Kaynağa Gözat

Overhaul the examples structure

- main -> examples
- utils -> examples (renamed to "common")
- quantize -> examples
- separate tools for "perplexity" and "embedding"

Hope I didn't break something !
Georgi Gerganov 2 yıl önce
ebeveyn
işleme
a316a425d0

+ 1 - 0
.gitignore

@@ -19,6 +19,7 @@ models/*
 /main
 /quantize
 /result
+/perplexity
 
 arm_neon.h
 compile_commands.json

+ 4 - 25
CMakeLists.txt

@@ -211,17 +211,6 @@ endif()
 # Build libraries
 #
 
-add_library(utils OBJECT
-            utils.cpp
-            utils.h)
-
-target_include_directories(utils PUBLIC .)
-target_compile_features(utils PUBLIC cxx_std_11) # don't bump
-target_link_libraries(utils PRIVATE ${LLAMA_EXTRA_LIBS})
-if (BUILD_SHARED_LIBS)
-    set_target_properties(utils PROPERTIES POSITION_INDEPENDENT_CODE ON)
-endif()
-
 add_library(ggml OBJECT
             ggml.c
             ggml.h)
@@ -239,22 +228,12 @@ add_library(llama
 
 target_include_directories(llama PUBLIC .)
 target_compile_features(llama PUBLIC cxx_std_11) # don't bump
-target_link_libraries(llama PRIVATE utils ggml ${LLAMA_EXTRA_LIBS})
+target_link_libraries(llama PRIVATE ggml ${LLAMA_EXTRA_LIBS})
 if (BUILD_SHARED_LIBS)
     set_target_properties(llama PROPERTIES POSITION_INDEPENDENT_CODE ON)
     target_compile_definitions(llama PRIVATE LLAMA_SHARED LLAMA_BUILD)
 endif()
 
-#
-# Executables
-#
-
-add_executable(main main.cpp)
-target_link_libraries(main PRIVATE llama ggml utils)
-
-add_executable(quantize quantize.cpp)
-target_link_libraries(quantize PRIVATE llama ggml utils)
-
 #
 # programs, examples and tests
 #
@@ -264,6 +243,6 @@ if (LLAMA_BUILD_TESTS AND NOT CMAKE_JS_VERSION)
     add_subdirectory(tests)
 endif ()
 
-#if (LLAMA_BUILD_EXAMPLES)
-#    add_subdirectory(examples)
-#endif()
+if (LLAMA_BUILD_EXAMPLES)
+    add_subdirectory(examples)
+endif()

+ 11 - 8
Makefile

@@ -212,7 +212,7 @@ $(info I CC:       $(CCV))
 $(info I CXX:      $(CXXV))
 $(info )
 
-default: main quantize
+default: main quantize perplexity
 
 #
 # Build library
@@ -224,20 +224,23 @@ ggml.o: ggml.c ggml.h
 llama.o: llama.cpp llama.h
 	$(CXX) $(CXXFLAGS) -c llama.cpp -o llama.o
 
-utils.o: utils.cpp utils.h
-	$(CXX) $(CXXFLAGS) -c utils.cpp -o utils.o
+common.o: examples/common.cpp examples/common.h
+	$(CXX) $(CXXFLAGS) -c examples/common.cpp -o common.o
 
 clean:
-	rm -f *.o main quantize
+	rm -vf *.o main quantize perplexity
 
-main: main.cpp ggml.o llama.o utils.o
-	$(CXX) $(CXXFLAGS) main.cpp ggml.o llama.o utils.o -o main $(LDFLAGS)
+main: examples/main/main.cpp ggml.o llama.o common.o
+	$(CXX) $(CXXFLAGS) examples/main/main.cpp ggml.o llama.o common.o -o main $(LDFLAGS)
 	@echo
 	@echo '====  Run ./main -h for help.  ===='
 	@echo
 
-quantize: quantize.cpp ggml.o llama.o utils.o
-	$(CXX) $(CXXFLAGS) quantize.cpp ggml.o llama.o utils.o -o quantize $(LDFLAGS)
+quantize: examples/quantize/quantize.cpp ggml.o llama.o
+	$(CXX) $(CXXFLAGS) examples/quantize/quantize.cpp ggml.o llama.o -o quantize $(LDFLAGS)
+
+perplexity: examples/perplexity/perplexity.cpp ggml.o llama.o common.o
+	$(CXX) $(CXXFLAGS) examples/perplexity/perplexity.cpp ggml.o llama.o common.o -o perplexity $(LDFLAGS)
 
