Przeglądaj źródła

common : normalize naming style (#7462)

* common : normalize naming style

ggml-ci

* common : match declaration / definition order

* zig : try to fix build
Georgi Gerganov 1 rok temu
rodzic
commit
6ff13987ad

+ 6 - 6
build.zig

@@ -129,14 +129,14 @@ pub fn build(b: *std.build.Builder) !void {
     const clip = make.obj("clip", "examples/llava/clip.cpp");
     const llava = make.obj("llava", "examples/llava/llava.cpp");
 
-    _ = make.exe("main", "examples/main/main.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo, sampling, console, grammar_parser });
-    _ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo });
-    _ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo });
-    _ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo });
-    _ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo, train });
+    _ = make.exe("main", "examples/main/main.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, sampling, json_schema_to_grammar, buildinfo, console, grammar_parser });
+    _ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, sampling, json_schema_to_grammar, buildinfo });
+    _ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, sampling, json_schema_to_grammar, buildinfo });
+    _ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, sampling, json_schema_to_grammar, buildinfo });
+    _ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, sampling, json_schema_to_grammar, buildinfo, train });
     _ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo, train });
 
-    const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo, sampling, grammar_parser, clip, llava });
+    const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, sampling, json_schema_to_grammar, buildinfo, grammar_parser, clip, llava });
     if (server.target.isWindows()) {
         server.linkSystemLibrary("ws2_32");
     }

Plik diff jest za duży
+ 461 - 412
common/common.cpp


+ 46 - 42
common/common.h

@@ -27,7 +27,7 @@
 #define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
 
 #define print_build_info() do {                                                                     \
-    fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT);           \
+    fprintf(stderr, "%s: build = %d (%s)\n",      __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT);      \
     fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET);    \
 } while(0)
 
@@ -35,14 +35,18 @@
 
 // build info
 extern int LLAMA_BUILD_NUMBER;
-extern char const *LLAMA_COMMIT;
-extern char const *LLAMA_COMPILER;
-extern char const *LLAMA_BUILD_TARGET;
+extern char const * LLAMA_COMMIT;
+extern char const * LLAMA_COMPILER;
+extern char const * LLAMA_BUILD_TARGET;
 
 struct llama_control_vector_load_info;
 
-int get_math_cpu_count();
-int32_t get_num_physical_cores();
+//
+// CPU utils
+//
+
+int32_t cpu_get_num_physical_cores();
+int32_t cpu_get_num_math();
 
 //
 // CLI argument parsing
@@ -51,7 +55,7 @@ int32_t get_num_physical_cores();
 struct gpt_params {
     uint32_t seed                 = LLAMA_DEFAULT_SEED; // RNG seed
 
-    int32_t n_threads             = get_math_cpu_count();
+    int32_t n_threads             = cpu_get_num_math();
     int32_t n_threads_draft       = -1;
     int32_t n_threads_batch       = -1;    // number of threads to use for batch processing (-1 = use n_threads)
     int32_t n_threads_batch_draft = -1;
@@ -179,33 +183,34 @@ struct gpt_params {
 
 void gpt_params_handle_model_default(gpt_params & params);
 
-bool parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
-
-bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params);
-
-bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
+bool gpt_params_parse_ex   (int argc, char ** argv, gpt_params & params);
+bool gpt_params_parse      (int argc, char ** argv, gpt_params & params);
+bool gpt_params_find_arg   (int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param);
+void gpt_params_print_usage(int argc, char ** argv, const gpt_params & params);
 
-void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
+std::string gpt_params_get_system_info(const gpt_params & params);
 
-bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param);
-
-std::string get_system_info(const gpt_params & params);
+//
+// String utils
+//
 
-std::string gpt_random_prompt(std::mt19937 & rng);
+std::vector<std::string> string_split(std::string input, char separator);
 
