Przeglądaj źródła

server : refactored the task processing logic (#5065)

* server: add llama_server_queue struct

* server: add llama_server_response_event

* server: add comments

* server: move all mutexes away from server.cpp

* server: correct multitask response

* server: only add back deferred tasks when one slot is available

* server: fix a race condition cause by "request_completion"
Xuan Son Nguyen 2 lat temu
rodzic
commit
48c857aa10
5 zmienionych plików z 820 dodań i 672 usunięć
  1. 1 1
      Makefile
  2. 1 1
      examples/server/CMakeLists.txt
  3. 208 0
      examples/server/oai.hpp
  4. 103 670
      examples/server/server.cpp
  5. 507 0
      examples/server/utils.hpp

+ 1 - 1
Makefile

@@ -619,7 +619,7 @@ embedding: examples/embedding/embedding.cpp                   ggml.o llama.o $(C
 save-load-state: examples/save-load-state/save-load-state.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
 	$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
 
-server: examples/server/server.cpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp examples/llava/clip.cpp examples/llava/clip.h common/stb_image.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
+server: examples/server/server.cpp examples/server/oai.hpp examples/server/utils.hpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp examples/llava/clip.cpp examples/llava/clip.h common/stb_image.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
 	$(CXX) $(CXXFLAGS) -Iexamples/server $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS) $(LWINSOCK2) -Wno-cast-qual
 
 gguf: examples/gguf/gguf.cpp ggml.o $(OBJS)

+ 1 - 1
examples/server/CMakeLists.txt

@@ -1,7 +1,7 @@
 set(TARGET server)
 option(LLAMA_SERVER_VERBOSE "Build verbose logging option for Server" ON)
 include_directories(${CMAKE_CURRENT_SOURCE_DIR})
-add_executable(${TARGET} server.cpp json.hpp httplib.h)
+add_executable(${TARGET} server.cpp oai.hpp utils.hpp json.hpp httplib.h)
 install(TARGETS ${TARGET} RUNTIME)
 target_compile_definitions(${TARGET} PRIVATE
     SERVER_VERBOSE=$<BOOL:${LLAMA_SERVER_VERBOSE}>