 #
 # Tests

+ 36 - 0
examples/CMakeLists.txt

@@ -0,0 +1,36 @@
+# dependencies
+
+find_package(Threads REQUIRED)
+
+# third-party
+
+# ...
+
+# common
+
+set(TARGET common)
+
+add_library(${TARGET} OBJECT
+    common.h
+    common.cpp
+    )
+
+if (BUILD_SHARED_LIBS)
+    set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
+endif()
+
+target_include_directories(${TARGET} PUBLIC .)
+target_compile_features(${TARGET} PUBLIC cxx_std_11)
+target_link_libraries(${TARGET} PRIVATE llama)
+
+# examples
+
+include_directories(${CMAKE_CURRENT_SOURCE_DIR})
+
+if (EMSCRIPTEN)
+else()
+    add_subdirectory(main)
+    add_subdirectory(quantize)
+    add_subdirectory(perplexity)
+    add_subdirectory(embedding)
+endif()

+ 2 - 2
utils.cpp → examples/common.cpp

@@ -1,6 +1,6 @@
-#include "ggml.h"
+#include "common.h"
 
-#include "utils.h"
+#include "ggml.h"
 
 #include <cassert>
 #include <cstring>

+ 0 - 0
utils.h → examples/common.h


+ 4 - 0
examples/embedding/CMakeLists.txt

@@ -0,0 +1,4 @@
+set(TARGET embedding)
+add_executable(${TARGET} embedding.cpp)
+target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
+target_compile_features(${TARGET} PRIVATE cxx_std_11)

+ 3 - 0
examples/embedding/README.md

@@ -0,0 +1,3 @@
+# embedding
+
+TODO

+ 106 - 0
examples/embedding/embedding.cpp

@@ -0,0 +1,106 @@
+#include "common.h"
+#include "llama.h"
+
+#include <cassert>
+#include <cinttypes>
+#include <cmath>
+#include <cstdio>
+#include <cstring>
+#include <fstream>
+#include <string>
+#include <vector>
+
+int main(int argc, char ** argv) {
+    gpt_params params;
+    params.model = "models/llama-7B/ggml-model.bin";
+
+    if (gpt_params_parse(argc, argv, params) == false) {
+        return 1;
+    }
+
+    params.embedding = true;
+
+    if (params.n_ctx > 2048) {
+        fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);"
+                "expect poor results\n", __func__, params.n_ctx);
+    }
+
+    if (params.seed <= 0) {
+        params.seed = time(NULL);
+    }
+
+    fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
+
+    std::mt19937 rng(params.seed);
+    if (params.random_prompt) {
+        params.prompt = gpt_random_prompt(rng);
+    }
+
+    llama_context * ctx;
+
+    // load the model
+    {
+        auto lparams = llama_context_default_params();
+
+        lparams.n_ctx      = params.n_ctx;
+        lparams.n_parts    = params.n_parts;
+        lparams.seed       = params.seed;
+        lparams.f16_kv     = params.memory_f16;
+        lparams.logits_all = params.perplexity;
+        lparams.use_mlock  = params.use_mlock;
+        lparams.embedding  = params.embedding;
+
+        ctx = llama_init_from_file(params.model.c_str(), lparams);
+
+        if (ctx == NULL) {
+            fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
+            return 1;
+        }
+    }
+
+    // print system information
+    {
+        fprintf(stderr, "\n");
+        fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
+                params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
+    }
+
+    int n_past = 0;
+
+    // Add a space in front of the first character to match OG llama tokenizer behavior
+    params.prompt.insert(0, 1, ' ');
+
+    // tokenize the prompt
+    auto embd_inp = ::llama_tokenize(ctx, params.prompt, true);
+
+    // determine newline token
+    auto llama_token_newline = ::llama_tokenize(ctx, "\n", false);
+
+    if (params.verbose_prompt) {
+        fprintf(stderr, "\n");
+        fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
+        fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
+        for (int i = 0; i < (int) embd_inp.size(); i++) {
+            fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i]));
+        }
+        fprintf(stderr, "\n");
+    }
+
+    if (params.embedding){
+        if (embd_inp.size() > 0) {
+            if (llama_eval(ctx, embd_inp.data(), embd_inp.size(), n_past, params.n_threads)) {
+                fprintf(stderr, "%s : failed to eval\n", __func__);
+                return 1;
+            }
+        }
+
+        const auto embeddings = llama_get_embeddings(ctx);
+
+        // TODO: print / use the embeddings
+    }
+
+    llama_print_timings(ctx);
+    llama_free(ctx);
+
+    return 0;
+}