-void process_escapes(std::string& input);
+std::string string_strip(const std::string & str);
+std::string string_get_sortable_timestamp();
+std::string string_random_prompt(std::mt19937 & rng);
 
-bool validate_file_name(const std::string & filename);
+bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
+void string_process_escapes(std::string & input);
 
 //
-// String utils
+// Filesystem utils
 //
 
-std::vector<llama_sampler_type> sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
-std::vector<llama_sampler_type> sampler_types_from_chars(const std::string & names_string);
-std::vector<std::string> string_split(std::string input, char separator);
-std::string string_strip(const std::string & str);
-std::string sampler_type_to_name_string(llama_sampler_type sampler_type);
+bool fs_validate_filename(const std::string & filename);
+bool fs_create_directory_with_parents(const std::string & path);
+
+std::string fs_get_cache_directory();
 
 //
 // Model utils
@@ -276,30 +281,15 @@ std::string llama_detokenize_bpe(
 // defaults to true when model type is SPM, otherwise false.
 bool llama_should_add_bos_token(const llama_model * model);
 
-//
-// YAML utils
-//
-
-bool create_directory_with_parents(const std::string & path);
-std::string get_cache_directory();
-void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector<float> & data);
-void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector<int> & data);
-void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const char * data);
-std::string get_sortable_timestamp();
-
-void dump_non_result_info_yaml(
-    FILE * stream, const gpt_params & params, const llama_context * lctx,
-    const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);
-
 //
 // KV cache utils
 //
 
 // Dump the KV cache view with the number of sequences per cell.
-void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size = 80);
+void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
 
 // Dump the KV cache view showing individual sequences in each cell (long output).
-void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
+void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
 
 //
 // Embedding utils
@@ -333,6 +323,20 @@ llama_control_vector_data llama_control_vector_load(const std::vector<llama_cont
 //
 // Split utils
 //
+
 static const char * const LLM_KV_SPLIT_NO            = "split.no";
 static const char * const LLM_KV_SPLIT_COUNT         = "split.count";
 static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
+
+//
+// YAML utils
+//
+
+void yaml_dump_vector_float    (FILE * stream, const char * prop_name, const std::vector<float> & data);
+void yaml_dump_vector_int      (FILE * stream, const char * prop_name, const std::vector<int> & data);
+void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data);
+
+void yaml_dump_non_result_info(
+    FILE * stream, const gpt_params & params, const llama_context * lctx,
+    const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);
+

+ 82 - 1
common/sampling.cpp

@@ -125,7 +125,7 @@ std::string llama_sampling_order_print(const llama_sampling_params & params) {
     std::string result = "CFG -> Penalties ";
     if (params.mirostat == 0) {
         for (auto sampler_type : params.samplers_sequence) {
-            const auto sampler_type_name = sampler_type_to_name_string(sampler_type);
+            const auto sampler_type_name = llama_sampling_type_to_str(sampler_type);
             if (!sampler_type_name.empty()) {
                 result += "-> " + sampler_type_name + " ";
             }
@@ -137,6 +137,87 @@ std::string llama_sampling_order_print(const llama_sampling_params & params) {
     return result;
 }
 
