|
|
@@ -1,6 +1,7 @@
|
|
|
#include "llama-vocab.h"
|
|
|
|
|
|
#include "llama-impl.h"
|
|
|
+#include "llama-model-loader.h"
|
|
|
|
|
|
#include "unicode.h"
|
|
|
|
|
|
@@ -11,8 +12,10 @@
|
|
|
#include <cstdarg>
|
|
|
#include <cstring>
|
|
|
#include <forward_list>
|
|
|
+#include <map>
|
|
|
#include <queue>
|
|
|
-#include <sstream>
|
|
|
+#include <set>
|
|
|
+#include <unordered_map>
|
|
|
|
|
|
//
|
|
|
// helpers
|
|
|
@@ -62,96 +65,14 @@ struct naive_trie {
|
|
|
};
|
|
|
|
|
|
//
|
|
|
-// impl
|
|
|
+// tokenizers
|
|
|
//
|
|
|
|
|
|
struct llm_tokenizer {
|
|
|
- llm_tokenizer() {}
|
|
|
- virtual ~llm_tokenizer() = default;
|
|
|
+ llm_tokenizer() {}
|
|
|
+ virtual ~llm_tokenizer() = default;
|
|
|
};
|
|
|
|
|
|
-llama_vocab::~llama_vocab() {
|
|
|
- delete tokenizer;
|
|
|
-}
|
|
|
-
|
|
|
-int llama_vocab::find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
|
|
|
- GGML_ASSERT(token_left.find(' ') == std::string::npos);
|
|
|
- GGML_ASSERT(token_left.find('\n') == std::string::npos);
|
|
|
- GGML_ASSERT(token_right.find(' ') == std::string::npos);
|
|
|
- GGML_ASSERT(token_right.find('\n') == std::string::npos);
|
|
|
-
|
|
|
- auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
|
|
|
- if (it == bpe_ranks.end()) {
|
|
|
- return -1;
|
|
|
- }
|
|
|
-
|
|
|
- return it->second;
|
|
|
-}
|
|
|
-
|
|
|
-static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
|
|
|
- return vocab.type;
|
|
|
-}
|
|
|
-
|
|
|
-static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
|
|
|
- GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
|
|
|
- return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL;
|
|
|
-}
|
|
|
-
|
|
|
-static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
|
|
|
- GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
|
|
|
- return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNKNOWN;
|
|
|
-}
|
|
|
-
|
|
|
-static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
|
|
|
- GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
|
|
|
- return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_CONTROL;
|
|
|
-}
|
|
|
-
|
|
|
-static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
|
|
|
- GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
|
|
|
- return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_BYTE;
|
|
|
-}
|
|
|
-
|
|
|
-static bool llama_is_user_defined_token(const llama_vocab & vocab, llama_token id) {
|
|
|
- GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
|
|
|
- return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_USER_DEFINED;
|
|
|
-}
|
|
|
-
|
|
|
-static bool llama_is_unused_token(const llama_vocab & vocab, llama_token id) {
|
|
|
- GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
|
|
|
- return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNUSED;
|
|
|
-}
|
|
|
-
|
|
|
-static uint8_t llama_token_to_byte(const llama_vocab & vocab, llama_token id) {
|
|
|
- GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
|
|
|
- GGML_ASSERT(llama_is_byte_token(vocab, id));
|
|
|
- const auto & token_data = vocab.id_to_token.at(id);
|
|
|
- switch (llama_vocab_get_type(vocab)) {
|
|
|
- case LLAMA_VOCAB_TYPE_SPM:
|
|
|
- case LLAMA_VOCAB_TYPE_UGM: {
|
|
|
- auto buf = token_data.text.substr(3, 2);
|
|
|
- return strtol(buf.c_str(), NULL, 16);
|
|
|
- }
|
|
|
- case LLAMA_VOCAB_TYPE_BPE: {
|
|
|
- GGML_ABORT("fatal error");
|
|
|
- //return unicode_utf8_to_byte(token_data.text); // TODO: why is this here after GGML_ASSERT?
|
|
|
- }
|
|
|
- case LLAMA_VOCAB_TYPE_WPM: {
|
|
|
- GGML_ABORT("fatal error");
|
|
|
- }
|
|
|
- default:
|
|
|
- GGML_ABORT("fatal error");
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-static void llama_escape_whitespace(std::string & text) {
|
|
|
- replace_all(text, " ", "\xe2\x96\x81");
|
|
|
-}
|
|
|
-
|
|
|
-static void llama_unescape_whitespace(std::string & word) {
|
|
|
- replace_all(word, "\xe2\x96\x81", " ");
|
|
|
-}
|
|
|
-
|
|
|
struct llm_symbol {
|
|
|
using index = int;
|
|
|
index prev;
|
|
|
@@ -183,14 +104,13 @@ struct llm_bigram_spm {
|
|
|
};
|
|
|
|
|
|
struct llm_tokenizer_spm : llm_tokenizer {
|
|
|
- llm_tokenizer_spm(const llama_vocab & /*vocab*/) : llm_tokenizer() {}
|
|
|
+ llm_tokenizer_spm(const llama_vocab & /*vocab*/) {}
|
|
|
};
|
|
|
|
|
|
struct llm_tokenizer_spm_session {
|
|
|
llm_tokenizer_spm_session(const llama_vocab & vocab) : vocab(vocab) {}
|
|
|
|
|
|
- void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
|
|
|
-
|
|
|
+ void tokenize(const std::string & text, std::vector<llama_token> & output) {
|
|
|
// split string into utf8 chars
|
|
|
int index = 0;
|
|
|
size_t offs = 0;
|
|
|
@@ -249,13 +169,13 @@ struct llm_tokenizer_spm_session {
|
|
|
}
|
|
|
|
|
|
private:
|
|
|
- void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
|
|
|
+ void resegment(llm_symbol & symbol, std::vector<llama_token> & output) {
|
|
|
auto text = std::string(symbol.text, symbol.n);
|
|
|
- auto token = vocab.token_to_id.find(text);
|
|
|
+ auto token = vocab.text_to_token(text);
|
|
|
|
|
|
// Do we need to support is_unused?
|
|
|
- if (token != vocab.token_to_id.end()) {
|
|
|
- output.push_back((*token).second);
|
|
|
+ if (token != LLAMA_TOKEN_NULL) {
|
|
|
+ output.push_back(token);
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
@@ -265,8 +185,8 @@ private:
|
|
|
// output any symbols that did not form tokens as bytes.
|
|
|
output.reserve(output.size() + symbol.n);
|
|
|
for (int j = 0; j < (int)symbol.n; ++j) {
|
|
|
- llama_vocab::id token_id = llama_byte_to_token_impl(vocab, symbol.text[j]);
|
|
|
- output.push_back(token_id);
|
|
|
+ llama_token id = vocab.byte_to_token(symbol.text[j]);
|
|
|
+ output.push_back(id);
|
|
|
}
|
|
|
return;
|
|
|
}
|
|
|
@@ -280,17 +200,17 @@ private:
|
|
|
return;
|
|
|
}
|
|
|
const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
|
|
|
- auto token = vocab.token_to_id.find(text);
|
|
|
+ auto token = vocab.text_to_token(text);
|
|
|
|
|
|
- if (token == vocab.token_to_id.end()) {
|
|
|
+ if (token == LLAMA_TOKEN_NULL) {
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
- if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
|
|
|
+ if (static_cast<uint32_t>(token) >= vocab.n_tokens()) {
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
- const auto & tok_data = vocab.id_to_token[(*token).second];
|
|
|
+ const auto & tok_data = vocab.get_token_data(token);
|
|
|
|
|
|
llm_bigram_spm bigram;
|
|
|
bigram.left = left;
|
|
|
@@ -353,9 +273,9 @@ struct llm_bigram_bpe {
|
|
|
};
|
|
|
|
|
|
struct llm_tokenizer_bpe : llm_tokenizer {
|
|
|
- llm_tokenizer_bpe(const llama_vocab & vocab) : llm_tokenizer() {
|
|
|
- GGML_ASSERT(vocab.type == LLAMA_VOCAB_TYPE_BPE);
|
|
|
- switch (vocab.type_pre) {
|
|
|
+ llm_tokenizer_bpe(const llama_vocab & vocab) {
|
|
|
+ GGML_ASSERT(vocab.get_type() == LLAMA_VOCAB_TYPE_BPE);
|
|
|
+ switch (vocab.get_pre_type()) {
|
|
|
case LLAMA_VOCAB_PRE_TYPE_LLAMA3:
|
|
|
regex_exprs = {
|
|
|
// original regex from tokenizer.json
|
|
|
@@ -488,39 +408,38 @@ struct llm_tokenizer_bpe : llm_tokenizer {
|
|
|
};
|
|
|
|
|
|
struct llm_tokenizer_bpe_session {
|
|
|
- llm_tokenizer_bpe_session(const llama_vocab & vocab) : vocab(vocab),
|
|
|
- bpe_tokenizer(static_cast<const llm_tokenizer_bpe *>(vocab.tokenizer)) {}
|
|
|
+ llm_tokenizer_bpe_session(const llama_vocab & vocab, const llm_tokenizer_bpe & tokenizer) : vocab(vocab), tokenizer(tokenizer) {}
|
|
|
|
|
|
- static void append(const llama_vocab::id token_id, std::vector<llama_vocab::id> & output) {
|
|
|
+ static void append(const llama_token token_id, std::vector<llama_token> & output) {
|
|
|
output.push_back(token_id);
|
|
|
}
|
|
|
|
|
|
- bool append_bos(std::vector<llama_vocab::id> & output) const {
|
|
|
- if (vocab.tokenizer_add_bos) {
|
|
|
- GGML_ASSERT(vocab.special_bos_id != LLAMA_TOKEN_NULL);
|
|
|
- output.push_back(vocab.special_bos_id);
|
|
|
+ bool append_bos(std::vector<llama_token> & output) const {
|
|
|
+ if (vocab.get_add_bos()) {
|
|
|
+ GGML_ASSERT(vocab.token_bos() != LLAMA_TOKEN_NULL);
|
|
|
+ output.push_back(vocab.token_bos());
|
|
|
return true;
|
|
|
}
|
|
|
return false;
|
|
|
}
|
|
|
|
|
|
- bool append_eos(std::vector<llama_vocab::id> & output) const {
|
|
|
- if (vocab.tokenizer_add_eos) {
|
|
|
- GGML_ASSERT(vocab.special_eos_id != LLAMA_TOKEN_NULL);
|
|
|
- output.push_back(vocab.special_eos_id);
|
|
|
+ bool append_eos(std::vector<llama_token> & output) const {
|
|
|
+ if (vocab.get_add_eos()) {
|
|
|
+ GGML_ASSERT(vocab.token_eos() != LLAMA_TOKEN_NULL);
|
|
|
+ output.push_back(vocab.token_eos());
|
|
|
return true;
|
|
|
}
|
|
|
return false;
|
|
|
}
|
|
|
|
|
|
- void check_double_bos_eos(const std::vector<llama_vocab::id> & output) const {
|
|
|
- if (vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) {
|
|
|
+ void check_double_bos_eos(const std::vector<llama_token> & output) const {
|
|
|
+ if (vocab.get_add_bos() && output.size() >= 2 && output[1] == vocab.token_bos()) {
|
|
|
LLAMA_LOG_WARN(
|
|
|
"%s: Added a BOS token to the prompt as specified by the model but the prompt "
|
|
|
"also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
|
|
|
"Are you sure this is what you want?\n", __FUNCTION__);
|
|
|
}
|
|
|
- if (vocab.tokenizer_add_eos && output.size() >= 2 && *(output.end()-2) == vocab.special_eos_id) {
|
|
|
+ if (vocab.get_add_bos() && output.size() >= 2 && *(output.end()-2) == vocab.token_eos()) {
|
|
|
LLAMA_LOG_WARN(
|
|
|
"%s: Added a EOS token to the prompt as specified by the model but the prompt "
|
|
|
"also ends with a EOS token. So now the final prompt ends with 2 EOS tokens. "
|
|
|
@@ -528,9 +447,9 @@ struct llm_tokenizer_bpe_session {
|
|
|
}
|
|
|
}
|
|
|
|
|
|
- void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
|
|
|
+ void tokenize(const std::string & text, std::vector<llama_token> & output) {
|
|
|
int final_prev_index = -1;
|
|
|
- const auto word_collection = unicode_regex_split(text, bpe_tokenizer->regex_exprs);
|
|
|
+ const auto word_collection = unicode_regex_split(text, tokenizer.regex_exprs);
|
|
|
|
|
|
symbols_final.clear();
|
|
|
|
|
|
@@ -541,7 +460,8 @@ struct llm_tokenizer_bpe_session {
|
|
|
int index = 0;
|
|
|
size_t offset = 0;
|
|
|
|
|
|
- if (vocab.tokenizer_ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) {
|
|
|
+ //if (vocab.tokenizer_ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) {
|
|
|
+ if (vocab.get_ignore_merges() && vocab.text_to_token(word) != LLAMA_TOKEN_NULL) {
|
|
|
symbols.emplace_back(llm_symbol{-1, -1, word.c_str(), word.size()});
|
|
|
offset = word.size();
|
|
|
}
|
|
|
@@ -615,18 +535,18 @@ struct llm_tokenizer_bpe_session {
|
|
|
}
|
|
|
|
|
|
const std::string str = std::string(symbol.text, symbol.n);
|
|
|
- const auto token = vocab.token_to_id.find(str);
|
|
|
+ const auto token = vocab.text_to_token(str);
|
|
|
|
|
|
- if (token == vocab.token_to_id.end()) {
|
|
|
+ if (token == LLAMA_TOKEN_NULL) {
|
|
|
for (auto j = str.begin(); j != str.end(); ++j) {
|
|
|
std::string byte_str(1, *j);
|
|
|
- auto token_multibyte = vocab.token_to_id.find(byte_str);
|
|
|
- if (token_multibyte != vocab.token_to_id.end()) {
|
|
|
- output.push_back(token_multibyte->second);
|
|
|
+ auto token_multibyte = vocab.text_to_token(byte_str);
|
|
|
+ if (token_multibyte != LLAMA_TOKEN_NULL) {
|
|
|
+ output.push_back(token_multibyte);
|
|
|
}
|
|
|
}
|
|
|
} else {
|
|
|
- output.push_back((*token).second);
|
|
|
+ output.push_back(token);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
@@ -660,7 +580,7 @@ private:
|
|
|
}
|
|
|
|
|
|
const llama_vocab & vocab;
|
|
|
- const llm_tokenizer_bpe * bpe_tokenizer;
|
|
|
+ const llm_tokenizer_bpe & tokenizer;
|
|
|
|
|
|
std::vector<llm_symbol> symbols;
|
|
|
std::vector<llm_symbol> symbols_final;
|
|
|
@@ -672,14 +592,13 @@ private:
|
|
|
//
|
|
|
|
|
|
struct llm_tokenizer_wpm : llm_tokenizer {
|
|
|
- llm_tokenizer_wpm(const llama_vocab & /*vocab*/) : llm_tokenizer() {}
|
|
|
+ llm_tokenizer_wpm(const llama_vocab & /*vocab*/) {}
|
|
|
};
|
|
|
|
|
|
struct llm_tokenizer_wpm_session {
|
|
|
llm_tokenizer_wpm_session(const llama_vocab & vocab) : vocab(vocab) {}
|
|
|
|
|
|
- void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
|
|
|
- const auto & token_map = vocab.token_to_id;
|
|
|
+ void tokenize(const std::string & text, std::vector<llama_token> & output) {
|
|
|
// normalize and split by whitespace
|
|
|
std::vector<std::string> words = preprocess(text);
|
|
|
// bos token prepended already
|
|
|
@@ -702,10 +621,10 @@ struct llm_tokenizer_wpm_session {
|
|
|
for (int i = 0; i < n; ++i) {
|
|
|
// loop through possible match length
|
|
|
bool match = false;
|
|
|
- for (int j = std::min(n, i + vocab.max_token_len + 1); j > i; j--) {
|
|
|
- auto it = token_map.find(word1.substr(i, j - i));
|
|
|
- if (it != token_map.end()) {
|
|
|
- output.push_back(it->second);
|
|
|
+ for (int j = std::min(n, i + vocab.max_token_len() + 1); j > i; j--) {
|
|
|
+ auto id = vocab.text_to_token(word1.substr(i, j - i));
|
|
|
+ if (id != LLAMA_TOKEN_NULL) {
|
|
|
+ output.push_back(id);
|
|
|
match = true;
|
|
|
i = j - 1;
|
|
|
break;
|
|
|
@@ -720,7 +639,7 @@ struct llm_tokenizer_wpm_session {
|
|
|
|
|
|
// we didn't find any matches for this word
|
|
|
if (current_tokens == output.size()) {
|
|
|
- output.push_back(vocab.special_unk_id);
|
|
|
+ output.push_back(vocab.token_unk());
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
@@ -789,45 +708,45 @@ private:
|
|
|
//
|
|
|
|
|
|
struct llm_tokenizer_ugm : llm_tokenizer {
|
|
|
- llm_tokenizer_ugm(const llama_vocab & vocab) : llm_tokenizer() {
|
|
|
- if (vocab.precompiled_charsmap.size() > 0) {
|
|
|
+ llm_tokenizer_ugm(const llama_vocab & vocab, const std::vector<char> & precompiled_charsmap) {
|
|
|
+ if (precompiled_charsmap.size() > 0) {
|
|
|
size_t charsmap_offset = 0;
|
|
|
|
|
|
// First four bytes of precompiled_charsmap contains length of binary
|
|
|
// blob containing XOR-compressed compact double array (XCDA) entries
|
|
|
- uint32_t xcda_blob_size = *(const uint32_t *) &vocab.precompiled_charsmap[0];
|
|
|
+ uint32_t xcda_blob_size = *(const uint32_t *) &precompiled_charsmap[0];
|
|
|
charsmap_offset += sizeof(xcda_blob_size);
|
|
|
- if (xcda_blob_size + charsmap_offset >= vocab.precompiled_charsmap.size()) {
|
|
|
+ if (xcda_blob_size + charsmap_offset >= precompiled_charsmap.size()) {
|
|
|
throw std::runtime_error("Index out of array bounds in precompiled charsmap!");
|
|
|
}
|
|
|
|
|
|
// Next xcda_blob_size bytes contain entries of XOR-compressed compact
|
|
|
// double array (XCDA). Each entry is bit-packed into a 32-bit integer.
|
|
|
- xcda_array = (const uint32_t *) &vocab.precompiled_charsmap[charsmap_offset];
|
|
|
+ xcda_array = (const uint32_t *) &precompiled_charsmap[charsmap_offset];
|
|
|
xcda_array_size = xcda_blob_size / sizeof(uint32_t);
|
|
|
charsmap_offset += xcda_blob_size;
|
|
|
|
|
|
// Remaining bytes of precompiled charsmap contain null-terminated
|
|
|
// replacement strings for prefixes matched by the XCDA.
|
|
|
- prefix_replacements = &vocab.precompiled_charsmap[charsmap_offset];
|
|
|
- prefix_replacements_size = vocab.precompiled_charsmap.size() - charsmap_offset;
|
|
|
+ prefix_replacements = &precompiled_charsmap[charsmap_offset];
|
|
|
+ prefix_replacements_size = precompiled_charsmap.size() - charsmap_offset;
|
|
|
}
|
|
|
|
|
|
- for (unsigned int id = 0; id < vocab.id_to_token.size(); ++id) {
|
|
|
- const auto &token_data = vocab.id_to_token[id];
|
|
|
+ for (uint32_t id = 0; id < vocab.n_tokens(); ++id) {
|
|
|
+ const auto & token_data = vocab.get_token_data(id);
|
|
|
|
|
|
- if (llama_is_normal_token(vocab, id)) {
|
|
|
+ if (vocab.is_normal(id)) {
|
|
|
min_score = std::min<float>(min_score, token_data.score);
|
|
|
max_score = std::max<float>(max_score, token_data.score);
|
|
|
}
|
|
|
|
|
|
- if (llama_is_normal_token(vocab, id) ||
|
|
|
- llama_is_user_defined_token(vocab, id) ||
|
|
|
- llama_is_unused_token(vocab, id)) {
|
|
|
+ if (vocab.is_normal(id) ||
|
|
|
+ vocab.is_user_defined(id) ||
|
|
|
+ vocab.is_unused(id)) {
|
|
|
token_matcher.insert(token_data.text.data(), token_data.text.size(), id);
|
|
|
}
|
|
|
|
|
|
- if (llama_is_user_defined_token(vocab, id)) {
|
|
|
+ if (vocab.is_user_defined(id)) {
|
|
|
user_defined_token_matcher.insert(token_data.text.data(), token_data.text.size());
|
|
|
}
|
|
|
}
|
|
|
@@ -856,8 +775,7 @@ struct llm_tokenizer_ugm : llm_tokenizer {
|
|
|
};
|
|
|
|
|
|
struct llm_tokenizer_ugm_session {
|
|
|
- llm_tokenizer_ugm_session(const llama_vocab & vocab) : vocab(vocab),
|
|
|
- ugm_tokenizer(static_cast<const llm_tokenizer_ugm *>(vocab.tokenizer)) {}
|
|
|
+ llm_tokenizer_ugm_session(const llama_vocab & vocab, const llm_tokenizer_ugm & tokenizer) : vocab(vocab), tokenizer(tokenizer) {}
|
|
|
|
|
|
/* This implementation is based on SentencePiece optimized Viterbi algorithm for
|
|
|
* unigram language models. The general idea is to:
|
|
|
@@ -872,7 +790,7 @@ struct llm_tokenizer_ugm_session {
|
|
|
* After processing the whole sequence we backtrack from the end to get
|
|
|
* the best tokenization.
