convert_hf_to_gguf.py 156 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import logging
  5. import argparse
  6. import contextlib
  7. import json
  8. import os
  9. import re
  10. import sys
  11. from enum import IntEnum
  12. from pathlib import Path
  13. from hashlib import sha256
  14. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  15. import math
  16. import numpy as np
  17. import torch
  18. if TYPE_CHECKING:
  19. from torch import Tensor
  20. if 'NO_LOCAL_GGUF' not in os.environ:
  21. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  22. import gguf
  23. logger = logging.getLogger("hf-to-gguf")
  24. ###### MODEL DEFINITIONS ######
  25. class SentencePieceTokenTypes(IntEnum):
  26. NORMAL = 1
  27. UNKNOWN = 2
  28. CONTROL = 3
  29. USER_DEFINED = 4
  30. UNUSED = 5
  31. BYTE = 6
  32. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  33. class Model:
  34. _model_classes: dict[str, type[Model]] = {}
  35. dir_model: Path
  36. ftype: gguf.LlamaFileType
  37. is_big_endian: bool
  38. endianess: gguf.GGUFEndian
  39. use_temp_file: bool
  40. lazy: bool
  41. model_name: str | None
  42. part_names: list[str]
  43. is_safetensors: bool
  44. hparams: dict[str, Any]
  45. block_count: int
  46. tensor_map: gguf.TensorNameMap
  47. tensor_names: set[str] | None
  48. fname_out: Path
  49. gguf_writer: gguf.GGUFWriter
  50. # subclasses should define this!
  51. model_arch: gguf.MODEL_ARCH
  52. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool, use_temp_file: bool, eager: bool,
  53. model_name: str | None, split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False):
  54. if type(self) is Model:
  55. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  56. self.dir_model = dir_model
  57. self.ftype = ftype
  58. self.is_big_endian = is_big_endian
  59. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  60. self.use_temp_file = use_temp_file
  61. self.lazy = not eager
  62. self.model_name = model_name
  63. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  64. self.is_safetensors = len(self.part_names) > 0
  65. if not self.is_safetensors:
  66. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  67. self.hparams = Model.load_hparams(self.dir_model)
  68. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  69. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  70. self.tensor_names = None
  71. if self.ftype == gguf.LlamaFileType.GUESSED:
  72. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  73. _, first_tensor = next(self.get_tensors())
  74. if first_tensor.dtype == torch.float16:
  75. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  76. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  77. else:
  78. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  79. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  80. ftype_up: str = self.ftype.name.partition("_")[2].upper()
  81. ftype_lw: str = ftype_up.lower()
  82. # allow templating the file name with the output ftype, useful with the "auto" ftype
  83. self.fname_out = fname_out.parent / fname_out.name.format(ftype_lw, outtype=ftype_lw, ftype=ftype_lw, OUTTYPE=ftype_up, FTYPE=ftype_up)
  84. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  85. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  86. @classmethod
  87. def __init_subclass__(cls):
  88. # can't use an abstract property, because overriding it without type errors
  89. # would require using decorated functions instead of simply defining the property
  90. if "model_arch" not in cls.__dict__:
  91. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  92. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  93. key = next((k for k in keys if k in self.hparams), None)
  94. if key is not None:
  95. return self.hparams[key]
  96. if optional:
  97. return None
  98. raise KeyError(f"could not find any of: {keys}")
  99. def set_vocab(self):
  100. self._set_vocab_gpt2()
  101. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  102. tensor_names_from_parts: set[str] = set()
  103. if len(self.part_names) > 1:
  104. self.tensor_names = set()
  105. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  106. index_name += ".index.json"
  107. logger.info(f"gguf: loading model weight map from '{index_name}'")
  108. with open(self.dir_model / index_name, "r", encoding="utf-8") as f:
  109. index: dict[str, Any] = json.load(f)
  110. weight_map = index.get("weight_map")
  111. if weight_map is None or not isinstance(weight_map, dict):
  112. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  113. self.tensor_names.update(weight_map.keys())
  114. else:
  115. self.tensor_names = tensor_names_from_parts
  116. for part_name in self.part_names:
  117. logger.info(f"gguf: loading model part '{part_name}'")
  118. ctx: ContextManager[Any]
  119. if self.is_safetensors:
  120. from safetensors import safe_open
  121. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  122. else:
  123. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  124. with ctx as model_part:
  125. tensor_names_from_parts.update(model_part.keys())
  126. for name in model_part.keys():
  127. data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
  128. if self.lazy:
  129. data = LazyTorchTensor.from_eager(data)
  130. yield name, data
  131. # only verify tensor name presence; it doesn't matter if they are not in the right files
  132. if len(sym_diff := tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  133. raise ValueError(f"Mismatch between weight map and model parts for tensor names: {sym_diff}")
  134. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  135. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  136. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  137. name: str = gguf.TENSOR_NAMES[key]
  138. if "{bid}" in name:
  139. assert bid is not None
  140. name = name.format(bid=bid)
  141. return name + suffix
  142. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  143. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  144. return False
  145. key_name: str = gguf.TENSOR_NAMES[key]
  146. if "{bid}" in key_name:
  147. if bid is None:
  148. return False
  149. key_name = key_name.format(bid=bid)
  150. else:
  151. if bid is not None:
  152. return False
  153. return name == (key_name + suffix)
  154. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  155. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  156. if new_name is None:
  157. raise ValueError(f"Can not map tensor {name!r}")
  158. return new_name
  159. def set_gguf_parameters(self):
  160. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  161. self.gguf_writer.add_block_count(self.block_count)
  162. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  163. self.gguf_writer.add_context_length(n_ctx)
  164. logger.info(f"gguf: context length = {n_ctx}")
  165. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  166. self.gguf_writer.add_embedding_length(n_embd)
  167. logger.info(f"gguf: embedding length = {n_embd}")
  168. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  169. self.gguf_writer.add_feed_forward_length(n_ff)
  170. logger.info(f"gguf: feed forward length = {n_ff}")
  171. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  172. self.gguf_writer.add_head_count(n_head)
