Explorar el Código

opencl: add sqr, sqrt, mean and ssm_conv (#17476)

* opencl: add sqr

* opencl: add sqrt

* opencl: add mean

* opencl: add ssm_conv

* opencl: add missing cl_khr_fp16

* opencl: do sqrt in f32 then convert to f16 for better precision
lhez hace 1 mes
padre
commit
7cba58bbea

+ 4 - 0
ggml/src/ggml-opencl/CMakeLists.txt

@@ -70,6 +70,7 @@ set(GGML_OPENCL_KERNELS
     group_norm
     im2col_f32
     im2col_f16
+    mean
     mul_mat_Ab_Bi_8x4
     mul_mv_f16_f16
     mul_mv_f16_f32_1row
@@ -109,6 +110,9 @@ set(GGML_OPENCL_KERNELS
     softmax_4_f16
     softmax_f32
     softmax_f16
+    sqr
+    sqrt
+    ssm_conv
     sub
     sum_rows
     transpose

+ 331 - 0
ggml/src/ggml-opencl/ggml-opencl.cpp

@@ -449,6 +449,9 @@ struct ggml_backend_opencl_context {
     cl_kernel kernel_sub, kernel_sub_row, kernel_sub_f16, kernel_sub_row_f16;
     cl_kernel kernel_add_id;
     cl_kernel kernel_scale;
+    cl_kernel kernel_sqr_cont_f32, kernel_sqr_cont_f32_4, kernel_sqr_cont_f16, kernel_sqr_cont_f16_4;
+    cl_kernel kernel_sqrt_cont_f32, kernel_sqrt_cont_f32_4, kernel_sqrt_cont_f16, kernel_sqrt_cont_f16_4;
+    cl_kernel kernel_mean_f32;
     cl_kernel kernel_silu, kernel_silu_4;
     cl_kernel kernel_gelu, kernel_gelu_4;
     cl_kernel kernel_gelu_erf, kernel_gelu_erf_4;
@@ -509,6 +512,7 @@ struct ggml_backend_opencl_context {
     cl_kernel kernel_conv_2d_f16;
     cl_kernel kernel_conv_2d_f32;
     cl_kernel kernel_conv_2d_f16_f32;
+    cl_kernel kernel_ssm_conv_f32_f32, kernel_ssm_conv_f32_f32_4;
     cl_kernel kernel_timestep_embedding;
     cl_kernel kernel_gemv_moe_mxfp4_f32, kernel_gemm_moe_mxfp4_f32;
     cl_kernel kernel_mul_mv_id_q4_0_f32_8x_flat;
@@ -1552,6 +1556,66 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
         GGML_LOG_CONT(".");
     }
 
+    // sqr
+    {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+        const std::string kernel_src {
+            #include "sqr.cl.h"
+        };
+#else
+        const std::string kernel_src = read_file("sqr.cl");
+#endif
+        cl_program prog =
+            build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+        CL_CHECK((backend_ctx->kernel_sqr_cont_f32     = clCreateKernel(prog, "kernel_sqr_cont_f32", &err), err));
+        CL_CHECK((backend_ctx->kernel_sqr_cont_f32_4   = clCreateKernel(prog, "kernel_sqr_cont_f32_4", &err), err));
+        CL_CHECK((backend_ctx->kernel_sqr_cont_f16     = clCreateKernel(prog, "kernel_sqr_cont_f16", &err), err));
+        CL_CHECK((backend_ctx->kernel_sqr_cont_f16_4   = clCreateKernel(prog, "kernel_sqr_cont_f16_4", &err), err));
+
+        CL_CHECK(clReleaseProgram(prog));
+        GGML_LOG_CONT(".");
+    }
+
+    // sqrt
+    {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+        const std::string kernel_src {
+            #include "sqrt.cl.h"
+        };
+#else
+        const std::string kernel_src = read_file("sqrt.cl");
+#endif
+        cl_program prog =
+            build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+        CL_CHECK((backend_ctx->kernel_sqrt_cont_f32     = clCreateKernel(prog, "kernel_sqrt_cont_f32", &err), err));
+        CL_CHECK((backend_ctx->kernel_sqrt_cont_f32_4   = clCreateKernel(prog, "kernel_sqrt_cont_f32_4", &err), err));
+        CL_CHECK((backend_ctx->kernel_sqrt_cont_f16     = clCreateKernel(prog, "kernel_sqrt_cont_f16", &err), err));
+        CL_CHECK((backend_ctx->kernel_sqrt_cont_f16_4   = clCreateKernel(prog, "kernel_sqrt_cont_f16_4", &err), err));
+
+        CL_CHECK(clReleaseProgram(prog));
+        GGML_LOG_CONT(".");
+    }
+
+    // mean
+    {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+        const std::string kernel_src {
+            #include "mean.cl.h"
+        };
+#else
+        const std::string kernel_src = read_file("mean.cl");
+#endif
+        cl_program prog =
+            build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+        CL_CHECK((backend_ctx->kernel_mean_f32 = clCreateKernel(prog, "kernel_mean_f32", &err), err));
+
+        CL_CHECK(clReleaseProgram(prog));
+        GGML_LOG_CONT(".");
+    }
+
     // sub
     {
 #ifdef GGML_OPENCL_EMBED_KERNELS
@@ -1825,6 +1889,24 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
                 }
     }
 