+ 4 - 0
examples/main/CMakeLists.txt

@@ -0,0 +1,4 @@
+set(TARGET main)
+add_executable(${TARGET} main.cpp)
+target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
+target_compile_features(${TARGET} PRIVATE cxx_std_11)

+ 3 - 0
examples/main/README.md

@@ -0,0 +1,3 @@
+# main
+
+TODO

+ 9 - 110
main.cpp → examples/main/main.cpp

@@ -1,5 +1,4 @@
-#include "utils.h"
-#include "ggml.h"
+#include "common.h"
 #include "llama.h"
 
 #include <cassert>
@@ -65,79 +64,6 @@ void set_console_state(console_state new_st)
     }
 }
 
-std::vector<double> softmax(const std::vector<float>& logits) {
-    std::vector<double> probs(logits.size());
-    float max_logit = logits[0];
-    for (float v : logits) max_logit = std::max(max_logit, v);
-    double sum_exp = 0.0;
-    for (size_t i = 0; i < logits.size(); i++) {
-        // Subtract the maximum logit value from the current logit value for numerical stability
-        float logit = logits[i] - max_logit;
-        double exp_logit = std::exp(logit);
-        sum_exp += exp_logit;
-        probs[i] = exp_logit;
-    }
-    for (size_t i = 0; i < probs.size(); i++) probs[i] /= sum_exp;
-    return probs;
-}
-
-void perplexity(llama_context * ctx, const gpt_params & params) {
-    // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
-    // Run `./main --perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
-    // Output: `perplexity: 13.5106 [114/114]`
-    auto tokens = ::llama_tokenize(ctx, params.prompt, true);
-
-    int count = 0;
-    double nll = 0.0;
-    int seq_count = tokens.size() / params.n_ctx;
-
-    fprintf(stderr, "%s : calculating perplexity over %d chunks\n", __func__, seq_count);
-
-    for (int i = 0; i < seq_count; ++i) {
-        int start = i * params.n_ctx;
-        int end = start + params.n_ctx - 1;
-        std::vector<llama_token> embd(tokens.begin() + start, tokens.begin() + end);
-        auto start_t = std::chrono::high_resolution_clock::now();
-        if (llama_eval(ctx, embd.data(), embd.size(), 0, params.n_threads)) {
-            fprintf(stderr, "%s : failed to eval\n", __func__);
-            return;
-        }
-        auto end_t = std::chrono::high_resolution_clock::now();
-        if (i == 0) {
-            double seconds = std::chrono::duration<double>(end_t - start_t).count();
-            printf("%.2f seconds per pass - ETA %.2f hours\n", seconds, (seconds * seq_count) / (60.0*60.0));
-        }
-        // We get the logits for all the tokens in the context window (params.n_ctx)
-        // from llama_eval above.  Now, based on https://huggingface.co/docs/transformers/perplexity,
-        // calculate the perplexity over the last half the window (so the model always has
-        // some context to predict the token).
-        //
-        // We rely on the fact that attention in the forward pass only looks at previous
-        // tokens here, so the logits returned for each token are an accurate representation
-        // of what the model would have predicted at that point.
-        //
-        // Example, we have a context window of 512, we will compute perplexity for each of the
-        // last 256 tokens.  Then, we split the input up into context window size chunks to
-        // process the entire prompt.
-
-        auto logits = llama_get_logits(ctx);
-        for (int j = params.n_ctx / 2; j < params.n_ctx - 1; ++j) {
-            // Calculate probability of next token, given the previous ones.
-            int n_vocab = llama_n_vocab(ctx);
-            std::vector<float> tok_logits(
-                logits + j * n_vocab,
-                logits + (j + 1) * n_vocab);
-            double prob = softmax(tok_logits)[tokens[start + j + 1]];
-            nll += -std::log(prob);
-            ++count;
-        }
-        // perplexity is e^(average negative log-likelihood)
-        printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
-        fflush(stdout);
-    }
-    printf("\n");
-}
-
 static bool is_interacting = false;
 
