|
|
@@ -2,13 +2,25 @@
|
|
|
|
|
|
#include "common.h"
|
|
|
#include "llama.h"
|
|
|
-#include "grammar-parser.h"
|
|
|
|
|
|
#include <cmath>
|
|
|
#include <cstdio>
|
|
|
#include <string>
|
|
|
#include <vector>
|
|
|
|
|
|
+struct seq_draft {
|
|
|
+ bool active = false;
|
|
|
+ bool drafting = false;
|
|
|
+ bool skip = false;
|
|
|
+
|
|
|
+ int i_batch_dft = 0;
|
|
|
+ std::vector<int> i_batch_tgt;
|
|
|
+
|
|
|
+ std::vector<llama_token> tokens;
|
|
|
+
|
|
|
+ struct llama_sampling_context * ctx_sampling;
|
|
|
+};
|
|
|
+
|
|
|
int main(int argc, char ** argv) {
|
|
|
gpt_params params;
|
|
|
|
|
|
@@ -21,6 +33,13 @@ int main(int argc, char ** argv) {
|
|
|
return 1;
|
|
|
}
|
|
|
|
|
|
+ // max number of parallel drafting sequences (i.e. tree branches)
|
|
|
+ const int n_seq_dft = params.n_parallel;
|
|
|
+
|
|
|
+ // TODO: make this configurable
|
|
|
+ const float p_accept = 0.4f;
|
|
|
+ const float p_split = 0.3f;
|
|
|
+
|
|
|
#ifndef LOG_DISABLE_LOGS
|
|
|
log_set_target(log_filename_generator("speculative", "log"));
|
|
|
LOG_TEE("Log start\n");
|
|
|
@@ -77,8 +96,6 @@ int main(int argc, char ** argv) {
|
|
|
const auto t_enc_end = ggml_time_us();
|
|
|
|
|
|
// the 2 models should have the same vocab
|
|
|
- const int n_ctx = llama_n_ctx(ctx_tgt);
|
|
|
- const int n_vocab = llama_n_vocab(model_tgt);
|
|
|
//GGML_ASSERT(n_vocab == llama_n_vocab(model_dft));
|
|
|
|
|
|
// how many tokens to draft each time
|
|
|
@@ -91,60 +108,58 @@ int main(int argc, char ** argv) {
|
|
|
int n_past_tgt = inp.size();
|
|
|
int n_past_dft = inp.size();
|
|
|
|
|
|
- std::vector<llama_token> drafted;
|
|
|
-
|
|
|
- std::vector<llama_token> last_tokens(n_ctx);
|
|
|
- std::fill(last_tokens.begin(), last_tokens.end(), 0);
|
|
|
-
|
|
|
- for (auto & id : inp) {
|
|
|
- last_tokens.erase(last_tokens.begin());
|
|
|
- last_tokens.push_back(id);
|
|
|
- }
|
|
|
-
|
|
|
- std::vector<llama_token_data> candidates;
|
|
|
- candidates.reserve(n_vocab);
|
|
|
-
|
|
|
// used to determine end of generation
|
|
|
bool has_eos = false;
|
|
|
|
|
|
- // grammar stuff
|
|
|
- struct llama_grammar * grammar_dft = NULL;
|
|
|
- struct llama_grammar * grammar_tgt = NULL;
|
|
|
+ // target model sampling context
|
|
|
+ struct llama_sampling_context * ctx_sampling = llama_sampling_init(params);
|
|
|
|
|
|
- grammar_parser::parse_state parsed_grammar;
|
|
|
+ // draft sequence data
|
|
|
+ std::vector<seq_draft> drafts(n_seq_dft);
|
|
|
|
|
|
- // if requested - load the grammar, error checking is omitted for brevity
|
|
|
- if (!params.grammar.empty()) {
|
|
|
- parsed_grammar = grammar_parser::parse(params.grammar.c_str());
|
|
|
- // will be empty (default) if there are parse errors
|
|
|
- if (parsed_grammar.rules.empty()) {
|
|
|
- return 1;
|
|
|
- }
|
|
|
+ params.grammar.clear(); // the draft samplers will copy the target sampler's grammar
|
|
|
+ params.sampling_params.temp = 1.0f; // the draft samplers use default temperature
|
|
|
|
|
|
- std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
|
|
|