  173. logger.info(f"gguf: head count = {n_head}")
  174. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  175. self.gguf_writer.add_head_count_kv(n_head_kv)
  176. logger.info(f"gguf: key-value head count = {n_head_kv}")
  177. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  178. self.gguf_writer.add_rope_freq_base(rope_theta)
  179. logger.info(f"gguf: rope theta = {rope_theta}")
  180. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  181. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  182. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  183. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  184. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  185. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  186. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  187. self.gguf_writer.add_expert_count(n_experts)
  188. logger.info(f"gguf: expert count = {n_experts}")
  189. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  190. self.gguf_writer.add_expert_used_count(n_experts_used)
  191. logger.info(f"gguf: experts used count = {n_experts_used}")
  192. self.gguf_writer.add_file_type(self.ftype)
  193. logger.info(f"gguf: file type = {self.ftype}")
  194. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  195. del bid # unused
  196. return [(self.map_tensor_name(name), data_torch)]
  197. def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  198. del name, new_name, bid, n_dims # unused
  199. return False
  200. def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  201. del name, new_name, bid, n_dims # unused
  202. return False
  203. def write_tensors(self):
  204. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  205. for name, data_torch in self.get_tensors():
  206. # we don't need these
  207. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  208. continue
  209. old_dtype = data_torch.dtype
  210. # convert any unsupported data types to float32
  211. if data_torch.dtype not in (torch.float16, torch.float32):
  212. data_torch = data_torch.to(torch.float32)
  213. # use the first number-like part of the tensor name as the block id
  214. bid = None
  215. for part in name.split("."):
  216. if part.isdecimal():
  217. bid = int(part)
  218. break
  219. for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)):
  220. data: np.ndarray # type hint
  221. n_dims = len(data.shape)
  222. data_dtype = data.dtype
  223. data_qtype: gguf.GGMLQuantizationType | None = None
  224. # when both are True, f32 should win
  225. extra_f32 = self.extra_f32_tensors(name, new_name, bid, n_dims)
  226. extra_f16 = self.extra_f16_tensors(name, new_name, bid, n_dims)
  227. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  228. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  229. extra_f32 = any(cond for cond in (
  230. extra_f32,
  231. n_dims == 1,
  232. new_name.endswith("_norm.weight"),
  233. ))
  234. # Some tensor types are always in float32
  235. extra_f32 = extra_f32 or any(self.match_model_tensor_name(new_name, key, bid) for key in (
  236. gguf.MODEL_TENSOR.FFN_GATE_INP,
  237. gguf.MODEL_TENSOR.POS_EMBD,
  238. gguf.MODEL_TENSOR.TOKEN_TYPES,
  239. ))
  240. # if f16 desired, convert any float32 2-dim weight tensors to float16
  241. extra_f16 = any(cond for cond in (
  242. extra_f16,
  243. (name.endswith(".weight") and n_dims >= 2),
  244. ))
  245. if self.ftype != gguf.LlamaFileType.ALL_F32 and extra_f16 and not extra_f32:
  246. if self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  247. data = gguf.quantize_bf16(data)
  248. assert data.dtype == np.int16
  249. data_qtype = gguf.GGMLQuantizationType.BF16
  250. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0 and gguf.can_quantize_to_q8_0(data):
  251. data = gguf.quantize_q8_0(data)
  252. assert data.dtype == np.uint8
  253. data_qtype = gguf.GGMLQuantizationType.Q8_0
  254. else: # default to float16 for quantized tensors
  255. if data_dtype != np.float16:
  256. data = data.astype(np.float16)
  257. data_qtype = gguf.GGMLQuantizationType.F16
  258. if data_qtype is None: # by default, convert to float32
  259. if data_dtype != np.float32:
  260. data = data.astype(np.float32)
  261. data_qtype = gguf.GGMLQuantizationType.F32
  262. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  263. # reverse shape to make it similar to the internal ggml dimension order
  264. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  265. # n_dims is implicit in the shape
  266. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  267. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  268. def write(self):
  269. self.write_tensors()
  270. self.gguf_writer.write_header_to_file(self.fname_out)
  271. self.gguf_writer.write_kv_data_to_file()
  272. self.gguf_writer.write_tensors_to_file(progress=True)
  273. self.gguf_writer.close()
  274. def write_vocab(self):
  275. if len(self.gguf_writer.tensors) != 1:
  276. raise ValueError('Splitting the vocabulary is not supported')
  277. self.gguf_writer.write_header_to_file(self.fname_out)
  278. self.gguf_writer.write_kv_data_to_file()
  279. self.gguf_writer.close()
  280. @staticmethod
  281. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  282. part_names: list[str] = []
  283. for filename in os.listdir(dir_model):
  284. if filename.startswith(prefix) and filename.endswith(suffix):
  285. part_names.append(filename)
  286. part_names.sort()
  287. return part_names
  288. @staticmethod
  289. def load_hparams(dir_model: Path):
  290. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  291. return json.load(f)
  292. @classmethod
  293. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  294. assert names
  295. def func(modelcls: AnyModel) -> AnyModel:
  296. for name in names:
  297. cls._model_classes[name] = modelcls
  298. return modelcls
  299. return func
  300. @classmethod
  301. def from_model_architecture(cls, arch: str) -> type[Model]:
  302. try:
  303. return cls._model_classes[arch]
  304. except KeyError:
  305. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  306. # used for GPT-2 BPE and WordPiece vocabs
  307. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  308. tokens: list[str] = []
  309. toktypes: list[int] = []
  310. from transformers import AutoTokenizer
  311. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  312. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  313. assert max(tokenizer.vocab.values()) < vocab_size
  314. tokpre = self.get_vocab_base_pre(tokenizer)
  315. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  316. added_vocab = tokenizer.get_added_vocab()
  317. for i in range(vocab_size):
  318. if i not in reverse_vocab:
  319. tokens.append(f"[PAD{i}]")
  320. toktypes.append(gguf.TokenType.USER_DEFINED)
  321. elif reverse_vocab[i] in added_vocab:
  322. tokens.append(reverse_vocab[i])
  323. if tokenizer.added_tokens_decoder[i].special:
  324. toktypes.append(gguf.TokenType.CONTROL)
  325. else:
  326. toktypes.append(gguf.TokenType.USER_DEFINED)
  327. else:
  328. tokens.append(reverse_vocab[i])
  329. toktypes.append(gguf.TokenType.NORMAL)
  330. return tokens, toktypes, tokpre
  331. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  332. # do not modify it manually!