+    // ssm_conv
+    {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+        const std::string kernel_src {
+            #include "ssm_conv.cl.h"
+        };
+#else
+        const std::string kernel_src = read_file("ssm_conv.cl");
+#endif
+        cl_program prog =
+            build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+        CL_CHECK((backend_ctx->kernel_ssm_conv_f32_f32   = clCreateKernel(prog, "kernel_ssm_conv_f32_f32", &err), err));
+        CL_CHECK((backend_ctx->kernel_ssm_conv_f32_f32_4 = clCreateKernel(prog, "kernel_ssm_conv_f32_f32_4", &err), err));
+        CL_CHECK(clReleaseProgram(prog));
+        GGML_LOG_CONT(".");
+    }
+
     // mul_mv_id_q4_0_f32_8x_flat
     {
 #ifdef GGML_OPENCL_EMBED_KERNELS
@@ -2959,6 +3041,10 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
                    (op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16);
         case GGML_OP_ADD_ID:
             return op->src[0]->type == GGML_TYPE_F32;
+        case GGML_OP_SQR:
+        case GGML_OP_SQRT:
+            return (op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16) &&
+                    ggml_is_contiguous(op->src[0]);
         case GGML_OP_UNARY:
             switch (ggml_get_unary_op(op)) {
                 case GGML_UNARY_OP_GELU:
@@ -3007,6 +3093,8 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
             return (op->src[0]->type == GGML_TYPE_F16 && op->src[1]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16) ||
                    (op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) ||
                    (op->src[0]->type == GGML_TYPE_F16 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32);
+        case GGML_OP_SSM_CONV:
+            return (op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32);
         case GGML_OP_CONCAT:
             return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
         case GGML_OP_TIMESTEP_EMBEDDING:
@@ -3075,6 +3163,7 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
             return cols <= max_workgroup_size && op->src[0]->type == GGML_TYPE_F32;
         }
         case GGML_OP_SUM_ROWS:
+        case GGML_OP_MEAN:
             return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]);
         case GGML_OP_FLASH_ATTN_EXT:
             {
@@ -5193,6 +5282,224 @@ static void ggml_cl_sub(ggml_backend_t backend, const ggml_tensor * src0, const
     }
 }
 
