {
  1312. "build_commit", "build_number", "cpu_info", "gpu_info", "backends",
  1313. "model_filename", "model_type", "model_size", "model_n_params", "n_batch",
  1314. "n_ubatch", "n_threads", "cpu_mask", "cpu_strict", "poll",
  1315. "type_k", "type_v", "n_gpu_layers", "n_cpu_moe", "split_mode",
  1316. "main_gpu", "no_kv_offload", "flash_attn", "devices", "tensor_split",
  1317. "tensor_buft_overrides", "use_mmap", "embeddings", "no_op_offload",
  1318. "no_host", "n_prompt", "n_gen", "n_depth", "test_time",
  1319. "avg_ns", "stddev_ns", "avg_ts", "stddev_ts"
  1320. };
  1321. return fields;
  1322. }
  1323. enum field_type { STRING, BOOL, INT, FLOAT };
  1324. static field_type get_field_type(const std::string & field) {
  1325. if (field == "build_number" || field == "n_batch" || field == "n_ubatch" || field == "n_threads" ||
  1326. field == "poll" || field == "model_size" || field == "model_n_params" || field == "n_gpu_layers" ||
  1327. field == "main_gpu" || field == "n_prompt" || field == "n_gen" || field == "n_depth" || field == "avg_ns" ||
  1328. field == "stddev_ns" || field == "no_op_offload" || field == "n_cpu_moe") {
  1329. return INT;
  1330. }
  1331. if (field == "f16_kv" || field == "no_kv_offload" || field == "cpu_strict" || field == "flash_attn" ||
  1332. field == "use_mmap" || field == "embeddings" || field == "no_host") {
  1333. return BOOL;
  1334. }
  1335. if (field == "avg_ts" || field == "stddev_ts") {
  1336. return FLOAT;
  1337. }
  1338. return STRING;
  1339. }
  1340. std::vector<std::string> get_values() const {
  1341. std::string tensor_split_str;
  1342. std::string tensor_buft_overrides_str;
  1343. int max_nonzero = 0;
  1344. for (size_t i = 0; i < llama_max_devices(); i++) {
  1345. if (tensor_split[i] > 0) {
  1346. max_nonzero = i;
  1347. }
  1348. }
  1349. for (int i = 0; i <= max_nonzero; i++) {
  1350. char buf[32];
  1351. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  1352. tensor_split_str += buf;
  1353. if (i < max_nonzero) {
  1354. tensor_split_str += "/";
  1355. }
  1356. }
  1357. if (tensor_buft_overrides.size() == 1) {
  1358. // Last element of tensor_buft_overrides is always a null pattern
  1359. // so if it is only one element long, it must be a null pattern.
  1360. GGML_ASSERT(tensor_buft_overrides[0].pattern == nullptr);
  1361. tensor_buft_overrides_str += "none";
  1362. } else {
  1363. for (size_t i = 0; i < tensor_buft_overrides.size()-1; i++) {
  1364. // Last element of tensor_buft_overrides is always a null pattern
  1365. if (tensor_buft_overrides[i].pattern == nullptr) {
  1366. tensor_buft_overrides_str += "none";
  1367. } else {
  1368. tensor_buft_overrides_str += tensor_buft_overrides[i].pattern;
  1369. tensor_buft_overrides_str += "=";
  1370. tensor_buft_overrides_str += ggml_backend_buft_name(tensor_buft_overrides[i].buft);
  1371. }
  1372. if (i + 2 < tensor_buft_overrides.size()) {
  1373. tensor_buft_overrides_str += ";";
  1374. }
  1375. }
  1376. }
  1377. std::vector<std::string> values = { build_commit,
  1378. std::to_string(build_number),
  1379. cpu_info,
  1380. gpu_info,
  1381. get_backend(),
  1382. model_filename,
  1383. model_type,
  1384. std::to_string(model_size),
  1385. std::to_string(model_n_params),
  1386. std::to_string(n_batch),
  1387. std::to_string(n_ubatch),
  1388. std::to_string(n_threads),
  1389. cpu_mask,
  1390. std::to_string(cpu_strict),
  1391. std::to_string(poll),
  1392. ggml_type_name(type_k),