 #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
@@ -155,9 +81,6 @@ void sigint_handler(int signo) {
 #endif
 
 int main(int argc, char ** argv) {
-    // has to be called once at the start of the program to init ggml stuff
-    ggml_time_init();
-
     gpt_params params;
     params.model = "models/llama-7B/ggml-model.bin";
 
@@ -165,6 +88,14 @@ int main(int argc, char ** argv) {
         return 1;
     }
 
+    if (params.perplexity) {
+        printf("\n************\n");
+        printf("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
+        printf("************\n\n");
+
+        return 0;
+    }
+
     if (params.n_ctx > 2048) {
         fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);"
                 "expect poor results\n", __func__, params.n_ctx);
@@ -198,9 +129,7 @@ int main(int argc, char ** argv) {
         lparams.n_parts    = params.n_parts;
         lparams.seed       = params.seed;
         lparams.f16_kv     = params.memory_f16;
-        lparams.logits_all = params.perplexity;
         lparams.use_mlock  = params.use_mlock;
-        lparams.embedding  = params.embedding;
 
         ctx = llama_init_from_file(params.model.c_str(), lparams);
 
@@ -236,11 +165,6 @@ int main(int argc, char ** argv) {
         return 0;
     }
 
-    if (params.perplexity) {
-        perplexity(ctx, params);
-        exit(0);
-    }
-
     int n_past = 0;
 
     // Add a space in front of the first character to match OG llama tokenizer behavior
@@ -346,27 +270,6 @@ int main(int argc, char ** argv) {
     // the first thing we will do is to output the prompt, so set color accordingly
     set_console_state(CONSOLE_STATE_PROMPT);
 
-    if (params.embedding){
-        embd = embd_inp;
-
-        if (embd.size() > 0) {
-            if (llama_eval(ctx, embd.data(), embd.size(), n_past, params.n_threads)) {
-                fprintf(stderr, "%s : failed to eval\n", __func__);
-                return 1;
-            }
-        }
-
-        const auto embeddings = llama_get_embeddings(ctx);
-
-        // TODO: print / use the embeddings
-
-        if (params.use_color) {
-            printf(ANSI_COLOR_RESET);
-        }
-
-        return 0;
-    }
-
     while (remaining_tokens > 0 || params.interactive) {
         // predict
         if (embd.size() > 0) {
@@ -392,10 +295,6 @@ int main(int argc, char ** argv) {
                 auto logits = llama_get_logits(ctx);
 
                 if (params.ignore_eos) {
-                    // set the logit of the eos token to zero to avoid sampling it
-                    //logits[logits.size() - n_vocab + EOS_TOKEN_ID] = 0;
-                    // TODO: this does not work of params.logits_all == true
-                    assert(params.perplexity == false);
                     logits[llama_token_eos()] = 0;
                 }
 

+ 4 - 0
examples/perplexity/CMakeLists.txt

@@ -0,0 +1,4 @@
+set(TARGET perplexity)
+add_executable(${TARGET} perplexity.cpp)
+target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
+target_compile_features(${TARGET} PRIVATE cxx_std_11)

