| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688 |
- package matmul
- import (
- "fmt"
- "sync"
- "makarna/pkg/backend/cpu"
- "makarna/pkg/tensor"
- )
- // linearCPU contains the original CPU implementations for all supported
- // weight dtypes. Both CPU-only and CUDA-enabled builds reuse this.
- func linearCPU(input, weight, output *cpu.Tensor) error {
- inShape := input.Shape()
- wShape := weight.Shape()
- // Validate dimensions
- if len(inShape) != 2 || len(wShape) != 2 {
- return fmt.Errorf("linear: expected 2D inputs, got input %v, weight %v", inShape, wShape)
- }
- M := inShape[0]
- K := inShape[1]
- N := wShape[0]
- if wShape[1] != K {
- return fmt.Errorf("linear: shape mismatch: input [*, %d] vs weight [%d, %d]", K, N, wShape[1])
- }
- inData := input.DataFloat32()
- outData := output.DataFloat32()
- workers := cpu.MaxThreads()
- switch weight.DType() {
- case tensor.Float32:
- wData := weight.DataFloat32()
- gemmFloat32Blocked(outData, inData, wData, M, K, N, workers)
- case tensor.Q4_K:
- wData := weight.DataQ4_K()
- if K%256 != 0 {
- return fmt.Errorf("linear: Q4_K weight K dimension %d must be multiple of 256", K)
- }
- wParams := tensor.GetQ4KDotParams(wData)
- blocksPerRow := K / 256
- work := M * N * K
- use := chooseWorkers(work, workers)
- if use == 1 {
- if M == 1 {
- q4kGemvDecodeTiled(outData[:N], inData[:K], wData, wParams, N, blocksPerRow, 0, N)
- return nil
- }
- for m := 0; m < M; m++ {
- for n := 0; n < N; n++ {
- var sum float32
- for b := 0; b < blocksPerRow; b++ {
- inOffset := m*K + b*256
- wBlockIdx := n*blocksPerRow + b
- block := &wData[wBlockIdx]
- p := &wParams[wBlockIdx]
- sum += tensor.DotQ4_K_Params(block, p, inData[inOffset:inOffset+256])
- }
- outData[m*N+n] = sum
- }
- }
- return nil
- }
- var wg sync.WaitGroup
- if M == 1 {
- for _, r := range chunkRanges(N, use) {
- wg.Add(1)
- start, end := r[0], r[1]
- go func(s, e int) {
- defer wg.Done()
- q4kGemvDecodeTiled(outData[:N], inData[:K], wData, wParams, N, blocksPerRow, s, e)
- }(start, end)
- }
- wg.Wait()
- return nil
- }
- if M < use {
- for _, r := range chunkRanges(N, use) {
- wg.Add(1)
- start, end := r[0], r[1]
- go func(s, e int) {
- defer wg.Done()
- for n := s; n < e; n++ {
- for m := 0; m < M; m++ {
- var sum float32
- for b := 0; b < blocksPerRow; b++ {
- inOffset := m*K + b*256
- wBlockIdx := n*blocksPerRow + b
- block := &wData[wBlockIdx]
- p := &wParams[wBlockIdx]
- sum += tensor.DotQ4_K_Params(block, p, inData[inOffset:inOffset+256])
- }
- outData[m*N+n] = sum
- }
- }
- }(start, end)
- }
- wg.Wait()
- return nil
- }
- for _, r := range chunkRanges(M, use) {
- wg.Add(1)
- start, end := r[0], r[1]
- go func(s, e int) {
- defer wg.Done()
- for m := s; m < e; m++ {
- for n := 0; n < N; n++ {
- var sum float32
- for b := 0; b < blocksPerRow; b++ {
- inOffset := m*K + b*256
- wBlockIdx := n*blocksPerRow + b
- block := &wData[wBlockIdx]
- p := &wParams[wBlockIdx]
- sum += tensor.DotQ4_K_Params(block, p, inData[inOffset:inOffset+256])
- }
- outData[m*N+n] = sum
- }
- }
- }(start, end)
- }
- wg.Wait()
- case tensor.Q8_K:
- wData := weight.DataQ8_K()
- if K%256 != 0 {
- return fmt.Errorf("linear: Q8_K weight K dimension %d must be multiple of 256", K)
- }
- blocksPerRow := K / 256