  1393. ggml_type_name(type_v),
  1394. std::to_string(n_gpu_layers),
  1395. std::to_string(n_cpu_moe),
  1396. split_mode_str(split_mode),
  1397. std::to_string(main_gpu),
  1398. std::to_string(no_kv_offload),
  1399. std::to_string(flash_attn),
  1400. devices_to_string(devices),
  1401. tensor_split_str,
  1402. tensor_buft_overrides_str,
  1403. std::to_string(use_mmap),
  1404. std::to_string(embeddings),
  1405. std::to_string(no_op_offload),
  1406. std::to_string(no_host),
  1407. std::to_string(n_prompt),
  1408. std::to_string(n_gen),
  1409. std::to_string(n_depth),
  1410. test_time,
  1411. std::to_string(avg_ns()),
  1412. std::to_string(stdev_ns()),
  1413. std::to_string(avg_ts()),
  1414. std::to_string(stdev_ts()) };
  1415. return values;
  1416. }
  1417. std::map<std::string, std::string> get_map() const {
  1418. std::map<std::string, std::string> map;
  1419. auto fields = get_fields();
  1420. auto values = get_values();
  1421. std::transform(fields.begin(), fields.end(), values.begin(), std::inserter(map, map.end()),
  1422. std::make_pair<const std::string &, const std::string &>);
  1423. return map;
  1424. }
  1425. };
  1426. const std::string test::build_commit = LLAMA_COMMIT;
  1427. const int test::build_number = LLAMA_BUILD_NUMBER;
  1428. struct printer {
  1429. virtual ~printer() {}
  1430. FILE * fout;
  1431. virtual void print_header(const cmd_params & params) { (void) params; }
  1432. virtual void print_test(const test & t) = 0;
  1433. virtual void print_footer() {}
  1434. };
  1435. struct csv_printer : public printer {
  1436. static std::string escape_csv(const std::string & field) {
  1437. std::string escaped = "\"";
  1438. for (auto c : field) {
  1439. if (c == '"') {
  1440. escaped += "\"";
  1441. }
  1442. escaped += c;
  1443. }
  1444. escaped += "\"";
  1445. return escaped;
  1446. }
  1447. void print_header(const cmd_params & params) override {
  1448. std::vector<std::string> fields = test::get_fields();
  1449. fprintf(fout, "%s\n", join(fields, ",").c_str());
  1450. (void) params;
  1451. }
  1452. void print_test(const test & t) override {
  1453. std::vector<std::string> values = t.get_values();
  1454. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  1455. fprintf(fout, "%s\n", join(values, ",").c_str());
  1456. }
  1457. };
  1458. static std::string escape_json(const std::string & value) {
  1459. std::string escaped;
  1460. for (auto c : value) {
  1461. if (c == '"') {
  1462. escaped += "\\\"";
  1463. } else if (c == '\\') {
  1464. escaped += "\\\\";
  1465. } else if (c <= 0x1f) {
  1466. char buf[8];
  1467. snprintf(buf, sizeof(buf), "\\u%04x", c);
  1468. escaped += buf;
  1469. } else {
  1470. escaped += c;
  1471. }
  1472. }
  1473. return escaped;
  1474. }
  1475. static std::string format_json_value(const std::string & field, const std::string & value) {
  1476. switch (test::get_field_type(field)) {
  1477. case test::STRING:
  1478. return "\"" + escape_json(value) + "\"";
  1479. case test::BOOL:
  1480. return value == "0" ? "false" : "true";
  1481. default:
  1482. return value;
  1483. }
  1484. }
  1485. struct json_printer : public printer {
  1486. bool first = true;
  1487. void print_header(const cmd_params & params) override {
  1488. fprintf(fout, "[\n");
  1489. (void) params;
  1490. }
  1491. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  1492. assert(fields.size() == values.size());
  1493. for (size_t i = 0; i < fields.size(); i++) {