+ 208 - 0
examples/server/oai.hpp

@@ -0,0 +1,208 @@
+#pragma once
+
+#include <string>
+#include <vector>
+#include <set>
+#include <mutex>
+#include <condition_variable>
+#include <unordered_map>
+
+#include "json.hpp"
+#include "utils.hpp"
+
+#define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo-0613"
+
+using json = nlohmann::json;
+
+inline static json oaicompat_completion_params_parse(
+    const json &body /* openai api json semantics */)
+{
+    json llama_params;
+
+    llama_params["__oaicompat"] = true;
+
+    // Map OpenAI parameters to llama.cpp parameters
+    //
+    // For parameters that are defined by the OpenAI documentation (e.g.
+    // temperature), we explicitly specify OpenAI's intended default; we
+    // need to do that because sometimes OpenAI disagrees with llama.cpp
+    //
+    // https://platform.openai.com/docs/api-reference/chat/create
+    llama_sampling_params default_sparams;
+    llama_params["model"]             = json_value(body, "model", std::string("unknown"));
+    llama_params["prompt"]            = format_chatml(body["messages"]); // OpenAI 'messages' to llama.cpp 'prompt'
+    llama_params["cache_prompt"]      = json_value(body, "cache_prompt", false);
+    llama_params["temperature"]       = json_value(body, "temperature", 0.0);
+    llama_params["top_k"]             = json_value(body, "top_k", default_sparams.top_k);
+    llama_params["top_p"]             = json_value(body, "top_p", 1.0);
+    llama_params["n_predict"]         = json_value(body, "max_tokens", -1);
+    llama_params["logit_bias"]        = json_value(body, "logit_bias",json::object());
+    llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0);
+    llama_params["presence_penalty"]  = json_value(body, "presence_penalty", 0.0);
+    llama_params["seed"]              = json_value(body, "seed", LLAMA_DEFAULT_SEED);
+    llama_params["stream"]            = json_value(body, "stream", false);
+    llama_params["mirostat"]          = json_value(body, "mirostat", default_sparams.mirostat);
+    llama_params["mirostat_tau"]      = json_value(body, "mirostat_tau", default_sparams.mirostat_tau);
+    llama_params["mirostat_eta"]      = json_value(body, "mirostat_eta", default_sparams.mirostat_eta);
+    llama_params["penalize_nl"]       = json_value(body, "penalize_nl", default_sparams.penalize_nl);
+    llama_params["typical_p"]         = json_value(body, "typical_p", default_sparams.typical_p);
+    llama_params["repeat_last_n"]     = json_value(body, "repeat_last_n", default_sparams.penalty_last_n);
+    llama_params["ignore_eos"]        = json_value(body, "ignore_eos", false);
+    llama_params["tfs_z"]             = json_value(body, "tfs_z", default_sparams.tfs_z);
+
+    if (body.count("grammar") != 0) {
+        llama_params["grammar"] = json_value(body, "grammar", json::object());
+    }
+
+    // Handle 'stop' field
+    if (body.contains("stop") && body["stop"].is_string()) {
+        llama_params["stop"] = json::array({body["stop"].get<std::string>()});
+    } else {
+        llama_params["stop"] = json_value(body, "stop", json::array());
+    }
+
+    // Ensure there is ChatML-specific end sequence among stop words
+    llama_params["stop"].push_back("<|im_end|>");
+
+    return llama_params;
+}
+
+inline static json format_final_response_oaicompat(const json &request, const task_result &response, bool streaming = false)
+{
+    json result = response.result_json;
+
+    bool stopped_word        = result.count("stopped_word") != 0;
+    bool stopped_eos         = json_value(result, "stopped_eos", false);
+    int num_tokens_predicted = json_value(result, "tokens_predicted", 0);
+    int num_prompt_tokens    = json_value(result, "tokens_evaluated", 0);
+    std::string content      = json_value(result, "content", std::string(""));
+
+    std::string finish_reason = "length";
+    if (stopped_word || stopped_eos) {
+        finish_reason = "stop";
+    }
+
+    json choices =
+        streaming ? json::array({json{{"finish_reason", finish_reason},
+                                        {"index", 0},
+                                        {"delta", json::object()}}})
+                  : json::array({json{{"finish_reason", finish_reason},
+                                        {"index", 0},
+                                        {"message", json{{"content", content},
+                                                         {"role", "assistant"}}}}});
+
+    std::time_t t = std::time(0);
+
+    json res =
+        json{{"choices", choices},
+            {"created", t},