|
|
|
*/
|
|
|
- void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
|
|
|
+ void tokenize(const std::string & text, std::vector<llama_token> & output) {
|
|
|
// get current size of output (for reversal later)
|
|
|
size_t output_size = output.size();
|
|
|
|
|
|
@@ -885,9 +803,9 @@ struct llm_tokenizer_ugm_session {
|
|
|
}
|
|
|
|
|
|
// initialize score_sum to -FLT_MAX so it will be always lower than sums of token scores
|
|
|
- std::vector<struct best_tokenization> tokenization_results(input_len + 1, {vocab.special_unk_id, 0, -FLT_MAX});
|
|
|
+ std::vector<struct best_tokenization> tokenization_results(input_len + 1, {vocab.token_unk(), 0, -FLT_MAX});
|
|
|
// at the beginning tokenization score is zero
|
|
|
- tokenization_results[0] = { vocab.special_unk_id, 0, 0 };
|
|
|
+ tokenization_results[0] = { vocab.token_unk(), 0, 0 };
|
|
|
|
|
|
for (size_t input_offset = 0; input_offset < input_len;) {
|
|
|
size_t prefix_offset = input_offset;
|
|
|
@@ -897,7 +815,7 @@ struct llm_tokenizer_ugm_session {
|
|
|
// traverse the token matcher trie to find a matching token
|
|
|
bool single_codepoint_token_found = false;
|
|
|
const struct best_tokenization & current_best = tokenization_results[input_offset];
|
|
|
- const struct naive_trie * node = ugm_tokenizer->token_matcher.traverse(normalized[prefix_offset++]);
|
|
|
+ const struct naive_trie * node = tokenizer.token_matcher.traverse(normalized[prefix_offset++]);
|
|
|
|
|
|
while (prefix_offset <= input_len && node != NULL) {
|
|
|
// check if we found valid token in prefix
|
|
|
@@ -907,13 +825,13 @@ struct llm_tokenizer_ugm_session {
|
|
|
single_codepoint_token_found = true;
|
|
|
}
|
|
|
llama_token token_id = node->value;
|
|
|
- const auto & token_data = vocab.id_to_token[token_id];
|
|
|
+ const auto & token_data = vocab.get_token_data(token_id);
|
|
|
|
|
|
// we set the user-defined token scores to 0 to make them more likely to be selected
|
|
|
// (normal token scores are log probabilities, so they are negative)
|
|
|
// score type is double here to make tokenization results exactly
|
|
|
// the same as in the HF tokenizer using SentencePiece
|
|
|
- const double token_score = llama_is_user_defined_token(vocab, token_id) ? 0.0 : token_data.score;
|
|
|
+ const double token_score = vocab.is_user_defined(token_id) ? 0.0 : token_data.score;
|
|
|
const double challenger_score = current_best.score_sum + token_score;
|
|
|
struct best_tokenization & current_champ = tokenization_results[prefix_offset];
|
|
|
if (challenger_score > current_champ.score_sum) {
|
|
|
@@ -927,11 +845,11 @@ struct llm_tokenizer_ugm_session {
|
|
|
// if we didn't find a valid token corresponding to the whole UTF code point
|
|
|
// then use unknown token as the tokenization of this UTF code point
|
|
|
if (!single_codepoint_token_found) {
|
|
|
- const double challenger_score = current_best.score_sum + ugm_tokenizer->unknown_token_score;
|
|
|
+ const double challenger_score = current_best.score_sum + tokenizer.unknown_token_score;
|
|
|
prefix_offset = input_offset + n_utf8_code_units;
|
|
|
struct best_tokenization & current_champ = tokenization_results[prefix_offset];
|
|
|
if (challenger_score > current_champ.score_sum) {
|
|
|
- struct best_tokenization challenger = { vocab.special_unk_id, input_offset, (float) challenger_score };
|
|
|
+ struct best_tokenization challenger = { vocab.token_unk(), input_offset, (float) challenger_score };
|
|
|
current_champ = challenger;
|
|
|
}
|
|
|
}
|
|
|
@@ -944,7 +862,7 @@ struct llm_tokenizer_ugm_session {
|
|
|
// merge sequences of consecutive unknown tokens into single unknown tokens
|
|
|
bool is_prev_unknown = false;
|
|
|
for (struct best_tokenization & tokenization = tokenization_results[input_len]; ; tokenization = tokenization_results[tokenization.input_offset]) {
|
|
|
- bool is_unknown = tokenization.token_id == vocab.special_unk_id;
|
|
|
+ bool is_unknown = tokenization.token_id == vocab.token_unk();
|
|
|
if (!(is_prev_unknown && is_unknown)) {
|
|
|
output.push_back(tokenization.token_id);
|
|
|
}
|
|
|
@@ -971,11 +889,11 @@ private:
|
|
|
normalized->clear();
|
|
|
normalized->reserve(input.size() * 3);
|
|
|
|
|
|
- const std::string space = vocab.tokenizer_escape_whitespaces ? ugm_tokenizer->escaped_space : " ";
|
|
|
+ const std::string space = vocab.get_escape_whitespaces() ? tokenizer.escaped_space : " ";
|
|
|
|
|
|
- bool shall_prepend_space = !vocab.tokenizer_treat_whitespace_as_suffix && vocab.tokenizer_add_space_prefix;
|
|
|
- bool shall_append_space = vocab.tokenizer_treat_whitespace_as_suffix && vocab.tokenizer_add_space_prefix;
|
|
|
- bool shall_merge_spaces = vocab.tokenizer_remove_extra_whitespaces;
|
|
|
+ const bool shall_prepend_space = !vocab.get_treat_whitespace_as_suffix() && vocab.get_add_space_prefix();
|
|
|
+ const bool shall_append_space = vocab.get_treat_whitespace_as_suffix() && vocab.get_add_space_prefix();
|
|
|
+ const bool shall_merge_spaces = vocab.get_remove_extra_whitespaces();
|
|
|
|
|
|
bool is_space_prepended = false;
|
|
|
bool processing_non_ws = false;
|
|
|
@@ -1067,7 +985,7 @@ private:
|
|
|
|
|
|
// if input prefix matches some user-defined token return this token as normalization result
|
|
|
auto user_defined_token_match =
|
|
|
- ugm_tokenizer->user_defined_token_matcher.get_longest_prefix(&input[input_offset], input.size() - input_offset);
|
|
|
+ tokenizer.user_defined_token_matcher.get_longest_prefix(&input[input_offset], input.size() - input_offset);
|
|
|
if (user_defined_token_match.second > 0) {
|
|
|
return { &input[input_offset], user_defined_token_match.second, user_defined_token_match.second };
|
|
|
}
|
|
|
@@ -1075,8 +993,8 @@ private:
|
|
|
size_t longest_prefix_length = 0;
|
|
|
size_t longest_prefix_offset = 0;
|
|
|
|
|
|
- if (ugm_tokenizer->xcda_array_size > 0) {
|
|
|
- struct xcda_array_view xcda_view(ugm_tokenizer->xcda_array, ugm_tokenizer->xcda_array_size);
|
|
|
+ if (tokenizer.xcda_array_size > 0) {
|
|
|
+ struct xcda_array_view xcda_view(tokenizer.xcda_array, tokenizer.xcda_array_size);
|
|
|
|
|
|
// Find the longest normalized sequence matching the input prefix by walking
|
|
|
// the XOR-compressed compact double array (XCDA) starting from the root node
|
|
|
@@ -1112,10 +1030,10 @@ private:
|
|
|
|
|
|
if (longest_prefix_length > 0) {
|
|
|
// we have a match, so return the replacement sequence
|
|
|
- if (longest_prefix_offset >= ugm_tokenizer->prefix_replacements_size) {
|
|
|
+ if (longest_prefix_offset >= tokenizer.prefix_replacements_size) {
|
|
|
throw std::runtime_error("Index out of array bounds in precompiled charsmap!");
|
|
|
}
|
|
|
- const char * prefix_replacement = &(ugm_tokenizer->prefix_replacements)[longest_prefix_offset];
|
|
|
+ const char * prefix_replacement = &(tokenizer.prefix_replacements)[longest_prefix_offset];
|
|
|
return { prefix_replacement, strlen(prefix_replacement), longest_prefix_length };
|
|
|
}
|
|
|
|
|
|
@@ -1132,7 +1050,7 @@ private:
|
|
|
}
|
|
|
|
|
|
const llama_vocab & vocab;
|
|
|
- const llm_tokenizer_ugm * ugm_tokenizer;
|
|
|
+ const llm_tokenizer_ugm & tokenizer;
|
|
|
};
|
|
|
|
|
|
//
|
|
|
@@ -1194,15 +1112,15 @@ static std::vector<uint8_t> llama_unescape_rwkv_token(const std::string & escape
|
|
|
}
|
|
|
|
|
|
struct llm_tokenizer_rwkv : llm_tokenizer {
|
|
|
- llm_tokenizer_rwkv(const llama_vocab & vocab) : llm_tokenizer() {
|
|
|
+ llm_tokenizer_rwkv(const llama_vocab & vocab) {
|
|
|
// RWKV supports arbitrary byte tokens, but the vocab struct only supports string tokens.
|
|
|
// For now, we decode the vocab here into the lookup we'll use for tokenization.
|
|
|
|
|
|
// build trie
|
|
|
- for (unsigned int id = 0; id < vocab.id_to_token.size(); ++id) {
|
|
|
- const auto & token = vocab.id_to_token[id];
|
|
|
- const auto data = llama_unescape_rwkv_token(token.text);
|
|
|
- token_matcher.insert((const char *) data.data(), data.size(), id);
|
|
|
+ for (uint32_t id = 0; id < vocab.n_tokens(); ++id) {
|
|
|
+ const auto & data = vocab.get_token_data(id);
|
|
|
+ const auto text = llama_unescape_rwkv_token(data.text);
|
|
|
+ token_matcher.insert((const char *) text.data(), text.size(), id);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
@@ -1210,16 +1128,15 @@ struct llm_tokenizer_rwkv : llm_tokenizer {
|
|
|
};
|
|
|
|
|
|
struct llm_tokenizer_rwkv_session {
|
|
|
- llm_tokenizer_rwkv_session(const llama_vocab & vocab) : vocab(vocab),
|
|
|
- rwkv_tokenizer(static_cast<const llm_tokenizer_rwkv &>(*vocab.tokenizer)) {}
|
|
|
+ llm_tokenizer_rwkv_session(const llama_vocab & vocab, const llm_tokenizer_rwkv & tokenizer) : vocab(vocab), tokenizer(tokenizer) {}
|
|
|
|
|
|
- void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
|
|
|
+ void tokenize(const std::string & text, std::vector<llama_token> & output) {
|
|
|
uint32_t position = 0;
|
|
|
while (position < text.size()) {
|
|
|
- const struct naive_trie * node = rwkv_tokenizer.token_matcher.traverse(text[position]);
|
|
|
+ const struct naive_trie * node = tokenizer.token_matcher.traverse(text[position]);
|
|
|
if (node == NULL) {
|
|
|
// no matching token found, add unknown token
|
|
|
- output.push_back(vocab.special_unk_id);
|
|
|
+ output.push_back(vocab.token_unk());
|
|
|
position += 1;
|
|
|
continue;
|
|
|
}
|
|
|
@@ -1243,33 +1160,11 @@ struct llm_tokenizer_rwkv_session {
|
|
|
|
|
|
private:
|
|
|
const llama_vocab & vocab;
|
|
|
- const llm_tokenizer_rwkv & rwkv_tokenizer;
|
|
|
+ const llm_tokenizer_rwkv & tokenizer;
|
|
|
};
|
|
|
|
|
|
-void llama_vocab::init_tokenizer() {
|
|
|
- switch (type) {
|
|
|
- case LLAMA_VOCAB_TYPE_SPM:
|
|
|
- tokenizer = new llm_tokenizer_spm(*this);
|
|
|
- break;
|
|
|
- case LLAMA_VOCAB_TYPE_BPE:
|
|
|
- tokenizer = new llm_tokenizer_bpe(*this);
|
|
|
- break;
|
|
|
- case LLAMA_VOCAB_TYPE_WPM:
|
|
|
- tokenizer = new llm_tokenizer_wpm(*this);
|
|
|
- break;
|
|
|
- case LLAMA_VOCAB_TYPE_UGM:
|
|
|
- tokenizer = new llm_tokenizer_ugm(*this);
|
|
|
- break;
|
|
|
- case LLAMA_VOCAB_TYPE_RWKV:
|
|
|
- tokenizer = new llm_tokenizer_rwkv(*this);
|
|
|
- break;
|
|
|
- default:
|
|
|
- GGML_ABORT("unsupported vocab type");
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
//
|
|
|
-// (de-) tokenize
|
|
|
+// impl
|
|
|
//
|
|
|
|
|
|
typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
|
|
|
@@ -1278,7 +1173,7 @@ typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
|
|
|
} FRAGMENT_BUFFER_VARIANT_TYPE;
|
|
|
|
|
|
struct fragment_buffer_variant {
|
|
|
- fragment_buffer_variant(llama_vocab::id _token)
|
|
|
+ fragment_buffer_variant(llama_token _token)
|
|
|
:
|
|
|
type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
|
|
|
token(_token),
|
|
|
@@ -1289,7 +1184,7 @@ struct fragment_buffer_variant {
|
|
|
fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
|
|
|
:
|
|
|
type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
|
|
|
- token((llama_vocab::id) - 1),
|
|
|
+ token((llama_token) - 1),
|
|
|
raw_text(_raw_text),
|
|
|
offset(_offset),
|
|
|
length(_length){
|
|
|
@@ -1299,684 +1194,2062 @@ struct fragment_buffer_variant {
|
|
|
}
|
|
|
|
|
|
const FRAGMENT_BUFFER_VARIANT_TYPE type;
|
|
|
- const llama_vocab::id token;
|
|
|
+ const llama_token token;
|
|
|
const std::string _dummy;
|
|
|
const std::string & raw_text;
|
|
|
const uint64_t offset;
|
|
|
const uint64_t length;
|
|
|
};
|
|
|
|
|
|
-// #define PRETOKENIZERDEBUG
|
|
|
+struct llama_vocab::impl {
|
|
|
+ uint32_t n_token_types = 0; // for BERT-style token types
|
|
|
|
|
|
-static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer, bool parse_special) {
|
|
|
- // for each special token
|
|
|
- for (const llama_vocab::id special_id : vocab.cache_special_tokens) {
|
|
|
- const auto & data = vocab.id_to_token[special_id];
|
|
|
- const auto & special_token = data.text;
|
|
|
+ enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
|
|
|
+ enum llama_vocab_pre_type pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
|
|
|
|
|
- if (!parse_special && (data.attr & (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_UNKNOWN))) {
|
|
|
- // Ignore control and unknown tokens when parse_special == false
|
|
|
- continue;
|
|
|
- // User-defined tokens are still pre-tokenized before everything else
|
|
|
- // ref: https://github.com/huggingface/tokenizers/blob/fdd26ba9a3f0c133427aab0423888cbde91362d7/tokenizers/src/tokenizer/mod.rs#L726
|
|
|
- // This is mostly relevant for neox-style tokenizers (mpt, olmo, stablelm, etc.)
|
|
|
- }
|
|
|
+ int max_token_len = 0; // used for optimizing longest token search
|
|
|
|
|
|
- // for each text fragment
|
|
|
- std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
|
|
|
- while (it != buffer.end()) {
|
|
|
- auto & fragment = (*it);
|
|
|
+ // default LLaMA special tokens
|
|
|
+ // TODO: should we set all of these to LLAMA_TOKEN_NULL?