  1494. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(),
  1495. format_json_value(fields.at(i), values.at(i)).c_str());
  1496. }
  1497. }
  1498. void print_test(const test & t) override {
  1499. if (first) {
  1500. first = false;
  1501. } else {
  1502. fprintf(fout, ",\n");
  1503. }
  1504. fprintf(fout, " {\n");
  1505. print_fields(test::get_fields(), t.get_values());
  1506. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  1507. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  1508. fprintf(fout, " }");
  1509. fflush(fout);
  1510. }
  1511. void print_footer() override { fprintf(fout, "\n]\n"); }
  1512. };
  1513. struct jsonl_printer : public printer {
  1514. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  1515. assert(fields.size() == values.size());
  1516. for (size_t i = 0; i < fields.size(); i++) {
  1517. fprintf(fout, "\"%s\": %s, ", fields.at(i).c_str(), format_json_value(fields.at(i), values.at(i)).c_str());
  1518. }
  1519. }
  1520. void print_test(const test & t) override {
  1521. fprintf(fout, "{");
  1522. print_fields(test::get_fields(), t.get_values());
  1523. fprintf(fout, "\"samples_ns\": [ %s ],", join(t.samples_ns, ", ").c_str());
  1524. fprintf(fout, "\"samples_ts\": [ %s ]", join(t.get_ts(), ", ").c_str());
  1525. fprintf(fout, "}\n");
  1526. fflush(fout);
  1527. }
  1528. };
  1529. struct markdown_printer : public printer {
  1530. std::vector<std::string> fields;
  1531. static int get_field_width(const std::string & field) {
  1532. if (field == "model") {
  1533. return -30;
  1534. }
  1535. if (field == "t/s") {
  1536. return 20;
  1537. }
  1538. if (field == "size" || field == "params") {
  1539. return 10;
  1540. }
  1541. if (field == "n_gpu_layers") {
  1542. return 3;
  1543. }
  1544. if (field == "n_threads") {
  1545. return 7;
  1546. }
  1547. if (field == "n_batch") {
  1548. return 7;
  1549. }
  1550. if (field == "n_ubatch") {
  1551. return 8;
  1552. }
  1553. if (field == "type_k" || field == "type_v") {
  1554. return 6;
  1555. }
  1556. if (field == "split_mode") {
  1557. return 5;
  1558. }
  1559. if (field == "flash_attn") {
  1560. return 2;
  1561. }
  1562. if (field == "devices") {
  1563. return -12;
  1564. }
  1565. if (field == "use_mmap") {
  1566. return 4;
  1567. }
  1568. if (field == "test") {
  1569. return 15;
  1570. }
  1571. if (field == "no_op_offload") {
  1572. return 4;
  1573. }
  1574. if (field == "no_host") {
  1575. return 4;
  1576. }
  1577. int width = std::max((int) field.length(), 10);
  1578. if (test::get_field_type(field) == test::STRING) {
  1579. return -width;
  1580. }
  1581. return width;
  1582. }
  1583. static std::string get_field_display_name(const std::string & field) {
  1584. if (field == "n_gpu_layers") {
  1585. return "ngl";
  1586. }
  1587. if (field == "split_mode") {
  1588. return "sm";
  1589. }
  1590. if (field == "n_threads") {
  1591. return "threads";
  1592. }
  1593. if (field == "no_kv_offload") {
  1594. return "nkvo";
  1595. }
  1596. if (field == "flash_attn") {
  1597. return "fa";
  1598. }
  1599. if (field == "use_mmap") {
  1600. return "mmap";
  1601. }
  1602. if (field == "embeddings") {
  1603. return "embd";
  1604. }
  1605. if (field == "no_op_offload") {
  1606. return "nopo";
  1607. }
  1608. if (field == "no_host") {
  1609. return "noh";
  1610. }
  1611. if (field == "devices") {
  1612. return "dev";
  1613. }
  1614. if (field == "tensor_split") {
  1615. return "ts";