+static void ggml_cl_sqr(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    GGML_ASSERT(src0);
+    GGML_ASSERT(src0->extra);
+    GGML_ASSERT(dst);
+    GGML_ASSERT(dst->extra);
+    UNUSED(src1);
+
+    ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
+
+    ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
+    ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
+
+    cl_ulong offset0 = extra0->offset + src0->view_offs;
+    cl_ulong offsetd = extrad->offset + dst->view_offs;
+
+    cl_kernel kernel;
+
+    // Currently assumes src0 is contiguous
+    int n = ggml_nelements(dst);
+    if (n % 4 == 0) {
+        if (src0->type == GGML_TYPE_F32) {
+            kernel = backend_ctx->kernel_sqr_cont_f32_4;
+        } else {
+            kernel = backend_ctx->kernel_sqr_cont_f16_4;
+        }
+        n /= 4;
+    } else {
+        if (src0->type == GGML_TYPE_F32) {
+            kernel = backend_ctx->kernel_sqr_cont_f32;
+        } else {
+            kernel = backend_ctx->kernel_sqr_cont_f16;
+        }
+    }
+
+    CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem),   &extra0->data_device));
+    CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
+    CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem),   &extrad->data_device));
+    CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
+
+    size_t global_work_size[] = {(size_t)n, 1, 1};
+    size_t local_work_size[] = {64, 1, 1};
+
+    size_t * local_work_size_ptr = local_work_size;
+    if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
+        local_work_size_ptr = nullptr;
+    }
+
+    backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
+}
+
+static void ggml_cl_sqrt(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    GGML_ASSERT(src0);
+    GGML_ASSERT(src0->extra);
+    GGML_ASSERT(dst);
+    GGML_ASSERT(dst->extra);
+    UNUSED(src1);
+
+    ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
+
+    ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
+    ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
+
+    cl_ulong offset0 = extra0->offset + src0->view_offs;
+    cl_ulong offsetd = extrad->offset + dst->view_offs;
+
+    cl_kernel kernel;
+
+    // Currently assumes src0 is contiguous
+    int n = ggml_nelements(dst);
+    if (n % 4 == 0) {
+        if (src0->type == GGML_TYPE_F32) {
+            kernel = backend_ctx->kernel_sqrt_cont_f32_4;
+        } else {
+            kernel = backend_ctx->kernel_sqrt_cont_f16_4;
+        }
+        n /= 4;
+    } else {
+        if (src0->type == GGML_TYPE_F32) {
+            kernel = backend_ctx->kernel_sqrt_cont_f32;
+        } else {
+            kernel = backend_ctx->kernel_sqrt_cont_f16;
+        }
+    }
+
+    CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem),   &extra0->data_device));
+    CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
+    CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem),   &extrad->data_device));
+    CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
+
+    size_t global_work_size[] = {(size_t)n, 1, 1};
+    size_t local_work_size[] = {64, 1, 1};
+
+    size_t * local_work_size_ptr = local_work_size;
+    if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
+        local_work_size_ptr = nullptr;
+    }
+
+    backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
+}
+
+static void ggml_cl_mean(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    GGML_ASSERT(src0);
+    GGML_ASSERT(src0->extra);
+    GGML_ASSERT(dst);
+    GGML_ASSERT(dst->extra);
+    GGML_UNUSED(src1);
+
+    GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
+    GGML_ASSERT(ggml_is_contiguous(src0));
+
+    ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
+
+    ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
+    ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
+
+    cl_ulong offset0 = extra0->offset + src0->view_offs;
+    cl_ulong offsetd = extrad->offset + dst->view_offs;
+
+    const int ne00 = src0->ne[0];
+    const int ne01 = src0->ne[1];
+    const int ne02 = src0->ne[2];
+    const int ne03 = src0->ne[3];
+
+    const cl_ulong nb01 = src0->nb[1];
+    const cl_ulong nb02 = src0->nb[2];
+    const cl_ulong nb03 = src0->nb[3];
+
+    const cl_ulong nb1  = dst->nb[1];
+    const cl_ulong nb2  = dst->nb[2];
+    const cl_ulong nb3  = dst->nb[3];
+
+    cl_kernel kernel = backend_ctx->kernel_mean_f32;
+
+    CL_CHECK(clSetKernelArg(kernel,  0, sizeof(cl_mem),   &extra0->data_device));
+    CL_CHECK(clSetKernelArg(kernel,  1, sizeof(cl_ulong), &offset0));
+    CL_CHECK(clSetKernelArg(kernel,  2, sizeof(cl_mem),   &extrad->data_device));
+    CL_CHECK(clSetKernelArg(kernel,  3, sizeof(cl_ulong), &offsetd));