|
|
|
+ llama_token special_bos_id = 1;
|
|
|
+ llama_token special_eos_id = 2;
|
|
|
+ llama_token special_eot_id = LLAMA_TOKEN_NULL;
|
|
|
+ llama_token special_eom_id = LLAMA_TOKEN_NULL;
|
|
|
+ llama_token special_unk_id = 0;
|
|
|
+ llama_token special_sep_id = LLAMA_TOKEN_NULL;
|
|
|
+ llama_token special_pad_id = LLAMA_TOKEN_NULL;
|
|
|
+ llama_token special_cls_id = LLAMA_TOKEN_NULL; // TODO: revisit if this is really needed https://github.com/ggerganov/llama.cpp/pull/10930
|
|
|
+ llama_token special_mask_id = LLAMA_TOKEN_NULL;
|
|
|
|
|
|
- // if a fragment is text ( not yet processed )
|
|
|
- if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
|
|
|
- const auto & raw_text = fragment.raw_text;
|
|
|
+ llama_token linefeed_id = 13;
|
|
|
|
|
|
- auto raw_text_base_offset = fragment.offset;
|
|
|
- auto raw_text_base_length = fragment.length;
|
|
|
+ // fim tokens
|
|
|
+ llama_token special_fim_pre_id = LLAMA_TOKEN_NULL;
|
|
|
+ llama_token special_fim_suf_id = LLAMA_TOKEN_NULL;
|
|
|
+ llama_token special_fim_mid_id = LLAMA_TOKEN_NULL;
|
|
|
+ llama_token special_fim_pad_id = LLAMA_TOKEN_NULL;
|
|
|
+ llama_token special_fim_rep_id = LLAMA_TOKEN_NULL; // repo
|
|
|
+ llama_token special_fim_sep_id = LLAMA_TOKEN_NULL; // file separator
|
|
|
|
|
|
- // loop over the text
|
|
|
- while (true) {
|
|
|
- // find the first occurrence of a given special token in this fragment
|
|
|
- // passing offset argument only limit the "search area" but match coordinates
|
|
|
- // are still relative to the source full raw_text
|
|
|
- auto match = raw_text.find(special_token, raw_text_base_offset);
|
|
|
+ // tokenizer flags
|
|
|
+ bool add_space_prefix = false;
|
|
|
+ bool add_bos = false;
|
|
|
+ bool add_eos = false;
|
|
|
+ bool ignore_merges = false;
|
|
|
+ bool clean_spaces = false; // clean_up_tokenization_spaces
|
|
|
+ bool remove_extra_whitespaces = false;
|
|
|
+ bool escape_whitespaces = true;
|
|
|
+ bool treat_whitespace_as_suffix = false;
|
|
|
|
|
|
- // no occurrences found, stop processing this fragment for a given special token
|
|
|
- if (match == std::string::npos) break;
|
|
|
+ std::unordered_map<std::string, llama_token> token_to_id;
|
|
|
+ std::vector<token_data> id_to_token;
|
|
|
|
|
|
- // check if match is within bounds of offset <-> length
|
|
|
- if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
|
|
|
+ std::vector<llama_token> cache_special_tokens;
|
|
|
+ std::vector<std::string> cache_token_to_piece; // llama_token_to_piece(special = true);
|
|
|
|
|
|
-#ifdef PRETOKENIZERDEBUG
|
|
|
- LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
|
|
|
-#endif
|
|
|
- auto source = std::distance(buffer.begin(), it);
|
|
|
+ std::map<std::pair<std::string, std::string>, int> bpe_ranks;
|
|
|
|
|
|
- // if match is further than base offset
|
|
|
- // then we have some text to the left of it
|
|
|
- if (match > raw_text_base_offset) {
|
|
|
- // left
|
|
|
- const int64_t left_reminder_offset = raw_text_base_offset + 0;
|
|
|
- int64_t left_reminder_length = match - raw_text_base_offset;
|
|
|
+ // set of all tokens that cause "end of generation"
|
|
|
+ std::set<llama_token> special_eog_ids;
|
|
|
|
|
|
- if (data.attr & LLAMA_TOKEN_ATTR_LSTRIP) {
|
|
|
- while (left_reminder_length > 0 && isspace(raw_text[left_reminder_offset + left_reminder_length - 1])) {
|
|
|
- left_reminder_length--;
|
|
|
- }
|
|
|
- }
|
|
|
+ std::unique_ptr<llm_tokenizer> tokenizer;
|
|
|
|
|
|
- if (left_reminder_length > 0) {
|
|
|
- buffer.emplace_after(it, raw_text, left_reminder_offset, left_reminder_length);
|
|
|
- it++;
|
|
|
- }
|
|
|
+ std::vector<char> precompiled_charsmap;
|
|
|
|
|
|
-#ifdef PRETOKENIZERDEBUG
|
|
|
- LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
|
|
|
-#endif
|
|
|
- }
|
|
|
+ impl(const llama_vocab & vocab) : vocab(vocab) {
|
|
|
+ }
|
|
|
|
|
|
- // special token
|
|
|
- buffer.emplace_after(it, special_id);
|
|
|
- it++;
|
|
|
+ ~impl() = default;
|
|
|
|
|
|
- // right
|
|
|
- if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
|
|
|
- int64_t right_reminder_offset = match + special_token.length();
|
|
|
- int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
|
|
|
+ void load(llama_model_loader & ml, const LLM_KV & kv);
|
|
|
|
|
|
- if (data.attr & LLAMA_TOKEN_ATTR_RSTRIP) {
|
|
|
- while (right_reminder_length > 0 && isspace(raw_text[right_reminder_offset])) {
|
|
|
- right_reminder_offset++;
|
|
|
- right_reminder_length--;
|
|
|
- }
|
|
|
- }
|
|
|
+ enum llama_vocab_type get_type() const;
|
|
|
|
|
|
- if (right_reminder_length > 0) {
|
|
|
- buffer.emplace_after(it, raw_text, right_reminder_offset, right_reminder_length);
|
|
|
- it++;
|
|
|
- }
|
|
|
+ std::string type_name() const;
|
|
|
|
|
|
-#ifdef PRETOKENIZERDEBUG
|
|
|
- LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
|
|
|
-#endif
|
|
|
+ bool is_normal (llama_token id) const;
|
|
|
+ bool is_unknown (llama_token id) const;
|
|
|
+ bool is_control (llama_token id) const;
|
|
|
+ bool is_byte (llama_token id) const;
|
|
|
+ bool is_user_defined(llama_token id) const;
|
|
|
+ bool is_unused (llama_token id) const;
|
|
|
+ bool is_eog (llama_token id) const;
|
|
|
|
|
|
- if (source == 0) {
|
|
|
- buffer.erase_after(buffer.before_begin());
|
|
|
- } else {
|
|
|
- buffer.erase_after(std::next(buffer.begin(), (source - 1)));
|
|
|
- }
|
|
|
+ uint8_t token_to_byte(llama_token id) const;
|
|
|
|
|
|
- // repeat for the right side
|
|
|
- raw_text_base_offset = right_reminder_offset;
|
|
|
- raw_text_base_length = right_reminder_length;
|
|
|
+ llama_token_attr token_get_attr(llama_token id) const;
|
|
|
|
|
|
-#ifdef PRETOKENIZERDEBUG
|
|
|
- LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
|
|
|
-#endif
|
|
|
- } else {
|
|
|
- if (source == 0) {
|
|
|
- buffer.erase_after(buffer.before_begin());
|
|
|
- } else {
|
|
|
- buffer.erase_after(std::next(buffer.begin(), (source - 1)));
|
|
|
- }
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- it++;
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
+ void init_tokenizer(enum llama_vocab_type type);
|
|
|
|
|
|
-std::vector<llama_vocab::id> llama_tokenize_internal(
|
|
|
- const llama_vocab & vocab,
|
|
|
- std::string raw_text,
|
|
|
- bool add_special,
|
|
|
- bool parse_special) {
|
|
|
- GGML_ASSERT(vocab.tokenizer && "Tokenizer not initialized. Call llama_vocab::init_tokenizer() first.");
|
|
|
+ void tokenizer_st_partition(std::forward_list<fragment_buffer_variant> & buffer, bool parse_special) const;
|
|
|
|
|
|
- std::vector<llama_vocab::id> output;
|
|
|
- std::forward_list<fragment_buffer_variant> fragment_buffer;
|
|
|
+ std::string token_to_piece_for_cache(
|
|
|
+ llama_token token,
|
|
|
+ bool special) const;
|
|
|
|
|
|
- if (!raw_text.empty()) {
|
|
|
- fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
|
|
|
- tokenizer_st_partition(vocab, fragment_buffer, parse_special);
|
|
|
- }
|
|
|
|
|
|
- switch (vocab.type) {
|
|
|
- case LLAMA_VOCAB_TYPE_SPM:
|
|
|
- {
|
|
|
- // OG tokenizer behavior:
|
|
|
- //
|
|
|
- // tokenizer.encode('', add_special_tokens=True) returns [1]
|
|
|
- // tokenizer.encode('', add_special_tokens=False) returns []
|
|
|
+ std::vector<llama_token> tokenize(
|
|
|
+ const std::string & raw_text,
|
|
|
+ bool add_special,
|
|
|
+ bool parse_special = false) const;
|
|
|
|
|
|
- bool is_prev_special = true; // prefix with space if first token
|
|
|
+ int32_t tokenize(
|
|
|
+ const char * text,
|
|
|
+ int32_t text_len,
|
|
|
+ llama_token * tokens,
|
|
|
+ int32_t n_tokens_max,
|
|
|
+ bool add_special,
|
|
|
+ bool parse_special) const;
|
|
|
|
|
|
- if (add_special && vocab.tokenizer_add_bos) {
|
|
|
- GGML_ASSERT(vocab.special_bos_id != LLAMA_TOKEN_NULL);
|
|
|
- output.push_back(vocab.special_bos_id);
|
|
|
- is_prev_special = true;
|
|
|
- }
|
|
|
+ // does not write null-terminator to buf
|
|
|
+ int32_t token_to_piece(
|
|
|
+ llama_token token,
|
|
|
+ char * buf,
|
|
|
+ int32_t length,
|
|
|
+ int32_t lstrip,
|
|
|
+ bool special) const;
|
|
|
|
|
|
- for (const auto & fragment : fragment_buffer) {
|
|
|
- if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
|
|
|
- auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
|
|
|
+ // use cached data
|
|
|
+ const std::string & token_to_piece(llama_token token) const;
|
|
|
|
|
|
- // prefix with space if previous is special
|
|
|
- if (vocab.tokenizer_add_space_prefix && is_prev_special) {
|
|
|
- raw_text = " " + raw_text;
|
|
|
- }
|
|
|
+ int32_t detokenize(
|
|
|
+ const llama_token * tokens,
|
|
|
+ int32_t n_tokens,
|
|
|
+ char * text,
|
|
|
+ int32_t text_len_max,
|
|
|
+ bool remove_special,
|
|
|
+ bool unparse_special) const;
|
|
|
|
|
|
-#ifdef PRETOKENIZERDEBUG
|
|
|
- LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
|
|
|
-#endif
|
|
|
- llama_escape_whitespace(raw_text);
|
|
|
- llm_tokenizer_spm_session session(vocab);
|
|
|
- session.tokenize(raw_text, output);
|
|
|
- is_prev_special = false;
|
|
|
- } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
|
|
|
- output.push_back(fragment.token);
|
|
|
- is_prev_special = true;
|
|
|
- }
|
|
|
- }
|
|
|
+ std::string detokenize(
|
|
|
+ const std::vector<llama_token> & tokens,
|
|
|
+ bool special) const;
|
|
|
|
|
|
- if (add_special && vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) {
|
|
|
- LLAMA_LOG_WARN(
|
|
|
- "%s: Added a BOS token to the prompt as specified by the model but the prompt "
|
|
|
- "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
|
|
|
- "Are you sure this is what you want?\n", __FUNCTION__);
|
|
|
- }
|
|
|
+ void print_info() const;
|
|
|
|
|
|
- if (add_special && vocab.tokenizer_add_eos) {
|
|
|
- GGML_ASSERT(vocab.special_eos_id != LLAMA_TOKEN_NULL);
|
|
|
- output.push_back(vocab.special_eos_id);
|
|
|
- }
|
|
|
- } break;
|
|
|
- case LLAMA_VOCAB_TYPE_BPE:
|
|
|
- {
|
|
|
- llm_tokenizer_bpe_session session(vocab);
|
|
|
- // it calls some other methods that are not exist in llm_tokenizer,
|
|
|
- // here just cast it to bpe tokenizer object
|
|
|
- if (add_special) {
|
|
|
- session.append_bos(output);
|
|
|
- }
|
|
|
- for (const auto & fragment : fragment_buffer) {
|
|
|
- if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
|
|
|
- auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
|
|
|
+private:
|
|
|
+ const llama_vocab & vocab;
|
|
|
+};
|
|
|
|
|
|
-#ifdef PRETOKENIZERDEBUG
|
|
|
- LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
|
|
|
-#endif
|
|
|
- session.tokenize(raw_text, output);
|
|
|
- } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
|
|
|
- session.append(fragment.token, output);
|
|
|
- }
|
|
|
- }
|
|
|
+void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|
|
+ struct gguf_context * ctx = ml.meta.get();
|
|
|
|
|
|
- if (add_special) {
|
|
|
- session.append_eos(output);
|
|
|
- session.check_double_bos_eos(output);
|
|
|
- }
|
|
|
- } break;
|
|
|
- case LLAMA_VOCAB_TYPE_WPM:
|
|
|
- {
|
|
|
- if (add_special) {
|
|
|
- GGML_ASSERT(vocab.special_cls_id != LLAMA_TOKEN_NULL);
|
|
|
- output.push_back(vocab.special_cls_id);
|
|
|
- }
|
|
|
+ // determine vocab type
|
|
|
+ {
|
|
|
+ std::string tokenizer_model;
|
|
|
+ std::string tokenizer_pre;
|
|
|
+
|
|
|
+ ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model);
|
|
|
+ ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
|
|
|
+
|
|
|
+ ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, n_token_types, false);
|
|
|
+
|
|
|
+ if (tokenizer_model == "no_vocab" || tokenizer_model == "none") {
|
|
|
+ type = LLAMA_VOCAB_TYPE_NONE;
|
|
|
+
|
|
|
+ // default special tokens
|
|
|
+ special_bos_id = LLAMA_TOKEN_NULL;
|
|
|
+ special_eos_id = LLAMA_TOKEN_NULL;
|
|
|
+ special_unk_id = LLAMA_TOKEN_NULL;
|
|
|
+ special_sep_id = LLAMA_TOKEN_NULL;
|
|
|
+ special_pad_id = LLAMA_TOKEN_NULL;
|
|
|
+ special_cls_id = LLAMA_TOKEN_NULL;
|
|
|
+ special_mask_id = LLAMA_TOKEN_NULL;
|
|
|
+ linefeed_id = LLAMA_TOKEN_NULL;
|
|
|
+
|
|
|
+ // read vocab size from metadata
|
|
|
+ uint32_t n_tokens = 0;
|
|
|
+ if (!ml.get_key(LLM_KV_VOCAB_SIZE, n_tokens, false)) {
|
|
|
+ LLAMA_LOG_WARN("%s: there is no vocab_size in metadata\n", __func__);
|
|
|
+ }
|
|
|
|
|
|
- llm_tokenizer_wpm_session session(vocab);
|
|
|
+ return;
|
|
|
+ }
|
|
|
|
|
|
- for (const auto & fragment : fragment_buffer) {
|
|
|
- if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
|
|
|
- auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
|
|
|
+ if (tokenizer_model == "llama") {
|
|
|
+ type = LLAMA_VOCAB_TYPE_SPM;
|
|
|
+
|
|
|
+ // default special tokens
|
|
|
+ special_bos_id = 1;
|
|
|
+ special_eos_id = 2;
|
|
|
+ special_unk_id = 0;
|
|
|
+ special_sep_id = LLAMA_TOKEN_NULL;
|
|
|
+ special_pad_id = LLAMA_TOKEN_NULL;
|
|
|
+ special_cls_id = LLAMA_TOKEN_NULL;
|
|
|
+ special_mask_id = LLAMA_TOKEN_NULL;
|
|
|
+ } else if (tokenizer_model == "bert") {
|
|
|
+ type = LLAMA_VOCAB_TYPE_WPM;
|
|
|
+
|
|
|
+ // default special tokens
|
|
|
+ special_bos_id = LLAMA_TOKEN_NULL;
|
|
|
+ special_eos_id = LLAMA_TOKEN_NULL;
|
|
|
+ special_unk_id = 100;
|
|
|
+ special_sep_id = 102;
|
|
|
+ special_pad_id = 0;
|
|
|
+ special_cls_id = 101;
|
|
|
+ special_mask_id = 103;
|
|
|
+ } else if (tokenizer_model == "gpt2") {
|
|
|
+ type = LLAMA_VOCAB_TYPE_BPE;
|
|
|
+
|
|
|
+ // read bpe merges and populate bpe ranks
|
|
|
+ const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
|
|
|
+ if (merges_keyidx == -1) {
|
|
|
+ throw std::runtime_error("cannot find tokenizer merges in model file\n");
|
|
|
+ }
|
|
|
|
|
|
-#ifdef PRETOKENIZERDEBUG
|
|
|
- LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
|
|
|
-#endif
|
|
|
- session.tokenize(raw_text, output);
|
|
|
- } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
|
|
|
- output.push_back(fragment.token);
|
|
|
- }
|
|
|
- }
|
|
|
+ const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
|
|
|
+ for (int i = 0; i < n_merges; i++) {
|
|
|
+ const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
|
|
|
+ //GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
|
|
|
|
|
|
- if (add_special) {
|
|
|
- GGML_ASSERT(vocab.special_sep_id != LLAMA_TOKEN_NULL);
|
|
|
- output.push_back(vocab.special_sep_id);
|
|
|
- }
|
|
|
- } break;
|
|
|
- case LLAMA_VOCAB_TYPE_UGM:
|
|
|
- {
|
|
|
- if (add_special && vocab.tokenizer_add_bos) {
|
|
|
- GGML_ASSERT(vocab.special_bos_id != LLAMA_TOKEN_NULL);
|
|
|
- output.push_back(vocab.special_bos_id);
|
|
|
- }
|
|
|
- llm_tokenizer_ugm_session session(vocab);
|
|
|
+ std::string first;
|
|
|
+ std::string second;
|
|
|
|
|
|
- for (const auto & fragment : fragment_buffer) {
|
|
|
- if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
|
|
|
- auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
|
|
|
-#ifdef PRETOKENIZERDEBUG
|
|
|
- LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
|
|
|
-#endif
|
|
|
- session.tokenize(raw_text, output);
|
|
|
- } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
|
|
|
- output.push_back(fragment.token);
|
|
|
- }
|
|
|
+ const size_t pos = word.find(' ', 1);
|
|
|
+
|
|
|
+ if (pos != std::string::npos) {
|
|
|
+ first = word.substr(0, pos);
|
|
|
+ second = word.substr(pos + 1);
|
|
|
}
|
|
|
|
|
|
- if (add_special && vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) {
|
|
|
- LLAMA_LOG_WARN(
|
|
|
- "%s: Added a BOS token to the prompt as specified by the model but the prompt "
|
|
|
- "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
|
|
|
- "Are you sure this is what you want?\n", __FUNCTION__);
|
|
|
+ bpe_ranks.emplace(std::make_pair(first, second), i);
|
|
|
+ }
|
|
|
+
|
|
|
+ // default special tokens
|
|
|
+ special_bos_id = 11;
|
|
|
+ special_eos_id = 11;
|
|
|
+ special_unk_id = LLAMA_TOKEN_NULL;
|
|
|
+ special_sep_id = LLAMA_TOKEN_NULL;
|
|
|
+ special_pad_id = LLAMA_TOKEN_NULL;
|
|
|
+ special_cls_id = LLAMA_TOKEN_NULL;
|
|
|
+ special_mask_id = LLAMA_TOKEN_NULL;
|
|
|
+ } else if (tokenizer_model == "t5") {
|
|
|
+ type = LLAMA_VOCAB_TYPE_UGM;
|
|
|
+
|
|
|
+ // default special tokens
|
|
|
+ special_bos_id = LLAMA_TOKEN_NULL;
|
|
|
+ special_eos_id = 1;
|
|
|
+ special_unk_id = 2;
|
|
|
+ special_sep_id = LLAMA_TOKEN_NULL;
|
|
|
+ special_pad_id = 0;
|
|
|
+ special_cls_id = LLAMA_TOKEN_NULL;
|
|
|
+ special_mask_id = LLAMA_TOKEN_NULL;
|
|
|
+
|
|
|
+ const int precompiled_charsmap_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP).c_str());
|
|
|
+ if (precompiled_charsmap_keyidx != -1) {
|
|
|
+ size_t n_precompiled_charsmap = gguf_get_arr_n(ctx, precompiled_charsmap_keyidx);
|
|
|
+ const char * pc = (const char *) gguf_get_arr_data(ctx, precompiled_charsmap_keyidx);
