|
|
@@ -749,6 +749,39 @@ std::pair<long, std::vector<char>> common_remote_get_content(const std::string &
|
|
|
// utils
|
|
|
//
|
|
|
|
|
|
+// Helper function to parse tensor buffer override strings
|
|
|
+static void parse_tensor_buffer_overrides(const std::string & value, std::vector<llama_model_tensor_buft_override> & overrides) {
|
|
|
+ std::map<std::string, ggml_backend_buffer_type_t> buft_list;
|
|
|
+ for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
|
|
|
+ auto * dev = ggml_backend_dev_get(i);
|
|
|
+ auto * buft = ggml_backend_dev_buffer_type(dev);
|
|
|
+ if (buft) {
|
|
|
+ buft_list[ggml_backend_buft_name(buft)] = buft;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ for (const auto & override : string_split<std::string>(value, ',')) {
|
|
|
+ std::string::size_type pos = override.find('=');
|
|
|
+ if (pos == std::string::npos) {
|
|
|
+ throw std::invalid_argument("invalid value");
|
|
|
+ }
|
|
|
+ std::string tensor_name = override.substr(0, pos);
|
|
|
+ std::string buffer_type = override.substr(pos + 1);
|
|
|
+
|
|
|
+ if (buft_list.find(buffer_type) == buft_list.end()) {
|
|
|
+ printf("Available buffer types:\n");
|
|
|
+ for (const auto & it : buft_list) {
|
|
|
+ printf(" %s\n", ggml_backend_buft_name(it.second));
|
|
|
+ }
|
|
|
+ throw std::invalid_argument("unknown buffer type");
|
|
|
+ }
|
|
|
+ // keep strings alive and avoid leaking memory by storing them in a static vector
|
|
|
+ static std::list<std::string> buft_overrides;
|
|
|
+ buft_overrides.push_back(tensor_name);
|
|
|
+ overrides.push_back({buft_overrides.back().c_str(), buft_list.at(buffer_type)});
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
struct handle_model_result {
|
|
|
bool found_mmproj = false;
|
|
|
common_params_model mmproj;
|
|
|
@@ -993,6 +1026,10 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
|
|
|
params.tensor_buft_overrides.push_back({nullptr, nullptr});
|
|
|
}
|
|
|
|
|
|
+ if (!params.speculative.tensor_buft_overrides.empty()) {
|
|
|
+ params.speculative.tensor_buft_overrides.push_back({nullptr, nullptr});
|
|
|
+ }
|
|
|
+
|
|
|
if (!params.chat_template.empty() && !common_chat_verify_template(params.chat_template, params.use_jinja)) {
|
|
|
throw std::runtime_error(string_format(
|
|
|
"error: the supplied chat template is not supported: %s%s\n",
|
|
|
@@ -2349,40 +2386,15 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|
|
add_opt(common_arg(
|
|
|
{"--override-tensor", "-ot"}, "<tensor name pattern>=<buffer type>,...",
|
|
|
"override tensor buffer type", [](common_params & params, const std::string & value) {
|
|
|
- /* static */ std::map<std::string, ggml_backend_buffer_type_t> buft_list;
|
|
|
- if (buft_list.empty()) {
|
|
|
- // enumerate all the devices and add their buffer types to the list
|
|
|
- for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
|
|
|
- auto * dev = ggml_backend_dev_get(i);
|
|
|
- auto * buft = ggml_backend_dev_buffer_type(dev);
|
|
|
- if (buft) {
|
|
|
- buft_list[ggml_backend_buft_name(buft)] = buft;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- for (const auto & override : string_split<std::string>(value, ',')) {
|
|
|
- std::string::size_type pos = override.find('=');
|
|
|
- if (pos == std::string::npos) {
|
|
|
- throw std::invalid_argument("invalid value");
|
|
|
- }
|
|
|
- std::string tensor_name = override.substr(0, pos);
|
|
|
- std::string buffer_type = override.substr(pos + 1);
|
|
|
-
|
|
|
- if (buft_list.find(buffer_type) == buft_list.end()) {
|
|
|
- printf("Available buffer types:\n");
|
|
|
- for (const auto & it : buft_list) {
|
|
|
- printf(" %s\n", ggml_backend_buft_name(it.second));
|
|
|
- }
|
|
|
- throw std::invalid_argument("unknown buffer type");
|
|
|
- }
|
|
|
- // keep strings alive and avoid leaking memory by storing them in a static vector
|
|
|
- static std::list<std::string> buft_overrides;
|
|
|
- buft_overrides.push_back(tensor_name);
|
|
|
- params.tensor_buft_overrides.push_back({buft_overrides.back().c_str(), buft_list.at(buffer_type)});
|
|
|
- }
|
|
|
+ parse_tensor_buffer_overrides(value, params.tensor_buft_overrides);
|
|
|
}
|
|
|
));
|
|
|
+ add_opt(common_arg(
|
|
|
+ {"--override-tensor-draft", "-otd"}, "<tensor name pattern>=<buffer type>,...",
|
|
|
+ "override tensor buffer type for draft model", [](common_params & params, const std::string & value) {
|
|
|
+ parse_tensor_buffer_overrides(value, params.speculative.tensor_buft_overrides);
|
|
|
+ }
|
|
|
+ ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
|
|
|
add_opt(common_arg(
|
|
|
{"--cpu-moe", "-cmoe"},
|
|
|
"keep all Mixture of Experts (MoE) weights in the CPU",
|
|
|
@@ -2405,6 +2417,27 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|
|
}
|
|
|
}
|
|
|
).set_env("LLAMA_ARG_N_CPU_MOE"));
|
|
|
+ add_opt(common_arg(
|
|
|
+ {"--cpu-moe-draft", "-cmoed"},
|
|
|
+ "keep all Mixture of Experts (MoE) weights in the CPU for the draft model",
|
|
|
+ [](common_params & params) {
|
|
|
+ params.speculative.tensor_buft_overrides.push_back({"\\.ffn_(up|down|gate)_exps", ggml_backend_cpu_buffer_type()});
|
|
|
+ }
|
|
|
+ ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CPU_MOE_DRAFT"));
|
|
|
+ add_opt(common_arg(
|
|
|
+ {"--n-cpu-moe-draft", "-ncmoed"}, "N",
|
|
|
+ "keep the Mixture of Experts (MoE) weights of the first N layers in the CPU for the draft model",
|
|
|
+ [](common_params & params, int value) {
|
|
|
+ if (value < 0) {
|
|
|
+ throw std::invalid_argument("invalid value");
|
|
|
+ }
|
|
|
+ for (int i = 0; i < value; ++i) {
|
|
|
+ static std::list<std::string> buft_overrides_draft;
|
|
|
+ buft_overrides_draft.push_back(string_format("blk\\.%d\\.ffn_(up|down|gate)_exps", i));
|
|
|
+ params.speculative.tensor_buft_overrides.push_back({buft_overrides_draft.back().c_str(), ggml_backend_cpu_buffer_type()});
|
|
|
+ }
|
|
|
+ }
|
|
|
+ ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_N_CPU_MOE_DRAFT"));
|
|
|
add_opt(common_arg(
|
|
|
{"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N",
|
|
|
"number of layers to store in VRAM",
|