- grammar_tgt = llama_grammar_init(grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
|
|
|
+ for (int s = 0; s < n_seq_dft; ++s) {
|
|
|
+ drafts[s].ctx_sampling = llama_sampling_init(params);
|
|
|
}
|
|
|
|
|
|
- llama_sampling_context ctx_sampling = llama_sampling_context_init(params, grammar_tgt);
|
|
|
+ llama_batch batch_dft = llama_batch_init(params.n_ctx, 0, 1);
|
|
|
+ llama_batch batch_tgt = llama_batch_init(params.n_ctx, 0, n_seq_dft);
|
|
|
|
|
|
const auto t_dec_start = ggml_time_us();
|
|
|
|
|
|
+ // sample from the last token of the prompt
|
|
|
+ drafts[0].i_batch_tgt.resize(1);
|
|
|
+ drafts[0].i_batch_tgt[0] = 0;
|
|
|
+
|
|
|
while (true) {
|
|
|
- LOG("drafted: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_dft, drafted));
|
|
|
+ // print current draft sequences
|
|
|
+ for (int s = 0; s < n_seq_dft; ++s) {
|
|
|
+ if (!drafts[s].active) {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ const auto & tokens = drafts[s].tokens;
|
|
|
|
|
|
- int i_dft = 0;
|
|
|
+ LOG("draft %d: %s\n", s, LOG_TOKENS_TOSTR_PRETTY(ctx_dft, tokens).c_str());
|
|
|
+ }
|
|
|
+
|
|
|
+ int i_dft = 0;
|
|
|
+ int s_keep = 0;
|
|
|
|
|
|
while (true) {
|
|
|
+ LOG("sampling target: s_keep = %3d, i_dft = %3d, i_batch_tgt = %3d\n", s_keep, i_dft, drafts[s_keep].i_batch_tgt[i_dft]);
|
|
|
+
|
|
|
// sample from the target model
|
|
|
- llama_token id = llama_sampling_sample(ctx_tgt, NULL, ctx_sampling, last_tokens, candidates, i_dft);
|
|
|
+ llama_token id = llama_sampling_sample(ctx_sampling, ctx_tgt, NULL, drafts[s_keep].i_batch_tgt[i_dft]);
|
|
|
|
|
|
- // remember which tokens were sampled - used for repetition penalties during sampling
|
|
|
- last_tokens.erase(last_tokens.begin());
|
|
|
- last_tokens.push_back(id);
|
|
|
+ llama_sampling_accept(ctx_sampling, ctx_tgt, id);
|
|
|
|
|
|
//LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_tgt, last_tokens));
|
|
|
|
|
|
const std::string token_str = llama_token_to_piece(ctx_tgt, id);
|
|
|
+
|
|
|
printf("%s", token_str.c_str());
|
|
|
fflush(stdout);
|
|
|
|
|
|
@@ -154,53 +169,67 @@ int main(int argc, char ** argv) {
|
|
|
|
|
|
++n_predict;
|
|
|
|
|
|
- // check if the draft matches the target
|
|
|
- if (i_dft < (int) drafted.size() && id == drafted[i_dft]) {
|
|
|
- LOG("the sampled target token matches the %dth drafted token (%d, '%s') - accepted\n", i_dft, id, token_str.c_str());
|
|
|
- ++n_accept;
|
|
|
- ++n_past_tgt;
|
|
|
- ++n_past_dft;
|
|
|
- ++i_dft;
|
|
|
+ // check if the target token matches any of the drafts
|
|
|
+ {
|
|
|
+ bool matches = false;
|
|
|
|
|
|
- continue;
|
|
|
- }
|
|
|
+ for (int s = 0; s < n_seq_dft; ++s) {
|
|
|
+ if (!drafts[s].active) {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (i_dft < (int) drafts[s].tokens.size() && id == drafts[s].tokens[i_dft]) {
|
|
|
+ LOG("the sampled target token matches the %dth drafted token of sequence %d (%d, '%s') - accepted\n", i_dft, s, id, token_str.c_str());
|
|
|
+
|
|
|
+ s_keep = s;
|
|
|
+ matches = true;
|
|
|
+ } else {
|
|
|
+ drafts[s].active = false;