|
|
|
+ precompiled_charsmap.assign(pc, pc + n_precompiled_charsmap);
|
|
|
+#ifdef IS_BIG_ENDIAN
|
|
|
+ // correct endiannes of data in precompiled_charsmap binary blob
|
|
|
+ uint32_t * xcda_blob_size = (uint32_t *) &precompiled_charsmap[0];
|
|
|
+ *xcda_blob_size = __builtin_bswap32(*xcda_blob_size);
|
|
|
+ assert(*xcda_blob_size + sizeof(uint32_t) < n_precompiled_charsmap);
|
|
|
+ size_t xcda_array_size = *xcda_blob_size / sizeof(uint32_t);
|
|
|
+ uint32_t * xcda_array = (uint32_t *) &precompiled_charsmap[sizeof(uint32_t)];
|
|
|
+ for (size_t i = 0; i < xcda_array_size; ++i) {
|
|
|
+ xcda_array[i] = __builtin_bswap32(xcda_array[i]);
|
|
|
+ }
|
|
|
+#endif
|
|
|
+ }
|
|
|
+ } else if (tokenizer_model == "rwkv") {
|
|
|
+ type = LLAMA_VOCAB_TYPE_RWKV;
|
|
|
+
|
|
|
+ // default special tokens
|
|
|
+ special_bos_id = LLAMA_TOKEN_NULL;
|
|
|
+ special_eos_id = LLAMA_TOKEN_NULL;
|
|
|
+ special_unk_id = LLAMA_TOKEN_NULL;
|
|
|
+ special_sep_id = LLAMA_TOKEN_NULL;
|
|
|
+ special_pad_id = LLAMA_TOKEN_NULL;
|
|
|
+ } else {
|
|
|
+ throw std::runtime_error(format("unknown tokenizer: '%s'", tokenizer_model.c_str()));
|
|
|
+ }
|
|
|
+
|
|
|
+ // for now, only BPE models have pre-tokenizers
|
|
|
+ if (type == LLAMA_VOCAB_TYPE_BPE) {
|
|
|
+ add_space_prefix = false;
|
|
|
+ clean_spaces = true;
|
|
|
+ if (tokenizer_pre.empty()) {
|
|
|
+ LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'default'\n", __func__);
|
|
|
+ LLAMA_LOG_WARN("%s: \n", __func__);
|
|
|
+ LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
|
|
|
+ LLAMA_LOG_WARN("%s: GENERATION QUALITY WILL BE DEGRADED! \n", __func__);
|
|
|
+ LLAMA_LOG_WARN("%s: CONSIDER REGENERATING THE MODEL \n", __func__);
|
|
|
+ LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
|
|
|
+ LLAMA_LOG_WARN("%s: \n", __func__);
|
|
|
+ pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
|
|
+ } else if (tokenizer_pre == "default") {
|
|
|
+ pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
|
|
+ } else if (
|
|
|
+ tokenizer_pre == "llama3" ||
|
|
|
+ tokenizer_pre == "llama-v3" ||
|
|
|
+ tokenizer_pre == "llama-bpe"||
|
|
|
+ tokenizer_pre == "falcon3") {
|
|
|
+ pre_type = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
|
|
|
+ ignore_merges = true;
|
|
|
+ add_bos = true;
|
|
|
+ } else if (
|
|
|
+ tokenizer_pre == "deepseek-llm") {
|
|
|
+ pre_type = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM;
|
|
|
+ clean_spaces = false;
|
|
|
+ } else if (
|
|
|
+ tokenizer_pre == "deepseek-coder") {
|
|
|
+ pre_type = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER;
|
|
|
+ clean_spaces = false;
|
|
|
+ } else if (
|
|
|
+ tokenizer_pre == "deepseek-v3") {
|
|
|
+ pre_type = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM;
|
|
|
+ clean_spaces = false;
|
|
|
+ } else if (
|
|
|
+ tokenizer_pre == "falcon") {
|
|
|
+ pre_type = LLAMA_VOCAB_PRE_TYPE_FALCON;
|
|
|
+ } else if (
|
|
|
+ tokenizer_pre == "mpt") {
|
|
|
+ pre_type = LLAMA_VOCAB_PRE_TYPE_MPT;
|
|
|
+ } else if (
|
|
|
+ tokenizer_pre == "starcoder") {
|
|
|
+ pre_type = LLAMA_VOCAB_PRE_TYPE_STARCODER;
|
|
|
+ } else if (
|
|
|
+ tokenizer_pre == "gpt-2" ||
|
|
|
+ tokenizer_pre == "phi-2" ||
|
|
|
+ tokenizer_pre == "jina-es" ||
|
|
|
+ tokenizer_pre == "jina-de" ||
|
|
|
+ tokenizer_pre == "gigachat" ||
|
|
|
+ tokenizer_pre == "jina-v1-en" ||
|
|
|
+ tokenizer_pre == "jina-v2-es" ||
|
|
|
+ tokenizer_pre == "jina-v2-de" ||
|
|
|
+ tokenizer_pre == "jina-v2-code" ||
|
|
|
+ tokenizer_pre == "roberta-bpe") {
|
|
|
+ pre_type = LLAMA_VOCAB_PRE_TYPE_GPT2;
|
|
|
+ } else if (
|
|
|
+ tokenizer_pre == "refact") {
|
|
|
+ pre_type = LLAMA_VOCAB_PRE_TYPE_REFACT;
|
|
|
+ } else if (
|
|
|
+ tokenizer_pre == "command-r") {
|
|
|
+ pre_type = LLAMA_VOCAB_PRE_TYPE_COMMAND_R;
|
|
|
+ clean_spaces = false;
|
|
|
+ } else if (
|
|
|
+ tokenizer_pre == "qwen2") {
|
|
|
+ pre_type = LLAMA_VOCAB_PRE_TYPE_QWEN2;
|
|
|
+ clean_spaces = false;
|
|
|
+ } else if (
|
|
|
+ tokenizer_pre == "stablelm2") {
|
|
|
+ pre_type = LLAMA_VOCAB_PRE_TYPE_STABLELM2;
|
|
|
+ } else if (
|
|
|
+ tokenizer_pre == "olmo") {
|
|
|
+ pre_type = LLAMA_VOCAB_PRE_TYPE_OLMO;
|
|
|
+ } else if (
|
|
|
+ tokenizer_pre == "dbrx") {
|
|
|
+ pre_type = LLAMA_VOCAB_PRE_TYPE_DBRX;
|
|
|
+ } else if (
|
|
|
+ tokenizer_pre == "smaug-bpe") {
|
|
|
+ pre_type = LLAMA_VOCAB_PRE_TYPE_SMAUG;
|
|
|
+ } else if (
|
|
|
+ tokenizer_pre == "poro-chat") {
|
|
|
+ pre_type = LLAMA_VOCAB_PRE_TYPE_PORO;
|
|
|
+ clean_spaces = false;
|
|
|
+ } else if (
|
|
|
+ tokenizer_pre == "chatglm-bpe") {
|
|
|
+ pre_type = LLAMA_VOCAB_PRE_TYPE_CHATGLM4;
|
|
|
+ special_bos_id = LLAMA_TOKEN_NULL;
|
|
|
+ } else if (
|
|
|
+ tokenizer_pre == "viking") {
|
|
|
+ pre_type = LLAMA_VOCAB_PRE_TYPE_VIKING;
|
|
|
+ clean_spaces = false;
|
|
|
+ } else if (
|
|
|
+ tokenizer_pre == "jais") {
|
|
|
+ pre_type = LLAMA_VOCAB_PRE_TYPE_JAIS;
|
|
|
+ } else if (
|
|
|
+ tokenizer_pre == "tekken") {
|
|
|
+ pre_type = LLAMA_VOCAB_PRE_TYPE_TEKKEN;
|
|
|
+ clean_spaces = false;
|
|
|
+ ignore_merges = true;
|
|
|
+ add_bos = true;
|
|
|
+ } else if (
|
|
|
+ tokenizer_pre == "smollm") {
|
|
|
+ pre_type = LLAMA_VOCAB_PRE_TYPE_SMOLLM;
|
|
|
+ clean_spaces = false;
|
|
|
+ } else if (
|
|
|
+ tokenizer_pre == "codeshell") {
|
|
|
+ pre_type = LLAMA_VOCAB_PRE_TYPE_CODESHELL;
|
|
|
+ } else if (
|
|
|
+ tokenizer_pre == "bloom") {
|
|
|
+ pre_type = LLAMA_VOCAB_PRE_TYPE_BLOOM;
|
|
|
+ } else if (
|
|
|
+ tokenizer_pre == "gpt3-finnish") {
|
|
|
+ pre_type = LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH;
|
|
|
+ } else if (
|
|
|
+ tokenizer_pre == "exaone") {
|
|
|
+ pre_type = LLAMA_VOCAB_PRE_TYPE_EXAONE;
|
|
|
+ } else if (
|
|
|
+ tokenizer_pre == "chameleon") {
|
|
|
+ pre_type = LLAMA_VOCAB_PRE_TYPE_CHAMELEON;
|
|
|
+ add_bos = true;
|
|
|
+ clean_spaces = false;
|
|
|
+ } else if (
|
|
|
+ tokenizer_pre == "minerva-7b") {
|
|
|
+ pre_type = LLAMA_VOCAB_PRE_TYPE_MINERVA;
|
|
|
+ } else if (
|
|
|
+ tokenizer_pre == "megrez") {
|
|
|
+ pre_type = LLAMA_VOCAB_PRE_TYPE_QWEN2;
|
|
|
+ } else {
|
|
|
+ throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
|
|
|
+ }
|
|
|
+ } else if (type == LLAMA_VOCAB_TYPE_SPM) {
|
|
|
+ pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
|
|
+ add_space_prefix = true;
|
|
|
+ clean_spaces = false;
|
|
|
+ add_bos = true;
|
|
|
+ add_eos = false;
|
|
|
+ } else if (type == LLAMA_VOCAB_TYPE_WPM) {
|
|
|
+ pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
|
|
+ add_space_prefix = false;
|
|
|
+ clean_spaces = true;
|
|
|
+ add_bos = true;
|
|
|
+ add_eos = false;
|
|
|
+ } else if (type == LLAMA_VOCAB_TYPE_UGM) {
|
|
|
+ pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
|
|
+ add_bos = false;
|
|
|
+ add_eos = true;
|
|
|
+ } else if (type == LLAMA_VOCAB_TYPE_RWKV) {
|
|
|
+ pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
|
|
+ add_space_prefix = false;
|
|
|
+ clean_spaces = false;
|
|
|
+ add_bos = false;
|
|
|
+ add_eos = false;
|
|
|
+ } else {
|
|
|
+ pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
|
|
+ }
|
|
|
+
|
|
|
+ ml.get_key(LLM_KV_TOKENIZER_ADD_PREFIX, add_space_prefix, false);
|
|
|
+ ml.get_key(LLM_KV_TOKENIZER_REMOVE_EXTRA_WS, remove_extra_whitespaces, false);
|
|
|
+ }
|
|
|
+
|
|
|
+ const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
|
|
|
+ if (token_idx == -1) {
|
|
|
+ throw std::runtime_error("cannot find tokenizer vocab in model file\n");
|
|
|
+ }
|
|
|
+
|
|
|
+ const float * scores = nullptr;
|
|
|
+ const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
|
|
|
+ if (score_idx != -1) {
|
|
|
+ scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
|
|
|
+ }
|
|
|
+
|
|
|
+ const int * toktypes = nullptr;
|
|
|
+ const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
|
|
|
+ if (toktype_idx != -1) {
|
|
|
+ toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
|
|
|
+ }
|
|
|
+
|
|
|
+ uint32_t n_tokens = gguf_get_arr_n(ctx, token_idx);
|
|
|
+ id_to_token.resize(n_tokens);
|
|
|
+
|
|
|
+ for (uint32_t i = 0; i < n_tokens; i++) {
|
|
|
+ std::string word = gguf_get_arr_str(ctx, token_idx, i);
|
|
|
+ if (word.empty()) {
|
|
|
+ LLAMA_LOG_WARN("%s: empty token at index %u\n", __func__, i);
|
|
|
+ word = "[EMPTY_" + std::to_string(i) + "]";
|
|
|
+ }
|
|
|
+
|
|
|
+ token_to_id[word] = i;
|
|
|
+ max_token_len = std::max(max_token_len, (int) word.size());
|
|
|
+
|
|
|
+ auto & token_data = id_to_token[i];
|
|
|
+ token_data.text = std::move(word);
|
|
|
+ token_data.score = scores ? scores[i] : 0.0f;
|
|
|
+ token_data.attr = LLAMA_TOKEN_ATTR_NORMAL;
|
|
|
+
|
|
|
+ if (toktypes) { //TODO: remove, required until per token attributes are available from GGUF file
|
|
|
+ switch(toktypes[i]) {
|
|
|
+ case LLAMA_TOKEN_TYPE_UNKNOWN: token_data.attr = LLAMA_TOKEN_ATTR_UNKNOWN; break;
|
|
|
+ case LLAMA_TOKEN_TYPE_UNUSED: token_data.attr = LLAMA_TOKEN_ATTR_UNUSED; break;
|
|
|
+ case LLAMA_TOKEN_TYPE_NORMAL: token_data.attr = LLAMA_TOKEN_ATTR_NORMAL; break;
|
|
|
+ case LLAMA_TOKEN_TYPE_CONTROL: token_data.attr = LLAMA_TOKEN_ATTR_CONTROL; break;
|
|
|
+ case LLAMA_TOKEN_TYPE_USER_DEFINED: token_data.attr = LLAMA_TOKEN_ATTR_USER_DEFINED; break;
|
|
|
+ case LLAMA_TOKEN_TYPE_BYTE: token_data.attr = LLAMA_TOKEN_ATTR_BYTE; break;
|
|
|
+ case LLAMA_TOKEN_TYPE_UNDEFINED: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break;
|
|
|
+ default: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ GGML_ASSERT(id_to_token.size() == token_to_id.size());
|
|
|
+
|
|
|
+ init_tokenizer(type);
|
|
|
+
|
|
|
+ // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
|
|
|
+ if (type == LLAMA_VOCAB_TYPE_SPM) {
|
|
|
+ try {
|
|
|
+ linefeed_id = vocab.byte_to_token('\n');
|
|
|
+ } catch (const std::exception & e) {
|
|
|
+ LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
|
|
|
+ linefeed_id = special_pad_id;
|
|
|
+ }
|
|
|
+ } else if (type == LLAMA_VOCAB_TYPE_WPM) {
|
|
|
+ linefeed_id = special_pad_id;
|
|
|
+ } else if (type == LLAMA_VOCAB_TYPE_RWKV) {
|
|
|
+ const std::vector<int> ids = tokenize("\n", false);
|
|
|
+ GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
|
|
|
+ linefeed_id = ids[0];
|
|
|
+ } else {
|
|
|
+ const std::vector<int> ids = tokenize("\xC4\x8A", false); // U+010A
|
|
|
+
|
|
|
+ //GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
|
|
|
+ if (ids.empty()) {
|
|
|
+ LLAMA_LOG_WARN("%s: model vocab missing newline token, using special_pad_id instead\n", __func__);
|
|
|
+ linefeed_id = special_pad_id;
|
|
|
+ } else {
|
|
|
+ linefeed_id = ids[0];
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // special tokens
|
|
|
+ {
|
|
|
+ const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
|
|
|
+ { LLM_KV_TOKENIZER_BOS_ID, special_bos_id },
|
|
|
+ { LLM_KV_TOKENIZER_EOS_ID, special_eos_id },
|
|
|
+ { LLM_KV_TOKENIZER_EOT_ID, special_eot_id },
|
|
|
+ { LLM_KV_TOKENIZER_EOM_ID, special_eom_id },
|
|
|
+ { LLM_KV_TOKENIZER_UNK_ID, special_unk_id },
|
|
|
+ { LLM_KV_TOKENIZER_SEP_ID, special_sep_id },
|
|
|
+ { LLM_KV_TOKENIZER_PAD_ID, special_pad_id },
|
|
|
+ { LLM_KV_TOKENIZER_CLS_ID, special_cls_id },
|
|
|
+ { LLM_KV_TOKENIZER_MASK_ID, special_mask_id },
|
|
|
+ { LLM_KV_TOKENIZER_FIM_PRE_ID, special_fim_pre_id },
|
|
|
+ { LLM_KV_TOKENIZER_FIM_SUF_ID, special_fim_suf_id },
|
|
|
+ { LLM_KV_TOKENIZER_FIM_MID_ID, special_fim_mid_id },
|
|
|
+ { LLM_KV_TOKENIZER_FIM_PAD_ID, special_fim_pad_id },
|
|
|
+ { LLM_KV_TOKENIZER_FIM_REP_ID, special_fim_rep_id },
|
|
|
+ { LLM_KV_TOKENIZER_FIM_SEP_ID, special_fim_sep_id },
|
|
|
+
|
|
|
+ // deprecated
|
|
|
+ { LLM_KV_TOKENIZER_PREFIX_ID, special_fim_pre_id },
|
|
|
+ { LLM_KV_TOKENIZER_SUFFIX_ID, special_fim_suf_id },
|
|
|
+ { LLM_KV_TOKENIZER_MIDDLE_ID, special_fim_mid_id },
|
|
|
+ };
|
|
|
+
|
|
|
+ for (const auto & it : special_token_types) {
|
|
|
+ const std::string & key = kv(std::get<0>(it));
|
|
|
+ int32_t & id = std::get<1>(it);
|
|
|
+
|
|
|
+ uint32_t new_id;
|
|
|
+ if (!ml.get_key(std::get<0>(it), new_id, false)) {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ if (new_id >= id_to_token.size()) {
|
|
|
+ LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
|
|
|
+ __func__, key.c_str(), new_id, id);
|
|
|
+ } else {
|
|
|
+ id = new_id;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Handle add_bos and add_eos
|
|
|
+ {
|
|
|
+ bool temp = true;
|
|
|
+
|
|
|
+ if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
|
|
|
+ add_bos = temp;
|
|
|
+ }
|
|
|
+ if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
|
|
|
+ add_eos = temp;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // auto-detect special tokens by text
|
|
|
+ // TODO: convert scripts should provide these tokens through the KV metadata LLM_KV_TOKENIZER_...
|
|
|
+ // for now, we apply this workaround to find the tokens based on their text
|
|
|
+
|
|
|
+ for (const auto & t : token_to_id) {
|
|
|
+ // find EOT token: "<|eot_id|>", "<|im_end|>", "<end_of_turn>", etc.
|
|
|
+ if (special_eot_id == LLAMA_TOKEN_NULL) {
|
|
|
+ if (false
|
|
|
+ || t.first == "<|eot_id|>"
|
|
|
+ || t.first == "<|im_end|>"
|
|
|
+ || t.first == "<|end|>"
|
|
|
+ || t.first == "<end_of_turn>"
|
|
|
+ || t.first == "<|endoftext|>"
|
|
|
+ || t.first == "<EOT>"
|
|
|
+ || t.first == "<|end▁of▁sentence|>" // DeepSeek
|
|
|
+ ) {
|
|
|
+ special_eot_id = t.second;
|
|
|
+ if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
|
|
+ LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
|
|
+ __func__, t.second, t.first.c_str());
|
|
|
+ id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
|
|
+ }
|
|
|
}
|
|
|
+ }
|
|
|
|
|
|
- if (add_special && vocab.tokenizer_add_eos) {
|
|
|
- GGML_ASSERT(vocab.special_eos_id != LLAMA_TOKEN_NULL);
|
|
|
- output.push_back(vocab.special_eos_id);
|
|
|
+ // find EOM token: "<|eom_id|>"
|
|
|
+ if (special_eom_id == LLAMA_TOKEN_NULL) {
|
|
|
+ if (false
|
|
|
+ || t.first == "<|eom_id|>"
|
|
|
+ ) {
|
|
|
+ special_eom_id = t.second;
|
|
|
+ if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
|
|
+ LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
|
|
+ __func__, t.second, t.first.c_str());
|
|
|
+ id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
|
|
+ }
|
|
|
}
|
|
|
- } break;
|
|
|
+ }
|
|
|
+
|
|
|
+ // find FIM_PRE token: "<|fim_prefix|>", "<fim-prefix>", "<PRE>", etc.
|
|
|
+ if (special_fim_pre_id == LLAMA_TOKEN_NULL) {
|
|
|
+ if (false
|
|
|
+ || t.first == "<|fim_prefix|>" // Qwen
|
|
|
+ || t.first == "<fim-prefix>"
|
|
|
+ || t.first == "<|fim▁begin|>" // DeepSeek
|
|
|
+ || t.first == "<PRE>"
|
|
|
+ ) {
|
|
|
+ special_fim_pre_id = t.second;
|
|
|
+ if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
|
|
+ LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
|
|
+ __func__, t.second, t.first.c_str());
|
|
|
+ id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // find FIM_SUF token: "<|fim_suffix|>", "<fim-suffix>", "<SUF>", etc.
|
|
|
+ if (special_fim_suf_id == LLAMA_TOKEN_NULL) {
|
|
|
+ if (false
|
|
|
+ || t.first == "<|fim_suffix|>" // Qwen
|
|
|
+ || t.first == "<fim-suffix>"
|
|
|
+ || t.first == "<|fim▁hole|>" // DeepSeek
|
|
|
+ || t.first == "<SUF>"
|
|
|
+ ) {
|
|
|
+ special_fim_suf_id = t.second;
|
|
|
+ if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
|
|
+ LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
|
|
+ __func__, t.second, t.first.c_str());
|
|
|
+ id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // find FIM_MID token: "<|fim_middle|>", "<fim-middle>", "<MID>", etc.
|
|
|
+ if (special_fim_mid_id == LLAMA_TOKEN_NULL) {
|
|
|
+ if (false
|
|
|
+ || t.first == "<|fim_middle|>" // Qwen
|
|
|
+ || t.first == "<fim-middle>"
|
|
|
+ || t.first == "<|fim▁end|>" // DeepSeek
|
|
|
+ || t.first == "<MID>"
|
|
|
+ ) {
|
|
|
+ special_fim_mid_id = t.second;
|
|
|
+ if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
|
|
+ LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
|
|
+ __func__, t.second, t.first.c_str());
|
|
|
+ id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // find FIM_PAD token: "<|fim_pad|>", "<fim-pad>", "<PAD>", etc.
|
|
|
+ if (special_fim_pad_id == LLAMA_TOKEN_NULL) {
|
|
|
+ if (false
|
|
|
+ || t.first == "<|fim_pad|>" // Qwen
|
|
|
+ || t.first == "<fim-pad>"
|
|
|
+ || t.first == "<PAD>"
|
|
|
+ ) {
|
|
|
+ special_fim_pad_id = t.second;
|
|
|
+ if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
|
|
+ LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
|
|
+ __func__, t.second, t.first.c_str());
|
|
|
+ id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // find FIM_REP token: "<|fim_repo|>", "<fim-repo>", "<REP>", etc.
