|
|
@@ -180,7 +180,8 @@ class Model:
|
|
|
extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
|
|
|
missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
|
|
|
if len(extra) == 0 and len(missing_files) > 0:
|
|
|
- raise ValueError(f"Missing or incomplete model files: {missing_files}")
|
|
|
+ raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
|
|
|
+ f"Missing tensors: {missing}")
|
|
|
else:
|
|
|
raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
|
|
|
f"Missing tensors: {missing}\n"
|
|
|
@@ -1099,13 +1100,6 @@ class BloomModel(Model):
|
|
|
|
|
|
tensors.append((self.map_tensor_name(name), data_torch))
|
|
|
|
|
|
- if name == "word_embeddings.weight":
|
|
|
- assert self.tensor_names is not None
|
|
|
-
|
|
|
- # TODO: tie them at runtime, don't duplicate in the model file
|
|
|
- if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
|
|
|
- tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
|
|
|
-
|
|
|
return tensors
|
|
|
|
|
|
|
|
|
@@ -2423,10 +2417,6 @@ class GPT2Model(Model):
|
|
|
|
|
|
tensors.append((new_name, data_torch))
|
|
|
|
|
|
- # note: GPT2 output is tied to (same as) wte in original model
|
|
|
- if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
|
|
|
- tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
|
|
|
-
|
|
|
return tensors
|
|
|
|
|
|
|
|
|
@@ -2756,21 +2746,26 @@ class CodeShellModel(Model):
|
|
|
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
|
|
self.gguf_writer.add_rope_scaling_factor(1.0)
|
|
|
|
|
|
+ _has_tok_embd = False
|
|
|
+
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
|
|
del bid # unused
|
|
|
|
|
|
- new_name = self.map_tensor_name(name)
|
|
|
-
|
|
|
- tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
|
|
|
+ output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
|
|
|
+ tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
|
|
|
|
|
|
- if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
|
|
|
- assert self.tensor_names is not None
|
|
|
+ new_name = self.map_tensor_name(name)
|
|
|
|
|
|
- if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
|
|
|
- # copy tok_embd.weight to output.weight
|
|
|
- tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
|
|
|
+ # assuming token_embd.weight is seen before output.weight
|
|
|
+ if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
|
|
|
+ # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
|
|
|
+ if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
|
|
|
+ logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
|
|
|
+ self.tensor_names.remove("transformer.wte.weight")
|
|
|
+ elif new_name == tok_embd_name:
|
|
|
+ self._has_tok_embd = True
|
|
|
|
|
|
- return tensors
|
|
|
+ return [(new_name, data_torch)]
|
|
|
|
|
|
|
|
|
@Model.register("InternLM2ForCausalLM")
|