- work := M * N * K
- use := chooseWorkers(work, workers)
- if use == 1 {
- if M == 1 {
- q8kGemvDecodeTiled(outData[:N], inData[:K], wData, N, blocksPerRow, 0, N)
- return nil
- }
- for m := 0; m < M; m++ {
- for n := 0; n < N; n++ {
- var sum float32
- for b := 0; b < blocksPerRow; b++ {
- inOffset := m*K + b*256
- wBlockIdx := n*blocksPerRow + b
- block := &wData[wBlockIdx]
- sum += tensor.DotQ8_K(block, inData[inOffset:inOffset+256])
- }
- outData[m*N+n] = sum
- }
- }
- return nil
- }
- var wg sync.WaitGroup
- if M == 1 {
- for _, r := range chunkRanges(N, use) {
- wg.Add(1)
- start, end := r[0], r[1]
- go func(s, e int) {
- defer wg.Done()
- q8kGemvDecodeTiled(outData[:N], inData[:K], wData, N, blocksPerRow, s, e)
- }(start, end)
- }
- wg.Wait()
- return nil
- }
- if M < use {
- for _, r := range chunkRanges(N, use) {
- wg.Add(1)
- start, end := r[0], r[1]
- go func(s, e int) {
- defer wg.Done()
- for n := s; n < e; n++ {
- for m := 0; m < M; m++ {
- var sum float32
- for b := 0; b < blocksPerRow; b++ {
- inOffset := m*K + b*256
- wBlockIdx := n*blocksPerRow + b
- block := &wData[wBlockIdx]
- sum += tensor.DotQ8_K(block, inData[inOffset:inOffset+256])
- }
- outData[m*N+n] = sum
- }
- }
- }(start, end)
- }
- wg.Wait()
- return nil
- }
- for _, r := range chunkRanges(M, use) {
- wg.Add(1)
- start, end := r[0], r[1]
- go func(s, e int) {
- defer wg.Done()
- for m := s; m < e; m++ {
- for n := 0; n < N; n++ {
- var sum float32
- for b := 0; b < blocksPerRow; b++ {
- inOffset := m*K + b*256
- wBlockIdx := n*blocksPerRow + b
- block := &wData[wBlockIdx]
- sum += tensor.DotQ8_K(block, inData[inOffset:inOffset+256])
- }
- outData[m*N+n] = sum
- }
- }
- }(start, end)
- }
- wg.Wait()
- case tensor.Q3_K:
- wData := weight.DataQ3_K()
- if K%256 != 0 {
- return fmt.Errorf("linear: Q3_K weight K dimension %d must be multiple of 256", K)
- }
- wParams := tensor.GetQ3KDotParams(wData)
- blocksPerRow := K / 256
- work := M * N * K
- use := chooseWorkers(work, workers)
- if use == 1 {
- if M == 1 {
- q3kGemvDecodeTiled(outData[:N], inData[:K], wData, wParams, N, blocksPerRow, 0, N)
- return nil
- }
- for m := 0; m < M; m++ {
- for n := 0; n < N; n++ {
- var sum float32
- for b := 0; b < blocksPerRow; b++ {
- inOffset := m*K + b*256
- wBlockIdx := n*blocksPerRow + b
- block := &wData[wBlockIdx]
- p := &wParams[wBlockIdx]
- sum += tensor.DotQ3_K_Params(block, p, inData[inOffset:inOffset+256])
- }
- outData[m*N+n] = sum
- }
- }
- return nil
- }
- var wg sync.WaitGroup
- if M == 1 {
- for _, r := range chunkRanges(N, use) {
- wg.Add(1)
- start, end := r[0], r[1]
- go func(s, e int) {
- defer wg.Done()
- q3kGemvDecodeTiled(outData[:N], inData[:K], wData, wParams, N, blocksPerRow, s, e)
- }(start, end)
- }
- wg.Wait()
- return nil
- }
- if M < use {
- for _, r := range chunkRanges(N, use) {
- wg.Add(1)
- start, end := r[0], r[1]
- go func(s, e int) {
- defer wg.Done()
- for n := s; n < e; n++ {
- for m := 0; m < M; m++ {
- var sum float32
- for b := 0; b < blocksPerRow; b++ {
- inOffset := m*K + b*256
- wBlockIdx := n*blocksPerRow + b
- block := &wData[wBlockIdx]
- p := &wParams[wBlockIdx]
- sum += tensor.DotQ3_K_Params(block, p, inData[inOffset:inOffset+256])
- }
- outData[m*N+n] = sum
- }
- }
- }(start, end)