|
|
|
+ if (special_fim_rep_id == LLAMA_TOKEN_NULL) {
|
|
|
+ if (false
|
|
|
+ || t.first == "<|fim_repo|>" // Qwen
|
|
|
+ || t.first == "<|repo_name|>"
|
|
|
+ || t.first == "<fim-repo>"
|
|
|
+ || t.first == "<REPO>"
|
|
|
+ ) {
|
|
|
+ special_fim_rep_id = t.second;
|
|
|
+ if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
|
|
+ LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
|
|
+ __func__, t.second, t.first.c_str());
|
|
|
+ id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // find FIM_SEP token: "<|file_sep|>"
|
|
|
+ if (special_fim_sep_id == LLAMA_TOKEN_NULL) {
|
|
|
+ if (false
|
|
|
+ || t.first == "<|file_sep|>" // Qwen
|
|
|
+ ) {
|
|
|
+ special_fim_sep_id = t.second;
|
|
|
+ if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
|
|
+ LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
|
|
+ __func__, t.second, t.first.c_str());
|
|
|
+ id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // maintain a list of tokens that cause end-of-generation
|
|
|
+ // this is currently determined based on the token text, which is obviously not ideal
|
|
|
+ // ref: https://github.com/ggerganov/llama.cpp/issues/9606
|
|
|
+ special_eog_ids.clear();
|
|
|
+
|
|
|
+ if (special_fim_pad_id != LLAMA_TOKEN_NULL && special_eog_ids.count(special_fim_pad_id) == 0) {
|
|
|
+ special_eog_ids.insert(special_fim_pad_id);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (special_fim_rep_id != LLAMA_TOKEN_NULL && special_eog_ids.count(special_fim_rep_id) == 0) {
|
|
|
+ special_eog_ids.insert(special_fim_rep_id);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (special_fim_sep_id != LLAMA_TOKEN_NULL && special_eog_ids.count(special_fim_sep_id) == 0) {
|
|
|
+ special_eog_ids.insert(special_fim_sep_id);
|
|
|
+ }
|
|
|
+
|
|
|
+ for (const auto & t : token_to_id) {
|
|
|
+ if (false
|
|
|
+ || t.first == "<|eot_id|>"
|
|
|
+ || t.first == "<|im_end|>"
|
|
|
+ || t.first == "<|end|>"
|
|
|
+ || t.first == "<end_of_turn>"
|
|
|
+ || t.first == "<|endoftext|>"
|
|
|
+ || t.first == "<|eom_id|>"
|
|
|
+ || t.first == "<EOT>"
|
|
|
+ ) {
|
|
|
+ special_eog_ids.insert(t.second);
|
|
|
+ if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
|
|
+ LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
|
|
+ __func__, t.second, t.first.c_str());
|
|
|
+ id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ // token is control, but not marked as EOG -> print a debug log
|
|
|
+ if (id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL && special_eog_ids.count(t.second) == 0) {
|
|
|
+ LLAMA_LOG_DEBUG("%s: control token: %6d '%s' is not marked as EOG\n",
|
|
|
+ __func__, t.second, t.first.c_str());
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // sanity checks
|
|
|
+ if (special_eos_id != LLAMA_TOKEN_NULL && special_eog_ids.count(special_eos_id) == 0) {
|
|
|
+ special_eog_ids.insert(special_eos_id);
|
|
|
+ LLAMA_LOG_WARN("%s: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect\n", __func__);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (special_eot_id != LLAMA_TOKEN_NULL && special_eog_ids.count(special_eot_id) == 0) {
|
|
|
+ special_eog_ids.insert(special_eot_id);
|
|
|
+ LLAMA_LOG_WARN("%s: special_eot_id is not in special_eog_ids - the tokenizer config may be incorrect\n", __func__);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (special_eom_id != LLAMA_TOKEN_NULL && special_eog_ids.count(special_eom_id) == 0) {
|
|
|
+ special_eog_ids.insert(special_eom_id);
|
|
|
+ LLAMA_LOG_WARN("%s: special_eom_id is not in special_eog_ids - the tokenizer config may be incorrect\n", __func__);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // build special tokens cache
|
|
|
+ {
|
|
|
+ for (llama_token id = 0; id < (llama_token) n_tokens; ++id) {
|
|
|
+ if (id_to_token[id].attr & (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_USER_DEFINED | LLAMA_TOKEN_ATTR_UNKNOWN)) {
|
|
|
+ cache_special_tokens.push_back(id);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ std::sort(cache_special_tokens.begin(), cache_special_tokens.end(),
|
|
|
+ [&] (const llama_token a, const llama_token b) {
|
|
|
+ return id_to_token[a].text.size() > id_to_token[b].text.size();
|
|
|
+ }
|
|
|
+ );
|
|
|
+
|
|
|
+ LLAMA_LOG_INFO("%s: special tokens cache size = %u\n", __func__, (uint32_t) cache_special_tokens.size());
|
|
|
+ }
|
|
|
+
|
|
|
+ // build token to piece cache
|
|
|
+ {
|
|
|
+ size_t size_cache = 0;
|
|
|
+
|
|
|
+ std::vector<std::string> cache(n_tokens);
|
|
|
+
|
|
|
+ for (uint32_t id = 0; id < n_tokens; ++id) {
|
|
|
+ cache[id] = token_to_piece_for_cache(id, true);
|
|
|
+
|
|
|
+ size_cache += cache[id].size();
|
|
|
+ }
|
|
|
+
|
|
|
+ std::swap(cache_token_to_piece, cache);
|
|
|
+
|
|
|
+ LLAMA_LOG_INFO("%s: token to piece cache size = %.4f MB\n", __func__, size_cache / 1024.0 / 1024.0);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Handle per token attributes
|
|
|
+ //NOTE: Each model customizes per token attributes.
|
|
|
+ //NOTE: Per token attributes are missing from the GGUF file.
|
|
|
+ //TODO: Extract attributes from GGUF file.
|
|
|
+ {
|
|
|
+ auto _contains_any = [] (const std::string & str, const std::vector<std::string> & substrs) -> bool {
|
|
|
+ for (const auto & substr : substrs) {
|
|
|
+ if (str.find(substr) < std::string::npos) {
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return false;
|
|
|
+ };
|
|
|
+
|
|
|
+ auto _set_tokenid_attr = [&] (const llama_token id, llama_token_attr attr, bool value) {
|
|
|
+ uint32_t current = id_to_token.at(id).attr;
|
|
|
+ current = value ? (current | attr) : (current & ~attr);
|
|
|
+ id_to_token[id].attr = (llama_token_attr) current;
|
|
|
+ };
|
|
|
+
|
|
|
+ auto _set_token_attr = [&] (const std::string & token, llama_token_attr attr, bool value) {
|
|
|
+ _set_tokenid_attr(token_to_id.at(token), attr, value);
|
|
|
+ };
|
|
|
+
|
|
|
+ std::string model_name;
|
|
|
+ std::string tokenizer_pre;
|
|
|
+
|
|
|
+ ml.get_key(LLM_KV_GENERAL_NAME, model_name, false);
|
|
|
+ ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
|
|
|
+
|
|
|
+ // model name to lowercase
|
|
|
+ std::transform(model_name.begin(), model_name.end(), model_name.begin(),
|
|
|
+ [] (const std::string::value_type x) {
|
|
|
+ return std::tolower(x);
|
|
|
+ }
|
|
|
+ );
|
|
|
+
|
|
|
+ // set attributes by model/tokenizer name
|
|
|
+ if (_contains_any(tokenizer_pre, {"jina-v2-de", "jina-v2-es", "jina-v2-code"})) {
|
|
|
+ _set_token_attr("<mask>", LLAMA_TOKEN_ATTR_LSTRIP, true);
|
|
|
+ } else if (_contains_any(model_name, {"phi-3", "phi3"})) {
|
|
|
+ for (auto id : cache_special_tokens) {
|
|
|
+ _set_tokenid_attr(id, LLAMA_TOKEN_ATTR_RSTRIP, true);
|
|
|
+ }
|
|
|
+ for (const auto * token : {"</s>"}) {
|
|
|
+ _set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, true);
|
|
|
+ }
|
|
|
+ for (const auto * token : {"<unk>", "<s>", "<|endoftext|>"}) {
|
|
|
+ _set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, false);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+enum llama_vocab_type llama_vocab::impl::get_type() const {
|
|
|
+ return type;
|
|
|
+}
|
|
|
+
|
|
|
+std::string llama_vocab::impl::type_name() const{
|
|
|
+ switch (type) {
|
|
|
+ case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
|
|
|
+ case LLAMA_VOCAB_TYPE_SPM: return "SPM";
|
|
|
+ case LLAMA_VOCAB_TYPE_BPE: return "BPE";
|
|
|
+ case LLAMA_VOCAB_TYPE_WPM: return "WPM";
|
|
|
+ case LLAMA_VOCAB_TYPE_UGM: return "UGM";
|
|
|
+ case LLAMA_VOCAB_TYPE_RWKV: return "RWKV";
|
|
|
+ default: return "unknown";
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+bool llama_vocab::impl::is_normal(llama_token id) const {
|
|
|
+ GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE);
|
|
|
+ return id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL;
|
|
|
+}
|
|
|
+
|
|
|
+bool llama_vocab::impl::is_unknown(llama_token id) const {
|
|
|
+ GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE);
|
|
|
+ return id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNKNOWN;
|
|
|
+}
|
|
|
+
|
|
|
+bool llama_vocab::impl::is_control(llama_token id) const {
|
|
|
+ GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE);
|
|
|
+ return id_to_token[id].attr & LLAMA_TOKEN_ATTR_CONTROL;
|
|
|
+}
|
|
|
+
|
|
|
+bool llama_vocab::impl::is_byte(llama_token id) const {
|
|
|
+ GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE);
|
|
|
+ return id_to_token[id].attr & LLAMA_TOKEN_ATTR_BYTE;
|
|
|
+}
|
|
|
+
|
|
|
+bool llama_vocab::impl::is_user_defined(llama_token id) const {
|
|
|
+ GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE);
|
|
|
+ return id_to_token[id].attr & LLAMA_TOKEN_ATTR_USER_DEFINED;
|
|
|
+}
|
|
|
+
|
|
|
+bool llama_vocab::impl::is_unused(llama_token id) const {
|
|
|
+ GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE);
|
|
|
+ return id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNUSED;
|
|
|
+}
|
|
|
+
|
|
|
+bool llama_vocab::impl::is_eog(llama_token id) const {
|
|
|
+ return id != LLAMA_TOKEN_NULL && special_eog_ids.count(id) > 0;
|
|
|
+}
|
|
|
+
|
|
|
+uint8_t llama_vocab::impl::token_to_byte(llama_token id) const {
|
|
|
+ GGML_ASSERT(get_type() != LLAMA_VOCAB_TYPE_NONE);
|
|
|
+ GGML_ASSERT(is_byte(id));
|
|
|
+ const auto & token_data = id_to_token.at(id);
|
|
|
+ switch (get_type()) {
|
|
|
+ case LLAMA_VOCAB_TYPE_SPM:
|
|
|
+ case LLAMA_VOCAB_TYPE_UGM: {
|
|
|
+ auto buf = token_data.text.substr(3, 2);
|
|
|
+ return strtol(buf.c_str(), NULL, 16);
|
|
|
+ }
|
|
|
+ case LLAMA_VOCAB_TYPE_BPE: {
|
|
|
+ GGML_ABORT("fatal error");
|
|
|
+ }
|
|
|
+ case LLAMA_VOCAB_TYPE_WPM: {
|
|
|
+ GGML_ABORT("fatal error");
|
|
|
+ }
|
|
|
+ default:
|
|
|
+ GGML_ABORT("fatal error");
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+llama_token_attr llama_vocab::impl::token_get_attr(llama_token id) const {
|
|
|
+ GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE);
|
|
|
+ return id_to_token.at(id).attr;
|
|
|
+}
|
|
|
+
|
|
|
+void llama_vocab::impl::init_tokenizer(enum llama_vocab_type type) {
|
|
|
+ LLAMA_LOG_DEBUG("%s: initializing tokenizer for type %d\n", __func__, type);
|
|
|
+
|
|
|
+ switch (type) {
|
|
|
+ case LLAMA_VOCAB_TYPE_SPM:
|
|
|
+ tokenizer = std::make_unique<llm_tokenizer_spm>(vocab);
|
|
|
+ break;
|
|
|
+ case LLAMA_VOCAB_TYPE_BPE:
|
|
|
+ tokenizer = std::make_unique<llm_tokenizer_bpe>(vocab);
|
|
|
+ break;
|
|
|
+ case LLAMA_VOCAB_TYPE_WPM:
|
|
|
+ tokenizer = std::make_unique<llm_tokenizer_wpm>(vocab);
|
|
|
+ break;
|
|
|
+ case LLAMA_VOCAB_TYPE_UGM:
|
|
|
+ tokenizer = std::make_unique<llm_tokenizer_ugm>(vocab, precompiled_charsmap);
|
|
|
+ break;
|
|
|
case LLAMA_VOCAB_TYPE_RWKV:
|
|
|
- {
|
|
|
- llm_tokenizer_rwkv_session session(vocab);
|
|
|
- for (const auto & fragment : fragment_buffer) {
|
|
|
- if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
|
|
|
- auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
|
|
|
+ tokenizer = std::make_unique<llm_tokenizer_rwkv>(vocab);
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ GGML_ABORT("unsupported vocab type");
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+//
|
|
|
+// (de-) tokenize
|
|
|
+//
|
|
|
+
|
|
|
+// #define PRETOKENIZERDEBUG
|
|
|
+
|
|
|
+void llama_vocab::impl::tokenizer_st_partition(std::forward_list<fragment_buffer_variant> & buffer, bool parse_special) const {
|
|
|
+ // for each special token
|
|
|
+ for (const llama_token special_id : cache_special_tokens) {
|
|
|
+ const auto & data = vocab.get_token_data(special_id);
|
|
|
+ const auto & text = data.text;
|
|
|
+
|
|
|
+ if (!parse_special && (data.attr & (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_UNKNOWN))) {
|
|
|
+ // Ignore control and unknown tokens when parse_special == false
|
|
|
+ continue;
|
|
|
+ // User-defined tokens are still pre-tokenized before everything else
|
|
|
+ // ref: https://github.com/huggingface/tokenizers/blob/fdd26ba9a3f0c133427aab0423888cbde91362d7/tokenizers/src/tokenizer/mod.rs#L726
|
|
|
+ // This is mostly relevant for neox-style tokenizers (mpt, olmo, stablelm, etc.)