+            {"model",
+                json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
+            {"object", streaming ? "chat.completion.chunk" : "chat.completion"},
+            {"usage",
+                json{{"completion_tokens", num_tokens_predicted},
+                     {"prompt_tokens",     num_prompt_tokens},
+                     {"total_tokens",      num_tokens_predicted + num_prompt_tokens}}},
+            {"id", gen_chatcmplid()}};
+
+    if (server_verbose) {
+        res["__verbose"] = result;
+    }
+
+    if (result.contains("completion_probabilities")) {
+        res["completion_probabilities"] = json_value(result, "completion_probabilities", json::array());
+    }
+
+    return res;
+}
+
+// return value is vector as there is one case where we might need to generate two responses
+inline static std::vector<json> format_partial_response_oaicompat(const task_result &response) {
+    json result = response.result_json;
+
+    if (!result.contains("model") || !result.contains("oaicompat_token_ctr")) {
+        return std::vector<json>({response.result_json});
+    }
+
+    bool first = json_value(result, "oaicompat_token_ctr", 0) == 0;
+    std::string modelname = json_value(result, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
+
+    bool stopped_word   = json_value(result, "stopped_word", false);
+    bool stopped_eos    = json_value(result, "stopped_eos", false);
+    bool stopped_limit  = json_value(result, "stopped_limit", false);
+    std::string content = json_value(result, "content", std::string(""));
+
+    std::string finish_reason;
+    if (stopped_word || stopped_eos) {
+        finish_reason = "stop";
+    }
+    if (stopped_limit) {
+        finish_reason = "length";
+    }
+
+    std::time_t t = std::time(0);
+
+    json choices;
+
+    if (!finish_reason.empty()) {
+        choices = json::array({json{{"finish_reason", finish_reason},
+                                    {"index", 0},
+                                    {"delta", json::object()}}});
+    } else {
+        if (first) {
+            if (content.empty()) {
+                choices = json::array({json{{"finish_reason", nullptr},
+                                            {"index", 0},
+                                            {"delta", json{{"role", "assistant"}}}}});
+            } else {
+                // We have to send this as two updates to conform to openai behavior
+                json initial_ret = json{{"choices", json::array({json{
+                                        {"finish_reason", nullptr},
+                                        {"index", 0},
+                                        {"delta", json{
+                                            {"role", "assistant"}
+                                        }}}})},
+                            {"created", t},
+                            {"id", gen_chatcmplid()},
+                            {"model", modelname},
+                            {"object", "chat.completion.chunk"}};
+
+                json second_ret = json{
+                            {"choices", json::array({json{{"finish_reason", nullptr},
+                                                            {"index", 0},
+                                                            {"delta", json{
+                                                            {"content", content}}}
+                                                            }})},
+                            {"created", t},
+                            {"id", gen_chatcmplid()},
+                            {"model", modelname},
+                            {"object", "chat.completion.chunk"}};
+
+                return std::vector<json>({initial_ret, second_ret});
+            }
+        } else {
+            // Some idiosyncrasy in task processing logic makes several trailing calls
+            // with empty content, we ignore these at the calee site.
+            if (content.empty()) {
+                return std::vector<json>({json::object()});
+            }
+
+            choices = json::array({json{
+                {"finish_reason", nullptr},
+                {"index", 0},
+                {"delta",
+                json{
+                    {"content", content},
+                }},
+            }});
+        }
+    }
+
+    json ret = json{{"choices", choices},
+                    {"created", t},
+                    {"id", gen_chatcmplid()},
+                    {"model", modelname},
+                    {"object", "chat.completion.chunk"}};
+
+    return std::vector<json>({ret});
+}