  1616. }
  1617. if (field == "tensor_buft_overrides") {
  1618. return "ot";
  1619. }
  1620. return field;
  1621. }
  1622. void print_header(const cmd_params & params) override {
  1623. // select fields to print
  1624. fields.emplace_back("model");
  1625. fields.emplace_back("size");
  1626. fields.emplace_back("params");
  1627. fields.emplace_back("backend");
  1628. bool is_cpu_backend = test::get_backend().find("CPU") != std::string::npos ||
  1629. test::get_backend().find("BLAS") != std::string::npos;
  1630. if (!is_cpu_backend) {
  1631. fields.emplace_back("n_gpu_layers");
  1632. }
  1633. if (params.n_cpu_moe.size() > 1) {
  1634. fields.emplace_back("n_cpu_moe");
  1635. }
  1636. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  1637. fields.emplace_back("n_threads");
  1638. }
  1639. if (params.cpu_mask.size() > 1 || params.cpu_mask != cmd_params_defaults.cpu_mask) {
  1640. fields.emplace_back("cpu_mask");
  1641. }
  1642. if (params.cpu_strict.size() > 1 || params.cpu_strict != cmd_params_defaults.cpu_strict) {
  1643. fields.emplace_back("cpu_strict");
  1644. }
  1645. if (params.poll.size() > 1 || params.poll != cmd_params_defaults.poll) {
  1646. fields.emplace_back("poll");
  1647. }
  1648. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  1649. fields.emplace_back("n_batch");
  1650. }
  1651. if (params.n_ubatch.size() > 1 || params.n_ubatch != cmd_params_defaults.n_ubatch) {
  1652. fields.emplace_back("n_ubatch");
  1653. }
  1654. if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
  1655. fields.emplace_back("type_k");
  1656. }
  1657. if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
  1658. fields.emplace_back("type_v");
  1659. }
  1660. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  1661. fields.emplace_back("main_gpu");
  1662. }
  1663. if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
  1664. fields.emplace_back("split_mode");
  1665. }
  1666. if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
  1667. fields.emplace_back("no_kv_offload");
  1668. }
  1669. if (params.flash_attn.size() > 1 || params.flash_attn != cmd_params_defaults.flash_attn) {
  1670. fields.emplace_back("flash_attn");
  1671. }
  1672. if (params.devices.size() > 1 || params.devices != cmd_params_defaults.devices) {
  1673. fields.emplace_back("devices");
  1674. }
  1675. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  1676. fields.emplace_back("tensor_split");
  1677. }
  1678. if (params.tensor_buft_overrides.size() > 1 || !vec_vec_tensor_buft_override_equal(params.tensor_buft_overrides, cmd_params_defaults.tensor_buft_overrides)) {
  1679. fields.emplace_back("tensor_buft_overrides");
  1680. }
  1681. if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
  1682. fields.emplace_back("use_mmap");
  1683. }
  1684. if (params.embeddings.size() > 1 || params.embeddings != cmd_params_defaults.embeddings) {
  1685. fields.emplace_back("embeddings");
  1686. }
  1687. if (params.no_op_offload.size() > 1 || params.no_op_offload != cmd_params_defaults.no_op_offload) {
  1688. fields.emplace_back("no_op_offload");
  1689. }
  1690. if (params.no_host.size() > 1 || params.no_host != cmd_params_defaults.no_host) {
  1691. fields.emplace_back("no_host");
  1692. }
  1693. fields.emplace_back("test");
  1694. fields.emplace_back("t/s");
  1695. fprintf(fout, "|");
  1696. for (const auto & field : fields) {
  1697. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  1698. }
  1699. fprintf(fout, "\n");