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
- // the drafted token was rejected or we are out of drafted tokens
|
|
|
+ if (matches) {
|
|
|
+ ++n_accept;
|
|
|
+ ++n_past_tgt;
|
|
|
+ ++n_past_dft;
|
|
|
+ ++i_dft;
|
|
|
|
|
|
- if (i_dft < (int) drafted.size()) {
|
|
|
- LOG("the %dth drafted token (%d, '%s') does not match the sampled target token (%d, '%s') - rejected\n",
|
|
|
- i_dft, drafted[i_dft], llama_token_to_piece(ctx_dft, drafted[i_dft]).c_str(), id, token_str.c_str());
|
|
|
- } else {
|
|
|
- LOG("out of drafted tokens\n");
|
|
|
+ continue;
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
- llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1);
|
|
|
- llama_decode(ctx_dft, llama_batch_get_one(&id, 1, n_past_dft, 0));
|
|
|
- ++n_past_dft;
|
|
|
+ LOG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", id, token_str.c_str());
|
|
|
|
|
|
- // heuristic for n_draft
|
|
|
+ // TODO: simplify
|
|
|
{
|
|
|
- const int n_draft_cur = (int) drafted.size();
|
|
|
- const bool all_accepted = i_dft == n_draft_cur;
|
|
|
-
|
|
|
- LOG("n_draft = %d\n", n_draft);
|
|
|
- LOG("n_draft_cur = %d\n", n_draft_cur);
|
|
|
- LOG("i_dft = %d\n", i_dft);
|
|
|
- LOG("all_accepted = %d\n", all_accepted);
|
|
|
-
|
|
|
- if (all_accepted && n_draft == n_draft_cur) {
|
|
|
- LOG(" - max drafted tokens accepted - n_draft += 8\n");
|
|
|
- n_draft = std::min(30, n_draft + 8);
|
|
|
- } else if (all_accepted) {
|
|
|
- LOG(" - partially drafted tokens accepted - no change\n");
|
|
|
- } else {
|
|
|
- LOG(" - drafted token rejected - n_draft -= 1\n");
|
|
|
- n_draft = std::max(2, n_draft - 1);
|
|
|
- }
|
|
|
+ LOG("keeping sequence %d\n", s_keep);
|
|
|
+
|
|
|
+ llama_kv_cache_seq_keep(ctx_dft, s_keep);
|
|
|
+ llama_kv_cache_seq_cp (ctx_dft, s_keep, 0, -1, -1);
|
|
|
+ llama_kv_cache_seq_keep(ctx_dft, 0);
|
|
|
+
|
|
|
+ llama_kv_cache_seq_rm (ctx_tgt, s_keep, n_past_tgt, -1);
|
|
|
+ llama_kv_cache_seq_keep(ctx_tgt, s_keep);
|
|
|
+ llama_kv_cache_seq_cp (ctx_tgt, s_keep, 0, -1, -1);
|
|
|
+ llama_kv_cache_seq_keep(ctx_tgt, 0);
|
|
|
}
|
|
|
|
|
|
- drafted.clear();
|
|
|
- drafted.push_back(id);
|
|
|
+ for (int s = 0; s < n_seq_dft; ++s) {
|
|
|
+ drafts[s].active = false;
|
|
|
+ drafts[s].tokens.clear();
|
|
|
+ drafts[s].i_batch_tgt.clear();
|
|
|
+ }
|
|
|
+ // note: will be erased after the speculation phase
|
|
|
+ drafts[0].tokens.push_back(id);
|
|
|
+ drafts[0].i_batch_tgt.push_back(0);
|
|
|
+
|
|
|
+ llama_batch_clear(batch_dft);
|
|
|
+ llama_batch_add (batch_dft, id, n_past_dft, { 0 }, true);
|
|
|
+
|
|
|
+ llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1);
|
|
|
+ llama_decode (ctx_dft, batch_dft);
|
|
|
+
|
|
|
+ ++n_past_dft;
|
|
|
|
|
|
break;
|
|
|
}
|
|
|
@@ -209,78 +238,158 @@ int main(int argc, char ** argv) {
|
|
|
break;
|
|
|
}
|
|
|
|
|
|
- if (grammar_tgt) {
|
|
|
- if (grammar_dft) {
|
|
|
- llama_grammar_free(grammar_dft);
|
|
|
- }
|
|
|
- // Note: Hardcoded to sequence id 0, if this ever supports parallel generation
|
|
|
- // that will need to change.