  333. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  334. # Marker: Start get_vocab_base_pre
  335. def get_vocab_base_pre(self, tokenizer) -> str:
  336. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  337. # is specific for the BPE pre-tokenizer used by the model
  338. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  339. # use in llama.cpp to implement the same pre-tokenizer
  340. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  341. chktok = tokenizer.encode(chktxt)
  342. chkhsh = sha256(str(chktok).encode()).hexdigest()
  343. logger.debug(f"chktok: {chktok}")
  344. logger.debug(f"chkhsh: {chkhsh}")
  345. res = None
  346. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  347. # or pull the latest version of the model from Huggingface
  348. # don't edit the hashes manually!
  349. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  350. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  351. res = "llama-bpe"
  352. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  353. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  354. res = "deepseek-llm"
  355. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  356. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  357. res = "deepseek-coder"
  358. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  359. # ref: https://huggingface.co/tiiuae/falcon-7b
  360. res = "falcon"
  361. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  362. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  363. res = "bert-bge"
  364. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  365. # ref: https://huggingface.co/mosaicml/mpt-7b
  366. res = "mpt"
  367. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  368. # ref: https://huggingface.co/bigcode/starcoder2-3b
  369. res = "starcoder"
  370. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  371. # ref: https://huggingface.co/openai-community/gpt2
  372. res = "gpt-2"
  373. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  374. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  375. res = "stablelm2"
  376. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  377. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  378. res = "refact"
  379. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  380. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  381. res = "command-r"
  382. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  383. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  384. res = "qwen2"
  385. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  386. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  387. res = "olmo"
  388. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  389. # ref: https://huggingface.co/databricks/dbrx-base
  390. res = "dbrx"
  391. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  392. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  393. res = "jina-v2-en"
  394. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  395. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  396. res = "jina-v2-es"
  397. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  398. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  399. res = "jina-v2-de"
  400. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  401. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  402. res = "smaug-bpe"
  403. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  404. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  405. res = "poro-chat"
  406. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  407. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  408. res = "jina-v2-code"
  409. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  410. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  411. res = "chatglm-bpe"
  412. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  413. # ref: https://huggingface.co/LumiOpen/Viking-7B
  414. res = "viking"
  415. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  416. # ref: https://huggingface.co/core42/jais-13b
  417. res = "jais"
  418. if res is None:
  419. logger.warning("\n")
  420. logger.warning("**************************************************************************************")
  421. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  422. logger.warning("** There are 2 possible reasons for this:")
  423. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  424. logger.warning("** - the pre-tokenization config has changed upstream")
  425. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  426. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  427. logger.warning("**")
  428. logger.warning(f"** chkhsh: {chkhsh}")
  429. logger.warning("**************************************************************************************")
  430. logger.warning("\n")
  431. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  432. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  433. logger.debug(f"chkhsh: {chkhsh}")
  434. return res
  435. # Marker: End get_vocab_base_pre
  436. def _set_vocab_gpt2(self) -> None:
  437. tokens, toktypes, tokpre = self.get_vocab_base()
  438. self.gguf_writer.add_tokenizer_model("gpt2")
  439. self.gguf_writer.add_tokenizer_pre(tokpre)
  440. self.gguf_writer.add_token_list(tokens)
  441. self.gguf_writer.add_token_types(toktypes)
  442. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  443. special_vocab.add_to_gguf(self.gguf_writer)
  444. def _set_vocab_qwen(self):
  445. dir_model = self.dir_model
  446. hparams = self.hparams
  447. tokens: list[str] = []
  448. toktypes: list[int] = []
  449. from transformers import AutoTokenizer
  450. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  451. vocab_size = hparams["vocab_size"]
  452. assert max(tokenizer.get_vocab().values()) < vocab_size
  453. tokpre = self.get_vocab_base_pre(tokenizer)
  454. merges = []
  455. vocab = {}
  456. mergeable_ranks = tokenizer.mergeable_ranks
  457. for token, rank in mergeable_ranks.items():
  458. vocab[QwenModel.token_bytes_to_string(token)] = rank
  459. if len(token) == 1:
  460. continue
  461. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  462. assert len(merged) == 2
  463. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  464. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  465. added_vocab = tokenizer.special_tokens
  466. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  467. for i in range(vocab_size):
  468. if i not in reverse_vocab:
  469. tokens.append(f"[PAD{i}]")
  470. toktypes.append(gguf.TokenType.USER_DEFINED)
  471. elif reverse_vocab[i] in added_vocab:
  472. tokens.append(reverse_vocab[i])
  473. toktypes.append(gguf.TokenType.CONTROL)
  474. else:
  475. tokens.append(reverse_vocab[i])
  476. toktypes.append(gguf.TokenType.NORMAL)
  477. self.gguf_writer.add_tokenizer_model("gpt2")
  478. self.gguf_writer.add_tokenizer_pre(tokpre)
  479. self.gguf_writer.add_token_list(tokens)
  480. self.gguf_writer.add_token_types(toktypes)
  481. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  482. special_vocab.merges = merges
  483. # only add special tokens when they were not already loaded from config.json
  484. if len(special_vocab.special_token_ids) == 0:
  485. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  486. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  487. # this one is usually not in config.json anyway
  488. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  489. special_vocab.add_to_gguf(self.gguf_writer)
  490. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  491. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  492. self.gguf_writer.add_tokenizer_model("llama")
  493. self.gguf_writer.add_tokenizer_pre("default")
  494. self.gguf_writer.add_token_list(tokens)
  495. self.gguf_writer.add_token_scores(scores)
  496. self.gguf_writer.add_token_types(toktypes)
  497. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  498. special_vocab.add_to_gguf(self.gguf_writer)
  499. def _create_vocab_sentencepiece(self):
  500. from sentencepiece import SentencePieceProcessor
  501. tokenizer_path = self.dir_model / 'tokenizer.model'
  502. if not tokenizer_path.is_file():
  503. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  504. tokenizer = SentencePieceProcessor()
  505. tokenizer.LoadFromFile(str(tokenizer_path))
  506. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  507. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  508. scores: list[float] = [-10000.0] * vocab_size
  509. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  510. for token_id in range(tokenizer.vocab_size()):
  511. piece = tokenizer.IdToPiece(token_id)
  512. text = piece.encode("utf-8")
  513. score = tokenizer.GetScore(token_id)
  514. toktype = SentencePieceTokenTypes.NORMAL
  515. if tokenizer.IsUnknown(token_id):
  516. toktype = SentencePieceTokenTypes.UNKNOWN
  517. elif tokenizer.IsControl(token_id):
  518. toktype = SentencePieceTokenTypes.CONTROL
  519. elif tokenizer.IsUnused(token_id):
  520. toktype = SentencePieceTokenTypes.UNUSED
  521. elif tokenizer.IsByte(token_id):
  522. toktype = SentencePieceTokenTypes.BYTE
  523. tokens[token_id] = text
  524. scores[token_id] = score
  525. toktypes[token_id] = toktype
  526. added_tokens_file = self.dir_model / 'added_tokens.json'
  527. if added_tokens_file.is_file():
  528. with open(added_tokens_file, "r", encoding="utf-8") as f:
  529. added_tokens_json = json.load(f)
  530. for key in added_tokens_json:
  531. token_id = added_tokens_json[key]
  532. if (token_id >= vocab_size):
  533. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  534. continue
  535. tokens[token_id] = key.encode("utf-8")
  536. scores[token_id] = -1000.0
  537. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  538. if vocab_size > len(tokens):
  539. pad_count = vocab_size - len(tokens)
  540. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  541. for i in range(1, pad_count + 1):