  1700. fprintf(fout, "|");
  1701. for (const auto & field : fields) {
  1702. int width = get_field_width(field);
  1703. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  1704. }
  1705. fprintf(fout, "\n");
  1706. }
  1707. void print_test(const test & t) override {
  1708. std::map<std::string, std::string> vmap = t.get_map();
  1709. fprintf(fout, "|");
  1710. for (const auto & field : fields) {
  1711. std::string value;
  1712. char buf[128];
  1713. if (field == "model") {
  1714. value = t.model_type;
  1715. } else if (field == "size") {
  1716. if (t.model_size < 1024 * 1024 * 1024) {
  1717. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  1718. } else {
  1719. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  1720. }
  1721. value = buf;
  1722. } else if (field == "params") {
  1723. if (t.model_n_params < 1000 * 1000 * 1000) {
  1724. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  1725. } else {
  1726. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  1727. }
  1728. value = buf;
  1729. } else if (field == "backend") {
  1730. value = test::get_backend();
  1731. } else if (field == "test") {
  1732. if (t.n_prompt > 0 && t.n_gen == 0) {
  1733. snprintf(buf, sizeof(buf), "pp%d", t.n_prompt);
  1734. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  1735. snprintf(buf, sizeof(buf), "tg%d", t.n_gen);
  1736. } else {
  1737. snprintf(buf, sizeof(buf), "pp%d+tg%d", t.n_prompt, t.n_gen);
  1738. }
  1739. if (t.n_depth > 0) {
  1740. int len = strlen(buf);
  1741. snprintf(buf + len, sizeof(buf) - len, " @ d%d", t.n_depth);
  1742. }
  1743. value = buf;
  1744. } else if (field == "t/s") {
  1745. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  1746. value = buf;
  1747. } else if (vmap.find(field) != vmap.end()) {
  1748. value = vmap.at(field);
  1749. } else {
  1750. assert(false);
  1751. exit(1);
  1752. }
  1753. int width = get_field_width(field);
  1754. if (field == "t/s") {
  1755. // HACK: the utf-8 character is 2 bytes
  1756. width += 1;
  1757. }
  1758. fprintf(fout, " %*s |", width, value.c_str());
  1759. }
  1760. fprintf(fout, "\n");
  1761. }
  1762. void print_footer() override {
  1763. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  1764. }
  1765. };
  1766. struct sql_printer : public printer {
  1767. static std::string get_sql_field_type(const std::string & field) {
  1768. switch (test::get_field_type(field)) {
  1769. case test::STRING:
  1770. return "TEXT";
  1771. case test::BOOL:
  1772. case test::INT:
  1773. return "INTEGER";
  1774. case test::FLOAT:
  1775. return "REAL";
  1776. default:
  1777. assert(false);
  1778. exit(1);
  1779. }
  1780. }
  1781. void print_header(const cmd_params & params) override {
  1782. std::vector<std::string> fields = test::get_fields();
  1783. fprintf(fout, "CREATE TABLE IF NOT EXISTS llama_bench (\n");
  1784. for (size_t i = 0; i < fields.size(); i++) {
  1785. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(),
  1786. i < fields.size() - 1 ? "," : "");
  1787. }
  1788. fprintf(fout, ");\n");
  1789. fprintf(fout, "\n");
  1790. (void) params;
  1791. }
  1792. void print_test(const test & t) override {
  1793. fprintf(fout, "INSERT INTO llama_bench (%s) ", join(test::get_fields(), ", ").c_str());
  1794. fprintf(fout, "VALUES (");
  1795. std::vector<std::string> values = t.get_values();
  1796. for (size_t i = 0; i < values.size(); i++) {
  1797. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  1798. }