Plik diff jest za duży
+ 103 - 670
examples/server/server.cpp


+ 507 - 0
examples/server/utils.hpp

@@ -0,0 +1,507 @@
+#pragma once
+
+#include <string>
+#include <vector>
+#include <set>
+#include <mutex>
+#include <condition_variable>
+#include <unordered_map>
+
+#include "json.hpp"
+
+#include "../llava/clip.h"
+
+using json = nlohmann::json;
+
+extern bool server_verbose;
+
+#ifndef SERVER_VERBOSE
+#define SERVER_VERBOSE 1
+#endif
+
+#if SERVER_VERBOSE != 1
+#define LOG_VERBOSE(MSG, ...)
+#else
+#define LOG_VERBOSE(MSG, ...)                                            \
+    do                                                                   \
+    {                                                                    \
+        if (server_verbose)                                              \
+        {                                                                \
+            server_log("VERBOSE", __func__, __LINE__, MSG, __VA_ARGS__); \
+        }                                                                \
+    } while (0)
+#endif
+
+#define LOG_ERROR(  MSG, ...) server_log("ERROR",   __func__, __LINE__, MSG, __VA_ARGS__)
+#define LOG_WARNING(MSG, ...) server_log("WARNING", __func__, __LINE__, MSG, __VA_ARGS__)
+#define LOG_INFO(   MSG, ...) server_log("INFO",    __func__, __LINE__, MSG, __VA_ARGS__)
+
+//
+// parallel
+//
+
+enum server_state {
+    SERVER_STATE_LOADING_MODEL,  // Server is starting up, model not fully loaded yet
+    SERVER_STATE_READY,          // Server is ready and model is loaded
+    SERVER_STATE_ERROR           // An error occurred, load_model failed
+};
+
+enum task_type {
+    TASK_TYPE_COMPLETION,
+    TASK_TYPE_CANCEL,
+    TASK_TYPE_NEXT_RESPONSE
+};
+
+struct task_server {
+    int id = -1; // to be filled by llama_server_queue
+    int target_id;
+    task_type type;
+    json data;
+    bool infill_mode = false;
+    bool embedding_mode = false;
+    int multitask_id = -1;
+};
+
+struct task_result {
+    int id;
+    int multitask_id = -1;
+    bool stop;
+    bool error;
+    json result_json;
+};
+
+struct task_multi {
+    int id;
+    std::set<int> subtasks_remaining{};
+    std::vector<task_result> results{};
+};
+
+// TODO: can become bool if we can't find use of more states
+enum slot_state
+{
+    IDLE,
+    PROCESSING,
+};
+
+enum slot_command
+{
+    NONE,
+    LOAD_PROMPT,
+    RELEASE,
+};
+
+struct slot_params
+{
+    bool stream       = true;
+    bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt
+
+    uint32_t seed      = -1; // RNG seed
+    int32_t  n_keep    =  0; // number of tokens to keep from initial prompt
+    int32_t  n_predict = -1; // new tokens to predict
+
+    std::vector<std::string> antiprompt;
+
+    json input_prefix;
+    json input_suffix;
+};
+
+struct slot_image
+{
+    int32_t id;
+
+    bool request_encode_image = false;
+    float * image_embedding = nullptr;
+    int32_t image_tokens = 0;
+
+    clip_image_u8 * img_data;
+
+    std::string prefix_prompt; // before of this image
+};
+
+// completion token output with probabilities
+struct completion_token_output
+{
+    struct token_prob
+    {
+        llama_token tok;
+        float prob;
+    };
+
+    std::vector<token_prob> probs;
+    llama_token tok;
+    std::string text_to_send;
+};
+
+static inline void server_log(const char *level, const char *function, int line,
+                       const char *message, const nlohmann::ordered_json &extra)
+{
+    nlohmann::ordered_json log
+    {
+        {"timestamp", time(nullptr)},
+        {"level",     level},
+        {"function",  function},
+        {"line",      line},
+        {"message",   message},
+    };
+
+    if (!extra.empty())
+    {
+        log.merge_patch(extra);
+    }
+
+    const std::string str = log.dump(-1, ' ', false, json::error_handler_t::replace);
+    printf("%.*s\n", (int)str.size(), str.data());
+    fflush(stdout);
+}
+
+//
+// server utils
+//
+
+template <typename T>
+static T json_value(const json &body, const std::string &key, const T &default_value)
+{
+    // Fallback null to default value
+    return body.contains(key) && !body.at(key).is_null()
+        ? body.value(key, default_value)
+        : default_value;
+}
+
+inline std::string format_chatml(std::vector<json> messages)
+{
+    std::ostringstream chatml_msgs;
+
+    for (auto it = messages.begin(); it != messages.end(); ++it) {
+        chatml_msgs << "<|im_start|>"
+                    << json_value(*it, "role",    std::string("user")) << '\n';
+        chatml_msgs << json_value(*it, "content", std::string(""))
+                    << "<|im_end|>\n";
+    }
+
+    chatml_msgs << "<|im_start|>assistant" << '\n';
+
+    return chatml_msgs.str();
+}
+
+//
+// work queue utils
+//
+
+struct llama_server_queue {
+    int id = 0;
+    std::mutex mutex_tasks;
+    // queues
+    std::vector<task_server> queue_tasks;
+    std::vector<task_server> queue_tasks_deferred;
+    std::vector<task_multi> queue_multitasks;
+    std::condition_variable condition_tasks;
+    // callback functions