|
|
|
- auto it = ctx_sampling.sequence_contexts.find(0);
|
|
|
- GGML_ASSERT(it != ctx_sampling.sequence_contexts.end());
|
|
|
- // This is necessary because each sequence id in sequence_contexts
|
|
|
- // uses a copy of the original grammar.
|
|
|
- grammar_dft = llama_grammar_copy(it->second.grammar);
|
|
|
-
|
|
|
- LOG("copied target grammar to draft grammar\n");
|
|
|
- }
|
|
|
+ llama_sampling_cp(ctx_sampling, drafts[0].ctx_sampling);
|
|
|
|
|
|
- // sample n_draft tokens from the draft model using greedy decoding
|
|
|
+ int n_seq_cur = 1;
|
|
|
int n_past_cur = n_past_dft;
|
|
|
+
|
|
|
+ for (int s = 0; s < n_seq_dft; ++s) {
|
|
|
+ drafts[s].active = false;
|
|
|
+ drafts[s].drafting = false;
|
|
|
+ }
|
|
|
+ drafts[0].active = true;
|
|
|
+ drafts[0].drafting = true;
|
|
|
+ drafts[0].i_batch_dft = 0;
|
|
|
+
|
|
|
+ llama_batch_clear(batch_tgt);
|
|
|
+ llama_batch_add (batch_tgt, drafts[0].tokens[0], n_past_tgt, { 0 }, true);
|
|
|
+
|
|
|
+ // sample n_draft tokens from the draft model using tree-based sampling
|
|
|
for (int i = 0; i < n_draft; ++i) {
|
|
|
- float * logits = llama_get_logits(ctx_dft);
|
|
|
+ batch_dft.n_tokens = 0;
|
|
|
|
|
|
- candidates.clear();
|
|
|
- for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
|
|
- candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
|
|
+ for (int s = 0; s < n_seq_dft; ++s) {
|
|
|
+ drafts[s].skip = false;
|
|
|
}
|
|
|
|
|
|
- llama_token_data_array cur_p = { candidates.data(), candidates.size(), false };
|
|
|
+ for (int s = 0; s < n_seq_dft; ++s) {
|
|
|
+ if (!drafts[s].drafting || drafts[s].skip) {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
|
|
|
- if (grammar_dft != NULL) {
|
|
|
- llama_sample_grammar(ctx_dft, &cur_p, grammar_dft);
|
|
|
- }
|
|
|
+ llama_sampling_sample(drafts[s].ctx_sampling, ctx_dft, NULL, drafts[s].i_batch_dft);
|
|
|
+
|
|
|
+ const auto & cur_p = drafts[s].ctx_sampling->cur;
|
|
|
+
|
|
|
+ for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p.size()); ++k) {
|
|
|
+ LOG(" - draft candidate %3d for seq %3d, pos %3d: %6d (%8.3f) '%s'\n",
|
|
|
+ k, s, i, cur_p[k].id, cur_p[k].p, llama_token_to_piece(ctx_dft, cur_p[k].id).c_str());
|
|
|
+ }
|
|
|
+
|
|
|
+ if (cur_p[0].p < p_accept) {
|
|
|
+ LOG("stopping drafting for seq %3d, probability too low: %.3f < 2*%.3f\n", s, cur_p[0].p, cur_p[1].p);
|
|
|
+ drafts[s].drafting = false;
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ std::vector<int> sa(1, s);
|
|
|
+
|
|
|
+ // attempt to split the branch if the probability is high enough