+    CL_CHECK(clSetKernelArg(kernel,  4, sizeof(int),      &ne00));
+    CL_CHECK(clSetKernelArg(kernel,  5, sizeof(int),      &ne01));
+    CL_CHECK(clSetKernelArg(kernel,  6, sizeof(int),      &ne02));
+    CL_CHECK(clSetKernelArg(kernel,  7, sizeof(int),      &ne03));
+    CL_CHECK(clSetKernelArg(kernel,  8, sizeof(cl_ulong), &nb01));
+    CL_CHECK(clSetKernelArg(kernel,  9, sizeof(cl_ulong), &nb02));
+    CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
+    CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb1));
+    CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb2));
+    CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb3));
+
+    size_t global_work_size[] = {(size_t)ne01, (size_t)ne02, (size_t)ne03};
+    size_t local_work_size[] = {(size_t)64, 1, 1};
+
+    backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
+}
+
+static void ggml_cl_ssm_conv(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    GGML_ASSERT(src0);
+    GGML_ASSERT(src0->extra);
+    GGML_ASSERT(src1);
+    GGML_ASSERT(src1->extra);
+    GGML_ASSERT(dst);
+    GGML_ASSERT(dst->extra);
+
+    ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
+
+    ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
+    ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
+    ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
+
+    cl_ulong offset0 = extra0->offset + src0->view_offs;
+    cl_ulong offset1 = extra1->offset + src1->view_offs;
+    cl_ulong offsetd = extrad->offset + dst->view_offs;
+
+    int ne01 = src0->ne[1];
+    cl_ulong nb00 = src0->nb[0];
+    cl_ulong nb01 = src0->nb[1];
+    cl_ulong nb02 = src0->nb[2];
+
+    int ne10 = src1->ne[0];
+    cl_ulong nb11 = src1->nb[1];
+
+    int ne1  = dst->ne[1];
+    int ne2  = dst->ne[2];
+    cl_ulong nb0 = dst->nb[0];
+    cl_ulong nb1 = dst->nb[1];
+    cl_ulong nb2 = dst->nb[2];
+
+    cl_kernel kernel = backend_ctx->kernel_ssm_conv_f32_f32;
+
+    if (ne10 % 4 == 0) {
+        kernel = backend_ctx->kernel_ssm_conv_f32_f32_4;
+    }
+
+    CL_CHECK(clSetKernelArg(kernel,  0, sizeof(cl_mem),   &extra0->data_device));
+    CL_CHECK(clSetKernelArg(kernel,  1, sizeof(cl_ulong), &offset0));
+    CL_CHECK(clSetKernelArg(kernel,  2, sizeof(cl_mem),   &extra1->data_device));
+    CL_CHECK(clSetKernelArg(kernel,  3, sizeof(cl_ulong), &offset1));
+    CL_CHECK(clSetKernelArg(kernel,  4, sizeof(cl_mem),   &extrad->data_device));
+    CL_CHECK(clSetKernelArg(kernel,  5, sizeof(cl_ulong), &offsetd));
+    CL_CHECK(clSetKernelArg(kernel,  6, sizeof(cl_ulong), &nb00));
+    CL_CHECK(clSetKernelArg(kernel,  7, sizeof(cl_ulong), &nb01));
+    CL_CHECK(clSetKernelArg(kernel,  8, sizeof(cl_ulong), &nb02));
+    CL_CHECK(clSetKernelArg(kernel,  9, sizeof(int),      &ne10));
+    CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb11));
+    CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb0));
+    CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb1));
+    CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb2));
+
+    size_t global_work_size[] = {(size_t)ne01, (size_t)ne1, (size_t)ne2};
+    size_t local_work_size[]  = {64, 1, 1};
+
+    size_t * local_work_size_ptr = local_work_size;
+    if (ne01 % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
+        local_work_size_ptr = nullptr;
+    }
+
+    backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
+}
+
 static void ggml_cl_gelu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
     GGML_ASSERT(src0);
     GGML_ASSERT(src0->extra);
@@ -9091,6 +9398,24 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor
             }
             func = ggml_cl_sub;
             break;
+        case GGML_OP_SQR:
+            if (!any_on_device) {
+                return false;
+            }
+            func = ggml_cl_sqr;
+            break;
+        case GGML_OP_SQRT:
+            if (!any_on_device) {
+                return false;
+            }
+            func = ggml_cl_sqrt;
+            break;
+        case GGML_OP_MEAN:
+            if (!any_on_device) {
+                return false;
+            }
+            func = ggml_cl_mean;
+            break;
         case GGML_OP_UNARY:
             switch (ggml_get_unary_op(tensor)) {
                 case GGML_UNARY_OP_GELU:
@@ -9192,6 +9517,12 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor
             }
             func = ggml_cl_conv_2d;
             break;
+        case GGML_OP_SSM_CONV:
+            if (!any_on_device) {
+                return false;
+            }
+            func = ggml_cl_ssm_conv;
+            break;
         case GGML_OP_CONCAT:
             if (!any_on_device) {
                 return false;