  542. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  543. scores.append(-1000.0)
  544. toktypes.append(SentencePieceTokenTypes.UNUSED)
  545. return tokens, scores, toktypes
  546. def _set_vocab_llama_hf(self):
  547. vocab = gguf.LlamaHfVocab(self.dir_model)
  548. tokens = []
  549. scores = []
  550. toktypes = []
  551. for text, score, toktype in vocab.all_tokens():
  552. tokens.append(text)
  553. scores.append(score)
  554. toktypes.append(toktype)
  555. assert len(tokens) == vocab.vocab_size
  556. self.gguf_writer.add_tokenizer_model("llama")
  557. self.gguf_writer.add_tokenizer_pre("default")
  558. self.gguf_writer.add_token_list(tokens)
  559. self.gguf_writer.add_token_scores(scores)
  560. self.gguf_writer.add_token_types(toktypes)
  561. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  562. special_vocab.add_to_gguf(self.gguf_writer)
  563. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  564. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  565. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  566. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  567. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  568. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  569. assert field # tokenizer model
  570. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  571. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  572. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  573. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  574. assert field # token list
  575. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  576. if model_name == "llama-spm":
  577. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  578. assert field # token scores
  579. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  580. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  581. assert field # token types
  582. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  583. if model_name != "llama-spm":
  584. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  585. assert field # token merges
  586. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  587. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  588. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  589. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  590. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  591. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  592. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  593. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  594. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  595. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  596. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  597. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  598. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  599. @Model.register("GPTNeoXForCausalLM")
  600. class GPTNeoXModel(Model):
  601. model_arch = gguf.MODEL_ARCH.GPTNEOX
  602. def set_gguf_parameters(self):
  603. block_count = self.hparams["num_hidden_layers"]
  604. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  605. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  606. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  607. self.gguf_writer.add_block_count(block_count)
  608. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  609. self.gguf_writer.add_rope_dimension_count(
  610. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  611. )
  612. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  613. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  614. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  615. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  616. del bid # unused
  617. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  618. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  619. tensors: list[tuple[str, Tensor]] = []
  620. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  621. # Map bloom-style qkv_linear to gpt-style qkv_linear
  622. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  623. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  624. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  625. data_torch = torch.cat(
  626. (
  627. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  628. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  629. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  630. ),
  631. dim=0,
  632. )
  633. logger.info("re-format attention.linear_qkv.weight")
  634. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  635. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  636. data_torch = torch.cat(
  637. (
  638. qkv_bias[:, 0, :].reshape((n_embed,)),
  639. qkv_bias[:, 1, :].reshape((n_embed,)),
  640. qkv_bias[:, 2, :].reshape((n_embed,)),
  641. ),
  642. dim=0,
  643. )
  644. logger.info("re-format attention.linear_qkv.bias")
  645. tensors.append((self.map_tensor_name(name), data_torch))
  646. return tensors
  647. @Model.register("BloomForCausalLM")
  648. class BloomModel(Model):
  649. model_arch = gguf.MODEL_ARCH.BLOOM
  650. def set_gguf_parameters(self):
  651. self.gguf_writer.add_name("Bloom")
  652. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  653. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  654. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  655. self.gguf_writer.add_embedding_length(n_embed)
  656. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  657. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  658. self.gguf_writer.add_head_count(n_head)
  659. self.gguf_writer.add_head_count_kv(n_head)
  660. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  661. self.gguf_writer.add_file_type(self.ftype)
  662. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  663. del bid # unused
  664. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  665. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  666. name = re.sub(r'transformer\.', '', name)
  667. tensors: list[tuple[str, Tensor]] = []
  668. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  669. # Map bloom-style qkv_linear to gpt-style qkv_linear
  670. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  671. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  672. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  673. data_torch = torch.cat(
  674. (
  675. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  676. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  677. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  678. ),
  679. dim=0,
  680. )
  681. logger.info("re-format attention.linear_qkv.weight")
  682. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  683. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  684. data_torch = torch.cat(
  685. (
  686. qkv_bias[:, 0, :].reshape((n_embed,)),
  687. qkv_bias[:, 1, :].reshape((n_embed,)),
  688. qkv_bias[:, 2, :].reshape((n_embed,)),
  689. ),
  690. dim=0,
  691. )
  692. logger.info("re-format attention.linear_qkv.bias")
  693. tensors.append((self.map_tensor_name(name), data_torch))
  694. if name == "word_embeddings.weight":
  695. assert self.tensor_names is not None
  696. # TODO: tie them at runtime, don't duplicate in the model file
  697. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  698. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  699. return tensors
  700. @Model.register("MPTForCausalLM")
  701. class MPTModel(Model):
  702. model_arch = gguf.MODEL_ARCH.MPT
  703. def set_vocab(self):
  704. try:
  705. self._set_vocab_gpt2()
  706. except Exception:
  707. # Fallback for SEA-LION model
  708. self._set_vocab_sentencepiece()
  709. self.gguf_writer.add_add_bos_token(False)
  710. self.gguf_writer.add_pad_token_id(3)
  711. self.gguf_writer.add_eos_token_id(1)
  712. self.gguf_writer.add_unk_token_id(0)
  713. def set_gguf_parameters(self):
  714. block_count = self.hparams["n_layers"]
  715. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  716. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  717. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  718. self.gguf_writer.add_block_count(block_count)
  719. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  720. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  721. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  722. self.gguf_writer.add_head_count_kv(kv_n_heads)
  723. self.gguf_writer.add_layer_norm_eps(1e-5)
  724. if self.hparams["attn_config"]["clip_qkv"] is not None:
  725. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  726. if self.hparams["attn_config"]["alibi"]:
  727. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  728. else:
  729. self.gguf_writer.add_max_alibi_bias(0.0)
  730. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  731. del bid # unused
  732. if "scales" in name:
  733. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  734. new_name = new_name.replace("scales", "act.scales")
  735. else:
  736. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  737. return [(new_name, data_torch)]
  738. @Model.register("OrionForCausalLM")
  739. class OrionModel(Model):
  740. model_arch = gguf.MODEL_ARCH.ORION
  741. def set_vocab(self):
  742. self._set_vocab_sentencepiece()
  743. def set_gguf_parameters(self):
  744. block_count = self.hparams["num_hidden_layers"]
  745. head_count = self.hparams["num_attention_heads"]
  746. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  747. hf_repo = self.hparams.get("_name_or_path", "")
  748. ctx_length = 0
  749. if "max_sequence_length" in self.hparams:
  750. ctx_length = self.hparams["max_sequence_length"]
  751. elif "max_position_embeddings" in self.hparams:
  752. ctx_length = self.hparams["max_position_embeddings"]
  753. elif "model_max_length" in self.hparams:
  754. ctx_length = self.hparams["model_max_length"]
  755. else:
  756. raise ValueError("gguf: can not find ctx length parameter.")
