|
|
@@ -3494,7 +3494,7 @@ static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
|
|
|
};
|
|
|
static_assert(GGML_TYPE_COUNT == 13, "GGML_IS_QUANTIZED is outdated");
|
|
|
|
|
|
-static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
|
|
|
+static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
|
|
|
"NONE",
|
|
|
|
|
|
"DUP",
|
|
|
@@ -3749,6 +3749,9 @@ const char * ggml_type_name(enum ggml_type type) {
|
|
|
return GGML_TYPE_NAME[type];
|
|
|
}
|
|
|
|
|
|
+const char * ggml_op_name(enum ggml_op op) {
|
|
|
+ return GGML_OP_NAME[op];
|
|
|
+}
|
|
|
|
|
|
size_t ggml_element_size(const struct ggml_tensor * tensor) {
|
|
|
return GGML_TYPE_SIZE[tensor->type];
|
|
|
@@ -4017,6 +4020,10 @@ size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch)
|
|
|
return result;
|
|
|
}
|
|
|
|
|
|
+void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
|
|
|
+ ctx->no_alloc = no_alloc;
|
|
|
+}
|
|
|
+
|
|
|
// IMPORTANT:
|
|
|
// when creating "opt" tensors, always save and load the scratch buffer
|
|
|
// this is an error prone process, but it is necessary to support inplace
|
|
|
@@ -4061,7 +4068,7 @@ struct ggml_tensor * ggml_new_tensor_impl(
|
|
|
struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
|
|
|
|
|
|
if (ctx->scratch.data == NULL || data != NULL) {
|
|
|
- size_needed += sizeof(struct ggml_tensor);
|
|
|
+ size_needed += GGML_TENSOR_SIZE;
|
|
|
|
|
|
if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
|
|
|
GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
|
|
|
@@ -4077,14 +4084,15 @@ struct ggml_tensor * ggml_new_tensor_impl(
|
|
|
};
|
|
|
} else {
|
|
|
if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
|
|
|
- GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
|
|
|
+ GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
|
|
|
+ __func__, ctx->scratch.offs + size_needed, ctx->scratch.size);
|
|
|
assert(false);
|
|
|
return NULL;
|
|
|
}
|
|
|
|
|
|
- if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
|
|
|
+ if (cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE > ctx->mem_size) {
|
|
|
GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
|
|
|
- __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
|
|
|
+ __func__, cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE, ctx->mem_size);
|
|
|
assert(false);
|
|
|
return NULL;
|
|
|
}
|
|
|
@@ -4093,7 +4101,7 @@ struct ggml_tensor * ggml_new_tensor_impl(
|
|
|
|
|
|
*obj_new = (struct ggml_object) {
|
|
|
.offs = cur_end + GGML_OBJECT_SIZE,
|
|
|
- .size = sizeof(struct ggml_tensor),
|
|
|
+ .size = GGML_TENSOR_SIZE,
|
|
|
.next = NULL,
|
|
|
};
|
|
|
|
|
|
@@ -13792,11 +13800,19 @@ static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor *
|
|
|
// reached a leaf node, not part of the gradient graph (e.g. a constant)
|
|
|
GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
|
|
|
|
|
|
+ if (strlen(node->name) == 0) {
|
|
|
+ snprintf(node->name, sizeof(node->name), "leaf_%d", cgraph->n_leafs);
|
|
|
+ }
|
|
|
+
|
|
|
cgraph->leafs[cgraph->n_leafs] = node;
|
|
|
cgraph->n_leafs++;
|
|
|
} else {
|
|
|
GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
|
|
|
|
|
|
+ if (strlen(node->name) == 0) {
|
|
|
+ snprintf(node->name, sizeof(node->name), "node_%d", cgraph->n_nodes);
|
|
|
+ }
|
|
|
+
|
|
|
cgraph->nodes[cgraph->n_nodes] = node;
|
|
|
cgraph->grads[cgraph->n_nodes] = node->grad;
|
|
|
cgraph->n_nodes++;
|
|
|
@@ -14510,6 +14526,18 @@ void ggml_graph_reset(struct ggml_cgraph * cgraph) {
|
|
|
}
|
|
|
}
|
|
|
|
|
|
+struct ggml_tensor * ggml_get_tensor_by_name(struct ggml_cgraph * cgraph, const char * name) {
|
|
|
+ for (int i = 0; i < cgraph->n_nodes; i++) {
|
|
|
+ struct ggml_tensor * node = cgraph->nodes[i];
|
|
|
+
|
|
|
+ if (strcmp(node->name, name) == 0) {
|
|
|
+ return node;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return NULL;
|
|
|
+}
|
|
|
+
|
|
|
void ggml_graph_print(const struct ggml_cgraph * cgraph) {
|
|
|
int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
|
|
|
|
|
|
@@ -14527,7 +14555,7 @@ void ggml_graph_print(const struct ggml_cgraph * cgraph) {
|
|
|
GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
|
|
|
i,
|
|
|
node->ne[0], node->ne[1], node->ne[2],
|
|
|
- GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
|
|
|
+ GGML_OP_NAME[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
|
|
|
(double) node->perf_cycles / (double) ggml_cycles_per_ms(),
|
|
|
(double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
|
|
|
(double) node->perf_time_us / 1000.0,
|
|
|
@@ -14541,7 +14569,7 @@ void ggml_graph_print(const struct ggml_cgraph * cgraph) {
|
|
|
GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
|
|
|
i,
|
|
|
node->ne[0], node->ne[1],
|
|
|
- GGML_OP_LABEL[node->op]);
|
|
|
+ GGML_OP_NAME[node->op]);
|
|
|
}
|
|
|
|
|
|
for (int i = 0; i < GGML_OP_COUNT; i++) {
|
|
|
@@ -14549,7 +14577,7 @@ void ggml_graph_print(const struct ggml_cgraph * cgraph) {
|
|
|
continue;
|
|
|
}
|
|
|
|
|
|
- GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
|
|
|
+ GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_NAME[i], (double) perf_total_per_op_us[i] / 1000.0);
|
|
|
}
|
|
|
|
|
|
GGML_PRINT("========================================\n");
|