|
|
@@ -1036,6 +1036,8 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
|
|
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
|
|
{ LLM_TENSOR_OUTPUT, "output" },
|
|
|
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
|
|
|
+ { LLM_TENSOR_ROPE_FACTORS_LONG, "rope_factors_long" },
|
|
|
+ { LLM_TENSOR_ROPE_FACTORS_SHORT, "rope_factors_short" },
|
|
|
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
|
|
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
|
|
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
|
|
@@ -1683,9 +1685,10 @@ struct LLM_TN {
|
|
|
//
|
|
|
|
|
|
static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
|
|
|
- { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
|
|
|
- { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
|
|
|
- { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
|
|
|
+ { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
|
|
|
+ { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
|
|
|
+ { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
|
|
|
+ { LLAMA_ROPE_SCALING_TYPE_LONGROPE, "longrope" },
|
|
|
};
|
|
|
|
|
|
static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
|
|
|
@@ -5580,8 +5583,12 @@ static void llm_load_hparams(
|
|
|
case LLM_ARCH_MINICPM:
|
|
|
{
|
|
|
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
|
|
+ ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
|
|
|
+ ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
|
|
|
+ ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
|
|
|
|
|
|
switch (hparams.n_layer) {
|
|
|
+ case 52: model.type = e_model::MODEL_1B; break;
|
|
|
case 40: model.type = e_model::MODEL_2B; break;
|
|
|
default: model.type = e_model::MODEL_UNKNOWN;
|
|
|
}
|
|
|
@@ -7065,7 +7072,7 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
|
|
|
LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
|
|
|
}
|
|
|
|
|
|
- if (model.arch == LLM_ARCH_GRANITE || model.arch == LLM_ARCH_GRANITE_MOE) {
|
|
|
+ if (model.arch == LLM_ARCH_MINICPM || model.arch == LLM_ARCH_GRANITE || model.arch == LLM_ARCH_GRANITE_MOE) {
|
|
|
LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale);
|
|
|
LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale);
|
|
|
LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
|
|
|
@@ -7690,7 +7697,13 @@ static bool llm_load_tensors(
|
|
|
|
|
|
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
|
|
|
|
|
|
- layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
|
|
+ if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
|
|
|
+ layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
|
|
+ layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
|
|
+ }
|
|
|
|
|
|
if (n_expert == 0) {
|
|
|
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
|
|
|
@@ -13497,153 +13510,6 @@ struct llm_build_context {
|
|
|
return gf;
|
|
|
}
|
|
|
|
|
|
- // ref: https://arxiv.org/abs/2203.03466
|
|
|
- // https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
|
|
|
- // based on the original build_llama() function
|
|
|
- struct ggml_cgraph * build_minicpm() {
|
|
|
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
|
|
-
|
|
|
- const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
|
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
|
|
- GGML_ASSERT(n_embd_head == hparams.n_rot);
|
|
|
-
|
|
|
- const int64_t n_embd = hparams.n_embd;
|
|
|
- //TODO: if the model varies, these parameters need to be read from the model
|
|
|
- const int64_t n_embd_base = 256;
|
|
|
- const float scale_embd = 12.0f;
|
|
|
- const float scale_depth = 1.4f;
|
|
|
-
|
|
|
- struct ggml_tensor * cur;
|
|
|
- struct ggml_tensor * inpL;
|
|
|
-
|
|
|
- inpL = llm_build_inp_embd(ctx0, lctx, hparams, ubatch, model.tok_embd, cb);
|
|
|
-
|
|
|
- // scale the input embeddings
|
|
|
- inpL = ggml_scale(ctx0, inpL, scale_embd);
|
|
|
- cb(inpL, "inp_scaled", -1);
|
|
|
-
|
|
|
- // inp_pos - contains the positions
|
|
|
- struct ggml_tensor * inp_pos = build_inp_pos();
|
|
|
-
|
|
|
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
|
|
- struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
|
|
-
|
|
|
- for (int il = 0; il < n_layer; ++il) {
|
|
|
- struct ggml_tensor * inpSA = inpL;
|
|
|
-
|
|
|
- // norm
|
|
|
- cur = llm_build_norm(ctx0, inpL, hparams,
|
|
|
- model.layers[il].attn_norm, NULL,