  757. self.gguf_writer.add_file_type(self.ftype)
  758. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  759. self.gguf_writer.add_source_hf_repo(hf_repo)
  760. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  761. self.gguf_writer.add_context_length(ctx_length)
  762. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  763. self.gguf_writer.add_block_count(block_count)
  764. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  765. self.gguf_writer.add_head_count(head_count)
  766. self.gguf_writer.add_head_count_kv(head_count_kv)
  767. # note: config provides rms norm but it is actually layer norm
  768. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  769. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  770. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  771. class BaichuanModel(Model):
  772. model_arch = gguf.MODEL_ARCH.BAICHUAN
  773. def set_vocab(self):
  774. self._set_vocab_sentencepiece()
  775. def set_gguf_parameters(self):
  776. block_count = self.hparams["num_hidden_layers"]
  777. head_count = self.hparams["num_attention_heads"]
  778. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  779. hf_repo = self.hparams.get("_name_or_path", "")
  780. ctx_length = 0
  781. if "max_sequence_length" in self.hparams:
  782. ctx_length = self.hparams["max_sequence_length"]
  783. elif "max_position_embeddings" in self.hparams:
  784. ctx_length = self.hparams["max_position_embeddings"]
  785. elif "model_max_length" in self.hparams:
  786. ctx_length = self.hparams["model_max_length"]
  787. else:
  788. raise ValueError("gguf: can not find ctx length parameter.")
  789. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  790. self.gguf_writer.add_source_hf_repo(hf_repo)
  791. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  792. self.gguf_writer.add_context_length(ctx_length)
  793. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  794. self.gguf_writer.add_block_count(block_count)
  795. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  796. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  797. self.gguf_writer.add_head_count(head_count)
  798. self.gguf_writer.add_head_count_kv(head_count_kv)
  799. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  800. self.gguf_writer.add_file_type(self.ftype)
  801. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  802. if self.hparams["rope_scaling"].get("type") == "linear":
  803. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  804. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  805. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  806. head_count = self.hparams["num_attention_heads"]
  807. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  808. tensors: list[tuple[str, Tensor]] = []
  809. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  810. logger.info(f"Unpacking and permuting layer {bid}")
  811. tensors = [
  812. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  813. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  814. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  815. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  816. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  817. self._reverse_hf_part(data_torch, 2)),
  818. ]
  819. else:
  820. tensors = [(self.map_tensor_name(name), data_torch)]
  821. return tensors
  822. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  823. if n_kv_head is not None and n_head != n_kv_head:
  824. n_head //= n_kv_head
  825. return (
  826. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  827. .swapaxes(1, 2)
  828. .reshape(weights.shape)
  829. )
  830. def _reverse_hf_permute_part(
  831. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  832. ) -> Tensor:
  833. r = weights.shape[0] // 3
  834. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  835. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  836. r = weights.shape[0] // 3
  837. return weights[r * n_part:r * n_part + r, ...]
  838. @Model.register("XverseForCausalLM")
  839. class XverseModel(Model):
  840. model_arch = gguf.MODEL_ARCH.XVERSE
  841. def set_vocab(self):
  842. assert (self.dir_model / "tokenizer.json").is_file()
  843. dir_model = self.dir_model
  844. hparams = self.hparams
  845. tokens: list[bytes] = []
  846. toktypes: list[int] = []
  847. from transformers import AutoTokenizer
  848. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  849. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  850. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  851. # because vocab_size is the count of items, and indexes start at 0.
  852. max_vocab_index = max(tokenizer.get_vocab().values())
  853. if max_vocab_index >= vocab_size:
  854. raise ValueError("Vocabulary size exceeds expected maximum size.")
  855. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  856. added_vocab = tokenizer.get_added_vocab()
  857. for token_id in range(vocab_size):
  858. token_text = reverse_vocab[token_id].encode('utf-8')
  859. # replace "\x00" to string with length > 0
  860. if token_text == b"\x00":
  861. toktype = gguf.TokenType.BYTE # special
  862. token_text = f"<{token_text}>".encode('utf-8')
  863. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  864. toktype = gguf.TokenType.BYTE # special
  865. elif reverse_vocab[token_id] in added_vocab:
  866. if tokenizer.added_tokens_decoder[token_id].special:
  867. toktype = gguf.TokenType.CONTROL
  868. else:
  869. toktype = gguf.TokenType.USER_DEFINED
  870. else:
  871. toktype = gguf.TokenType.NORMAL
  872. tokens.append(token_text)
  873. toktypes.append(toktype)
  874. self.gguf_writer.add_tokenizer_model("llama")
  875. self.gguf_writer.add_tokenizer_pre("default")
  876. self.gguf_writer.add_token_list(tokens)
  877. self.gguf_writer.add_token_types(toktypes)
  878. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  879. special_vocab.add_to_gguf(self.gguf_writer)
  880. def set_gguf_parameters(self):
  881. block_count = self.hparams["num_hidden_layers"]
  882. head_count = self.hparams["num_attention_heads"]
  883. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  884. hf_repo = self.hparams.get("_name_or_path", "")
  885. ctx_length = 0
  886. if "max_sequence_length" in self.hparams:
  887. ctx_length = self.hparams["max_sequence_length"]
  888. elif "max_position_embeddings" in self.hparams:
  889. ctx_length = self.hparams["max_position_embeddings"]
  890. elif "model_max_length" in self.hparams:
  891. ctx_length = self.hparams["model_max_length"]
  892. else:
  893. raise ValueError("gguf: can not find ctx length parameter.")