|
|
|
+ for (int f = 1; f < 8; ++f) {
|
|
|
+ if (n_seq_cur < n_seq_dft && cur_p[f].p > p_split) {
|
|
|
+ LOG("splitting seq %3d into %3d\n", s, n_seq_cur);
|
|
|
+
|
|
|
+ llama_kv_cache_seq_rm(ctx_dft, n_seq_cur, -1, -1);
|
|
|
+ llama_kv_cache_seq_cp(ctx_dft, s, n_seq_cur, -1, -1);
|
|
|
+
|
|
|
+ // all previous tokens from this branch are now also part of the new branch
|
|
|
+ for (int t = 0; t < batch_tgt.n_tokens; ++t) {
|
|
|
+ for (int p = 0; p < batch_tgt.n_seq_id[t]; ++p) {
|
|
|
+ if (batch_tgt.seq_id[t][p] == s) {
|
|
|
+ batch_tgt.seq_id[t][batch_tgt.n_seq_id[t]] = n_seq_cur;
|
|
|
+ batch_tgt.n_seq_id[t]++;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // copy the draft state
|
|
|
+ drafts[n_seq_cur].active = true;
|
|
|
+ drafts[n_seq_cur].drafting = true;
|
|
|
+ drafts[n_seq_cur].skip = true;
|
|
|
+
|
|
|
+ drafts[n_seq_cur].tokens = drafts[s].tokens;
|
|
|
+ drafts[n_seq_cur].i_batch_dft = drafts[s].i_batch_dft;
|
|
|
+ drafts[n_seq_cur].i_batch_tgt = drafts[s].i_batch_tgt;
|
|
|
+
|
|
|
+ llama_sampling_cp(drafts[s].ctx_sampling, drafts[n_seq_cur].ctx_sampling);
|
|
|
+
|
|
|
+ sa.push_back(n_seq_cur);
|
|
|
+
|
|
|
+ n_seq_cur++;
|
|
|
+ } else {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // add drafted token for each sequence
|
|
|
+ for (int is = 0; is < (int) sa.size(); ++is) {
|
|
|
+ const llama_token id = cur_p[is].id;
|
|
|
+
|
|
|
+ const int s = sa[is];
|
|
|
+
|
|
|
+ llama_sampling_accept(drafts[s].ctx_sampling, ctx_dft, id);
|
|
|
|
|
|
- // computes softmax and sorts the candidates
|
|
|
- llama_sample_softmax(ctx_dft, &cur_p);
|
|
|
+ drafts[s].tokens.push_back(id);
|
|
|
|
|
|
- for (int i = 0; i < 3; ++i) {
|
|
|
- LOG(" - draft candidate %3d: %6d (%8.3f) '%s'\n", i, cur_p.data[i].id, cur_p.data[i].p, llama_token_to_piece(ctx_dft, cur_p.data[i].id).c_str());
|
|
|
+ // add unique drafted tokens to the target batch
|
|
|
+ drafts[s].i_batch_tgt.push_back(batch_tgt.n_tokens);
|
|
|
+
|
|
|
+ llama_batch_add(batch_tgt, id, n_past_tgt + i + 1, { s }, true);
|
|
|
+
|
|
|
+ // no need to evaluate the last drafted token, since we won't use the result
|
|
|
+ if (batch_tgt.n_tokens > n_draft) {
|
|
|
+ drafts[s].drafting = false;
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ // add the token to the batch for batched decoding with the draft model
|
|
|
+ drafts[s].i_batch_dft = batch_dft.n_tokens;
|
|
|
+
|
|
|
+ llama_batch_add(batch_dft, id, n_past_cur, { s }, true);
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
- // TODO: better logic?