+    std::function<void(task_server&)> callback_new_task;
+    std::function<void(task_multi&)> callback_finish_multitask;
+    std::function<void(void)> callback_all_task_finished;
+
+    // Add a new task to the end of the queue
+    int post(task_server task) {
+        std::unique_lock<std::mutex> lock(mutex_tasks);
+        if (task.id == -1) {
+            task.id = id++;
+        }
+        queue_tasks.push_back(std::move(task));
+        condition_tasks.notify_one();
+        return task.id;
+    }
+
+    // Add a new task, but defer until one slot is available
+    void defer(task_server task) {
+        std::unique_lock<std::mutex> lock(mutex_tasks);
+        queue_tasks_deferred.push_back(std::move(task));
+    }
+
+    // Get the next id for creating anew task
+    int get_new_id() {
+        std::unique_lock<std::mutex> lock(mutex_tasks);
+        return id++;
+    }
+
+    // Register function to process a new task
+    void on_new_task(std::function<void(task_server&)> callback) {
+        callback_new_task = callback;
+    }
+
+    // Register function to process a multitask
+    void on_finish_multitask(std::function<void(task_multi&)> callback) {
+        callback_finish_multitask = callback;
+    }
+
+    // Register the function to be called when the batch of tasks is finished
+    void on_all_tasks_finished(std::function<void(void)> callback) {
+        callback_all_task_finished = callback;
+    }
+
+    // Call when the state of one slot is changed
+    void notify_slot_changed() {
+        // move deferred tasks back to main loop
+        std::unique_lock<std::mutex> lock(mutex_tasks);
+        for (auto & task : queue_tasks_deferred) {
+            queue_tasks.push_back(std::move(task));
+        }
+        queue_tasks_deferred.clear();
+    }
+
+    // Start the main loop. This call is blocking
+    void start_loop() {
+        while (true) {
+            // new task arrived
+            LOG_VERBOSE("have new task", {});
+            {
+                while (true)
+                {
+                    std::unique_lock<std::mutex> lock(mutex_tasks);
+                    if (queue_tasks.empty()) {
+                        lock.unlock();
+                        break;
+                    }
+                    task_server task = queue_tasks.front();
+                    queue_tasks.erase(queue_tasks.begin());
+                    lock.unlock();
+                    LOG_VERBOSE("callback_new_task", {});
+                    callback_new_task(task);
+                }
+                LOG_VERBOSE("callback_all_task_finished", {});
+                // process and update all the multitasks
+                auto queue_iterator = queue_multitasks.begin();
+                while (queue_iterator != queue_multitasks.end())
+                {
+                    if (queue_iterator->subtasks_remaining.empty())
+                    {
+                        // all subtasks done == multitask is done
+                        task_multi current_multitask = *queue_iterator;
+                        callback_finish_multitask(current_multitask);
+                        // remove this multitask
+                        queue_iterator = queue_multitasks.erase(queue_iterator);
+                    }
+                    else
+                    {
+                        ++queue_iterator;
+                    }
+                }
+                // all tasks in the current loop is finished
+                callback_all_task_finished();
+            }
+            LOG_VERBOSE("wait for new task", {});
+            // wait for new task
+            {
+                std::unique_lock<std::mutex> lock(mutex_tasks);
+                if (queue_tasks.empty()) {
+                    condition_tasks.wait(lock, [&]{
+                        return !queue_tasks.empty();
+                    });
+                }
+            }
+        }
+    }
+
+    //
+    // functions to manage multitasks
+    //
+
+    // add a multitask by specifying the id of all subtask (subtask is a task_server)
+    void add_multitask(int multitask_id, std::vector<int>& sub_ids)
+    {
+        std::lock_guard<std::mutex> lock(mutex_tasks);
+        task_multi multi;
+        multi.id = multitask_id;
+        std::copy(sub_ids.begin(), sub_ids.end(), std::inserter(multi.subtasks_remaining, multi.subtasks_remaining.end()));
+        queue_multitasks.push_back(multi);
+    }
+
+    // updatethe remaining subtasks, while appending results to multitask
+    void update_multitask(int multitask_id, int subtask_id, task_result& result)
+    {
+        std::lock_guard<std::mutex> lock(mutex_tasks);
+        for (auto& multitask : queue_multitasks)
+        {
+            if (multitask.id == multitask_id)
+            {
+                multitask.subtasks_remaining.erase(subtask_id);
+                multitask.results.push_back(result);
+            }
+        }
+    }
+};
+
+struct llama_server_response {
+    typedef std::function<void(int, int, task_result&)> callback_multitask_t;
+    callback_multitask_t callback_update_multitask;