|
|
|
+ }
|
|
|
+
|
|
|
+ // for each text fragment
|
|
|
+ std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
|
|
|
+ while (it != buffer.end()) {
|
|
|
+ auto & fragment = (*it);
|
|
|
+
|
|
|
+ // if a fragment is text ( not yet processed )
|
|
|
+ if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
|
|
|
+ const auto & raw_text = fragment.raw_text;
|
|
|
+
|
|
|
+ auto raw_text_base_offset = fragment.offset;
|
|
|
+ auto raw_text_base_length = fragment.length;
|
|
|
+
|
|
|
+ // loop over the text
|
|
|
+ while (true) {
|
|
|
+ // find the first occurrence of a given special token in this fragment
|
|
|
+ // passing offset argument only limit the "search area" but match coordinates
|
|
|
+ // are still relative to the source full raw_text
|
|
|
+ auto match = raw_text.find(text, raw_text_base_offset);
|
|
|
+
|
|
|
+ // no occurrences found, stop processing this fragment for a given special token
|
|
|
+ if (match == std::string::npos) break;
|
|
|
+
|
|
|
+ // check if match is within bounds of offset <-> length
|
|
|
+ if (match + text.length() > raw_text_base_offset + raw_text_base_length) break;
|
|
|
|
|
|
#ifdef PRETOKENIZERDEBUG
|
|
|
- LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
|
|
|
+ LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
|
|
|
#endif
|
|
|
+ auto source = std::distance(buffer.begin(), it);
|
|
|
|
|
|
- session.tokenize(raw_text, output);
|
|
|
- } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
|
|
|
- output.push_back(fragment.token);
|
|
|
+ // if match is further than base offset
|
|
|
+ // then we have some text to the left of it
|
|
|
+ if (match > raw_text_base_offset) {
|
|
|
+ // left
|
|
|
+ const int64_t left_reminder_offset = raw_text_base_offset + 0;
|
|
|
+ int64_t left_reminder_length = match - raw_text_base_offset;
|
|
|
+
|
|
|
+ if (data.attr & LLAMA_TOKEN_ATTR_LSTRIP) {
|
|
|
+ while (left_reminder_length > 0 && isspace(raw_text[left_reminder_offset + left_reminder_length - 1])) {
|
|
|
+ left_reminder_length--;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (left_reminder_length > 0) {
|
|
|
+ buffer.emplace_after(it, raw_text, left_reminder_offset, left_reminder_length);
|
|
|
+ it++;
|
|
|
+ }
|
|
|
+
|
|
|
+#ifdef PRETOKENIZERDEBUG
|
|
|
+ LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
|
|
|
+#endif
|
|
|
}
|
|
|
- }
|
|
|
- } break;
|
|
|
- case LLAMA_VOCAB_TYPE_NONE:
|
|
|
- GGML_ABORT("fatal error");
|
|
|
+
|
|
|
+ // special token
|
|
|
+ buffer.emplace_after(it, special_id);
|
|
|
+ it++;
|
|
|
+
|
|
|
+ // right
|
|
|
+ if (match + text.length() < raw_text_base_offset + raw_text_base_length) {
|
|
|
+ int64_t right_reminder_offset = match + text.length();
|
|
|
+ int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + text.length());
|
|
|
+
|
|
|
+ if (data.attr & LLAMA_TOKEN_ATTR_RSTRIP) {
|
|
|
+ while (right_reminder_length > 0 && isspace(raw_text[right_reminder_offset])) {
|
|
|
+ right_reminder_offset++;
|
|
|
+ right_reminder_length--;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (right_reminder_length > 0) {
|
|
|
+ buffer.emplace_after(it, raw_text, right_reminder_offset, right_reminder_length);
|
|
|
+ it++;
|
|
|
+ }
|
|
|
+
|
|
|
+#ifdef PRETOKENIZERDEBUG
|
|
|
+ LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
|
|
|
+#endif
|
|
|
+
|
|
|
+ if (source == 0) {
|
|
|
+ buffer.erase_after(buffer.before_begin());
|
|
|
+ } else {
|
|
|
+ buffer.erase_after(std::next(buffer.begin(), (source - 1)));
|
|
|
+ }
|
|
|
+
|
|
|
+ // repeat for the right side
|
|
|
+ raw_text_base_offset = right_reminder_offset;
|
|
|
+ raw_text_base_length = right_reminder_length;
|
|
|
+
|
|
|
+#ifdef PRETOKENIZERDEBUG
|
|
|
+ LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
|
|
|
+#endif
|
|
|
+ } else {
|
|
|
+ if (source == 0) {
|
|
|
+ buffer.erase_after(buffer.before_begin());
|
|
|
+ } else {
|
|
|
+ buffer.erase_after(std::next(buffer.begin(), (source - 1)));
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ it++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// NOTE: avoid ever using this except for building the token_to_piece caches
|
|
|
+std::string llama_vocab::impl::token_to_piece_for_cache(llama_token token, bool special) const {
|
|
|
+ std::string piece;
|
|
|
+ piece.resize(piece.capacity()); // using string internal cache
|
|
|
+ const int n_chars = vocab.token_to_piece(token, &piece[0], piece.size(), 0, special);
|
|
|
+ if (n_chars < 0) {
|
|
|
+ piece.resize(-n_chars);
|
|
|
+ int check = vocab.token_to_piece(token, &piece[0], piece.size(), 0, special);
|
|
|
+ GGML_ASSERT(check == -n_chars);
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ piece.resize(n_chars);
|
|
|
+ }
|
|
|
+
|
|
|
+ return piece;
|
|
|
+}
|
|
|
+
|
|
|
+static void llama_escape_whitespace(std::string & text) {
|
|
|
+ replace_all(text, " ", "\xe2\x96\x81");
|
|
|
+}
|
|
|
+
|
|
|
+static void llama_unescape_whitespace(std::string & word) {
|
|
|
+ replace_all(word, "\xe2\x96\x81", " ");
|
|
|
+}
|
|
|
+
|
|
|
+static std::string llama_decode_text(const std::string & text) {
|
|
|
+ std::string decoded_text;
|
|
|
+
|
|
|
+ const auto cpts = unicode_cpts_from_utf8(text);
|
|
|
+ for (const auto cpt : cpts) {
|
|
|
+ const auto utf8 = unicode_cpt_to_utf8(cpt);
|
|
|
+ try {
|
|
|
+ decoded_text += unicode_utf8_to_byte(utf8);
|
|
|
+ } catch (const std::out_of_range & /*e*/) {
|
|
|
+ decoded_text += "[UNK_BYTE_0x";
|
|
|
+ for (const auto c : utf8) {
|
|
|
+ decoded_text += format("%02x", (uint8_t) c);
|
|
|
+ }
|
|
|
+ decoded_text += text + "]";
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return decoded_text;
|
|
|
+}
|
|
|
+
|
|
|
+std::vector<llama_token> llama_vocab::impl::tokenize(
|
|
|
+ const std::string & raw_text,
|
|
|
+ bool add_special,
|
|
|
+ bool parse_special) const {
|
|
|
+ GGML_ASSERT(tokenizer && "Tokenizer not initialized. Call llama_vocab::init_tokenizer() first.");
|
|
|
+
|
|
|
+ std::vector<llama_token> output;
|
|
|
+ std::forward_list<fragment_buffer_variant> fragment_buffer;
|
|
|
+
|
|
|
+ if (!raw_text.empty()) {
|
|
|
+ fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
|
|
|
+ tokenizer_st_partition(fragment_buffer, parse_special);
|
|
|
+ }
|
|
|
+
|
|
|
+ switch (get_type()) {
|
|
|
+ case LLAMA_VOCAB_TYPE_SPM:
|
|
|
+ {
|
|
|
+ // OG tokenizer behavior:
|
|
|
+ //
|
|
|
+ // tokenizer.encode('', add_special_tokens=True) returns [1]
|
|
|
+ // tokenizer.encode('', add_special_tokens=False) returns []
|
|
|
+
|
|
|
+ bool is_prev_special = true; // prefix with space if first token
|
|
|
+
|
|
|
+ if (add_special && add_bos) {
|
|
|
+ GGML_ASSERT(special_bos_id != LLAMA_TOKEN_NULL);
|
|
|
+ output.push_back(special_bos_id);
|
|
|
+ is_prev_special = true;
|
|
|
+ }
|
|
|
+
|
|
|
+ for (const auto & fragment : fragment_buffer) {
|
|
|
+ if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
|
|
|
+ std::string text;
|
|
|
+
|
|
|
+ // prefix with space if previous is special
|
|
|
+ if (add_space_prefix && is_prev_special) {
|
|
|
+ text = ' ';
|
|
|
+ }
|
|
|
+
|
|
|
+ text += fragment.raw_text.substr(fragment.offset, fragment.length);
|
|
|
+
|
|
|
+#ifdef PRETOKENIZERDEBUG
|
|
|
+ LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", text.length(), fragment.offset, fragment.length, text.c_str());
|
|
|
+#endif
|
|
|
+ llama_escape_whitespace(text);
|
|
|
+ llm_tokenizer_spm_session session(vocab);
|
|
|
+ session.tokenize(text, output);
|
|
|
+ is_prev_special = false;
|
|
|
+ } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
|
|
|
+ output.push_back(fragment.token);
|
|
|
+ is_prev_special = true;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (add_special && add_bos && output.size() >= 2 && output[1] == special_bos_id) {
|
|
|
+ LLAMA_LOG_WARN(
|
|
|
+ "%s: Added a BOS token to the prompt as specified by the model but the prompt "
|
|
|
+ "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
|
|
|
+ "Are you sure this is what you want?\n", __FUNCTION__);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (add_special && add_eos) {
|
|
|
+ GGML_ASSERT(special_eos_id != LLAMA_TOKEN_NULL);
|
|
|
+ output.push_back(special_eos_id);
|
|
|
+ }
|
|
|
+ } break;
|
|
|
+ case LLAMA_VOCAB_TYPE_BPE:
|
|
|
+ {
|
|
|
+ llm_tokenizer_bpe_session session(vocab, *static_cast<const llm_tokenizer_bpe *>(tokenizer.get()));
|
|
|
+ // it calls some other methods that are not exist in llm_tokenizer,
|
|
|
+ // here just cast it to bpe tokenizer object
|
|
|
+ if (add_special) {
|
|
|
+ session.append_bos(output);
|
|
|
+ }
|
|
|
+ for (const auto & fragment : fragment_buffer) {
|
|
|
+ if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
|
|
|
+ std::string text = fragment.raw_text.substr(fragment.offset, fragment.length);
|
|
|
+
|
|
|
+#ifdef PRETOKENIZERDEBUG
|
|
|
+ LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", text.length(), fragment.offset, fragment.length, text.c_str());
|
|
|
+#endif
|
|
|
+ session.tokenize(text, output);
|
|
|
+ } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
|
|
|
+ session.append(fragment.token, output);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (add_special) {
|
|
|
+ session.append_eos(output);
|
|
|
+ session.check_double_bos_eos(output);
|
|
|
+ }
|
|
|
+ } break;
|
|
|
+ case LLAMA_VOCAB_TYPE_WPM:
|
|
|
+ {
|
|
|
+ if (add_special) {
|
|
|
+ GGML_ASSERT(special_cls_id != LLAMA_TOKEN_NULL);
|
|
|
+ output.push_back(special_cls_id);
|
|
|
+ }
|
|
|
+
|
|
|
+ llm_tokenizer_wpm_session session(vocab);
|
|
|
+
|
|
|
+ for (const auto & fragment : fragment_buffer) {
|
|
|
+ if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
|
|
|
+ std::string text = fragment.raw_text.substr(fragment.offset, fragment.length);
|
|
|
+
|
|
|
+#ifdef PRETOKENIZERDEBUG
|
|
|
+ LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", text.length(), fragment.offset, fragment.length, text.c_str());
|
|
|
+#endif
|
|
|
+ session.tokenize(text, output);
|
|
|
+ } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
|
|
|
+ output.push_back(fragment.token);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (add_special) {
|
|
|
+ GGML_ASSERT(special_sep_id != LLAMA_TOKEN_NULL);
|
|
|
+ output.push_back(special_sep_id);
|
|
|
+ }
|
|
|
+ } break;
|
|
|
+ case LLAMA_VOCAB_TYPE_UGM:
|
|
|
+ {
|
|
|
+ if (add_special && add_bos) {
|
|
|
+ GGML_ASSERT(special_bos_id != LLAMA_TOKEN_NULL);
|
|
|
+ output.push_back(special_bos_id);
|
|
|
+ }
|
|
|
+ llm_tokenizer_ugm_session session(vocab, *static_cast<const llm_tokenizer_ugm *>(tokenizer.get()));
|
|
|
+
|
|
|
+ for (const auto & fragment : fragment_buffer) {
|
|
|
+ if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
|
|
|
+ std::string text = fragment.raw_text.substr(fragment.offset, fragment.length);
|
|
|
+#ifdef PRETOKENIZERDEBUG
|
|
|
+ LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", text.length(), fragment.offset, fragment.length, text.c_str());
|
|
|
+#endif
|
|
|
+ session.tokenize(text, output);
|
|
|
+ } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
|
|
|
+ output.push_back(fragment.token);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (add_special && add_bos && output.size() >= 2 && output[1] == special_bos_id) {
|
|
|
+ LLAMA_LOG_WARN(
|
|
|
+ "%s: Added a BOS token to the prompt as specified by the model but the prompt "
|
|
|
+ "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
|
|
|
+ "Are you sure this is what you want?\n", __FUNCTION__);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (add_special && add_eos) {
|
|
|
+ GGML_ASSERT(special_eos_id != LLAMA_TOKEN_NULL);
|
|
|
+ output.push_back(special_eos_id);
|
|
|
+ }
|
|
|
+ } break;
|
|
|
+ case LLAMA_VOCAB_TYPE_RWKV:
|
|
|
+ {
|
|
|
+ llm_tokenizer_rwkv_session session(vocab, *static_cast<const llm_tokenizer_rwkv *>(tokenizer.get()));
|
|
|
+ for (const auto & fragment : fragment_buffer) {
|
|
|
+ if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
|
|
|
+ std::string text = fragment.raw_text.substr(fragment.offset, fragment.length);
|
|
|
+
|
|
|
+#ifdef PRETOKENIZERDEBUG
|
|
|
+ LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", text.length(), fragment.offset, fragment.length, text.c_str());
|
|
|
+#endif
|
|
|
+
|
|
|
+ session.tokenize(text, output);
|
|
|
+ } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
|
|
|
+ output.push_back(fragment.token);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ } break;
|
|
|
+ case LLAMA_VOCAB_TYPE_NONE:
|
|
|
+ GGML_ABORT("fatal error");
|
|
|
+ }
|
|
|
+
|
|
|
+ return output;
|
|
|
+}
|
|
|
+
|
|
|
+int32_t llama_vocab::impl::token_to_piece(llama_token token, char * buf, int32_t length, int32_t lstrip, bool special) const {
|
|
|
+ // ref: https://github.com/ggerganov/llama.cpp/pull/7587#discussion_r1620983843
|
|
|
+ static const int attr_special = LLAMA_TOKEN_ATTR_UNKNOWN | LLAMA_TOKEN_ATTR_CONTROL;
|
|
|
+ const llama_token_attr attr = token_get_attr(token);
|
|
|
+ if (!special && (attr & attr_special)) {
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ // copy piece chars to output text buffer
|
|
|
+ // skip up to 'lstrip' leading spaces before copying
|
|
|
+ auto _try_copy = [=] (const char * token, size_t size) -> int32_t {
|
|
|
+ for (int32_t i = 0; i < lstrip && size && *token == ' '; ++i) {
|
|
|
+ token++;
|
|
|
+ size--;
|
|
|
+ }
|
|
|
+ if (length < (int32_t)size) {
|
|
|
+ return -(int32_t) size;
|
|
|
+ }
|
|
|
+ memcpy(buf, token, size);
|
|
|
+ return (int32_t) size;
|
|
|
+ };
|
|
|
+
|
|
|
+ // if we have a cache - use it
|
|
|
+ {
|
|
|
+ const auto & cache = cache_token_to_piece;
|
|
|
+
|
|
|
+ if (!cache.empty()) {
|
|
|
+ const auto & result = cache.at(token);
|
|
|
+ return _try_copy(result.data(), result.size());
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (0 <= token && token < (int32_t) id_to_token.size()) {
|
|
|
+ const std::string & token_text = id_to_token[token].text;
|
|
|
+ switch (get_type()) {
|
|
|
+ case LLAMA_VOCAB_TYPE_WPM:
|
|
|
+ case LLAMA_VOCAB_TYPE_SPM:
|
|
|
+ case LLAMA_VOCAB_TYPE_UGM: {
|
|
|
+ // NOTE: we accept all unsupported token types,
|
|
|
+ // suppressing them like CONTROL tokens.
|
|
|
+ if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) {
|
|
|
+ return _try_copy(token_text.data(), token_text.size());
|
|
|
+ }
|
|
|
+ if (attr & LLAMA_TOKEN_ATTR_NORMAL) {
|
|
|
+ std::string result = token_text;
|
|
|
+ llama_unescape_whitespace(result);
|
|
|
+ return _try_copy(result.data(), result.size());
|
|
|
+ }
|
|
|
+ if (attr & LLAMA_TOKEN_ATTR_BYTE) {
|
|
|
+ char byte = (char) token_to_byte(token);
|
|
|
+ return _try_copy((char*) &byte, 1);
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case LLAMA_VOCAB_TYPE_BPE: {
|
|
|
+ // NOTE: we accept all unsupported token types,
|
|
|
+ // suppressing them like CONTROL tokens.
|
|
|
+ if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) {
|
|
|
+ return _try_copy(token_text.data(), token_text.size());
|
|
|
+ }
|
|
|
+ if (attr & LLAMA_TOKEN_ATTR_NORMAL) {
|
|
|
+ std::string result = llama_decode_text(token_text);
|
|
|
+ return _try_copy(result.data(), result.size());
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case LLAMA_VOCAB_TYPE_RWKV: {
|
|
|
+ std::vector<uint8_t> result = llama_unescape_rwkv_token(token_text);
|
|
|
+
|
|
|
+ // If we don't have enough space, return an error
|
|
|
+ if (result.size() > (size_t)length) {
|
|
|
+ return -(int)result.size();
|
|
|
+ }
|
|
|
+
|
|
|
+ memcpy(buf, result.data(), result.size());
|
|
|
+ return (int)result.size();
|
|
|
+ }
|
|
|
+ default:
|
|
|
+ GGML_ABORT("fatal error");
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+const std::string & llama_vocab::impl::token_to_piece(llama_token token) const {
|
|
|
+ return cache_token_to_piece.at(token);
|
|
|
+}
|
|
|
+
|
|
|
+int32_t llama_vocab::impl::detokenize(
|
|
|
+ const llama_token * tokens,
|
|
|
+ int32_t n_tokens,
|
|
|
+ char * text,
|
|
|
+ int32_t text_len_max,
|
|
|
+ bool remove_special,
|
|
|
+ bool unparse_special) const {
|
|
|
+ if (type == LLAMA_VOCAB_TYPE_NONE) {
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ GGML_ASSERT(tokenizer && "Tokenizer not initialized. Call llama_vocab::init_tokenizer() first.");
|
|
|
+
|
|
|
+ int32_t avail = text_len_max;
|
|
|
+ int32_t total = 0;
|
|
|
+
|
|
|
+ // remove the leading space
|
|
|
+ bool remove_space = add_space_prefix;
|
|
|
+
|
|
|
+ if (remove_special && add_bos) {
|
|
|
+ if (n_tokens > 0 && tokens[0] == special_bos_id) {
|
|
|
+ remove_space = false;
|
|
|
+ n_tokens--;
|
|
|
+ tokens++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (remove_special && add_eos) {
|
|
|
+ if (n_tokens > 0 && tokens[n_tokens - 1] == special_eos_id) {
|
|
|
+ n_tokens--;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ for (int32_t i = 0; i < n_tokens; ++i) {
|
|
|
+ GGML_ASSERT(avail >= 0);
|
|
|
+ int32_t n_chars = token_to_piece(tokens[i], text, avail, remove_space, unparse_special);
|
|
|
+ remove_space = false;
|
|
|
+ if (n_chars < 0) {
|
|
|
+ avail = 0;
|
|
|
+ total -= n_chars;
|
|
|
+ } else if (n_chars > 0) {
|
|
|
+ avail -= n_chars;
|
|
|
+ text += n_chars;
|
|
|
+ total += n_chars;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (total > text_len_max) {
|
|
|
+ return -total;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (clean_spaces) {
|
|
|
+ text -= total; // restart text
|
|
|
+
|
|
|
+ // first pass: characters ?!., //TODO: where do these characters come from?
|
|
|
+ const int32_t total1 = total;
|
|
|
+ total = total ? 1 : 0;
|
|
|
+ for (int32_t i = 1; i < total1; ++i) {
|
|
|
+ const char x = text[i];
|
|
|
+ if (text[i - 1] == ' ') {
|
|
|
+ if (x == '?' || x == '!' || x == '.' || x == ',') { // " ?", " !", " .", " ,"
|
|
|
+ total--; // remove space
|
|
|
+ }
|
|
|
+ }
|
|
|
+ text[total++] = x;
|
|
|
+ }
|
|
|
+
|
|
|
+ // second pass: strip single apostrophe between spaces
|
|
|
+ const int32_t total2 = total;
|
|
|
+ total = total ? 1 : 0;
|
|
|
+ for (int32_t i = 1; i < total2; ++i) {
|
|
|
+ const char x = text[i];
|
|
|
+ if (x == '\'' && i + 1 < total2 && text[i - 1] == ' ' && text[i + 1] == ' ') { // " ' "
|
|
|
+ total--; // remove prev space
|
|
|
+ text[++i] = '\0'; // remove next space
|
|
|
+ }
|
|
|
+ text[total++] = x;
|
|
|
+ }
|
|
|
+
|
|
|
+ // third pass: apostrophe contractions //NOTE: this makes sense?