+std::string llama_sampling_type_to_str(llama_sampler_type sampler_type) {
+    switch (sampler_type) {
+        case llama_sampler_type::TOP_K:       return "top_k";
+        case llama_sampler_type::TFS_Z:       return "tfs_z";
+        case llama_sampler_type::TYPICAL_P:   return "typical_p";
+        case llama_sampler_type::TOP_P:       return "top_p";
+        case llama_sampler_type::MIN_P:       return "min_p";
+        case llama_sampler_type::TEMPERATURE: return "temperature";
+        default : return "";
+    }
+}
+
+std::vector<llama_sampler_type> llama_sampling_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
+    std::unordered_map<std::string, llama_sampler_type> sampler_canonical_name_map {
+        {"top_k",       llama_sampler_type::TOP_K},
+        {"top_p",       llama_sampler_type::TOP_P},
+        {"typical_p",   llama_sampler_type::TYPICAL_P},
+        {"min_p",       llama_sampler_type::MIN_P},
+        {"tfs_z",       llama_sampler_type::TFS_Z},
+        {"temperature", llama_sampler_type::TEMPERATURE}
+    };
+
+    // since samplers names are written multiple ways
+    // make it ready for both system names and input names
+    std::unordered_map<std::string, llama_sampler_type> sampler_alt_name_map {
+        {"top-k",       llama_sampler_type::TOP_K},
+        {"top-p",       llama_sampler_type::TOP_P},
+        {"nucleus",     llama_sampler_type::TOP_P},
+        {"typical-p",   llama_sampler_type::TYPICAL_P},
+        {"typical",     llama_sampler_type::TYPICAL_P},
+        {"min-p",       llama_sampler_type::MIN_P},
+        {"tfs-z",       llama_sampler_type::TFS_Z},
+        {"tfs",         llama_sampler_type::TFS_Z},
+        {"temp",        llama_sampler_type::TEMPERATURE}
+    };
+
+    std::vector<llama_sampler_type> sampler_types;
+    sampler_types.reserve(names.size());
+    for (const auto & name : names)
+    {
+        auto sampler_item = sampler_canonical_name_map.find(name);
+        if (sampler_item != sampler_canonical_name_map.end())
+        {
+            sampler_types.push_back(sampler_item->second);
+        }
+        else
+        {
+            if (allow_alt_names)
+            {
+                sampler_item = sampler_alt_name_map.find(name);
+                if (sampler_item != sampler_alt_name_map.end())
+                {
+                    sampler_types.push_back(sampler_item->second);
+                }
+            }
+        }
+    }
+    return sampler_types;
+}
+
+std::vector<llama_sampler_type> llama_sampling_types_from_chars(const std::string & names_string) {
+    std::unordered_map<char, llama_sampler_type> sampler_name_map {
+        {'k', llama_sampler_type::TOP_K},
+        {'p', llama_sampler_type::TOP_P},
+        {'y', llama_sampler_type::TYPICAL_P},
+        {'m', llama_sampler_type::MIN_P},
+        {'f', llama_sampler_type::TFS_Z},
+        {'t', llama_sampler_type::TEMPERATURE}
+    };
+
+    std::vector<llama_sampler_type> sampler_types;
+    sampler_types.reserve(names_string.size());
+    for (const auto & c : names_string) {
+        const auto sampler_item = sampler_name_map.find(c);
+        if (sampler_item != sampler_name_map.end()) {
+            sampler_types.push_back(sampler_item->second);
+        }
+    }
+    return sampler_types;
+}
+
 // no reasons to expose this function in header
 static void sampler_queue(
                    struct llama_context * ctx_main,

+ 5 - 0
common/sampling.h

@@ -116,6 +116,11 @@ std::string llama_sampling_print(const llama_sampling_params & params);
 // Print sampling order into a string
 std::string llama_sampling_order_print(const llama_sampling_params & params);
 
+std::string llama_sampling_type_to_str(llama_sampler_type sampler_type);
+
+std::vector<llama_sampler_type> llama_sampling_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
+std::vector<llama_sampler_type> llama_sampling_types_from_chars(const std::string & names_string);
+
 // this is a common sampling function used across the examples for convenience
 // it can serve as a starting point for implementing your own sampling function
 // Note: When using multiple sequences, it is the caller's responsibility to call

+ 1 - 1
common/train.cpp

@@ -1380,7 +1380,7 @@ bool consume_common_train_arg(
 
 void finish_processing_train_args(struct train_params_common * params) {
     if (params->escape) {
-        process_escapes(params->sample_start);
+        string_process_escapes(params->sample_start);
     }
 }
 