+ 3 - 0
examples/perplexity/README.md

@@ -0,0 +1,3 @@
+# perplexity
+
+TODO

+ 146 - 0
examples/perplexity/perplexity.cpp

@@ -0,0 +1,146 @@
+#include "common.h"
+#include "llama.h"
+
+#include <cassert>
+#include <cinttypes>
+#include <cmath>
+#include <cstdio>
+#include <cstring>
+#include <string>
+#include <vector>
+
+std::vector<double> softmax(const std::vector<float>& logits) {
+    std::vector<double> probs(logits.size());
+    float max_logit = logits[0];
+    for (float v : logits) max_logit = std::max(max_logit, v);
+    double sum_exp = 0.0;
+    for (size_t i = 0; i < logits.size(); i++) {
+        // Subtract the maximum logit value from the current logit value for numerical stability
+        float logit = logits[i] - max_logit;
+        double exp_logit = std::exp(logit);
+        sum_exp += exp_logit;
+        probs[i] = exp_logit;
+    }
+    for (size_t i = 0; i < probs.size(); i++) probs[i] /= sum_exp;
+    return probs;
+}
+
+void perplexity(llama_context * ctx, const gpt_params & params) {
+    // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
+    // Run `./main --perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
+    // Output: `perplexity: 13.5106 [114/114]`
+    auto tokens = ::llama_tokenize(ctx, params.prompt, true);
+
+    int count = 0;
+    double nll = 0.0;
+    int seq_count = tokens.size() / params.n_ctx;
+
+    fprintf(stderr, "%s : calculating perplexity over %d chunks\n", __func__, seq_count);
+
+    for (int i = 0; i < seq_count; ++i) {
+        int start = i * params.n_ctx;
+        int end = start + params.n_ctx - 1;
+        std::vector<llama_token> embd(tokens.begin() + start, tokens.begin() + end);
+        auto start_t = std::chrono::high_resolution_clock::now();
+        if (llama_eval(ctx, embd.data(), embd.size(), 0, params.n_threads)) {
+            fprintf(stderr, "%s : failed to eval\n", __func__);
+            return;
+        }
+        auto end_t = std::chrono::high_resolution_clock::now();
+        if (i == 0) {
+            double seconds = std::chrono::duration<double>(end_t - start_t).count();
+            printf("%.2f seconds per pass - ETA %.2f hours\n", seconds, (seconds * seq_count) / (60.0*60.0));
+        }
+        // We get the logits for all the tokens in the context window (params.n_ctx)
+        // from llama_eval above.  Now, based on https://huggingface.co/docs/transformers/perplexity,
+        // calculate the perplexity over the last half the window (so the model always has
+        // some context to predict the token).
+        //
+        // We rely on the fact that attention in the forward pass only looks at previous
+        // tokens here, so the logits returned for each token are an accurate representation
+        // of what the model would have predicted at that point.
+        //
+        // Example, we have a context window of 512, we will compute perplexity for each of the
+        // last 256 tokens.  Then, we split the input up into context window size chunks to
+        // process the entire prompt.
+
+        auto logits = llama_get_logits(ctx);
+        for (int j = params.n_ctx / 2; j < params.n_ctx - 1; ++j) {
+            // Calculate probability of next token, given the previous ones.
+            int n_vocab = llama_n_vocab(ctx);
+            std::vector<float> tok_logits(
+                logits + j * n_vocab,
+                logits + (j + 1) * n_vocab);
+            double prob = softmax(tok_logits)[tokens[start + j + 1]];
+            nll += -std::log(prob);
+            ++count;
+        }
+        // perplexity is e^(average negative log-likelihood)
+        printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
+        fflush(stdout);
+    }
+    printf("\n");
+}
+
+int main(int argc, char ** argv) {
+    gpt_params params;
+    params.model = "models/llama-7B/ggml-model.bin";
+
+    if (gpt_params_parse(argc, argv, params) == false) {
+        return 1;
+    }
+
+    params.perplexity = true;
+
+    if (params.n_ctx > 2048) {
+        fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);"
+                "expect poor results\n", __func__, params.n_ctx);
+    }
+
+    if (params.seed <= 0) {
+        params.seed = time(NULL);
+    }
+
+    fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
+
+    std::mt19937 rng(params.seed);
+    if (params.random_prompt) {
+        params.prompt = gpt_random_prompt(rng);
+    }
+
+    llama_context * ctx;
+
+    // load the model
+    {
+        auto lparams = llama_context_default_params();
+
+        lparams.n_ctx      = params.n_ctx;
+        lparams.n_parts    = params.n_parts;
+        lparams.seed       = params.seed;
+        lparams.f16_kv     = params.memory_f16;
+        lparams.logits_all = params.perplexity;
+        lparams.use_mlock  = params.use_mlock;
+        lparams.embedding  = params.embedding;
+
+        ctx = llama_init_from_file(params.model.c_str(), lparams);
+
+        if (ctx == NULL) {
+            fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
+            return 1;
+        }
+    }
+
+    // print system information
+    {
+        fprintf(stderr, "\n");
+        fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
+                params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
+    }
+
+    perplexity(ctx, params);
+
+    llama_print_timings(ctx);
+    llama_free(ctx);
+
+    return 0;
+}

+ 4 - 0
examples/quantize/CMakeLists.txt

@@ -0,0 +1,4 @@
+set(TARGET quantize)
+add_executable(${TARGET} quantize.cpp)
+target_link_libraries(${TARGET} PRIVATE llama ${CMAKE_THREAD_LIBS_INIT})
+target_compile_features(${TARGET} PRIVATE cxx_std_11)

