|
|
@@ -9802,6 +9802,113 @@ class CogVLMModel(LlamaModel):
|
|
|
|
|
|
return [(self.map_tensor_name(name), data_torch)]
|
|
|
|
|
|
+
|
|
|
+@ModelBase.register("JanusForConditionalGeneration")
|
|
|
+class JanusProModel(LlamaModel):
|
|
|
+ model_arch = gguf.MODEL_ARCH.LLAMA # reuse Llama arch
|
|
|
+
|
|
|
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
|
|
+ # Skip vision, aligner, and generation tensors
|
|
|
+ skip_prefixes = (
|
|
|
+ 'model.vision_model.',
|
|
|
+ 'model.aligner.',
|
|
|
+ 'model.vqmodel.',
|
|
|
+ 'model.generation_embeddings.',
|
|
|
+ 'model.generation_aligner.',
|
|
|
+ 'model.generation_head.',
|
|
|
+ )
|
|
|
+ if name.startswith(skip_prefixes):
|
|
|
+ return []
|
|
|
+
|
|
|
+ if name.startswith('model.language_model.'):
|
|
|
+ name = name.replace('model.language_model.', 'model.')
|
|
|
+ elif name.startswith('language_model.'):
|
|
|
+ name = name.replace('language_model.', '')
|
|
|
+
|
|
|
+ return super().modify_tensors(data_torch, name, bid)
|
|
|
+
|
|
|
+
|
|
|
+@ModelBase.register("JanusForConditionalGeneration")
|
|
|
+class JanusProVisionModel(MmprojModel):
|
|
|
+ def __init__(self, *args, **kwargs):
|
|
|
+ super().__init__(*args, **kwargs)
|
|
|
+ assert self.hparams_vision is not None
|
|
|
+ if "intermediate_size" not in self.hparams_vision:
|
|
|
+ mlp_ratio = self.hparams_vision.get("mlp_ratio")
|
|
|
+ hidden_size = self.hparams_vision.get("hidden_size")
|
|
|
+ if mlp_ratio is not None and hidden_size is not None:
|
|
|
+ self.hparams_vision["intermediate_size"] = int(round(hidden_size * mlp_ratio))
|
|
|
+
|
|
|
+ def set_gguf_parameters(self):
|
|
|
+ super().set_gguf_parameters()
|
|
|
+ assert self.hparams_vision is not None
|
|
|
+
|
|
|
+ self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.JANUS_PRO)
|
|
|
+
|
|
|
+ self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-6))
|
|
|
+
|
|
|
+ hidden_act = str(self.hparams_vision.get("hidden_act", "")).lower()
|
|
|
+ if hidden_act == "gelu":
|
|
|
+ self.gguf_writer.add_vision_use_gelu(True)
|
|
|
+ elif hidden_act == "silu":
|
|
|
+ self.gguf_writer.add_vision_use_silu(True)
|
|
|
+
|
|
|
+ def _map_aligner_tensor(self, data_torch: Tensor, name: str) -> Iterable[tuple[str, Tensor]]:
|
|
|
+ """Map aligner tensors to projector format"""
|
|
|
+ suffix = ".bias" if name.endswith(".bias") else ".weight"
|
|
|
+
|
|
|
+ if name.startswith("model.aligner."):
|
|
|
+ local_name = name[len("model.aligner."):]
|
|
|
+ elif name.startswith("aligner."):
|
|
|
+ local_name = name[len("aligner."):]
|
|
|
+ else:
|
|
|
+ raise ValueError(f"Unsupported Janus aligner prefix: {name}")
|
|
|
+
|
|
|
+ if local_name.startswith("fc1."):
|
|
|
+ mm_index = 0
|
|
|
+ elif local_name.startswith("hidden_layers."):
|
|
|
+ parts = local_name.split(".", 2)
|
|
|
+ if len(parts) < 3:
|
|
|
+ raise ValueError(f"Unexpected Janus aligner tensor name: {name}")
|
|
|
+ mm_index = int(parts[1]) + 1
|
|
|
+ else:
|
|
|
+ raise ValueError(f"Unsupported Janus aligner tensor: {name}")
|
|
|
+
|
|
|
+ tensor_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, mm_index, suffix=suffix)
|
|
|
+ return [(tensor_name, data_torch)]
|
|
|
+
|
|
|
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
|
|
+ del bid # unused
|
|
|
+
|
|
|
+ # Skip language model tensors as they will be handled by `JanusProModel`
|
|
|
+ if name.startswith(('model.language_model.', 'language_model.')):
|
|
|
+ return []
|
|
|
+
|
|
|
+ # Skip generation-related components
|
|
|
+ skip_generation_prefixes = (
|
|
|
+ 'model.vqmodel.',
|
|
|
+ 'vqmodel.',
|
|
|
+ 'model.generation_embeddings.',
|
|
|
+ 'generation_embeddings.',
|
|
|
+ 'model.generation_aligner.',
|
|
|
+ 'generation_aligner.',
|
|
|
+ 'model.generation_head.',
|
|
|
+ 'generation_head.',
|
|
|
+ )
|
|
|
+ if name.startswith(skip_generation_prefixes):
|
|
|
+ return []
|
|
|
+
|
|
|
+ # Handle aligner tensors
|
|
|
+ if name.startswith(('model.aligner.', 'aligner.')):
|
|
|
+ return list(self._map_aligner_tensor(data_torch, name))
|
|
|
+
|
|
|
+ # Handle vision tensors
|
|
|
+ if name.startswith(('model.vision_model.', 'vision_model.')):
|
|
|
+ return [(self.map_tensor_name(name), data_torch)]
|
|
|
+
|
|
|
+ return []
|
|
|
+
|
|
|
+
|
|
|
###### CONVERSION LOGIC ######
|
|
|
|
|
|
|