  1799. fprintf(fout, ");\n");
  1800. }
  1801. };
  1802. struct ctx_state {
  1803. int depth = 0; // in tokens
  1804. std::vector<uint8_t> buf; // the llama_context state buffer
  1805. };
  1806. static bool test_prompt(llama_context * ctx, int n_prompt, int n_batch, int n_threads) {
  1807. llama_set_n_threads(ctx, n_threads, n_threads);
  1808. const llama_model * model = llama_get_model(ctx);
  1809. const llama_vocab * vocab = llama_model_get_vocab(model);
  1810. const int32_t n_vocab = llama_vocab_n_tokens(vocab);
  1811. std::vector<llama_token> tokens(n_batch);
  1812. int n_processed = 0;
  1813. while (n_processed < n_prompt) {
  1814. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  1815. tokens[0] = n_processed == 0 && llama_vocab_get_add_bos(vocab) ? llama_vocab_bos(vocab) : std::rand() % n_vocab;
  1816. for (int i = 1; i < n_tokens; i++) {
  1817. tokens[i] = std::rand() % n_vocab;
  1818. }
  1819. int res = llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens));
  1820. if (res != 0) {
  1821. fprintf(stderr, "%s: failed to decode prompt batch, res = %d\n", __func__, res);
  1822. return false;
  1823. }
  1824. n_processed += n_tokens;
  1825. }
  1826. llama_synchronize(ctx);
  1827. return true;
  1828. }
  1829. static bool test_gen(llama_context * ctx, int n_gen, int n_threads) {
  1830. llama_set_n_threads(ctx, n_threads, n_threads);
  1831. const llama_model * model = llama_get_model(ctx);
  1832. const llama_vocab * vocab = llama_model_get_vocab(model);
  1833. const int32_t n_vocab = llama_vocab_n_tokens(vocab);
  1834. llama_token token = llama_vocab_get_add_bos(vocab) ? llama_vocab_bos(vocab) : std::rand() % n_vocab;
  1835. for (int i = 0; i < n_gen; i++) {
  1836. int res = llama_decode(ctx, llama_batch_get_one(&token, 1));
  1837. if (res != 0) {
  1838. fprintf(stderr, "%s: failed to decode generation batch, res = %d\n", __func__, res);
  1839. return false;
  1840. }
  1841. llama_synchronize(ctx);
  1842. token = std::rand() % n_vocab;
  1843. }
  1844. return true;
  1845. }
  1846. static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
  1847. (void) level;
  1848. (void) text;
  1849. (void) user_data;
  1850. }
  1851. static std::unique_ptr<printer> create_printer(output_formats format) {
  1852. switch (format) {
  1853. case NONE:
  1854. return nullptr;
  1855. case CSV:
  1856. return std::unique_ptr<printer>(new csv_printer());
  1857. case JSON:
  1858. return std::unique_ptr<printer>(new json_printer());
  1859. case JSONL:
  1860. return std::unique_ptr<printer>(new jsonl_printer());
  1861. case MARKDOWN:
  1862. return std::unique_ptr<printer>(new markdown_printer());
  1863. case SQL:
  1864. return std::unique_ptr<printer>(new sql_printer());
  1865. }
  1866. GGML_ABORT("fatal error");
  1867. }
  1868. int main(int argc, char ** argv) {
  1869. // try to set locale for unicode characters in markdown
  1870. setlocale(LC_CTYPE, ".UTF-8");
  1871. #if !defined(NDEBUG)
  1872. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  1873. #endif
  1874. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  1875. fprintf(stderr, "warning: debug build, performance may be affected\n");
  1876. #endif
  1877. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  1878. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  1879. #endif
  1880. // initialize backends
  1881. ggml_backend_load_all();
  1882. cmd_params params = parse_cmd_params(argc, argv);