|
|
|
- if (cur_p.data[0].p < 2*cur_p.data[1].p) {
|
|
|
- LOG("stopping drafting, probability too low: %.3f < 2*%.3f\n", cur_p.data[0].p, cur_p.data[1].p);
|
|
|
+ // no sequence is drafting anymore
|
|
|
+ if (batch_dft.n_tokens == 0) {
|
|
|
break;
|
|
|
}
|
|
|
|
|
|
- // drafted token
|
|
|
- const llama_token id = cur_p.data[0].id;
|
|
|
-
|
|
|
- drafted.push_back(id);
|
|
|
+ // evaluate the drafted tokens on the draft model
|
|
|
+ llama_decode(ctx_dft, batch_dft);
|
|
|
+ ++n_past_cur;
|
|
|
++n_drafted;
|
|
|
|
|
|
- // no need to evaluate the last drafted token, since we won't use the result
|
|
|
- if (i == n_draft - 1) {
|
|
|
+ if (batch_tgt.n_tokens > n_draft) {
|
|
|
break;
|
|
|
}
|
|
|
+ }
|
|
|
|
|
|
- // evaluate the drafted token on the draft model
|
|
|
- llama_kv_cache_seq_rm(ctx_dft, 0, n_past_cur, -1);
|
|
|
- llama_decode(ctx_dft, llama_batch_get_one(&drafted.back(), 1, n_past_cur, 0));
|
|
|
- ++n_past_cur;
|
|
|
+ // account for the last drafted token that we didn't evaluate
|
|
|
+ if (batch_tgt.n_tokens > n_draft) {
|
|
|
+ ++n_drafted;
|
|
|
+ }
|
|
|
|
|
|
- if (grammar_dft != NULL) {
|
|
|
- llama_grammar_accept_token(ctx_dft, grammar_dft, id);
|
|
|
+ // evaluate the target model on the drafted tokens
|
|
|
+ {
|
|
|
+ llama_kv_cache_seq_keep(ctx_tgt, 0);
|
|
|
+ for (int s = 1; s < n_seq_dft; ++s) {
|
|
|
+ llama_kv_cache_seq_cp(ctx_tgt, 0, s, -1, -1);
|
|
|
}
|
|
|
+
|
|
|
+ //LOG("target batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_tgt, batch_tgt));
|
|
|
+ llama_decode(ctx_tgt, batch_tgt);
|
|
|
+ ++n_past_tgt;
|
|
|
}
|
|
|
|
|
|
- // evaluate the target model on the drafted tokens
|
|
|
- llama_kv_cache_seq_rm(ctx_tgt, 0, n_past_tgt, -1);
|
|
|
- llama_decode(ctx_tgt, llama_batch_get_one(drafted.data(), drafted.size(), n_past_tgt, 0));
|
|
|
- ++n_past_tgt;
|
|
|
+ // the first token is always proposed by the traget model before the speculation loop so we erase it here
|
|
|
+ for (int s = 0; s < n_seq_dft; ++s) {
|
|
|
+ if (!drafts[s].active) {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
|
|
|
- // the first token is always proposed by the traget model before the speculation loop
|
|
|
- drafted.erase(drafted.begin());
|
|
|
+ drafts[s].tokens.erase(drafts[s].tokens.begin());
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
auto t_dec_end = ggml_time_us();
|
|
|
@@ -288,9 +397,8 @@ int main(int argc, char ** argv) {
|
|
|
LOG_TEE("\n\n");
|
|
|
|
|
|
LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
|
|
|
- LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
|
|
|
+ LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
|
|
|
|
|
|
- // TODO: make sure these numbers are computed correctly
|
|
|
LOG_TEE("\n");
|
|
|
LOG_TEE("n_draft = %d\n", n_draft);
|
|
|
LOG_TEE("n_predict = %d\n", n_predict);
|
|
|
@@ -304,16 +412,19 @@ int main(int argc, char ** argv) {
|
|
|
LOG_TEE("\ntarget:\n");
|
|
|
llama_print_timings(ctx_tgt);
|
|
|
|
|
|
+ llama_sampling_free(ctx_sampling);
|
|
|
+ for (int s = 0; s < n_seq_dft; ++s) {
|
|
|
+ llama_sampling_free(drafts[s].ctx_sampling);
|
|
|
+ }
|
|
|
+
|
|
|
+ llama_batch_free(batch_dft);
|
|
|
+
|
|
|
llama_free(ctx_tgt);
|
|
|
llama_free_model(model_tgt);
|
|
|
|
|
|
llama_free(ctx_dft);
|
|
|
llama_free_model(model_dft);
|
|
|
|
|
|
- if (grammar_dft != NULL) {
|
|
|
- llama_grammar_free(grammar_dft);
|
|
|
- llama_grammar_free(grammar_tgt);
|
|
|
- }
|
|
|
llama_backend_free();
|
|
|
|
|
|
fprintf(stderr, "\n\n");
|