|
|
|
+ const int32_t total3 = total;
|
|
|
+ total = total ? 1 : 0;
|
|
|
+ for (int32_t i = 1; i < total3; ++i) {
|
|
|
+ const char x = text[i];
|
|
|
+ if (text[i - 1] == ' ') {
|
|
|
+ if (x == '\'' && i + 1 < total3) {
|
|
|
+ const char x1 = text[i + 1];
|
|
|
+ if (x1 == 't' || x1 == 'd') { // " 't", " 'd"
|
|
|
+ //total--; // remove space
|
|
|
+ } else if (x1 == 's' || x1 == 'm') { // " 's", " 'm"
|
|
|
+ total--; // remove space
|
|
|
+ } else if (i + 2 < total3) {
|
|
|
+ const char x2 = text[i + 2];
|
|
|
+ if ((x1 == 'l' && x2 == 'l')) { // " 'll"
|
|
|
+ //total--; // remove space
|
|
|
+ } else if ((x1 == 'r' && x2 == 'e') || (x1 == 'v' && x2 == 'e')) { // " 're", " 've"
|
|
|
+ total--; // remove space
|
|
|
+ } else {
|
|
|
+ //total--; // remove space
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ //total--; // remove space
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ text[total++] = x;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return total <= text_len_max ? total : -total;
|
|
|
+}
|
|
|
+
|
|
|
+void llama_vocab::impl::print_info() const {
|
|
|
+ LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, type_name().c_str());
|
|
|
+ LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, vocab.n_tokens());
|
|
|
+ LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (uint32_t) bpe_ranks.size());
|
|
|
+
|
|
|
+ // special tokens
|
|
|
+ if (special_bos_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, special_bos_id, id_to_token[special_bos_id].text.c_str() ); }
|
|
|
+ if (special_eos_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, special_eos_id, id_to_token[special_eos_id].text.c_str() ); }
|
|
|
+ if (special_eot_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, special_eot_id, id_to_token[special_eot_id].text.c_str() ); }
|
|
|
+ if (special_eom_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: EOM token = %d '%s'\n", __func__, special_eom_id, id_to_token[special_eom_id].text.c_str() ); }
|
|
|
+ if (special_unk_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, special_unk_id, id_to_token[special_unk_id].text.c_str() ); }
|
|
|
+ if (special_sep_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, special_sep_id, id_to_token[special_sep_id].text.c_str() ); }
|
|
|
+ if (special_pad_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, special_pad_id, id_to_token[special_pad_id].text.c_str() ); }
|
|
|
+ if (special_cls_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: CLS token = %d '%s'\n", __func__, special_cls_id, id_to_token[special_cls_id].text.c_str() ); }
|
|
|
+ if (special_mask_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, special_mask_id, id_to_token[special_mask_id].text.c_str() ); }
|
|
|
+
|
|
|
+ if (linefeed_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, linefeed_id, id_to_token[linefeed_id].text.c_str() ); }
|
|
|
+
|
|
|
+ if (special_fim_pre_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM PRE token = %d '%s'\n", __func__, special_fim_pre_id, id_to_token[special_fim_pre_id].text.c_str() ); }
|
|
|
+ if (special_fim_suf_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM SUF token = %d '%s'\n", __func__, special_fim_suf_id, id_to_token[special_fim_suf_id].text.c_str() ); }
|
|
|
+ if (special_fim_mid_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM MID token = %d '%s'\n", __func__, special_fim_mid_id, id_to_token[special_fim_mid_id].text.c_str() ); }
|
|
|
+ if (special_fim_pad_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM PAD token = %d '%s'\n", __func__, special_fim_pad_id, id_to_token[special_fim_pad_id].text.c_str() ); }
|
|
|
+ if (special_fim_rep_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM REP token = %d '%s'\n", __func__, special_fim_rep_id, id_to_token[special_fim_rep_id].text.c_str() ); }
|
|
|
+ if (special_fim_sep_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM SEP token = %d '%s'\n", __func__, special_fim_sep_id, id_to_token[special_fim_sep_id].text.c_str() ); }
|
|
|
+
|
|
|
+ for (const auto & id : special_eog_ids) {
|
|
|
+ LLAMA_LOG_INFO( "%s: EOG token = %d '%s'\n", __func__, id, id_to_token[id].text.c_str() );
|
|
|
+ }
|
|
|
+
|
|
|
+ LLAMA_LOG_INFO("%s: max token length = %d\n", __func__, max_token_len);
|
|
|
+}
|
|
|
+
|
|
|
+llama_vocab::llama_vocab() : pimpl(new impl(*this)) {
|
|
|
+}
|
|
|
+
|
|
|
+llama_vocab::~llama_vocab() {
|
|
|
+}
|
|
|
+
|
|
|
+void llama_vocab::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|
|
+ pimpl->load(ml, kv);
|
|
|
+}
|
|
|
+
|
|
|
+enum llama_vocab_type llama_vocab::get_type() const {
|
|
|
+ return pimpl->type;
|
|
|
+}
|
|
|
+
|
|
|
+enum llama_vocab_pre_type llama_vocab::get_pre_type() const {
|
|
|
+ return pimpl->pre_type;
|
|
|
+}
|
|
|
+
|
|
|
+uint32_t llama_vocab::n_tokens() const {
|
|
|
+ return (uint32_t) pimpl->id_to_token.size();
|
|
|
+}
|
|
|
+
|
|
|
+uint32_t llama_vocab::n_token_types() const {
|
|
|
+ return (uint32_t) pimpl->n_token_types;
|
|
|
+}
|
|
|
+
|
|
|
+std::string llama_vocab::type_name() const{
|
|
|
+ return pimpl->type_name();
|
|
|
+}
|
|
|
+
|
|
|
+bool llama_vocab::is_normal(llama_token id) const {
|
|
|
+ return pimpl->is_normal(id);
|
|
|
+}
|
|
|
+
|
|
|
+bool llama_vocab::is_unknown(llama_token id) const {
|
|
|
+ return pimpl->is_unknown(id);
|
|
|
+}
|
|
|
+
|
|
|
+bool llama_vocab::is_control(llama_token id) const {
|
|
|
+ return pimpl->is_control(id);
|
|
|
+}
|
|
|
+
|
|
|
+bool llama_vocab::is_byte(llama_token id) const {
|
|
|
+ return pimpl->is_byte(id);
|
|
|
+}
|
|
|
+
|
|
|
+bool llama_vocab::is_user_defined(llama_token id) const {
|
|
|
+ return pimpl->is_user_defined(id);
|
|
|
+}
|
|
|
+
|
|
|
+bool llama_vocab::is_unused(llama_token id) const {
|
|
|
+ return pimpl->is_unused(id);
|
|
|
+}
|
|
|
+
|
|
|
+bool llama_vocab::is_eog(llama_token id) const {
|
|
|
+ return pimpl->is_eog(id);
|
|
|
+}
|
|
|
+
|
|
|
+uint8_t llama_vocab::token_to_byte(llama_token id) const {
|
|
|
+ return pimpl->token_to_byte(id);
|
|
|
+}
|
|
|
+
|
|
|
+llama_token llama_vocab::byte_to_token(uint8_t ch) const {
|
|
|
+ GGML_ASSERT(get_type() != LLAMA_VOCAB_TYPE_NONE);
|
|
|
+ static const char * hex = "0123456789ABCDEF";
|
|
|
+ switch (get_type()) {
|
|
|
+ case LLAMA_VOCAB_TYPE_SPM:
|
|
|
+ case LLAMA_VOCAB_TYPE_UGM: {
|
|
|
+ const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
|
|
|
+ auto token = pimpl->token_to_id.find(buf);
|
|
|
+ if (token != pimpl->token_to_id.end()) {
|
|
|
+ return (*token).second;
|
|
|
+ }
|
|
|
+ // Try to fall back to just the byte as a string
|
|
|
+ const char buf2[2] = { (char)ch, 0 };
|
|
|
+ return pimpl->token_to_id.at(buf2);
|
|
|
+ }
|
|
|
+ case LLAMA_VOCAB_TYPE_WPM:
|
|
|
+ case LLAMA_VOCAB_TYPE_BPE: {
|
|
|
+ return pimpl->token_to_id.at(unicode_byte_to_utf8(ch));
|
|
|
+ }
|
|
|
+ default:
|
|
|
+ GGML_ABORT("fatal error");
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+llama_token llama_vocab::text_to_token(const std::string & text) const {
|
|
|
+ GGML_ASSERT(pimpl->type != LLAMA_VOCAB_TYPE_NONE);
|
|
|
+ auto it = pimpl->token_to_id.find(text);
|
|
|
+ if (it != pimpl->token_to_id.end()) {
|
|
|
+ return (*it).second;
|
|
|
+ }
|
|
|
+ return LLAMA_TOKEN_NULL;
|
|
|
+}
|
|
|
+
|
|
|
+const llama_vocab::token_data & llama_vocab::get_token_data(llama_token id) const {
|
|
|
+ GGML_ASSERT(pimpl->type != LLAMA_VOCAB_TYPE_NONE);
|
|
|
+ return pimpl->id_to_token.at(id);
|
|
|
+}
|
|
|
+
|
|
|
+const char * llama_vocab::token_get_text(llama_token id) const {
|
|
|
+ GGML_ASSERT(pimpl->type != LLAMA_VOCAB_TYPE_NONE);
|
|
|
+ return pimpl->id_to_token.at(id).text.c_str();
|
|
|
+}
|
|
|
+
|
|
|
+float llama_vocab::token_get_score(llama_token id) const {
|
|
|
+ GGML_ASSERT(pimpl->type != LLAMA_VOCAB_TYPE_NONE);
|
|
|
+ return pimpl->id_to_token.at(id).score;
|
|
|
+}
|
|
|
+
|
|
|
+llama_token_attr llama_vocab::token_get_attr(llama_token id) const {
|
|
|
+ return pimpl->token_get_attr(id);
|
|
|
+}
|
|
|
+
|
|
|
+llama_token llama_vocab::token_bos() const {
|
|
|
+ return pimpl->type != LLAMA_VOCAB_TYPE_WPM ? pimpl->special_bos_id : pimpl->special_cls_id;
|
|
|
+}
|
|
|
+
|
|
|
+llama_token llama_vocab::token_eos() const {
|
|
|
+ return pimpl->special_eos_id;
|
|
|
+}
|
|
|
+
|
|
|
+llama_token llama_vocab::token_eot() const {
|
|
|
+ return pimpl->special_eot_id;
|
|
|
+}
|
|
|
+
|
|
|
+llama_token llama_vocab::token_eom() const {
|
|
|
+ return pimpl->special_eom_id;
|
|
|
+}
|
|
|
+
|
|
|
+llama_token llama_vocab::token_unk() const {
|
|
|
+ return pimpl->special_unk_id;
|
|
|
+}
|
|
|
+
|
|
|
+llama_token llama_vocab::token_cls() const {
|
|
|
+ return pimpl->special_cls_id;
|
|
|
+}
|
|
|
+
|
|
|
+llama_token llama_vocab::token_sep() const {
|
|
|
+ return pimpl->special_sep_id;
|
|
|
+}
|
|
|
+
|
|
|
+llama_token llama_vocab::token_nl() const {
|
|
|
+ return pimpl->linefeed_id;
|
|
|
+}
|
|
|
+
|
|
|
+llama_token llama_vocab::token_pad() const {
|
|
|
+ return pimpl->special_pad_id;
|
|
|
+}
|
|
|
+
|
|
|
+llama_token llama_vocab::token_prefix() const {
|
|
|
+ return pimpl->special_fim_pre_id;
|
|
|
+}
|
|
|
+
|
|
|
+llama_token llama_vocab::token_middle() const {
|
|
|
+ return pimpl->special_fim_mid_id;
|
|
|
+}
|
|
|
+
|
|
|
+llama_token llama_vocab::token_suffix() const {
|
|
|
+ return pimpl->special_fim_suf_id;
|
|
|
+}
|
|
|
+
|
|
|
+llama_token llama_vocab::token_fim_pre() const {
|
|
|
+ return pimpl->special_fim_pre_id;
|
|
|
+}
|
|
|
+
|
|
|
+llama_token llama_vocab::token_fim_suf() const {
|
|
|
+ return pimpl->special_fim_suf_id;
|
|
|
+}
|
|
|
+
|
|
|
+llama_token llama_vocab::token_fim_mid() const {
|
|
|
+ return pimpl->special_fim_mid_id;
|
|
|
+}
|
|
|
+
|
|
|
+llama_token llama_vocab::token_fim_pad() const {
|
|
|
+ return pimpl->special_fim_pad_id;
|
|
|
+}
|
|
|
+
|
|
|
+llama_token llama_vocab::token_fim_rep() const {
|
|
|
+ return pimpl->special_fim_rep_id;
|
|
|
+}
|
|
|
+
|
|
|
+llama_token llama_vocab::token_fim_sep() const {
|
|
|
+ return pimpl->special_fim_sep_id;
|
|
|
+}
|
|
|
+
|
|
|
+bool llama_vocab::get_add_space_prefix() const {
|
|
|
+ return pimpl->add_space_prefix;
|
|
|
+}
|
|
|
+
|
|
|
+bool llama_vocab::get_add_bos() const {
|
|
|
+ return pimpl->add_bos;
|
|
|
+}
|
|
|
+
|
|
|
+bool llama_vocab::get_add_eos() const {
|
|
|
+ return pimpl->add_eos;
|
|
|
+}
|
|
|
+
|
|
|
+bool llama_vocab::get_ignore_merges() const {
|
|
|
+ return pimpl->ignore_merges;
|
|
|
+}
|
|
|
+
|
|
|
+bool llama_vocab::get_clean_spaces() const {
|
|
|
+ return pimpl->clean_spaces;
|
|
|
+}
|
|
|
+
|
|
|
+bool llama_vocab::get_remove_extra_whitespaces() const {
|
|
|
+ return pimpl->remove_extra_whitespaces;
|
|
|
+}
|
|
|
+
|
|
|
+bool llama_vocab::get_escape_whitespaces() const {
|
|
|
+ return pimpl->escape_whitespaces;
|
|
|
+}
|
|
|
+
|
|
|
+bool llama_vocab::get_treat_whitespace_as_suffix() const {
|
|
|
+ return pimpl->treat_whitespace_as_suffix;
|
|
|
+}
|
|
|
+
|
|
|
+int llama_vocab::max_token_len() const {
|
|
|
+ return pimpl->max_token_len;
|
|
|
+}
|
|
|
+
|
|
|
+int llama_vocab::find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
|
|
|
+ GGML_ASSERT(token_left.find(' ') == std::string::npos);
|
|
|
+ GGML_ASSERT(token_left.find('\n') == std::string::npos);
|
|
|
+ GGML_ASSERT(token_right.find(' ') == std::string::npos);
|
|
|
+ GGML_ASSERT(token_right.find('\n') == std::string::npos);
|
|
|
+
|
|
|
+ auto it = pimpl->bpe_ranks.find(std::make_pair(token_left, token_right));
|
|
|
+ if (it == pimpl->bpe_ranks.end()) {
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+
|
|
|
+ return it->second;
|
|
|
+}
|
|
|
+
|
|
|
+int32_t llama_vocab::tokenize(
|
|
|
+ const char * text,
|
|
|
+ int32_t text_len,
|
|
|
+ llama_token * tokens,
|
|
|
+ int32_t n_tokens_max,
|
|
|
+ bool add_special,
|
|
|
+ bool parse_special) const {
|
|
|
+ auto res = tokenize(std::string(text, text_len), add_special, parse_special);
|
|
|
+ if (n_tokens_max < (int) res.size()) {
|
|
|
+ // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
|
|
|
+ return -((int) res.size());
|
|
|
+ }
|
|
|
+
|
|
|
+ for (size_t i = 0; i < res.size(); i++) {
|
|
|
+ tokens[i] = res[i];
|
|
|
}
|
|
|
|
|
|
- return output;
|
|
|
+ return res.size();
|
|
|
}
|
|
|
|
|
|
-llama_token llama_byte_to_token_impl(const llama_vocab & vocab, uint8_t ch) {
|
|
|
- GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
|
|
|
- static const char * hex = "0123456789ABCDEF";
|
|
|
- switch (llama_vocab_get_type(vocab)) {
|
|
|
- case LLAMA_VOCAB_TYPE_SPM:
|
|
|
- case LLAMA_VOCAB_TYPE_UGM: {
|
|
|
- const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
|
|
|
- auto token = vocab.token_to_id.find(buf);
|
|
|
- if (token != vocab.token_to_id.end()) {
|
|
|
- return (*token).second;
|
|
|
- }
|
|
|
- // Try to fall back to just the byte as a string
|
|
|
- const char buf2[2] = { (char)ch, 0 };
|
|
|
- return vocab.token_to_id.at(buf2);
|
|
|
- }
|
|
|
- case LLAMA_VOCAB_TYPE_WPM:
|
|
|
- case LLAMA_VOCAB_TYPE_BPE: {
|
|
|
- return vocab.token_to_id.at(unicode_byte_to_utf8(ch));
|
|
|
- }
|
|
|
- default:
|
|
|
- GGML_ABORT("fatal error");
|
|
|
- }
|
|
|
+std::vector<llama_token> llama_vocab::tokenize(
|
|
|
+ const std::string & raw_text,
|
|
|
+ bool add_special,
|
|
|
+ bool parse_special) const {
|
|
|
+ return pimpl->tokenize(raw_text, add_special, parse_special);
|
|
|
}
|
|
|
|
|
|
-const char * llama_token_get_text_impl(const struct llama_vocab & vocab, llama_token token) {
|
|
|
- GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
|
|
|
- return vocab.id_to_token[token].text.c_str();
|
|
|
+const std::string & llama_vocab::token_to_piece(llama_token token) const {
|
|
|
+ return pimpl->token_to_piece(token);
|
|
|
}
|
|
|
|
|
|
-float llama_token_get_score_impl(const struct llama_vocab & vocab, llama_token token) {
|
|
|
- GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
|
|
|
- return vocab.id_to_token[token].score;
|
|
|
+int32_t llama_vocab::token_to_piece(llama_token token, char * buf, int32_t length, int32_t lstrip, bool special) const {
|
|
|
+ return pimpl->token_to_piece(token, buf, length, lstrip, special);
|
|
|
}
|
|
|
|
|
|
-llama_token_attr llama_token_get_attr_impl(const struct llama_vocab & vocab, llama_token token) {
|
|
|
- GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
|
|
|
- return vocab.id_to_token[token].attr;
|
|
|
+int32_t llama_vocab::detokenize(
|
|
|
+ const llama_token * tokens,
|
|
|
+ int32_t n_tokens,
|
|
|
+ char * text,
|
|
|
+ int32_t text_len_max,
|
|
|
+ bool remove_special,
|
|
|
+ bool unparse_special) const {
|
|
|
+ return pimpl->detokenize(tokens, n_tokens, text, text_len_max, remove_special, unparse_special);
|
|
|
}
|
|
|
|
|
|
-bool llama_token_is_eog_impl(const struct llama_vocab & vocab, llama_token token) {
|
|
|
- return token != LLAMA_TOKEN_NULL && vocab.special_eog_ids.count(token) > 0;
|
|
|
-}
|
|
|
+std::string llama_vocab::detokenize(const std::vector<llama_token> & tokens, bool special) const {
|
|
|
+ std::string text;
|
|
|
+ text.resize(std::max(text.capacity(), tokens.size()));
|
|
|
+ int32_t n_chars = detokenize(tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
|
|
|
+ if (n_chars < 0) {
|
|
|
+ text.resize(-n_chars);
|
|
|
+ n_chars = detokenize(tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
|
|
|
+ GGML_ASSERT(n_chars <= (int32_t)text.size()); // whitespace trimming is performed after per-token detokenization
|
|
|
+ }
|
|
|
+
|
|
|
+ text.resize(n_chars);
|
|
|
|
|
|
-bool llama_token_is_control_impl(const struct llama_vocab & vocab, llama_token token) {
|
|
|
- return llama_is_control_token(vocab, token);
|
|
|
+ // NOTE: the original tokenizer decodes bytes after collecting the pieces.
