|
|
@@ -114,6 +114,7 @@ const char * llm_type_name(llm_type type) {
|
|
|
case LLM_TYPE_17B_16E: return "17Bx16E (Scout)";
|
|
|
case LLM_TYPE_17B_128E: return "17Bx128E (Maverick)";
|
|
|
case LLM_TYPE_A13B: return "A13B";
|
|
|
+ case LLM_TYPE_8B_A1B: return "8B.A1B";
|
|
|
case LLM_TYPE_21B_A3B: return "21B.A3B";
|
|
|
case LLM_TYPE_30B_A3B: return "30B.A3B";
|
|
|
case LLM_TYPE_106B_A12B: return "106B.A12B";
|
|
|
@@ -1995,14 +1996,29 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|
|
for (uint32_t il = 0; il < hparams.n_layer; ++il) {
|
|
|
hparams.recurrent_layer_arr[il] = hparams.n_head_kv(il) == 0;
|
|
|
}
|
|
|
+ hparams.n_layer_dense_lead = hparams.n_layer;
|
|
|
switch (hparams.n_ff()) {
|
|
|
case 4608: type = LLM_TYPE_350M; break;
|
|
|
case 6912: type = LLM_TYPE_700M; break;
|
|
|
case 8192: type = LLM_TYPE_1_2B; break;
|
|
|
case 10752: type = LLM_TYPE_2_6B; break;
|
|
|
- default: type = LLM_TYPE_UNKNOWN;
|
|
|
+ default: type = LLM_TYPE_UNKNOWN;
|
|
|
}
|
|
|
} break;
|
|
|
+ case LLM_ARCH_LFM2MOE:
|
|
|
+ {
|
|
|
+ ml.get_key(LLM_KV_SHORTCONV_L_CACHE, hparams.n_shortconv_l_cache);
|
|
|
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
|
|
+ ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
|
|
|
+ ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
|
|
|
+ ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func);
|
|
|
+
|
|
|
+ for (uint32_t il = 0; il < hparams.n_layer; ++il) {
|
|
|
+ hparams.recurrent_layer_arr[il] = hparams.n_head_kv(il) == 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ type = LLM_TYPE_8B_A1B;
|
|
|
+ } break;
|
|
|
case LLM_ARCH_SMALLTHINKER:
|
|
|
{
|
|
|
const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
|
|
|
@@ -5814,6 +5830,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|
|
}
|
|
|
} break;
|
|
|
case LLM_ARCH_LFM2:
|
|
|
+ case LLM_ARCH_LFM2MOE:
|
|
|
{
|
|
|
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
|
|
tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
|
|
|
@@ -5825,11 +5842,23 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|
|
|
|
|
for (int i = 0; i < n_layer; ++i) {
|
|
|
auto & layer = layers[i];
|
|
|
- // ffn is same for transformer and conv layers
|
|
|
+
|
|
|
+ const bool is_moe_layer = i >= static_cast<int>(hparams.n_layer_dense_lead);
|
|
|
+
|
|
|
+ // ffn/moe is same for transformer and conv layers
|
|
|
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
|
|
|
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
|
|
|
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
|
|
|
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
|
|
+ if (is_moe_layer) {
|
|
|
+ GGML_ASSERT(n_expert && n_expert_used);
|
|
|
+ layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
|
|
|
+ layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, hparams.n_ff_exp, n_expert}, 0);
|
|
|
+ layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {hparams.n_ff_exp, n_embd, n_expert}, 0);
|
|
|
+ layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, hparams.n_ff_exp, n_expert}, 0);
|
|
|
+ layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, 0);
|
|
|
+ } else { // dense
|
|
|
+ layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
|
|
|
+ layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
|
|
|
+ layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
|
|
+ }
|
|
|
|
|
|
// for operator_norm
|
|
|
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
|
|
|
@@ -6310,7 +6339,7 @@ void llama_model::print_info() const {
|
|
|
LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
|
|
|
}
|
|
|
|
|
|
- if (arch == LLM_ARCH_SMALLTHINKER) {
|
|
|
+ if (arch == LLM_ARCH_SMALLTHINKER || arch == LLM_ARCH_LFM2MOE) {
|
|
|
LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
|
|
|
LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
|
|
|
}
|
|
|
@@ -18602,6 +18631,8 @@ struct llm_build_lfm2 : public llm_graph_context {
|
|
|
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
|
|
|
|
for (int il = 0; il < n_layer; ++il) {
|
|
|
+ const bool is_moe_layer = il >= static_cast<int>(hparams.n_layer_dense_lead);
|
|
|
+
|
|
|
auto * prev_cur = cur;
|
|
|
cur = build_norm(cur, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
|
|
|
cb(cur, "model.layers.{}.operator_norm", il);
|
|
|
@@ -18616,7 +18647,16 @@ struct llm_build_lfm2 : public llm_graph_context {
|
|
|
}
|
|
|
|
|
|
cur = ggml_add(ctx0, prev_cur, cur);
|
|
|
- cur = ggml_add(ctx0, cur, build_feed_forward(cur, il));
|
|
|
+
|
|
|
+ auto * ffn_norm_out = build_norm(cur, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
|
|
|
+ cb(ffn_norm_out, "model.layers.{}.ffn_norm", il);
|
|
|
+
|
|
|
+ ggml_tensor * ffn_out = is_moe_layer ?
