|
|
@@ -3472,6 +3472,7 @@ static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
|
|
|
"ROPE",
|
|
|
"ROPE_BACK",
|
|
|
"ALIBI",
|
|
|
+ "CLAMP",
|
|
|
"CONV_1D_1S",
|
|
|
"CONV_1D_2S",
|
|
|
|
|
|
@@ -3482,7 +3483,8 @@ static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
|
|
|
"MAP_BINARY",
|
|
|
};
|
|
|
|
|
|
-static_assert(GGML_OP_COUNT == 50, "GGML_OP_COUNT != 50");
|
|
|
+static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51");
|
|
|
+
|
|
|
|
|
|
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
|
|
"none",
|
|
|
@@ -3532,6 +3534,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
|
|
"rope(x)",
|
|
|
"rope_back(x)",
|
|
|
"alibi(x)",
|
|
|
+ "clamp(x)",
|
|
|
"conv_1d_1s(x)",
|
|
|
"conv_1d_2s(x)",
|
|
|
|
|
|
@@ -3542,7 +3545,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
|
|
"f(x,y)",
|
|
|
};
|
|
|
|
|
|
-static_assert(GGML_OP_COUNT == 50, "GGML_OP_COUNT != 50");
|
|
|
+static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51");
|
|
|
|
|
|
static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
|
|
|
static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
|
|
|
@@ -6214,7 +6217,8 @@ struct ggml_tensor * ggml_alibi(
|
|
|
struct ggml_context * ctx,
|
|
|
struct ggml_tensor * a,
|
|
|
int n_past,
|
|
|
- int n_head) {
|
|
|
+ int n_head,
|
|
|
+ float bias_max) {
|
|
|
GGML_ASSERT(n_past >= 0);
|
|
|
bool is_node = false;
|
|
|
|
|
|
@@ -6233,6 +6237,8 @@ struct ggml_tensor * ggml_alibi(
|
|
|
|
|
|
((int32_t *) b->data)[0] = n_past;
|
|
|
((int32_t *) b->data)[1] = n_head;
|
|
|
+ GGML_ASSERT(sizeof(float) == sizeof(int32_t));
|
|
|
+ (((float *) b->data)[2]) = bias_max;
|
|
|
|
|
|
ggml_scratch_load(ctx);
|
|
|
|
|
|
@@ -6244,6 +6250,40 @@ struct ggml_tensor * ggml_alibi(
|
|
|
return result;
|
|
|
}
|
|
|
|
|
|
+// ggml_clamp
|
|
|
+
|
|
|
+struct ggml_tensor * ggml_clamp(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a,
|
|
|
+ float min,
|
|
|
+ float max) {
|
|
|
+ bool is_node = false;
|
|
|
+
|
|
|
+ if (a->grad) {
|
|
|
+ GGML_ASSERT(false); // TODO: implement backward
|
|
|
+ is_node = true;
|
|
|
+ }
|
|
|
+
|
|
|
+ // TODO: when implement backward, fix this:
|
|
|
+ struct ggml_tensor * result = ggml_view_tensor(ctx, a);
|
|
|
+
|
|
|
+ ggml_scratch_save(ctx);
|
|
|
+
|
|
|
+ struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
|
|
|
+
|
|
|
+ ((float *) b->data)[0] = min;
|
|
|
+ ((float *) b->data)[1] = max;
|
|
|
+
|
|
|
+ ggml_scratch_load(ctx);
|
|
|
+
|
|
|
+ result->op = GGML_OP_CLAMP;
|
|
|
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
|
+ result->src0 = a;
|
|
|
+ result->src1 = b;
|
|
|
+
|
|
|
+ return result;
|
|
|
+}
|
|
|
+
|
|
|
// ggml_conv_1d_1s
|
|
|
|
|
|
struct ggml_tensor * ggml_conv_1d_1s(
|
|
|
@@ -10553,6 +10593,7 @@ static void ggml_compute_forward_diag_mask_f32(
|
|
|
|
|
|
const int n_past = ((int32_t *) src1->data)[0];
|
|
|
const bool inplace = (bool)((int32_t *) src1->data)[1];
|
|
|
+
|
|
|
assert(n_past >= 0);
|
|
|
|
|
|
if (!inplace && (params->type == GGML_TASK_INIT)) {
|
|
|
@@ -10723,14 +10764,15 @@ static void ggml_compute_forward_alibi_f32(
|
|
|