  1883. auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  1884. if (!cpu_dev) {
  1885. fprintf(stderr, "%s: error: CPU backend is not loaded\n", __func__);
  1886. return 1;
  1887. }
  1888. auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
  1889. auto * ggml_threadpool_new_fn = (decltype(ggml_threadpool_new) *) ggml_backend_reg_get_proc_address(cpu_reg, "ggml_threadpool_new");
  1890. auto * ggml_threadpool_free_fn = (decltype(ggml_threadpool_free) *) ggml_backend_reg_get_proc_address(cpu_reg, "ggml_threadpool_free");
  1891. // initialize llama.cpp
  1892. if (!params.verbose) {
  1893. llama_log_set(llama_null_log_callback, NULL);
  1894. }
  1895. llama_backend_init();
  1896. llama_numa_init(params.numa);
  1897. set_process_priority(params.prio);
  1898. // initialize printer
  1899. std::unique_ptr<printer> p = create_printer(params.output_format);
  1900. std::unique_ptr<printer> p_err = create_printer(params.output_format_stderr);
  1901. if (p) {
  1902. p->fout = stdout;
  1903. p->print_header(params);
  1904. }
  1905. if (p_err) {
  1906. p_err->fout = stderr;
  1907. p_err->print_header(params);
  1908. }
  1909. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  1910. llama_model * lmodel = nullptr;
  1911. const cmd_params_instance * prev_inst = nullptr;
  1912. // store the llama_context state at the previous depth that we performed a test
  1913. // ref: https://github.com/ggml-org/llama.cpp/pull/16944#issuecomment-3478151721
  1914. ctx_state cstate;
  1915. int params_idx = 0;
  1916. auto params_count = params_instances.size();
  1917. for (const auto & inst : params_instances) {
  1918. params_idx++;
  1919. if (params.progress) {
  1920. fprintf(stderr, "llama-bench: benchmark %d/%zu: starting\n", params_idx, params_count);
  1921. }
  1922. // keep the same model between tests when possible
  1923. if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
  1924. if (lmodel) {
  1925. llama_model_free(lmodel);
  1926. }
  1927. lmodel = llama_model_load_from_file(inst.model.c_str(), inst.to_llama_mparams());
  1928. if (lmodel == NULL) {
  1929. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  1930. return 1;
  1931. }
  1932. prev_inst = &inst;
  1933. }
  1934. llama_context * ctx = llama_init_from_model(lmodel, inst.to_llama_cparams());
  1935. if (ctx == NULL) {
  1936. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  1937. llama_model_free(lmodel);
  1938. return 1;
  1939. }
  1940. test t(inst, lmodel, ctx);
  1941. llama_memory_clear(llama_get_memory(ctx), false);
  1942. // cool off before the test
  1943. if (params.delay) {
  1944. std::this_thread::sleep_for(std::chrono::seconds(params.delay));
  1945. }
  1946. struct ggml_threadpool_params tpp = ggml_threadpool_params_default(t.n_threads);
  1947. if (!parse_cpu_mask(t.cpu_mask, tpp.cpumask)) {
  1948. fprintf(stderr, "%s: failed to parse cpu-mask: %s\n", __func__, t.cpu_mask.c_str());
  1949. exit(1);
  1950. }
  1951. tpp.strict_cpu = t.cpu_strict;
  1952. tpp.poll = t.poll;
  1953. tpp.prio = params.prio;
  1954. struct ggml_threadpool * threadpool = ggml_threadpool_new_fn(&tpp);
  1955. if (!threadpool) {
  1956. fprintf(stderr, "%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads);
  1957. exit(1);
  1958. }
  1959. llama_attach_threadpool(ctx, threadpool, NULL);
  1960. // warmup run
  1961. if (!params.no_warmup) {
  1962. if (t.n_prompt > 0) {
  1963. if (params.progress) {
  1964. fprintf(stderr, "llama-bench: benchmark %d/%zu: warmup prompt run\n", params_idx, params_count);