+ 3 - 0
examples/quantize/README.md

@@ -0,0 +1,3 @@
+# quantize
+
+TODO

+ 0 - 0
quantize.cpp → examples/quantize/quantize.cpp


+ 13 - 13
ggml.c

@@ -5741,8 +5741,8 @@ static bool ggml_compute_forward_mul_mat_use_blas(
         const struct ggml_tensor * src0,
         const struct ggml_tensor * src1,
               struct ggml_tensor * dst) {
-    const int ne00 = src0->ne[0];
-    const int ne01 = src0->ne[1];
+    //const int ne00 = src0->ne[0];
+    //const int ne01 = src0->ne[1];
 
     const int ne10 = src1->ne[0];
 
@@ -5776,16 +5776,16 @@ static void ggml_compute_forward_mul_mat_f32(
 
     const int ne10 = src1->ne[0];
     const int ne11 = src1->ne[1];
-    const int ne12 = src1->ne[2];
-    const int ne13 = src1->ne[3];
+    //const int ne12 = src1->ne[2];
+    //const int ne13 = src1->ne[3];
 
-    const int ne0  = dst->ne[0];
-    const int ne1  = dst->ne[1];
-    const int ne2  = dst->ne[2];
-    const int ne3  = dst->ne[3];
-    const int ne   = ne0*ne1*ne2*ne3;
+    //const int ne0  = dst->ne[0];
+    //const int ne1  = dst->ne[1];
+    //const int ne2  = dst->ne[2];
+    //const int ne3  = dst->ne[3];
+    //const int ne   = ne0*ne1*ne2*ne3;
 
-    const int nb00 = src0->nb[0];
+    //const int nb00 = src0->nb[0];
     const int nb01 = src0->nb[1];
     const int nb02 = src0->nb[2];
     const int nb03 = src0->nb[3];
@@ -5947,7 +5947,7 @@ static void ggml_compute_forward_mul_mat_f16_f32(
     const int ne1  = dst->ne[1];
     const int ne2  = dst->ne[2];
     const int ne3  = dst->ne[3];
-    const int ne   = ne0*ne1*ne2*ne3;
+    //const int ne   = ne0*ne1*ne2*ne3;
 
     const int nb00 = src0->nb[0];
     const int nb01 = src0->nb[1];
@@ -6137,7 +6137,7 @@ static void ggml_compute_forward_mul_mat_q4_0_f32(
     const int ne1  = dst->ne[1];
     const int ne2  = dst->ne[2];
     const int ne3  = dst->ne[3];
-    const int ne   = ne0*ne1*ne2*ne3;
+    //const int ne   = ne0*ne1*ne2*ne3;
 
     const int nb00 = src0->nb[0];
     const int nb01 = src0->nb[1];
@@ -6322,7 +6322,7 @@ static void ggml_compute_forward_mul_mat_q4_1_f32(
     const int ne1  = dst->ne[1];
     const int ne2  = dst->ne[2];
     const int ne3  = dst->ne[3];
-    const int ne   = ne0*ne1*ne2*ne3;
+    //const int ne   = ne0*ne1*ne2*ne3;
 
     const int nb00 = src0->nb[0];
     const int nb01 = src0->nb[1];

+ 1 - 1
tests/CMakeLists.txt

@@ -1,7 +1,7 @@
 function(llama_add_test source)
     get_filename_component(TEST_TARGET ${source} NAME_WE)
     add_executable(${TEST_TARGET} ${source})
-    target_link_libraries(${TEST_TARGET} PRIVATE llama ggml utils)
+    target_link_libraries(${TEST_TARGET} PRIVATE llama)
     add_test(NAME ${TEST_TARGET} COMMAND $<TARGET_FILE:${TEST_TARGET}> ${ARGN})
 endfunction()
 

+ 4 - 2
tests/test-tokenizer-0.cpp

@@ -1,9 +1,9 @@
-#include "utils.h"
 #include "llama.h"
 
 #include <cstdio>
 #include <string>
 #include <map>
+#include <vector>
 
 static const std::map<std::string, std::vector<llama_token>> k_tests = {
     { "Hello World",        { 1,  10994,   2787, }, },
@@ -48,7 +48,9 @@ int main(int argc, char **argv) {
     }
 
     for (const auto & test_kv : k_tests) {
-        const auto res = ::llama_tokenize(ctx, test_kv.first, true);
+        std::vector<llama_token> res(test_kv.first.size());
+        const int n = llama_tokenize(ctx, test_kv.first.c_str(), res.data(), res.size(), true);
+        res.resize(n);
 
         bool correct = res.size() == test_kv.second.size();