struct ggml_tensor * dst) {
|
|
|
assert(params->ith == 0);
|
|
|
assert(src1->type == GGML_TYPE_I32);
|
|
|
- assert(ggml_nelements(src1) == 2);
|
|
|
+ assert(ggml_nelements(src1) == 3);
|
|
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
- const int n_past = ((int32_t *) src1->data)[0];
|
|
|
- const int n_head = ((int32_t *) src1->data)[1];
|
|
|
+ const int n_past = ((int32_t *) src1->data)[0];
|
|
|
+ const int n_head = ((int32_t *) src1->data)[1];
|
|
|
+ const float max_bias = ((float *) src1->data)[2];
|
|
|
|
|
|
assert(n_past >= 0);
|
|
|
|
|
|
@@ -10753,8 +10795,8 @@ static void ggml_compute_forward_alibi_f32(
|
|
|
// add alibi to src0 (KQ_scaled)
|
|
|
const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
|
|
|
|
|
|
- const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
|
|
|
- const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
|
|
|
+ const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
|
|
|
+ const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
|
|
|
|
|
|
for (int i = 0; i < ne0; i++) {
|
|
|
for (int j = 0; j < ne1; j++) {
|
|
|
@@ -10772,13 +10814,13 @@ static void ggml_compute_forward_alibi_f32(
|
|
|
m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
|
|
|
}
|
|
|
|
|
|
- pdst[0] = i * m_k + src[0];
|
|
|
+ pdst[0] = (i-ne0+1) * m_k + src[0];
|
|
|
+
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-
|
|
|
static void ggml_compute_forward_alibi_f16(
|
|
|
const struct ggml_compute_params * params,
|
|
|
const struct ggml_tensor * src0,
|
|
|
@@ -10786,14 +10828,15 @@ static void ggml_compute_forward_alibi_f16(
|
|
|
struct ggml_tensor * dst) {
|
|
|
assert(params->ith == 0);
|
|
|
assert(src1->type == GGML_TYPE_I32);
|
|
|
- assert(ggml_nelements(src1) == 2);
|
|
|
+ assert(ggml_nelements(src1) == 3);
|
|
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
- const int n_past = ((int32_t *) src1->data)[0];
|
|
|
- const int n_head = ((int32_t *) src1->data)[1];
|
|
|
+ const int n_past = ((int32_t *) src1->data)[0];
|
|
|
+ const int n_head = ((int32_t *) src1->data)[1];
|
|
|
+ const float max_bias = ((float *) src1->data)[2];
|
|
|
|
|
|
assert(n_past >= 0);
|
|
|
|
|
|
@@ -10816,8 +10859,8 @@ static void ggml_compute_forward_alibi_f16(
|
|
|
// add alibi to src0 (KQ_scaled)
|
|
|
const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
|
|
|
|
|
|
- const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
|
|
|
- const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
|
|
|
+ const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
|
|
|
+ const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
|
|
|
|
|
|
for (int i = 0; i < ne0; i++) {
|
|
|
for (int j = 0; j < ne1; j++) {
|
|
|
@@ -10836,7 +10879,7 @@ static void ggml_compute_forward_alibi_f16(
|
|
|
}
|
|
|
|
|
|
// we return F32
|
|
|
- pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
|
|
|
+ pdst[0] = (i-ne0+1) * m_k + GGML_FP16_TO_FP32(src[0]);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
@@ -10872,6 +10915,77 @@ static void ggml_compute_forward_alibi(
|
|
|
}
|
|
|
}
|
|
|
|
|
|
+
|
|
|
+// ggml_compute_forward_clamp
|
|