+    // for keeping track of all tasks waiting for the result
+    std::set<int> waiting_task_ids;
+    // the main result queue
+    std::vector<task_result> queue_results;
+    std::mutex mutex_results;
+    std::condition_variable condition_results;
+
+    void add_waiting_task_id(int task_id) {
+        std::unique_lock<std::mutex> lock(mutex_results);
+        waiting_task_ids.insert(task_id);
+    }
+
+    void remove_waiting_task_id(int task_id) {
+        std::unique_lock<std::mutex> lock(mutex_results);
+        waiting_task_ids.erase(task_id);
+    }
+
+    // This function blocks the thread until there is a response for this task_id
+    task_result recv(int task_id) {
+        while (true)
+        {
+            std::unique_lock<std::mutex> lock(mutex_results);
+            condition_results.wait(lock, [&]{
+                return !queue_results.empty();
+            });
+            LOG_VERBOSE("condition_results unblock", {});
+
+            for (int i = 0; i < (int) queue_results.size(); i++)
+            {
+                if (queue_results[i].id == task_id)
+                {
+                    assert(queue_results[i].multitask_id == -1);
+                    task_result res = queue_results[i];
+                    queue_results.erase(queue_results.begin() + i);
+                    return res;
+                }
+            }
+        }
+
+        // should never reach here
+    }
+
+    // Register the function to update multitask
+    void on_multitask_update(callback_multitask_t callback) {
+        callback_update_multitask = callback;
+    }
+
+    // Send a new result to a waiting task_id
+    void send(task_result result) {
+        std::unique_lock<std::mutex> lock(mutex_results);
+        LOG_VERBOSE("send new result", {});
+        for (auto& task_id : waiting_task_ids) {
+            // LOG_TEE("waiting task id %i \n", task_id);
+            // for now, tasks that have associated parent multitasks just get erased once multitask picks up the result
+            if (result.multitask_id == task_id)
+            {
+                LOG_VERBOSE("callback_update_multitask", {});
+                callback_update_multitask(task_id, result.id, result);
+                continue;
+            }
+
+            if (result.id == task_id)
+            {
+                LOG_VERBOSE("queue_results.push_back", {});
+                queue_results.push_back(result);
+                condition_results.notify_one();
+                return;
+            }
+        }
+    }
+};
+
+//
+// base64 utils (TODO: move to common in the future)
+//
+
+static const std::string base64_chars =
+             "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
+             "abcdefghijklmnopqrstuvwxyz"
+             "0123456789+/";
+
+static inline bool is_base64(uint8_t c)
+{
+    return (isalnum(c) || (c == '+') || (c == '/'));
+}
+
+static inline std::vector<uint8_t> base64_decode(const std::string & encoded_string)
+{
+    int i = 0;
+    int j = 0;
+    int in_ = 0;
+
+    int in_len = encoded_string.size();
+
+    uint8_t char_array_4[4];
+    uint8_t char_array_3[3];
+
+    std::vector<uint8_t> ret;
+
+    while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_]))
+    {
+        char_array_4[i++] = encoded_string[in_]; in_++;
+        if (i == 4)
+        {
+            for (i = 0; i <4; i++)
+            {
+                char_array_4[i] = base64_chars.find(char_array_4[i]);
+            }
+
+            char_array_3[0] = ((char_array_4[0]      ) << 2) + ((char_array_4[1] & 0x30) >> 4);
+            char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
+            char_array_3[2] = ((char_array_4[2] & 0x3) << 6) +   char_array_4[3];
+
+            for (i = 0; (i < 3); i++)
+            {
+                ret.push_back(char_array_3[i]);
+            }
+            i = 0;
+        }
+    }
+
+    if (i)
+    {
+        for (j = i; j <4; j++)
+        {
+            char_array_4[j] = 0;
+        }
+
+        for (j = 0; j <4; j++)
+        {
+            char_array_4[j] = base64_chars.find(char_array_4[j]);
+        }
+
+        char_array_3[0] = ((char_array_4[0]      ) << 2) + ((char_array_4[1] & 0x30) >> 4);
+        char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
+        char_array_3[2] = ((char_array_4[2] & 0x3) << 6) +   char_array_4[3];
+
+        for (j = 0; (j < i - 1); j++)
+        {
+            ret.push_back(char_array_3[j]);
+        }
+    }
+
+    return ret;
+}
+
+//
+// random string / id
+//
+
+static std::string random_string()
+{
+    static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");
+
+    std::random_device rd;
+    std::mt19937 generator(rd());
+
+    std::string result(32, ' ');
+
+    for (int i = 0; i < 32; ++i) {
+        result[i] = str[generator() % str.size()];
+    }
+
+    return result;
+}
+
+static std::string gen_chatcmplid()
+{
+    std::stringstream chatcmplid;
+    chatcmplid << "chatcmpl-" << random_string();
+    return chatcmplid.str();
+}

Niektóre pliki nie zostały wyświetlone z powodu dużej ilości zmienionych plików