+ 39 - 0
ggml/src/ggml-opencl/kernels/mean.cl

@@ -0,0 +1,39 @@
+
+kernel void kernel_mean_f32(
+    global float *  src0,
+    ulong           offset0,
+    global float *  dst,
+    ulong           offsetd,
+    int             ne00,
+    int             ne01,
+    int             ne02,
+    int             ne03,
+    ulong           nb01,
+    ulong           nb02,
+    ulong           nb03,
+    ulong           nb1,
+    ulong           nb2,
+    ulong           nb3
+) {
+    src0 = (global float *)((global char *)src0 + offset0);
+    dst  = (global float *)((global char *)dst  + offsetd);
+
+    int i3 = get_global_id(2);
+    int i2 = get_global_id(1);
+    int i1 = get_global_id(0);
+
+    if (i3 >= ne03 || i2 >= ne02 || i1 >= ne01) {
+        return;
+    }
+
+    global float * src_row = (global float *) ((global char *) src0 + i1*nb01 + i2*nb02 + i3*nb03);
+    global float * dst_row = (global float *) ((global char *) dst  + i1*nb1  + i2*nb2  + i3*nb3);
+
+    float row_sum = 0;
+
+    for (int i0 = 0; i0 < ne00; i0++) {
+        row_sum += src_row[i0];
+    }
+
+    dst_row[0] = row_sum / ne00;
+}

+ 53 - 0
ggml/src/ggml-opencl/kernels/sqr.cl

@@ -0,0 +1,53 @@
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+kernel void kernel_sqr_cont_f32(
+    global float * src0,
+    ulong          offset0,
+    global float * dst,
+    ulong          offsetd
+) {
+    src0 = (global float*)((global char*)src0 + offset0);
+    dst  = (global float*)((global char*)dst + offsetd);
+
+    uint gid = get_global_id(0);
+    dst[gid] = src0[gid] * src0[gid];
+}
+
+kernel void kernel_sqr_cont_f32_4(
+    global float4 * src0,
+    ulong           offset0,
+    global float4 * dst,
+    ulong           offsetd
+) {
+    src0 = (global float4*)((global char*)src0 + offset0);
+    dst  = (global float4*)((global char*)dst + offsetd);
+
+    uint gid = get_global_id(0);
+    dst[gid] = src0[gid] * src0[gid];
+}
+
+kernel void kernel_sqr_cont_f16(
+    global half * src0,
+    ulong         offset0,
+    global half * dst,
+    ulong         offsetd
+) {
+    src0 = (global half*)((global char*)src0 + offset0);
+    dst  = (global half*)((global char*)dst + offsetd);
+
+    uint gid = get_global_id(0);
+    dst[gid] = src0[gid] * src0[gid];
+}
+
+kernel void kernel_sqr_cont_f16_4(
+    global half4 * src0,
+    ulong          offset0,
+    global half4 * dst,
+    ulong          offsetd
+) {
+    src0 = (global half4*)((global char*)src0 + offset0);
+    dst  = (global half4*)((global char*)dst + offsetd);
+
+    uint gid = get_global_id(0);
+    dst[gid] = src0[gid] * src0[gid];
+}