+ 1 - 1
examples/batched/batched.cpp

@@ -48,7 +48,7 @@ int main(int argc, char ** argv) {
         params.prompt = "Hello my name is";
     }
 
-    process_escapes(params.prompt);
+    string_process_escapes(params.prompt);
 
     // init LLM
 

+ 2 - 2
examples/embedding/embedding.cpp

@@ -80,7 +80,7 @@ int main(int argc, char ** argv) {
 
     std::mt19937 rng(params.seed);
     if (params.random_prompt) {
-        params.prompt = gpt_random_prompt(rng);
+        params.prompt = string_random_prompt(rng);
     }
 
     llama_backend_init();
@@ -107,7 +107,7 @@ int main(int argc, char ** argv) {
     // print system information
     {
         fprintf(stderr, "\n");
-        fprintf(stderr, "%s\n", get_system_info(params).c_str());
+        fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
     }
 
     // split the prompt into lines

+ 2 - 2
examples/eval-callback/eval-callback.cpp

@@ -152,7 +152,7 @@ int main(int argc, char ** argv) {
 
     std::mt19937 rng(params.seed);
     if (params.random_prompt) {
-        params.prompt = gpt_random_prompt(rng);
+        params.prompt = string_random_prompt(rng);
     }
 
     llama_backend_init();
@@ -176,7 +176,7 @@ int main(int argc, char ** argv) {
     // print system information
     {
         fprintf(stderr, "\n");
-        fprintf(stderr, "%s\n", get_system_info(params).c_str());
+        fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
     }
 
     bool OK = run(ctx, params);

+ 2 - 2
examples/imatrix/imatrix.cpp

@@ -598,7 +598,7 @@ int main(int argc, char ** argv) {
 
     std::mt19937 rng(params.seed);
     if (params.random_prompt) {
-        params.prompt = gpt_random_prompt(rng);
+        params.prompt = string_random_prompt(rng);
     }
 
     sparams.dataset = params.prompt_file;
@@ -667,7 +667,7 @@ int main(int argc, char ** argv) {
     // print system information
     {
         fprintf(stderr, "\n");
-        fprintf(stderr, "%s\n", get_system_info(params).c_str());
+        fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
     }
 
     bool OK = compute_imatrix(ctx, params, compute_ppl, from_chunk);

+ 8 - 8
examples/infill/infill.cpp

@@ -50,9 +50,9 @@ static void write_logfile(
         return;
     }
 
-    const std::string timestamp = get_sortable_timestamp();
+    const std::string timestamp = string_get_sortable_timestamp();
 
-    const bool success = create_directory_with_parents(params.logdir);
+    const bool success = fs_create_directory_with_parents(params.logdir);
     if (!success) {
         fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
                 __func__, params.logdir.c_str());
@@ -70,7 +70,7 @@ static void write_logfile(
     fprintf(logfile, "binary: infill\n");
     char model_desc[128];
     llama_model_desc(model, model_desc, sizeof(model_desc));
-    dump_non_result_info_yaml(logfile, params, ctx, timestamp, input_tokens, model_desc);
+    yaml_dump_non_result_info(logfile, params, ctx, timestamp, input_tokens, model_desc);
 
     fprintf(logfile, "\n");
     fprintf(logfile, "######################\n");
@@ -78,8 +78,8 @@ static void write_logfile(
     fprintf(logfile, "######################\n");
     fprintf(logfile, "\n");
 