  894. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  895. self.gguf_writer.add_source_hf_repo(hf_repo)
  896. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  897. self.gguf_writer.add_context_length(ctx_length)
  898. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  899. self.gguf_writer.add_block_count(block_count)
  900. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  901. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  902. self.gguf_writer.add_head_count(head_count)
  903. self.gguf_writer.add_head_count_kv(head_count_kv)
  904. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  905. self.gguf_writer.add_file_type(self.ftype)
  906. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  907. if self.hparams["rope_scaling"].get("type") == "linear":
  908. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  909. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  910. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  911. del bid # unused
  912. head_count = self.hparams["num_attention_heads"]
  913. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  914. # HF models permute some of the tensors, so we need to undo that
  915. if name.endswith("q_proj.weight"):
  916. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  917. if name.endswith("k_proj.weight"):
  918. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  919. return [(self.map_tensor_name(name), data_torch)]
  920. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  921. if n_kv_head is not None and n_head != n_kv_head:
  922. n_head //= n_kv_head
  923. return (
  924. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  925. .swapaxes(1, 2)
  926. .reshape(weights.shape)
  927. )
  928. @Model.register("FalconForCausalLM", "RWForCausalLM")
  929. class FalconModel(Model):
  930. model_arch = gguf.MODEL_ARCH.FALCON
  931. def set_gguf_parameters(self):
  932. block_count = self.hparams.get("num_hidden_layers")
  933. if block_count is None:
  934. block_count = self.hparams["n_layer"] # old name
  935. n_head = self.hparams.get("num_attention_heads")
  936. if n_head is None:
  937. n_head = self.hparams["n_head"] # old name
  938. n_head_kv = self.hparams.get("num_kv_heads")
  939. if n_head_kv is None:
  940. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  941. self.gguf_writer.add_name("Falcon")
  942. self.gguf_writer.add_context_length(2048) # not in config.json
  943. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  944. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  945. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  946. self.gguf_writer.add_block_count(block_count)
  947. self.gguf_writer.add_head_count(n_head)
  948. self.gguf_writer.add_head_count_kv(n_head_kv)
  949. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  950. self.gguf_writer.add_file_type(self.ftype)
  951. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  952. del bid # unused
  953. # QKV tensor transform
  954. # The original query_key_value tensor contains n_head_kv "kv groups",
  955. # each consisting of n_head/n_head_kv query weights followed by one key
  956. # and one value weight (shared by all query heads in the kv group).
  957. # This layout makes it a big pain to work with in GGML.
  958. # So we rearrange them here,, so that we have n_head query weights
  959. # followed by n_head_kv key weights followed by n_head_kv value weights,
  960. # in contiguous fashion.
  961. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  962. if "query_key_value" in name:
  963. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  964. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  965. head_dim = self.hparams["hidden_size"] // n_head
  966. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  967. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  968. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  969. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  970. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  971. return [(self.map_tensor_name(name), data_torch)]
  972. @Model.register("GPTBigCodeForCausalLM")
  973. class StarCoderModel(Model):
  974. model_arch = gguf.MODEL_ARCH.STARCODER
  975. def set_gguf_parameters(self):
  976. block_count = self.hparams["n_layer"]
  977. self.gguf_writer.add_name("StarCoder")
  978. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  979. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  980. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  981. self.gguf_writer.add_block_count(block_count)
  982. self.gguf_writer.add_head_count(self.hparams["n_head"])
  983. self.gguf_writer.add_head_count_kv(1)
  984. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  985. self.gguf_writer.add_file_type(self.ftype)
  986. @Model.register("GPTRefactForCausalLM")
  987. class RefactModel(Model):
  988. model_arch = gguf.MODEL_ARCH.REFACT
  989. def set_vocab(self):
  990. super().set_vocab()
  991. # TODO: how to determine special FIM tokens automatically?
  992. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  993. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  994. special_vocab._set_special_token("prefix", 1)
  995. special_vocab._set_special_token("suffix", 3)
  996. special_vocab._set_special_token("middle", 2)
  997. special_vocab._set_special_token("fsep", 4) # is this correct?
  998. special_vocab.add_to_gguf(self.gguf_writer)
  999. def set_gguf_parameters(self):
  1000. hidden_dim = self.hparams["n_embd"]
  1001. inner_dim = 4 * hidden_dim
  1002. hidden_dim = int(2 * inner_dim / 3)
  1003. multiple_of = 256
  1004. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1005. block_count = self.hparams["n_layer"]
  1006. self.gguf_writer.add_name("Refact")
  1007. # refact uses Alibi. So this is from config.json which might be used by training.