|
|
|
- LLM_NORM_RMS, cb, il);
|
|
|
- cb(cur, "attn_norm", il);
|
|
|
-
|
|
|
- // self-attention
|
|
|
- {
|
|
|
- // compute Q and K and RoPE them
|
|
|
- struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
|
|
- cb(Qcur, "Qcur", il);
|
|
|
- if (model.layers[il].bq) {
|
|
|
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
|
|
- cb(Qcur, "Qcur", il);
|
|
|
- }
|
|
|
-
|
|
|
- struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
|
|
- cb(Kcur, "Kcur", il);
|
|
|
- if (model.layers[il].bk) {
|
|
|
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
|
|
- cb(Kcur, "Kcur", il);
|
|
|
- }
|
|
|
-
|
|
|
- struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
|
|
- cb(Vcur, "Vcur", il);
|
|
|
- if (model.layers[il].bv) {
|
|
|
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
|
|
- cb(Vcur, "Vcur", il);
|
|
|
- }
|
|
|
-
|
|
|
- Qcur = ggml_rope_ext(
|
|
|
- ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
|
|
|
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
|
- ext_factor, attn_factor, beta_fast, beta_slow
|
|
|
- );
|
|
|
- cb(Qcur, "Qcur", il);
|
|
|
-
|
|
|
- Kcur = ggml_rope_ext(
|
|
|
- ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
|
|
|
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
|
- ext_factor, attn_factor, beta_fast, beta_slow
|
|
|
- );
|
|
|
- cb(Kcur, "Kcur", il);
|
|
|
-
|
|
|
- cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
|
|
- model.layers[il].wo, model.layers[il].bo,
|
|
|
- Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
|
|
- }
|
|
|
-
|
|
|
- if (il == n_layer - 1) {
|
|
|
- // skip computing output for unused tokens
|
|
|
- struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
|
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
|
|
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
|
|
- }
|
|
|
-
|
|
|
- // scale_res - scale the hidden states for residual connection
|
|
|
- const float scale_res = scale_depth/sqrtf(float(n_layer));
|
|
|
- cur = ggml_scale(ctx0, cur, scale_res);
|
|
|
- cb(cur, "hidden_scaled", -1);
|
|
|
-
|
|
|
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
|
|
- cb(ffn_inp, "ffn_inp", il);
|
|
|
-
|
|
|
- // feed-forward network
|
|
|
- {
|
|
|
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
|
|
- model.layers[il].ffn_norm, NULL,
|
|
|
- LLM_NORM_RMS, cb, il);
|
|
|
- cb(cur, "ffn_norm", il);
|
|
|
-
|
|
|
- cur = llm_build_ffn(ctx0, lctx, cur,
|
|
|
- model.layers[il].ffn_up, NULL, NULL,
|
|
|
- model.layers[il].ffn_gate, NULL, NULL,
|
|
|
- model.layers[il].ffn_down, NULL, NULL,
|
|
|
- NULL,
|
|
|
- LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
|
|
- cb(cur, "ffn_out", il);
|
|
|
- }
|
|
|
-
|
|
|
- // scale the hidden states for residual connection
|
|
|
- cur = ggml_scale(ctx0, cur, scale_res);
|
|
|
- cb(cur, "hidden_scaled_ffn", -1);
|
|
|
-
|
|
|
- cur = ggml_add(ctx0, cur, ffn_inp);
|
|
|
- cur = lctx.cvec.apply_to(ctx0, cur, il);
|
|
|
- cb(cur, "l_out", il);
|
|
|
-
|
|
|
- // input for next layer
|
|
|
- inpL = cur;
|
|
|
- }
|
|
|
-
|
|
|
- cur = inpL;
|
|
|
-
|
|
|
- cur = llm_build_norm(ctx0, cur, hparams,
|
|
|
- model.output_norm, NULL,
|
|
|
- LLM_NORM_RMS, cb, -1);
|
|
|
- cb(cur, "result_norm", -1);
|
|
|
-
|
|
|
- // lm_head scaling
|
|
|
- const float scale_lmhead = float(n_embd_base)/float(n_embd);
|
|
|
- cur = ggml_scale(ctx0, cur, scale_lmhead);
|
|
|
- cb(cur, "lmhead_scaling", -1);
|
|
|
-
|
|
|
- // lm_head
|
|
|
- cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
|
|
- cb(cur, "result_output", -1);
|
|
|
-
|
|
|
- ggml_build_forward_expand(gf, cur);
|
|
|
-
|
|
|
- return gf;
|
|
|
- }
|
|
|
-
|
|
|
struct ggml_cgraph * build_minicpm3() {
|
|
|
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
|
|
|
|
|
@@ -16742,6 +16608,7 @@ static struct ggml_cgraph * llama_build_graph(
|
|
|
|
|
|
switch (model.arch) {
|
|
|
case LLM_ARCH_LLAMA:
|
|
|
+ case LLM_ARCH_MINICPM:
|
|
|
case LLM_ARCH_GRANITE:
|
|
|
case LLM_ARCH_GRANITE_MOE:
|
|
|
{
|
|
|
@@ -16825,10 +16692,6 @@ static struct ggml_cgraph * llama_build_graph(
|
|
|
{
|
|
|
result = llm.build_internlm2();
|
|
|
} break;
|
|
|
- case LLM_ARCH_MINICPM:
|
|
|
- {
|
|
|
- result = llm.build_minicpm();
|
|
|
- } break;
|
|
|
case LLM_ARCH_MINICPM3:
|
|
|
{
|
|
|
result = llm.build_minicpm3();
|