- }
- wg.Wait()
- return nil
- }
- for _, r := range chunkRanges(M, use) {
- wg.Add(1)
- start, end := r[0], r[1]
- go func(s, e int) {
- defer wg.Done()
- for m := s; m < e; m++ {
- for n := 0; n < N; n++ {
- var sum float32
- for b := 0; b < blocksPerRow; b++ {
- inOffset := m*K + b*256
- wBlockIdx := n*blocksPerRow + b
- block := &wData[wBlockIdx]
- p := &wParams[wBlockIdx]
- sum += tensor.DotQ3_K_Params(block, p, inData[inOffset:inOffset+256])
- }
- outData[m*N+n] = sum
- }
- }
- }(start, end)
- }
- wg.Wait()
- case tensor.Q5_K:
- wData := weight.DataQ5_K()
- if K%256 != 0 {
- return fmt.Errorf("linear: Q5_K weight K dimension %d must be multiple of 256", K)
- }
- wParams := tensor.GetQ5KDotParams(wData)
- blocksPerRow := K / 256
- work := M * N * K
- use := chooseWorkers(work, workers)
- if use == 1 {
- if M == 1 {
- q5kGemvDecodeTiled(outData[:N], inData[:K], wData, wParams, N, blocksPerRow, 0, N)
- return nil
- }
- for m := 0; m < M; m++ {
- for n := 0; n < N; n++ {
- var sum float32
- for b := 0; b < blocksPerRow; b++ {
- inOffset := m*K + b*256
- wBlockIdx := n*blocksPerRow + b
- block := &wData[wBlockIdx]
- p := &wParams[wBlockIdx]
- sum += tensor.DotQ5_K_Params(block, p, inData[inOffset:inOffset+256])
- }
- outData[m*N+n] = sum
- }
- }
- return nil
- }
- var wg sync.WaitGroup
- if M == 1 {
- for _, r := range chunkRanges(N, use) {
- wg.Add(1)
- start, end := r[0], r[1]
- go func(s, e int) {
- defer wg.Done()
- q5kGemvDecodeTiled(outData[:N], inData[:K], wData, wParams, N, blocksPerRow, s, e)
- }(start, end)
- }
- wg.Wait()
- return nil
- }
- if M < use {
- for _, r := range chunkRanges(N, use) {
- wg.Add(1)
- start, end := r[0], r[1]
- go func(s, e int) {
- defer wg.Done()
- for n := s; n < e; n++ {
- for m := 0; m < M; m++ {
- var sum float32
- for b := 0; b < blocksPerRow; b++ {
- inOffset := m*K + b*256
- wBlockIdx := n*blocksPerRow + b
- block := &wData[wBlockIdx]
- p := &wParams[wBlockIdx]
- sum += tensor.DotQ5_K_Params(block, p, inData[inOffset:inOffset+256])
- }
- outData[m*N+n] = sum
- }
- }
- }(start, end)
- }
- wg.Wait()
- return nil
- }
- for _, r := range chunkRanges(M, use) {
- wg.Add(1)
- start, end := r[0], r[1]
- go func(s, e int) {
- defer wg.Done()
- for m := s; m < e; m++ {
- for n := 0; n < N; n++ {
- var sum float32
- for b := 0; b < blocksPerRow; b++ {
- inOffset := m*K + b*256
- wBlockIdx := n*blocksPerRow + b
- block := &wData[wBlockIdx]
- p := &wParams[wBlockIdx]
- sum += tensor.DotQ5_K_Params(block, p, inData[inOffset:inOffset+256])
- }
- outData[m*N+n] = sum
- }
- }
- }(start, end)
- }
- wg.Wait()
- case tensor.Q6_K:
- wData := weight.DataQ6_K()
- if K%256 != 0 {
- return fmt.Errorf("linear: Q6_K weight K dimension %d must be multiple of 256", K)
- }
- wParams := tensor.GetQ6KDotParams(wData)
- blocksPerRow := K / 256
- work := M * N * K
- use := chooseWorkers(work, workers)
- if use == 1 {
- if M == 1 {
- q6kGemvDecodeTiled(outData[:N], inData[:K], wData, wParams, N, blocksPerRow, 0, N)
- return nil
- }
- for m := 0; m < M; m++ {
- for n := 0; n < N; n++ {
- var sum float32
- for b := 0; b < blocksPerRow; b++ {
- inOffset := m*K + b*256
- wBlockIdx := n*blocksPerRow + b
- block := &wData[wBlockIdx]
- p := &wParams[wBlockIdx]