  1008. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1009. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1010. self.gguf_writer.add_feed_forward_length(ff_dim)
  1011. self.gguf_writer.add_block_count(block_count)
  1012. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1013. self.gguf_writer.add_head_count_kv(1)
  1014. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1015. self.gguf_writer.add_file_type(self.ftype)
  1016. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1017. hidden_dim = self.hparams["n_embd"]
  1018. inner_dim = 4 * hidden_dim
  1019. hidden_dim = int(2 * inner_dim / 3)
  1020. multiple_of = 256
  1021. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1022. n_head = self.hparams["n_head"]
  1023. n_head_kv = 1
  1024. head_dim = self.hparams["n_embd"] // n_head
  1025. tensors: list[tuple[str, Tensor]] = []
  1026. if bid is not None:
  1027. if name == f"transformer.h.{bid}.attn.kv.weight":
  1028. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1029. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1030. elif name == f"transformer.h.{bid}.attn.q.weight":
  1031. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1032. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1033. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1034. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1035. if len(tensors) == 0:
  1036. tensors.append((self.map_tensor_name(name), data_torch))
  1037. return tensors
  1038. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1039. class StableLMModel(Model):
  1040. model_arch = gguf.MODEL_ARCH.STABLELM
  1041. def set_vocab(self):
  1042. if (self.dir_model / "tokenizer.json").is_file():
  1043. self._set_vocab_gpt2()
  1044. else:
  1045. # StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
  1046. self._set_vocab_qwen()
  1047. def set_gguf_parameters(self):
  1048. hparams = self.hparams
  1049. block_count = hparams["num_hidden_layers"]
  1050. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  1051. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1052. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1053. self.gguf_writer.add_block_count(block_count)
  1054. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1055. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1056. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1057. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1058. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1059. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1060. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1061. self.gguf_writer.add_file_type(self.ftype)
  1062. _q_norms: list[dict[str, Tensor]] | None = None
  1063. _k_norms: list[dict[str, Tensor]] | None = None
  1064. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1065. n_head = self.hparams["num_attention_heads"]
  1066. n_kv_head = self.hparams["num_key_value_heads"]
  1067. if name.find("q_layernorm.norms") != -1:
  1068. assert bid is not None
  1069. if self._q_norms is None:
  1070. self._q_norms = [{} for _ in range(self.block_count)]
  1071. self._q_norms[bid][name] = data_torch
  1072. if len(self._q_norms[bid]) >= n_head:
  1073. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1074. else:
  1075. return []
  1076. if name.find("k_layernorm.norms") != -1:
  1077. assert bid is not None
  1078. if self._k_norms is None:
  1079. self._k_norms = [{} for _ in range(self.block_count)]
  1080. self._k_norms[bid][name] = data_torch
  1081. if len(self._k_norms[bid]) >= n_kv_head:
  1082. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1083. else:
  1084. return []
  1085. return [(self.map_tensor_name(name), data_torch)]
  1086. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1087. datas: list[Tensor] = []
  1088. # extract the norms in order
  1089. for xid in range(n_head):
  1090. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1091. datas.append(norms[ename])
  1092. del norms[ename]
  1093. data_torch = torch.stack(datas, dim=0)
  1094. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1095. new_name = self.map_tensor_name(merged_name)
  1096. return [(new_name, data_torch)]
  1097. def write_tensors(self):
  1098. super().write_tensors()
  1099. if self._q_norms is not None or self._k_norms is not None:
  1100. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1101. norms = (
  1102. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1103. ) + (
  1104. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1105. )
  1106. if len(norms) > 0:
  1107. raise ValueError(f"Unprocessed norms: {norms}")
  1108. @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1109. class LlamaModel(Model):
  1110. model_arch = gguf.MODEL_ARCH.LLAMA
  1111. def set_vocab(self):
  1112. try:
  1113. self. _set_vocab_sentencepiece()
  1114. except FileNotFoundError:
  1115. try:
  1116. self._set_vocab_llama_hf()
  1117. except (FileNotFoundError, TypeError):
  1118. # Llama 3
  1119. self._set_vocab_gpt2()
  1120. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1121. if self.hparams.get("vocab_size", 32000) == 32016:
  1122. special_vocab = gguf.SpecialVocab(
  1123. self.dir_model, load_merges=False,
  1124. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1125. )
  1126. special_vocab._set_special_token("prefix", 32007)
  1127. special_vocab._set_special_token("suffix", 32008)
  1128. special_vocab._set_special_token("middle", 32009)
  1129. special_vocab._set_special_token("eot", 32010)
  1130. special_vocab.add_to_gguf(self.gguf_writer)
  1131. def set_gguf_parameters(self):
  1132. super().set_gguf_parameters()
  1133. hparams = self.hparams
  1134. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1135. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  1136. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1137. if self.hparams["rope_scaling"].get("type") == "linear":
  1138. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1139. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1140. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1141. if tokenizer_config_file.is_file():
  1142. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1143. tokenizer_config_json = json.load(f)
  1144. if "add_prefix_space" in tokenizer_config_json:
  1145. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1146. # Apply to granite small models only
  1147. if self.hparams.get("vocab_size", 32000) == 49152:
  1148. self.gguf_writer.add_add_bos_token(False)
  1149. @staticmethod
  1150. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1151. if n_head_kv is not None and n_head != n_head_kv:
  1152. n_head = n_head_kv
  1153. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1154. .swapaxes(1, 2)
  1155. .reshape(weights.shape))
  1156. _experts: list[dict[str, Tensor]] | None = None
  1157. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1158. n_head = self.hparams["num_attention_heads"]
  1159. n_kv_head = self.hparams.get("num_key_value_heads")
  1160. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1161. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1162. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1163. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1164. # process the experts separately
  1165. if name.find("block_sparse_moe.experts") != -1:
  1166. n_experts = self.hparams["num_local_experts"]
  1167. assert bid is not None
  1168. if self._experts is None:
  1169. self._experts = [{} for _ in range(self.block_count)]
  1170. self._experts[bid][name] = data_torch
  1171. if len(self._experts[bid]) >= n_experts * 3:
  1172. tensors: list[tuple[str, Tensor]] = []
  1173. # merge the experts into a single 3d tensor
  1174. for wid in ["w1", "w2", "w3"]:
  1175. datas: list[Tensor] = []
  1176. for xid in range(n_experts):
  1177. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1178. datas.append(self._experts[bid][ename])
  1179. del self._experts[bid][ename]
  1180. data_torch = torch.stack(datas, dim=0)
  1181. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1182. new_name = self.map_tensor_name(merged_name)
  1183. tensors.append((new_name, data_torch))
  1184. return tensors
  1185. else:
  1186. return []
  1187. return [(self.map_tensor_name(name), data_torch)]
  1188. def write_tensors(self):
  1189. super().write_tensors()
  1190. if self._experts is not None:
  1191. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1192. experts = [k for d in self._experts for k in d.keys()]