  1965. }
  1966. //test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
  1967. bool res = test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
  1968. if (!res) {
  1969. fprintf(stderr, "%s: error: failed to run prompt warmup\n", __func__);
  1970. exit(1);
  1971. }
  1972. }
  1973. if (t.n_gen > 0) {
  1974. if (params.progress) {
  1975. fprintf(stderr, "llama-bench: benchmark %d/%zu: warmup generation run\n", params_idx, params_count);
  1976. }
  1977. bool res = test_gen(ctx, 1, t.n_threads);
  1978. if (!res) {
  1979. fprintf(stderr, "%s: error: failed to run gen warmup\n", __func__);
  1980. exit(1);
  1981. }
  1982. }
  1983. }
  1984. for (int i = 0; i < params.reps; i++) {
  1985. llama_memory_clear(llama_get_memory(ctx), false);
  1986. if (t.n_depth > 0) {
  1987. bool is_cached = t.n_depth == cstate.depth;
  1988. if (is_cached) {
  1989. // if previously we have computed at this depth, just restore the state
  1990. const size_t ret = llama_state_seq_set_data(ctx, cstate.buf.data(), cstate.buf.size(), 0);
  1991. if (ret == 0) {
  1992. // if the old state is incompatible with the current context - reprocess from scratch
  1993. is_cached = false;
  1994. }
  1995. }
  1996. if (!is_cached) {
  1997. if (params.progress) {
  1998. fprintf(stderr, "llama-bench: benchmark %d/%zu: depth run %d/%d\n", params_idx, params_count,
  1999. i + 1, params.reps);
  2000. }
  2001. bool res = test_prompt(ctx, t.n_depth, t.n_batch, t.n_threads);
  2002. if (!res) {
  2003. fprintf(stderr, "%s: error: failed to run depth\n", __func__);
  2004. exit(1);
  2005. }
  2006. // store the context state for reuse in later runs
  2007. cstate.depth = t.n_depth;
  2008. cstate.buf.resize(llama_state_seq_get_size(ctx, 0));
  2009. llama_state_seq_get_data(ctx, cstate.buf.data(), cstate.buf.size(), 0);
  2010. } else {
  2011. if (params.progress) {
  2012. fprintf(stderr, "llama-bench: benchmark %d/%zu: depth run %d/%d (cached)\n", params_idx, params_count,
  2013. i + 1, params.reps);
  2014. }
  2015. }
  2016. }
  2017. uint64_t t_start = get_time_ns();
  2018. if (t.n_prompt > 0) {
  2019. if (params.progress) {
  2020. fprintf(stderr, "llama-bench: benchmark %d/%zu: prompt run %d/%d\n", params_idx, params_count,
  2021. i + 1, params.reps);
  2022. }
  2023. bool res = test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
  2024. if (!res) {
  2025. fprintf(stderr, "%s: error: failed to run prompt\n", __func__);
  2026. exit(1);
  2027. }
  2028. }
  2029. if (t.n_gen > 0) {
  2030. if (params.progress) {
  2031. fprintf(stderr, "llama-bench: benchmark %d/%zu: generation run %d/%d\n", params_idx, params_count,
  2032. i + 1, params.reps);
  2033. }
  2034. bool res = test_gen(ctx, t.n_gen, t.n_threads);
  2035. if (!res) {
  2036. fprintf(stderr, "%s: error: failed to run gen\n", __func__);
  2037. exit(1);
  2038. }
  2039. }
  2040. uint64_t t_ns = get_time_ns() - t_start;
  2041. t.samples_ns.push_back(t_ns);
  2042. }
  2043. if (p) {
  2044. p->print_test(t);
  2045. fflush(p->fout);
  2046. }
  2047. if (p_err) {
  2048. p_err->print_test(t);
  2049. fflush(p_err->fout);
  2050. }
  2051. llama_perf_context_print(ctx);
  2052. llama_free(ctx);
  2053. ggml_threadpool_free_fn(threadpool);
  2054. }
  2055. llama_model_free(lmodel);
  2056. if (p) {
  2057. p->print_footer();
  2058. }
  2059. if (p_err) {
  2060. p_err->print_footer();
  2061. }
  2062. llama_backend_free();
  2063. return 0;
  2064. }