- sum += tensor.DotQ6_K_Params(block, p, inData[inOffset:inOffset+256])
- }
- outData[m*N+n] = sum
- }
- }
- return nil
- }
- var wg sync.WaitGroup
- if M == 1 {
- for _, r := range chunkRanges(N, use) {
- wg.Add(1)
- start, end := r[0], r[1]
- go func(s, e int) {
- defer wg.Done()
- q6kGemvDecodeTiled(outData[:N], inData[:K], wData, wParams, N, blocksPerRow, s, e)
- }(start, end)
- }
- wg.Wait()
- return nil
- }
- if M < use {
- for _, r := range chunkRanges(N, use) {
- wg.Add(1)
- start, end := r[0], r[1]
- go func(s, e int) {
- defer wg.Done()
- for n := s; n < e; n++ {
- for m := 0; m < M; m++ {
- var sum float32
- for b := 0; b < blocksPerRow; b++ {
- inOffset := m*K + b*256
- wBlockIdx := n*blocksPerRow + b
- block := &wData[wBlockIdx]
- p := &wParams[wBlockIdx]
- sum += tensor.DotQ6_K_Params(block, p, inData[inOffset:inOffset+256])
- }
- outData[m*N+n] = sum
- }
- }
- }(start, end)
- }
- wg.Wait()
- return nil
- }
- for _, r := range chunkRanges(M, use) {
- wg.Add(1)
- start, end := r[0], r[1]
- go func(s, e int) {
- defer wg.Done()
- for m := s; m < e; m++ {
- for n := 0; n < N; n++ {
- var sum float32
- for b := 0; b < blocksPerRow; b++ {
- inOffset := m*K + b*256
- wBlockIdx := n*blocksPerRow + b
- block := &wData[wBlockIdx]
- p := &wParams[wBlockIdx]
- sum += tensor.DotQ6_K_Params(block, p, inData[inOffset:inOffset+256])
- }
- outData[m*N+n] = sum
- }
- }
- }(start, end)
- }
- wg.Wait()
- case tensor.Q2_K:
- wData := weight.DataQ2_K()
- if K%256 != 0 {
- return fmt.Errorf("linear: Q2_K weight K dimension %d must be multiple of 256", K)
- }
- wParams := tensor.GetQ2KDotParams(wData)
- blocksPerRow := K / 256
- work := M * N * K
- use := chooseWorkers(work, workers)
- if use == 1 {
- if M == 1 {
- q2kGemvDecodeTiled(outData[:N], inData[:K], wData, wParams, N, blocksPerRow, 0, N)
- return nil
- }
- for m := 0; m < M; m++ {
- for n := 0; n < N; n++ {
- var sum float32
- for b := 0; b < blocksPerRow; b++ {
- inOffset := m*K + b*256
- wBlockIdx := n*blocksPerRow + b
- block := &wData[wBlockIdx]
- p := &wParams[wBlockIdx]
- sum += tensor.DotQ2_K_Params(block, p, inData[inOffset:inOffset+256])
- }
- outData[m*N+n] = sum
- }
- }
- return nil
- }
- var wg sync.WaitGroup
- if M == 1 {
- for _, r := range chunkRanges(N, use) {
- wg.Add(1)
- start, end := r[0], r[1]
- go func(s, e int) {
- defer wg.Done()
- q2kGemvDecodeTiled(outData[:N], inData[:K], wData, wParams, N, blocksPerRow, s, e)
- }(start, end)
- }
- wg.Wait()
- return nil
- }
- if M < use {
- for _, r := range chunkRanges(N, use) {
- wg.Add(1)
- start, end := r[0], r[1]
- go func(s, e int) {
- defer wg.Done()
- for n := s; n < e; n++ {
- for m := 0; m < M; m++ {
- var sum float32
- for b := 0; b < blocksPerRow; b++ {
- inOffset := m*K + b*256
- wBlockIdx := n*blocksPerRow + b
- block := &wData[wBlockIdx]
- p := &wParams[wBlockIdx]
- sum += tensor.DotQ2_K_Params(block, p, inData[inOffset:inOffset+256])
- }
- outData[m*N+n] = sum
- }
- }
- }(start, end)
- }
- wg.Wait()
- return nil
- }
- for _, r := range chunkRanges(M, use) {
- wg.Add(1)
- start, end := r[0], r[1]
- go func(s, e int) {
- defer wg.Done()
- for m := s; m < e; m++ {
- for n := 0; n < N; n++ {
- var sum float32
- for b := 0; b < blocksPerRow; b++ {
- inOffset := m*K + b*256
- wBlockIdx := n*blocksPerRow + b