|
|
|
+ build_moe_feed_forward(ffn_norm_out, il) :
|
|
|
+ build_dense_feed_forward(ffn_norm_out, il);
|
|
|
+ cb(ffn_norm_out, "model.layers.{}.ffn_out", il);
|
|
|
+
|
|
|
+ cur = ggml_add(ctx0, cur, ffn_out);
|
|
|
}
|
|
|
|
|
|
cur = build_norm(cur, model.tok_norm, NULL, LLM_NORM_RMS, -1);
|
|
|
@@ -18631,23 +18671,32 @@ struct llm_build_lfm2 : public llm_graph_context {
|
|
|
ggml_build_forward_expand(gf, cur);
|
|
|
}
|
|
|
|
|
|
- ggml_tensor * build_feed_forward(ggml_tensor * cur,
|
|
|
- int il) const {
|
|
|
- cur = build_norm(cur, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
|
|
|
- cb(cur, "model.layers.{}.ffn_norm", il);
|
|
|
+ ggml_tensor * build_moe_feed_forward(ggml_tensor * cur,
|
|
|
+ int il) const {
|
|
|
+ return build_moe_ffn(cur,
|
|
|
+ model.layers[il].ffn_gate_inp,
|
|
|
+ model.layers[il].ffn_up_exps,
|
|
|
+ model.layers[il].ffn_gate_exps,
|
|
|
+ model.layers[il].ffn_down_exps,
|
|
|
+ model.layers[il].ffn_exp_probs_b,
|
|
|
+ n_expert, n_expert_used,
|
|
|
+ LLM_FFN_SILU, true,
|
|
|
+ false, 0.0,
|
|
|
+ static_cast<llama_expert_gating_func_type>(hparams.expert_gating_func),
|
|
|
+ il);
|
|
|
+ }
|
|
|
|
|
|
+ ggml_tensor * build_dense_feed_forward(ggml_tensor * cur,
|
|
|
+ int il) const {
|
|
|
GGML_ASSERT(!model.layers[il].ffn_up_b);
|
|
|
GGML_ASSERT(!model.layers[il].ffn_gate_b);
|
|
|
GGML_ASSERT(!model.layers[il].ffn_down_b);
|
|
|
- cur = build_ffn(cur,
|
|
|
+ return build_ffn(cur,
|
|
|
model.layers[il].ffn_up, NULL, NULL,
|
|
|
model.layers[il].ffn_gate, NULL, NULL,
|
|
|
model.layers[il].ffn_down, NULL, NULL,
|
|
|
NULL,
|
|
|
LLM_FFN_SILU, LLM_FFN_PAR, il);
|
|
|
- cb(cur, "model.layers.{}.feed_forward.w2", il);
|
|
|
-
|
|
|
- return cur;
|
|
|
}
|
|
|
|
|
|
ggml_tensor * build_attn_block(ggml_tensor * cur,
|
|
|
@@ -19817,6 +19866,7 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
|
|
|
llm = std::make_unique<llm_build_falcon_h1>(*this, params);
|
|
|
} break;
|
|
|
case LLM_ARCH_LFM2:
|
|
|
+ case LLM_ARCH_LFM2MOE:
|
|
|
{
|
|
|
llm = std::make_unique<llm_build_lfm2>(*this, params);
|
|
|
} break;
|
|
|
@@ -20039,6 +20089,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
|
|
case LLM_ARCH_OPENAI_MOE:
|
|
|
case LLM_ARCH_HUNYUAN_DENSE:
|
|
|
case LLM_ARCH_LFM2:
|
|
|
+ case LLM_ARCH_LFM2MOE:
|
|
|
case LLM_ARCH_SMALLTHINKER:
|
|
|
case LLM_ARCH_GLM4_MOE:
|
|
|
case LLM_ARCH_SEED_OSS:
|