-    dump_string_yaml_multiline(logfile, "output", output.c_str());
-    dump_vector_int_yaml(logfile, "output_tokens", output_tokens);
+    yaml_dump_string_multiline(logfile, "output", output.c_str());
+    yaml_dump_vector_int(logfile, "output_tokens", output_tokens);
 
     llama_dump_timing_info_yaml(logfile, ctx);
     fclose(logfile);
@@ -236,7 +236,7 @@ int main(int argc, char ** argv) {
     // print system information
     {
         LOG_TEE("\n");
-        LOG_TEE("%s\n", get_system_info(params).c_str());
+        LOG_TEE("%s\n", gpt_params_get_system_info(params).c_str());
     }
     const bool add_bos = llama_should_add_bos_token(model);
     GGML_ASSERT(llama_add_eos_token(model) != 1);
@@ -621,8 +621,8 @@ int main(int argc, char ** argv) {
 
                 if (params.escape) {
                     //process escape sequences, for the initial prompt this is done in common.cpp when we load the params, but for the interactive mode we need to do it here
-                    process_escapes(params.input_prefix);
-                    process_escapes(params.input_suffix);
+                    string_process_escapes(params.input_prefix);
+                    string_process_escapes(params.input_suffix);
                 }
                 suff_rm_leading_spc = params.escape;
                 if (suff_rm_leading_spc && params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1) {

+ 1 - 1
examples/llama-bench/llama-bench.cpp

@@ -200,7 +200,7 @@ static const cmd_params cmd_params_defaults = {
     /* n_ubatch      */ {512},
     /* type_k        */ {GGML_TYPE_F16},
     /* type_v        */ {GGML_TYPE_F16},
-    /* n_threads     */ {get_math_cpu_count()},
+    /* n_threads     */ {cpu_get_num_math()},
     /* n_gpu_layers  */ {99},
     /* split_mode    */ {LLAMA_SPLIT_MODE_LAYER},
     /* main_gpu      */ {0},

+ 1 - 1
examples/llava/llava-cli.cpp

@@ -290,7 +290,7 @@ int main(int argc, char ** argv) {
 #endif // LOG_DISABLE_LOGS
 
     if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
-        gpt_print_usage(argc, argv, params);
+        gpt_params_print_usage(argc, argv, params);
         show_additional_info(argc, argv);
         return 1;
     }

+ 1 - 1
examples/lookahead/lookahead.cpp

@@ -174,7 +174,7 @@ int main(int argc, char ** argv) {
         // debug
         if (dump_kv_cache) {
             llama_kv_cache_view_update(ctx, &kvc_view);
-            dump_kv_cache_view_seqs(kvc_view, 40);
+            llama_kv_cache_dump_view_seqs(kvc_view, 40);
         }
 
         // build the mask from https://lmsys.org/blog/2023-11-21-lookahead-decoding/

+ 1 - 1
examples/lookup/lookup.cpp

@@ -121,7 +121,7 @@ int main(int argc, char ** argv){
         // debug
         if (dump_kv_cache) {
             llama_kv_cache_view_update(ctx, &kvc_view);
-            dump_kv_cache_view_seqs(kvc_view, 40);
+            llama_kv_cache_dump_view_seqs(kvc_view, 40);
         }
 
         // print current draft sequence

+ 8 - 8
examples/main/main.cpp

@@ -60,9 +60,9 @@ static void write_logfile(
         return;
     }
 
-    const std::string timestamp = get_sortable_timestamp();
+    const std::string timestamp = string_get_sortable_timestamp();
 
-    const bool success = create_directory_with_parents(params.logdir);
+    const bool success = fs_create_directory_with_parents(params.logdir);
     if (!success) {
         fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
                 __func__, params.logdir.c_str());
@@ -80,7 +80,7 @@ static void write_logfile(
     fprintf(logfile, "binary: main\n");
     char model_desc[128];
     llama_model_desc(model, model_desc, sizeof(model_desc));
-    dump_non_result_info_yaml(logfile, params, ctx, timestamp, input_tokens, model_desc);
+    yaml_dump_non_result_info(logfile, params, ctx, timestamp, input_tokens, model_desc);
 
     fprintf(logfile, "\n");
     fprintf(logfile, "######################\n");
@@ -88,8 +88,8 @@ static void write_logfile(
     fprintf(logfile, "######################\n");
     fprintf(logfile, "\n");
 