|
|
|
+ return text;
|
|
|
}
|
|
|
|
|
|
-llama_token llama_token_bos_impl(const struct llama_vocab & vocab) {
|
|
|
- return vocab.type != LLAMA_VOCAB_TYPE_WPM ? vocab.special_bos_id : vocab.special_cls_id;
|
|
|
+void llama_vocab::print_info() const {
|
|
|
+ pimpl->print_info();
|
|
|
}
|
|
|
|
|
|
-llama_token llama_token_eos_impl(const struct llama_vocab & vocab) {
|
|
|
- return vocab.special_eos_id;
|
|
|
+//
|
|
|
+// interface implementation
|
|
|
+//
|
|
|
+
|
|
|
+int32_t llama_vocab_n_tokens(const struct llama_vocab * vocab) {
|
|
|
+ return vocab->n_tokens();
|
|
|
}
|
|
|
|
|
|
-llama_token llama_token_eot_impl(const struct llama_vocab & vocab) {
|
|
|
- return vocab.special_eot_id;
|
|
|
+// deprecated
|
|
|
+int32_t llama_n_vocab(const struct llama_vocab * vocab) {
|
|
|
+ return llama_vocab_n_tokens(vocab);
|
|
|
}
|
|
|
|
|
|
-llama_token llama_token_eom_impl(const struct llama_vocab & vocab) {
|
|
|
- return vocab.special_eom_id;
|
|
|
+enum llama_vocab_type llama_vocab_type(const struct llama_vocab * vocab) {
|
|
|
+ return vocab->get_type();
|
|
|
}
|
|
|
|
|
|
-llama_token llama_token_cls_impl(const struct llama_vocab & vocab) {
|
|
|
- return vocab.special_cls_id;
|
|
|
+const char * llama_vocab_get_text(const struct llama_vocab * vocab, llama_token token) {
|
|
|
+ return vocab->token_get_text(token);
|
|
|
}
|
|
|
|
|
|
-llama_token llama_token_sep_impl(const struct llama_vocab & vocab) {
|
|
|
- return vocab.special_sep_id;
|
|
|
+float llama_vocab_get_score(const struct llama_vocab * vocab, llama_token token) {
|
|
|
+ return vocab->token_get_score(token);
|
|
|
}
|
|
|
|
|
|
-llama_token llama_token_nl_impl(const struct llama_vocab & vocab) {
|
|
|
- return vocab.linefeed_id;
|
|
|
+enum llama_token_attr llama_vocab_get_attr(const struct llama_vocab * vocab, llama_token token) {
|
|
|
+ return vocab->token_get_attr(token);
|
|
|
}
|
|
|
|
|
|
-llama_token llama_token_pad_impl(const struct llama_vocab & vocab) {
|
|
|
- return vocab.special_pad_id;
|
|
|
+bool llama_vocab_is_eog(const struct llama_vocab * vocab, llama_token token) {
|
|
|
+ return vocab->is_eog(token);
|
|
|
}
|
|
|
|
|
|
-bool llama_add_bos_token_impl(const struct llama_vocab & vocab) {
|
|
|
- return vocab.tokenizer_add_bos;
|
|
|
+bool llama_vocab_is_control(const struct llama_vocab * vocab, llama_token token) {
|
|
|
+ return vocab->is_control(token);
|
|
|
}
|
|
|
|
|
|
-bool llama_add_eos_token_impl(const struct llama_vocab & vocab) {
|
|
|
- return vocab.tokenizer_add_eos;
|
|
|
+llama_token llama_vocab_bos(const struct llama_vocab * vocab) {
|
|
|
+ return vocab->token_bos();
|
|
|
}
|
|
|
|
|
|
-llama_token llama_token_prefix_impl(const struct llama_vocab & vocab) {
|
|
|
- return vocab.special_fim_pre_id;
|
|
|
+llama_token llama_vocab_eos(const struct llama_vocab * vocab) {
|
|
|
+ return vocab->token_eos();
|
|
|
}
|
|
|
|
|
|
-llama_token llama_token_middle_impl(const struct llama_vocab & vocab) {
|
|
|
- return vocab.special_fim_mid_id;
|
|
|
+llama_token llama_vocab_eot(const struct llama_vocab * vocab) {
|
|
|
+ return vocab->token_eot();
|
|
|
}
|
|
|
|
|
|
-llama_token llama_token_suffix_impl(const struct llama_vocab & vocab) {
|
|
|
- return vocab.special_fim_suf_id;
|
|
|
+llama_token llama_vocab_cls(const struct llama_vocab * vocab) {
|
|
|
+ return vocab->token_cls();
|
|
|
}
|
|
|
|
|
|
-llama_token llama_token_fim_pre_impl(const struct llama_vocab & vocab) {
|
|
|
- return vocab.special_fim_pre_id;
|
|
|
+llama_token llama_vocab_sep(const struct llama_vocab * vocab) {
|
|
|
+ return vocab->token_sep();
|
|
|
}
|
|
|
|
|
|
-llama_token llama_token_fim_suf_impl(const struct llama_vocab & vocab) {
|
|
|
- return vocab.special_fim_suf_id;
|
|
|
+llama_token llama_vocab_nl (const struct llama_vocab * vocab) {
|
|
|
+ return vocab->token_nl();
|
|
|
}
|
|
|
|
|
|
-llama_token llama_token_fim_mid_impl(const struct llama_vocab & vocab) {
|
|
|
- return vocab.special_fim_mid_id;
|
|
|
+llama_token llama_vocab_pad(const struct llama_vocab * vocab) {
|
|
|
+ return vocab->token_pad();
|
|
|
}
|
|
|
|
|
|
-llama_token llama_token_fim_pad_impl(const struct llama_vocab & vocab) {
|
|
|
- return vocab.special_fim_pad_id;
|
|
|
+bool llama_vocab_get_add_bos(const struct llama_vocab * vocab) {
|
|
|
+ return vocab->get_add_bos();
|
|
|
}
|
|
|
|
|
|
-llama_token llama_token_fim_rep_impl(const struct llama_vocab & vocab) {
|
|
|
- return vocab.special_fim_rep_id;
|
|
|
+bool llama_vocab_get_add_eos(const struct llama_vocab * vocab) {
|
|
|
+ return vocab->get_add_eos();
|
|
|
}
|
|
|
|
|
|
-llama_token llama_token_fim_sep_impl(const struct llama_vocab & vocab) {
|
|
|
- return vocab.special_fim_sep_id;
|
|
|
+llama_token llama_vocab_fim_pre(const struct llama_vocab * vocab) {
|
|
|
+ return vocab->token_fim_pre();
|
|
|
}
|
|
|
|
|
|
-int32_t llama_tokenize_impl(
|
|
|
- const struct llama_vocab & vocab,
|
|
|
- const char * text,
|
|
|
- int32_t text_len,
|
|
|
- llama_token * tokens,
|
|
|
- int32_t n_tokens_max,
|
|
|
- bool add_special,
|
|
|
- bool parse_special) {
|
|
|
- auto res = llama_tokenize_internal(vocab, std::string(text, text_len), add_special, parse_special);
|
|
|
- if (n_tokens_max < (int) res.size()) {
|
|
|
- // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
|
|
|
- return -((int) res.size());
|
|
|
- }
|
|
|
+llama_token llama_vocab_fim_suf(const struct llama_vocab * vocab) {
|
|
|
+ return vocab->token_fim_suf();
|
|
|
+}
|
|
|
|
|
|
- for (size_t i = 0; i < res.size(); i++) {
|
|
|
- tokens[i] = res[i];
|
|
|
- }
|
|
|
+llama_token llama_vocab_fim_mid(const struct llama_vocab * vocab) {
|
|
|
+ return vocab->token_fim_mid();
|
|
|
+}
|
|
|
|
|
|
- return res.size();
|
|
|
+llama_token llama_vocab_fim_pad(const struct llama_vocab * vocab) {
|
|
|
+ return vocab->token_fim_pad();
|
|
|
}
|
|
|
|
|
|
-static std::string llama_decode_text(const std::string & text) {
|
|
|
- std::string decoded_text;
|
|
|
+llama_token llama_vocab_fim_rep(const struct llama_vocab * vocab) {
|
|
|
+ return vocab->token_fim_rep();
|
|
|
+}
|
|
|
|
|
|
- const auto cpts = unicode_cpts_from_utf8(text);
|
|
|
- for (const auto cpt : cpts) {
|
|
|
- const auto utf8 = unicode_cpt_to_utf8(cpt);
|
|
|
- try {
|
|
|
- decoded_text += unicode_utf8_to_byte(utf8);
|
|
|
- } catch (const std::out_of_range & /*e*/) {
|
|
|
- decoded_text += "[UNK_BYTE_0x";
|
|
|
- for (const auto c : utf8) {
|
|
|
- decoded_text += format("%02x", (uint8_t) c);
|
|
|
- }
|
|
|
- decoded_text += text + "]";
|
|
|
- }
|
|
|
- }
|
|
|
+llama_token llama_vocab_fim_sep(const struct llama_vocab * vocab) {
|
|
|
+ return vocab->token_fim_sep();
|
|
|
+}
|
|
|
|
|
|
- return decoded_text;
|
|
|
+// deprecated
|
|
|
+const char * llama_token_get_text(const struct llama_vocab * vocab, llama_token token) {
|
|
|
+ return llama_vocab_get_text(vocab, token);
|
|
|
}
|
|
|
|
|
|
-// does not write null-terminator to buf
|
|
|
-int32_t llama_token_to_piece_impl(const struct llama_vocab & vocab, llama_token token, char * buf, int32_t length, int32_t lstrip, bool special) {
|
|
|
- // ref: https://github.com/ggerganov/llama.cpp/pull/7587#discussion_r1620983843
|
|
|
- static const int attr_special = LLAMA_TOKEN_ATTR_UNKNOWN | LLAMA_TOKEN_ATTR_CONTROL;
|
|
|
- const llama_token_attr attr = llama_token_get_attr_impl(vocab, token);
|
|
|
- if (!special && (attr & attr_special)) {
|
|
|
- return 0;
|
|
|
- }
|
|
|
+// deprecated
|
|
|
+float llama_token_get_score(const struct llama_vocab * vocab, llama_token token) {
|
|
|
+ return llama_vocab_get_score(vocab, token);
|
|
|
+}
|
|
|
|
|
|
- // copy piece chars to output text buffer
|
|
|
- // skip up to 'lstrip' leading spaces before copying
|
|
|
- auto _try_copy = [=] (const char * token, size_t size) -> int32_t {
|
|
|
- for (int32_t i = 0; i < lstrip && size && *token == ' '; ++i) {
|
|
|
- token++;
|
|
|
- size--;
|
|
|
- }
|
|
|
- if (length < (int32_t)size) {
|
|
|
- return -(int32_t) size;
|
|
|
- }
|
|
|
- memcpy(buf, token, size);
|
|
|
- return (int32_t) size;
|
|
|
- };
|
|
|
+// deprecated
|
|
|
+enum llama_token_attr llama_token_get_attr(const struct llama_vocab * vocab, llama_token token) {
|
|
|
+ return llama_vocab_get_attr(vocab, token);
|
|
|
+}
|
|
|
|
|
|
- // if we have a cache - use it
|
|
|
- {
|
|
|
- const auto & cache = vocab.cache_token_to_piece;
|
|
|
+// deprecated
|
|
|
+bool llama_token_is_eog(const struct llama_vocab * vocab, llama_token token) {
|
|
|
+ return llama_vocab_is_eog(vocab, token);
|
|
|
+}
|
|
|
|
|
|
- if (!cache.empty()) {
|
|
|
- const auto & result = cache.at(token);
|
|
|
- return _try_copy(result.data(), result.size());
|
|
|
- }
|
|
|
- }
|
|
|
+// deprecated
|
|
|
+bool llama_token_is_control(const struct llama_vocab * vocab, llama_token token) {
|
|
|
+ return llama_vocab_is_control(vocab, token);
|
|
|
+}
|
|
|
|
|
|
- if (0 <= token && token < (int32_t) vocab.id_to_token.size()) {
|
|
|
- const std::string & token_text = vocab.id_to_token[token].text;
|
|
|
- switch (llama_vocab_get_type(vocab)) {
|
|
|
- case LLAMA_VOCAB_TYPE_WPM:
|
|
|
- case LLAMA_VOCAB_TYPE_SPM:
|
|
|
- case LLAMA_VOCAB_TYPE_UGM: {
|
|
|
- // NOTE: we accept all unsupported token types,
|
|
|
- // suppressing them like CONTROL tokens.
|
|
|
- if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) {
|
|
|
- return _try_copy(token_text.data(), token_text.size());
|
|
|
- }
|
|
|
- if (attr & LLAMA_TOKEN_ATTR_NORMAL) {
|
|
|
- std::string result = token_text;
|
|
|
- llama_unescape_whitespace(result);
|
|
|
- return _try_copy(result.data(), result.size());
|
|
|
- }
|
|
|
- if (attr & LLAMA_TOKEN_ATTR_BYTE) {
|
|
|
- char byte = (char) llama_token_to_byte(vocab, token);
|
|
|
- return _try_copy((char*) &byte, 1);
|
|
|
- }
|
|
|
- break;
|
|
|
- }
|
|
|
- case LLAMA_VOCAB_TYPE_BPE: {
|
|
|
- // NOTE: we accept all unsupported token types,
|
|
|
- // suppressing them like CONTROL tokens.
|
|
|
- if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) {
|
|
|
- return _try_copy(token_text.data(), token_text.size());
|
|
|
- }
|
|
|
- if (attr & LLAMA_TOKEN_ATTR_NORMAL) {
|
|
|
- std::string result = llama_decode_text(token_text);
|
|
|
- return _try_copy(result.data(), result.size());
|
|
|
- }
|
|
|
- break;
|
|
|
- }
|
|
|
- case LLAMA_VOCAB_TYPE_RWKV: {
|
|
|
- std::vector<uint8_t> result = llama_unescape_rwkv_token(token_text);
|
|
|
+// deprecated
|
|
|
+llama_token llama_token_bos(const struct llama_vocab * vocab) {
|
|
|
+ return llama_vocab_bos(vocab);
|
|
|
+}
|
|
|
|
|
|
- // If we don't have enough space, return an error
|
|
|
- if (result.size() > (size_t)length) {
|
|
|
- return -(int)result.size();
|
|
|
- }
|
|
|
+// deprecated
|
|
|
+llama_token llama_token_eos(const struct llama_vocab * vocab) {
|
|
|
+ return llama_vocab_eos(vocab);
|
|
|
+}
|
|
|
|
|
|
- memcpy(buf, result.data(), result.size());
|
|
|
- return (int)result.size();
|
|
|
- }
|
|
|
- default:
|
|
|
- GGML_ABORT("fatal error");
|
|
|
- }
|
|
|
- }
|
|
|
+// deprecated
|
|
|
+llama_token llama_token_eot(const struct llama_vocab * vocab) {
|
|
|
+ return llama_vocab_eot(vocab);
|
|
|
+}
|
|
|
|
|
|
- return 0;
|
|
|
+// deprecated
|
|
|
+llama_token llama_token_cls(const struct llama_vocab * vocab) {
|
|
|
+ return llama_vocab_cls(vocab);
|
|
|
}
|
|
|
|
|
|
-int32_t llama_detokenize_impl(
|
|
|
- const struct llama_vocab & vocab,
|
|
|
- const llama_token * tokens,
|
|
|
- int32_t n_tokens,
|
|
|
- char * text,
|
|
|
- int32_t text_len_max,
|
|
|
- bool remove_special,
|
|
|
- bool unparse_special) {
|
|
|
- if (vocab.type == LLAMA_VOCAB_TYPE_NONE) {
|
|
|
- return 0;
|
|
|
- }
|
|
|
+// deprecated
|
|
|
+llama_token llama_token_sep(const struct llama_vocab * vocab) {
|
|
|
+ return llama_vocab_sep(vocab);
|
|
|
+}
|
|
|
|
|
|
- GGML_ASSERT(vocab.tokenizer && "Tokenizer not initialized. Call llama_vocab::init_tokenizer() first.");
|
|
|
+// deprecated
|
|
|
+llama_token llama_token_nl (const struct llama_vocab * vocab) {
|
|
|
+ return llama_vocab_nl(vocab);
|
|
|
+}
|
|
|
|
|
|
- int32_t avail = text_len_max;
|
|
|
- int32_t total = 0;
|
|
|
+// deprecated
|
|
|
+llama_token llama_token_pad(const struct llama_vocab * vocab) {
|
|
|
+ return llama_vocab_pad(vocab);
|
|
|
+}
|
|
|
|
|
|
- // remove the leading space
|
|
|
- bool remove_space = vocab.tokenizer_add_space_prefix;
|
|
|
+// deprecated
|
|
|
+bool llama_add_bos_token(const struct llama_vocab * vocab) {
|
|
|
+ return llama_vocab_get_add_bos(vocab);
|
|
|
+}
|
|
|
|
|
|
- if (remove_special && vocab.tokenizer_add_bos) {
|
|
|
- if (n_tokens > 0 && tokens[0] == vocab.special_bos_id) {
|
|
|
- remove_space = false;
|
|
|
- n_tokens--;
|
|
|
- tokens++;
|
|
|
- }
|
|
|
- }
|
|
|
+// deprecated
|
|
|
+bool llama_add_eos_token(const struct llama_vocab * vocab) {
|
|
|
+ return llama_vocab_get_add_eos(vocab);
|
|
|
+}
|
|
|
|
|
|
- if (remove_special && vocab.tokenizer_add_eos) {
|
|
|
- if (n_tokens > 0 && tokens[n_tokens - 1] == vocab.special_eos_id) {
|
|
|
- n_tokens--;
|
|
|
- }
|
|
|
- }
|
|
|
+// deprecated
|
|
|
+llama_token llama_token_fim_pre(const struct llama_vocab * vocab) {
|
|
|
+ return llama_vocab_fim_pre(vocab);
|
|
|
+}
|
|
|
|
|
|
- for (int32_t i = 0; i < n_tokens; ++i) {
|
|
|
- GGML_ASSERT(avail >= 0);
|
|
|
- int32_t n_chars = llama_token_to_piece_impl(vocab, tokens[i], text, avail, remove_space, unparse_special);
|
|
|
- remove_space = false;
|
|
|
- if (n_chars < 0) {
|
|
|
- avail = 0;
|
|
|
- total -= n_chars;
|
|
|
- } else if (n_chars > 0) {
|
|
|
- avail -= n_chars;
|
|
|
- text += n_chars;
|
|
|
- total += n_chars;
|
|
|
- }
|
|
|
- }
|
|
|
+// deprecated
|
|
|
+llama_token llama_token_fim_suf(const struct llama_vocab * vocab) {
|
|
|
+ return llama_vocab_fim_suf(vocab);
|
|
|
+}
|
|
|
|
|
|
- if (total > text_len_max) {
|
|
|
- return -total;
|
|
|
- }
|
|
|
+// deprecated
|
|
|
+llama_token llama_token_fim_mid(const struct llama_vocab * vocab) {
|
|
|
+ return llama_vocab_fim_mid(vocab);
|
|
|
+}
|
|
|
|
|
|
- if (vocab.tokenizer_clean_spaces) {
|
|
|
- text -= total; // restart text
|
|
|
+// deprecated
|
|
|
+llama_token llama_token_fim_pad(const struct llama_vocab * vocab) {
|
|
|
+ return llama_vocab_fim_pad(vocab);
|
|
|
+}
|
|
|
|
|
|
- // first pass: characters ?!., //TODO: where do these characters come from?
|
|
|
- const int32_t total1 = total;
|
|
|
- total = total ? 1 : 0;
|
|
|
- for (int32_t i = 1; i < total1; ++i) {
|
|
|
- const char x = text[i];
|
|
|
- if (text[i - 1] == ' ') {
|
|
|
- if (x == '?' || x == '!' || x == '.' || x == ',') { // " ?", " !", " .", " ,"
|
|
|
- total--; // remove space
|
|
|
- }
|
|
|
- }
|
|
|
- text[total++] = x;
|
|
|
- }
|
|
|
+// deprecated
|
|
|
+llama_token llama_token_fim_rep(const struct llama_vocab * vocab) {
|
|
|
+ return llama_vocab_fim_rep(vocab);
|
|
|
+}
|
|
|
|
|
|
- // second pass: strip single apostrophe between spaces
|
|
|
- const int32_t total2 = total;
|
|
|
- total = total ? 1 : 0;
|
|
|
- for (int32_t i = 1; i < total2; ++i) {
|
|
|
- const char x = text[i];
|
|
|
- if (x == '\'' && i + 1 < total2 && text[i - 1] == ' ' && text[i + 1] == ' ') { // " ' "
|
|
|
- total--; // remove prev space
|
|
|
- text[++i] = '\0'; // remove next space
|
|
|
- }
|
|
|
- text[total++] = x;
|
|
|
- }
|
|
|
+// deprecated
|
|
|
+llama_token llama_token_fim_sep(const struct llama_vocab * vocab) {
|
|
|
+ return llama_vocab_fim_sep(vocab);
|
|
|
+}
|
|
|
|
|
|
- // third pass: apostrophe contractions //NOTE: this makes sense?
|
|
|
- const int32_t total3 = total;
|
|
|
- total = total ? 1 : 0;
|
|
|
- for (int32_t i = 1; i < total3; ++i) {
|
|
|
- const char x = text[i];
|
|
|
- if (text[i - 1] == ' ') {
|
|
|
- if (x == '\'' && i + 1 < total3) {
|
|
|
- const char x1 = text[i + 1];
|
|
|
- if (x1 == 't' || x1 == 'd') { // " 't", " 'd"
|
|
|
- //total--; // remove space
|
|
|
- } else if (x1 == 's' || x1 == 'm') { // " 's", " 'm"
|
|
|
- total--; // remove space
|
|
|
- } else if (i + 2 < total3) {
|
|
|
- const char x2 = text[i + 2];
|
|
|
- if ((x1 == 'l' && x2 == 'l')) { // " 'll"
|
|
|
- //total--; // remove space
|
|
|
- } else if ((x1 == 'r' && x2 == 'e') || (x1 == 'v' && x2 == 'e')) { // " 're", " 've"
|
|
|
- total--; // remove space
|
|
|
- } else {
|
|
|
- //total--; // remove space
|
|
|
- }
|
|
|
- } else {
|
|
|
- //total--; // remove space
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- text[total++] = x;
|
|
|
- }
|
|
|
- }
|
|
|
+//
|
|
|
+// tokenization
|
|
|
+//
|
|
|
|
|
|
- return total <= text_len_max ? total : -total;
|
|
|
+int32_t llama_tokenize(
|
|
|
+ const struct llama_vocab * vocab,
|
|
|
+ const char * text,
|
|
|
+ int32_t text_len,
|
|
|
+ llama_token * tokens,
|
|
|
+ int32_t n_tokens_max,
|
|
|
+ bool add_special,
|
|
|
+ bool parse_special) {
|
|
|
+ return vocab->tokenize(text, text_len, tokens, n_tokens_max, add_special, parse_special);
|
|
|
}
|
|
|
|
|
|
-std::string llama_detokenize(const struct llama_vocab & vocab, const std::vector<llama_token> & tokens, bool special) {
|
|
|
- std::string text;
|
|
|
- text.resize(std::max(text.capacity(), tokens.size()));
|
|
|
- int32_t n_chars = llama_detokenize_impl(vocab, tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
|
|
|
- if (n_chars < 0) {
|
|
|
- text.resize(-n_chars);
|
|
|
- n_chars = llama_detokenize_impl(vocab, tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
|
|
|
- GGML_ASSERT(n_chars <= (int32_t)text.size()); // whitespace trimming is performed after per-token detokenization
|
|
|
- }
|
|
|
-
|
|
|
- text.resize(n_chars);
|
|
|
+int32_t llama_token_to_piece(
|
|
|
+ const struct llama_vocab * vocab,
|
|
|
+ llama_token token,
|
|
|
+ char * buf,
|
|
|
+ int32_t length,
|
|
|
+ int32_t lstrip,
|
|
|
+ bool special) {
|
|
|
+ return vocab->token_to_piece(token, buf, length, lstrip, special);
|
|
|
+}
|
|
|
|
|
|
- // NOTE: the original tokenizer decodes bytes after collecting the pieces.
|
|
|
- return text;
|
|
|
+int32_t llama_detokenize(
|
|
|
+ const struct llama_vocab * vocab,
|
|
|
+ const llama_token * tokens,
|
|
|
+ int32_t n_tokens,
|
|
|
+ char * text,
|
|
|
+ int32_t text_len_max,
|
|
|
+ bool remove_special,
|
|
|
+ bool unparse_special) {
|
|
|
+ return vocab->detokenize(tokens, n_tokens, text, text_len_max, remove_special, unparse_special);
|
|
|
}
|
|
|
+
|