|
+
|
|
|
+static void ggml_compute_forward_clamp_f32(
|
|
|
+ const struct ggml_compute_params * params,
|
|
|
+ const struct ggml_tensor * src0,
|
|
|
+ const struct ggml_tensor * src1,
|
|
|
+ struct ggml_tensor * dst) {
|
|
|
+ assert(params->ith == 0);
|
|
|
+ assert(src1->type == GGML_TYPE_I32);
|
|
|
+ assert(ggml_nelements(src1) == 2);
|
|
|
+
|
|
|
+ if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ const int min = ((float *) src1->data)[0];
|
|
|
+ const int max = ((float *) src1->data)[1];
|
|
|
+
|
|
|
+ const int ith = params->ith;
|
|
|
+ const int nth = params->nth;
|
|
|
+
|
|
|
+ const int n = ggml_nrows(src0);
|
|
|
+ const int nc = src0->ne[0];
|
|
|
+
|
|
|
+ const size_t nb00 = src0->nb[0];
|
|
|
+ const size_t nb01 = src0->nb[1];
|
|
|
+
|
|
|
+ const size_t nb0 = dst->nb[0];
|
|
|
+ const size_t nb1 = dst->nb[1];
|
|
|
+
|
|
|
+ GGML_ASSERT( nb0 == sizeof(float));
|
|
|
+ GGML_ASSERT(nb00 == sizeof(float));
|
|
|
+
|
|
|
+ for (int j = ith; j < n; j += nth) {
|
|
|
+ float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
|
|
|
+ float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
|
|
|
+
|
|
|
+ for (int i = 0; i < nc; i++) {
|
|
|
+ dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static void ggml_compute_forward_clamp(
|
|
|
+ const struct ggml_compute_params * params,
|
|
|
+ const struct ggml_tensor * src0,
|
|
|
+ const struct ggml_tensor * src1,
|
|
|
+ struct ggml_tensor * dst) {
|
|
|
+ switch (src0->type) {
|
|
|
+ case GGML_TYPE_F32:
|
|
|
+ {
|
|
|
+ ggml_compute_forward_clamp_f32(params, src0, src1, dst);
|
|
|
+ } break;
|
|
|
+ case GGML_TYPE_F16:
|
|
|
+ case GGML_TYPE_Q4_0:
|
|
|
+ case GGML_TYPE_Q4_1:
|
|
|
+ case GGML_TYPE_Q5_0:
|
|
|
+ case GGML_TYPE_Q5_1:
|
|
|
+ case GGML_TYPE_Q8_0:
|
|
|
+ case GGML_TYPE_Q8_1:
|
|
|
+ case GGML_TYPE_I8:
|
|
|
+ case GGML_TYPE_I16:
|
|
|
+ case GGML_TYPE_I32:
|
|
|
+ case GGML_TYPE_COUNT:
|
|
|
+ {
|
|
|
+ GGML_ASSERT(false);
|
|
|
+ } break;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
// ggml_compute_forward_rope
|
|
|
|
|
|
static void ggml_compute_forward_rope_f32(
|
|
|
@@ -12853,6 +12967,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
|
|
{
|
|
|
ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
|
|
|
} break;
|
|
|
+ case GGML_OP_CLAMP:
|
|
|
+ {
|
|
|
+ ggml_compute_forward_clamp(params, tensor->src0, tensor->src1, tensor);
|
|
|
+ } break;
|
|
|
case GGML_OP_CONV_1D_1S:
|
|
|
{
|
|
|
ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
|
|
|
@@ -13160,6 +13278,10 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
|
|
|
{
|
|
|
GGML_ASSERT(false); // TODO: not implemented
|
|
|
} break;
|
|
|
+ case GGML_OP_CLAMP:
|
|
|
+ {
|
|
|
+ GGML_ASSERT(false); // TODO: not implemented
|
|
|
+ } break;
|
|
|
case GGML_OP_SILU:
|
|
|
{
|
|
|
// necessary for llama
|
|
|
@@ -14039,6 +14161,10 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
|
|
|
{
|
|
|
node->n_tasks = 1; //TODO
|
|
|
} break;
|
|
|
+ case GGML_OP_CLAMP:
|
|
|
+ {
|
|
|
+ node->n_tasks = 1; //TODO
|
|
|
+ } break;
|
|
|
case GGML_OP_CONV_1D_1S:
|
|
|
case GGML_OP_CONV_1D_2S:
|
|
|
{
|