-    dump_string_yaml_multiline(logfile, "output", output.c_str());
-    dump_vector_int_yaml(logfile, "output_tokens", output_tokens);
+    yaml_dump_string_multiline(logfile, "output", output.c_str());
+    yaml_dump_vector_int(logfile, "output_tokens", output_tokens);
 
     llama_dump_timing_info_yaml(logfile, ctx);
     fclose(logfile);
@@ -181,7 +181,7 @@ int main(int argc, char ** argv) {
 
     std::mt19937 rng(params.seed);
     if (params.random_prompt) {
-        params.prompt = gpt_random_prompt(rng);
+        params.prompt = string_random_prompt(rng);
     }
 
     LOG("%s: llama backend init\n", __func__);
@@ -219,7 +219,7 @@ int main(int argc, char ** argv) {
     // print system information
     {
         LOG_TEE("\n");
-        LOG_TEE("%s\n", get_system_info(params).c_str());
+        LOG_TEE("%s\n", gpt_params_get_system_info(params).c_str());
     }
 
     std::string path_session = params.path_prompt_cache;
@@ -879,7 +879,7 @@ int main(int argc, char ** argv) {
                         embd_inp.insert(embd_inp.end(), cml_pfx.begin(), cml_pfx.end());
                     }
                     if (params.escape) {
-                        process_escapes(buffer);
+                        string_process_escapes(buffer);
                     }
 
                     const auto line_pfx = ::llama_tokenize(ctx, params.input_prefix, false, true);

+ 1 - 1
examples/parallel/parallel.cpp

@@ -210,7 +210,7 @@ int main(int argc, char ** argv) {
     while (true) {
         if (dump_kv_cache) {
             llama_kv_cache_view_update(ctx, &kvc_view);
-            dump_kv_cache_view_seqs(kvc_view, 40);
+            llama_kv_cache_dump_view_seqs(kvc_view, 40);
         }
 
         llama_batch_clear(batch);

+ 7 - 7
examples/perplexity/perplexity.cpp

@@ -44,9 +44,9 @@ static void write_logfile(
         return;
     }
 
-    const std::string timestamp = get_sortable_timestamp();
+    const std::string timestamp = string_get_sortable_timestamp();
 
-    const bool success = create_directory_with_parents(params.logdir);
+    const bool success = fs_create_directory_with_parents(params.logdir);
     if (!success) {
         fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
                 __func__, params.logdir.c_str());
@@ -64,7 +64,7 @@ static void write_logfile(
     fprintf(logfile, "binary: main\n");
     char model_desc[128];
     llama_model_desc(model, model_desc, sizeof(model_desc));
-    dump_non_result_info_yaml(logfile, params, ctx, timestamp, results.tokens, model_desc);
+    yaml_dump_non_result_info(logfile, params, ctx, timestamp, results.tokens, model_desc);
 
     fprintf(logfile, "\n");
     fprintf(logfile, "######################\n");
@@ -72,9 +72,9 @@ static void write_logfile(
     fprintf(logfile, "######################\n");
     fprintf(logfile, "\n");
 
-    dump_vector_float_yaml(logfile, "logits", results.logits);
+    yaml_dump_vector_float(logfile, "logits", results.logits);
     fprintf(logfile, "ppl_value: %f\n", results.ppl_value);
-    dump_vector_float_yaml(logfile, "probs", results.probs);
+    yaml_dump_vector_float(logfile, "probs", results.probs);
 
     llama_dump_timing_info_yaml(logfile, ctx);
     fclose(logfile);
@@ -2007,7 +2007,7 @@ int main(int argc, char ** argv) {
 
     std::mt19937 rng(params.seed);
     if (params.random_prompt) {
-        params.prompt = gpt_random_prompt(rng);
+        params.prompt = string_random_prompt(rng);
     }
 
     llama_backend_init();
@@ -2035,7 +2035,7 @@ int main(int argc, char ** argv) {
     // print system information
     {
         fprintf(stderr, "\n");
-        fprintf(stderr, "%s\n", get_system_info(params).c_str());
+        fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
     }
 
     struct results_perplexity results;