+ 53 - 0
ggml/src/ggml-opencl/kernels/sqrt.cl

@@ -0,0 +1,53 @@
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+kernel void kernel_sqrt_cont_f32(
+    global float * src0,
+    ulong          offset0,
+    global float * dst,
+    ulong          offsetd
+) {
+    src0 = (global float*)((global char*)src0 + offset0);
+    dst  = (global float*)((global char*)dst + offsetd);
+
+    uint gid = get_global_id(0);
+    dst[gid] = sqrt(src0[gid]);
+}
+
+kernel void kernel_sqrt_cont_f32_4(
+    global float4 * src0,
+    ulong           offset0,
+    global float4 * dst,
+    ulong           offsetd
+) {
+    src0 = (global float4*)((global char*)src0 + offset0);
+    dst  = (global float4*)((global char*)dst + offsetd);
+
+    uint gid = get_global_id(0);
+    dst[gid] = sqrt(src0[gid]);
+}
+
+kernel void kernel_sqrt_cont_f16(
+    global half * src0,
+    ulong         offset0,
+    global half * dst,
+    ulong         offsetd
+) {
+    src0 = (global half*)((global char*)src0 + offset0);
+    dst  = (global half*)((global char*)dst + offsetd);
+
+    uint gid = get_global_id(0);
+    dst[gid] = convert_half(sqrt(convert_float(src0[gid])));
+}
+
+kernel void kernel_sqrt_cont_f16_4(
+    global half4 * src0,
+    ulong          offset0,
+    global half4 * dst,
+    ulong          offsetd
+) {
+    src0 = (global half4*)((global char*)src0 + offset0);
+    dst  = (global half4*)((global char*)dst + offsetd);
+
+    uint gid = get_global_id(0);
+    dst[gid] = convert_half4(sqrt(convert_float4(src0[gid])));
+}

+ 77 - 0
ggml/src/ggml-opencl/kernels/ssm_conv.cl

@@ -0,0 +1,77 @@
+kernel void kernel_ssm_conv_f32_f32(
+    global char * src0,
+    ulong         offset0,
+    global char * src1,
+    ulong         offset1,
+    global char * dst,
+    ulong         offsetd,
+    ulong         nb00,
+    ulong         nb01,
+    ulong         nb02,
+    int           ne10,
+    ulong         nb11,
+    ulong         nb0,
+    ulong         nb1,
+    ulong         nb2
+){
+    src0 = src0 + offset0;
+    src1 = src1 + offset1;
+    dst  = dst  + offsetd;
+
+    int ir = get_global_id(0);
+    int i2 = get_global_id(1);
+    int i3 = get_global_id(2);
+
+    int nc  = ne10;
+
+    global float * s = (global float *) (src0 + ir*nb01 + i2*nb00 + i3*nb02);
+    global float * c = (global float *) (src1 + ir*nb11);
+    global float * d = (global float *) (dst  + ir*nb0  + i2*nb1  + i3*nb2);
+
+    float sumf = 0.0f;
+
+    for (int i0 = 0; i0 < nc; ++i0) {
+        sumf += s[i0] * c[i0];
+    }
+
+    d[0] = sumf;
+}
+
+kernel void kernel_ssm_conv_f32_f32_4(
+    global char * src0,
+    ulong         offset0,
+    global char * src1,
+    ulong         offset1,
+    global char * dst,
+    ulong         offsetd,
+    ulong         nb00,
+    ulong         nb01,
+    ulong         nb02,
+    int           ne10,
+    ulong         nb11,
+    ulong         nb0,
+    ulong         nb1,
+    ulong         nb2
+) {
+    src0 = src0 + offset0;
+    src1 = src1 + offset1;
+    dst  = dst  + offsetd;
+
+    int ir = get_global_id(0);
+    int i2 = get_global_id(1);
+    int i3 = get_global_id(2);
+
+    int nc = ne10;
+
+    global float4 * s = (global float4 *) (src0 + ir*nb01 + i2*nb00 + i3*nb02);
+    global float4 * c = (global float4 *) (src1 + ir*nb11);
+    global float  * d = (global float  *) (dst  + ir*nb0  + i2*nb1  + i3*nb2);
+
+    float sumf = 0.0f;
+
+    for (int i0 = 0; i0 < nc/4; ++i0) {
+        sumf += dot(s[i0], c[i0]);
+    }
+
+    d[0] = sumf;
+}