- block := &wData[wBlockIdx]
- p := &wParams[wBlockIdx]
- sum += tensor.DotQ2_K_Params(block, p, inData[inOffset:inOffset+256])
- }
- outData[m*N+n] = sum
- }
- }
- }(start, end)
- }
- wg.Wait()
- default:
- return fmt.Errorf("linear: unsupported weight dtype %v", weight.DType())
- }
- return nil
- }
- func q4kGemvDecodeTiled(out []float32, x []float32, w []tensor.BlockQ4_K, wp []tensor.Q4KDotParams, N, blocksPerRow, startN, endN int) {
- const tile = 8
- for n := startN; n < endN; n += tile {
- tn := endN - n
- if tn > tile {
- tn = tile
- }
- var sums [tile]float32
- for b := 0; b < blocksPerRow; b++ {
- xBlock := &x[b*256]
- base := n*blocksPerRow + b
- tensor.DotQ4KTile8(&sums, w, wp, base, blocksPerRow, xBlock, tn)
- }
- for t := 0; t < tn; t++ {
- out[n+t] = sums[t]
- }
- }
- }
- func q5kGemvDecodeTiled(out []float32, x []float32, w []tensor.BlockQ5_K, wp []tensor.Q5KDotParams, N, blocksPerRow, startN, endN int) {
- const tile = 8
- for n := startN; n < endN; n += tile {
- tn := endN - n
- if tn > tile {
- tn = tile
- }
- var sums [tile]float32
- for b := 0; b < blocksPerRow; b++ {
- xBlock := &x[b*256]
- base := n*blocksPerRow + b
- tensor.DotQ5KTile8(&sums, w, wp, base, blocksPerRow, xBlock, tn)
- }
- for t := 0; t < tn; t++ {
- out[n+t] = sums[t]
- }
- }
- }
- func q6kGemvDecodeTiled(out []float32, x []float32, w []tensor.BlockQ6_K, wp []tensor.Q6KDotParams, N, blocksPerRow, startN, endN int) {
- const tile = 8
- for n := startN; n < endN; n += tile {
- tn := endN - n
- if tn > tile {
- tn = tile
- }
- var sums [tile]float32
- for b := 0; b < blocksPerRow; b++ {
- xBlock := &x[b*256]
- base := n*blocksPerRow + b
- tensor.DotQ6KTile8(&sums, w, wp, base, blocksPerRow, xBlock, tn)
- }
- for t := 0; t < tn; t++ {
- out[n+t] = sums[t]
- }
- }
- }
- func q3kGemvDecodeTiled(out []float32, x []float32, w []tensor.BlockQ3_K, wp []tensor.Q3KDotParams, N, blocksPerRow, startN, endN int) {
- const tile = 8
- for n := startN; n < endN; n += tile {
- tn := endN - n
- if tn > tile {
- tn = tile
- }
- var sums [tile]float32
- for b := 0; b < blocksPerRow; b++ {
- xBlock := &x[b*256]
- base := n*blocksPerRow + b
- tensor.DotQ3KTile8(&sums, w, wp, base, blocksPerRow, xBlock, tn)
- }
- for t := 0; t < tn; t++ {
- out[n+t] = sums[t]
- }
- }
- }
- func q2kGemvDecodeTiled(out []float32, x []float32, w []tensor.BlockQ2_K, wp []tensor.Q2KDotParams, N, blocksPerRow, startN, endN int) {
- const tile = 8
- for n := startN; n < endN; n += tile {
- tn := endN - n
- if tn > tile {
- tn = tile
- }
- var sums [tile]float32
- for b := 0; b < blocksPerRow; b++ {
- xBlock := &x[b*256]
- base := n*blocksPerRow + b
- tensor.DotQ2KTile8(&sums, w, wp, base, blocksPerRow, xBlock, tn)
- }
- for t := 0; t < tn; t++ {
- out[n+t] = sums[t]
- }
- }
- }
- func q8kGemvDecodeTiled(out []float32, x []float32, w []tensor.BlockQ8_K, N, blocksPerRow, startN, endN int) {
- const tile = 8
- for n := startN; n < endN; n += tile {
- tn := endN - n
- if tn > tile {
- tn = tile
- }
- var sums [tile]float32
- for b := 0; b < blocksPerRow; b++ {
- xBlock := &x[b*256]
- base := n*blocksPerRow + b
- tensor.DotQ8KTile8(&sums, w, base, blocksPerRow, xBlock, tn)
- }
- for t := 0; t < tn; t++ {
- out[n+t] = sums[t]
- }
- }
- }
|