+ 1 - 1
examples/quantize/quantize.cpp

@@ -259,7 +259,7 @@ int main(int argc, char ** argv) {
                 usage(argv[0]);
             }
         } else if (strcmp(argv[arg_idx], "--override-kv") == 0) {
-            if (arg_idx == argc-1 || !parse_kv_override(argv[++arg_idx], kv_overrides)) {
+            if (arg_idx == argc-1 || !string_parse_kv_override(argv[++arg_idx], kv_overrides)) {
                 usage(argv[0]);
             }
         } else if (strcmp(argv[arg_idx], "--allow-requantize") == 0) {

+ 2 - 2
examples/retrieval/retrieval.cpp

@@ -11,7 +11,7 @@ struct retrieval_params {
 };
 
 static void retrieval_params_print_usage(int argc, char ** argv, gpt_params & gpt_params, retrieval_params & params) {
-    gpt_print_usage(argc, argv, gpt_params);
+    gpt_params_print_usage(argc, argv, gpt_params);
     printf("retrieval options:\n");
     printf("  --context-file FNAME  file containing context to embed.\n");
     printf("                        specify multiple files by providing --context-file option multiple times.\n");
@@ -226,7 +226,7 @@ int main(int argc, char ** argv) {
     // print system information
     {
         fprintf(stderr, "\n");
-        fprintf(stderr, "%s\n", get_system_info(params).c_str());
+        fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
     }
 
     // max batch size

+ 5 - 5
examples/server/server.cpp

@@ -1019,7 +1019,7 @@ struct server_context {
                         sampler_names.emplace_back(sampler_name);
                     }
                 }
-                slot.sparams.samplers_sequence = sampler_types_from_names(sampler_names, false);
+                slot.sparams.samplers_sequence = llama_sampling_types_from_names(sampler_names, false);
             } else {
                 slot.sparams.samplers_sequence = default_sparams.samplers_sequence;
             }
@@ -1256,7 +1256,7 @@ struct server_context {
         std::vector<std::string> samplers_sequence;
         samplers_sequence.reserve(slot.sparams.samplers_sequence.size());
         for (const auto & sampler_type : slot.sparams.samplers_sequence) {
-            samplers_sequence.emplace_back(sampler_type_to_name_string(sampler_type));
+            samplers_sequence.emplace_back(llama_sampling_type_to_str(sampler_type));
         }
 
         return json {
@@ -2852,7 +2852,7 @@ static void server_params_parse(int argc, char ** argv, server_params & sparams,
                 invalid_param = true;
                 break;
             }
-            if (!parse_kv_override(argv[i], params.kv_overrides)) {
+            if (!string_parse_kv_override(argv[i], params.kv_overrides)) {
                 fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
                 invalid_param = true;
                 break;
@@ -3310,7 +3310,7 @@ int main(int argc, char ** argv) {
     const auto handle_slots_save = [&ctx_server, &res_error, &sparams](const httplib::Request & req, httplib::Response & res, int id_slot) {
         json request_data = json::parse(req.body);
         std::string filename = request_data.at("filename");
-        if (!validate_file_name(filename)) {
+        if (!fs_validate_filename(filename)) {
             res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
             return;
         }
@@ -3340,7 +3340,7 @@ int main(int argc, char ** argv) {
     const auto handle_slots_restore = [&ctx_server, &res_error, &sparams](const httplib::Request & req, httplib::Response & res, int id_slot) {
         json request_data = json::parse(req.body);
         std::string filename = request_data.at("filename");
-        if (!validate_file_name(filename)) {
+        if (!fs_validate_filename(filename)) {
             res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
             return;
         }

Niektóre pliki nie zostały wyświetlone z powodu dużej ilości zmienionych plików