  1193. if len(experts) > 0:
  1194. raise ValueError(f"Unprocessed experts: {experts}")
  1195. @Model.register("BitnetForCausalLM")
  1196. class BitnetModel(Model):
  1197. model_arch = gguf.MODEL_ARCH.BITNET
  1198. def set_vocab(self):
  1199. self._set_vocab_sentencepiece()
  1200. def set_gguf_parameters(self):
  1201. super().set_gguf_parameters()
  1202. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1203. self.gguf_writer.add_rope_scaling_factor(1.0)
  1204. def weight_quant(self, weight):
  1205. dtype = weight.dtype
  1206. weight = weight.float()
  1207. s = 1 / weight.abs().mean().clamp(min=1e-5)
  1208. weight = (weight * s).round().clamp(-1, 1) / s
  1209. scale = weight.abs().max().unsqueeze(0)
  1210. weight = torch.where(weight.abs().less(1e-6), 0, weight).type(dtype)
  1211. weight = torch.sign(weight).type(dtype)
  1212. return weight.type(dtype), scale.type(torch.float32)
  1213. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1214. new_name = self.map_tensor_name(name)
  1215. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1216. gguf.MODEL_TENSOR.ATTN_Q,
  1217. gguf.MODEL_TENSOR.ATTN_K,
  1218. gguf.MODEL_TENSOR.ATTN_V,
  1219. gguf.MODEL_TENSOR.ATTN_OUT,
  1220. gguf.MODEL_TENSOR.FFN_UP,
  1221. gguf.MODEL_TENSOR.FFN_DOWN,
  1222. gguf.MODEL_TENSOR.FFN_GATE,
  1223. ]):
  1224. # transform weight into 1/0/-1 (in fp32)
  1225. weight_torch, scale_torch = self.weight_quant(data_torch)
  1226. yield (new_name, weight_torch)
  1227. yield (new_name.removesuffix(".weight") + ".scale", scale_torch)
  1228. else:
  1229. yield (new_name, data_torch)
  1230. @Model.register("GrokForCausalLM")
  1231. class GrokModel(Model):
  1232. model_arch = gguf.MODEL_ARCH.GROK
  1233. def set_vocab(self):
  1234. self._set_vocab_sentencepiece()
  1235. def __init__(self, *args, **kwargs):
  1236. super().__init__(*args, **kwargs)
  1237. def set_gguf_parameters(self):
  1238. super().set_gguf_parameters()
  1239. self.gguf_writer.add_name("Grok")
  1240. _experts: list[dict[str, Tensor]] | None = None
  1241. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1242. # process the experts separately
  1243. if name.find(".moe.") != -1:
  1244. n_experts = self.hparams["num_local_experts"]
  1245. assert bid is not None
  1246. if self._experts is None:
  1247. self._experts = [{} for _ in range(self.block_count)]
  1248. self._experts[bid][name] = data_torch
  1249. if len(self._experts[bid]) >= n_experts * 3:
  1250. tensors: list[tuple[str, Tensor]] = []
  1251. # merge the experts into a single 3d tensor
  1252. for wid in ["linear", "linear_1", "linear_v"]:
  1253. datas: list[Tensor] = []
  1254. for xid in range(n_experts):
  1255. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1256. datas.append(self._experts[bid][ename])
  1257. del self._experts[bid][ename]
  1258. data_torch = torch.stack(datas, dim=0)
  1259. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1260. new_name = self.map_tensor_name(merged_name)
  1261. tensors.append((new_name, data_torch))
  1262. return tensors
  1263. else:
  1264. return []
  1265. return [(self.map_tensor_name(name), data_torch)]
  1266. @Model.register("DbrxForCausalLM")
  1267. class DbrxModel(Model):
  1268. model_arch = gguf.MODEL_ARCH.DBRX
  1269. def set_gguf_parameters(self):
  1270. ffn_config = self.hparams["ffn_config"]
  1271. attn_config = self.hparams["attn_config"]
  1272. self.gguf_writer.add_name(self.hparams["model_type"])
  1273. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1274. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1275. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1276. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1277. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1278. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1279. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1280. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1281. self.gguf_writer.add_file_type(self.ftype)
  1282. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1283. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1284. self.gguf_writer.add_layer_norm_eps(1e-5)
  1285. self.gguf_writer.add_file_type(self.ftype)
  1286. logger.info(f"gguf: file type = {self.ftype}")
  1287. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1288. del bid # unused
  1289. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1290. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1291. n_embd = self.hparams["d_model"]
  1292. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1293. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1294. # But llama.cpp moe graph works differently
  1295. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1296. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1297. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1298. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1299. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1300. experts = False
  1301. for exp_tensor_name in exp_tensor_names.keys():
  1302. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1303. experts = True
  1304. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1305. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1306. data_torch = data_torch.permute(*permute_tensor)
  1307. break
  1308. # map tensor names
  1309. # In MoE models the ffn tensors are typically most of the model weights,
  1310. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1311. # Every other model has the weight names ending in .weight,
  1312. # let's assume that is the convention which is not the case for dbrx:
  1313. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1314. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1315. return [(new_name, data_torch)]
  1316. def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  1317. del name, new_name, bid # unused
  1318. return n_dims > 1
  1319. @Model.register("MiniCPMForCausalLM")
  1320. class MiniCPMModel(Model):
  1321. model_arch = gguf.MODEL_ARCH.MINICPM
  1322. def set_gguf_parameters(self):
  1323. block_count = self.hparams["num_hidden_layers"]
  1324. self.gguf_writer.add_name("MiniCPM")
  1325. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1326. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1327. self.gguf_writer.add_block_count(block_count)
  1328. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1329. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1330. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1331. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1332. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1333. self.gguf_writer.add_file_type(self.ftype)
  1334. def set_vocab(self):
  1335. self._set_vocab_llama_hf()
  1336. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1337. if n_kv_head is not None and n_head != n_kv_head:
  1338. n_head //= n_kv_head
  1339. return (
  1340. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1341. .swapaxes(1, 2)
  1342. .reshape(weights.shape)
  1343. )
  1344. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1345. del bid # unused
  1346. n_head = self.hparams["num_attention_heads"]
  1347. n_kv_head = self.hparams.get("num_key_value_heads")
  1348. # HF models permute some of the tensors, so we need to undo that
  1349. if name.endswith(("q_proj.weight")):
  1350. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1351. if name.endswith(("k_proj.weight")):
  1352. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1353. return [(self.map_tensor_name(name), data_torch)]
  1354. @Model.register("QWenLMHeadModel")
  1355. class QwenModel(Model):
  1356. model_arch = gguf.MODEL_ARCH.QWEN
  1357. @staticmethod
  1358. def token_bytes_to_string(b):
  1359. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1360. byte_encoder = bytes_to_unicode()
  1361. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1362. @staticmethod
  1363. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1364. parts = [bytes([b]) for b in token]
  1365. while True:
  1366. min_idx = None
  1367. min_rank = None
  1368. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1369. rank = mergeable_ranks.get(pair[0] + pair[1])
  1370. if rank is not None and (min_rank is None or rank < min_rank):
  1371. min_idx = i
  1372. min_rank = rank
  1373. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1374. break
  1375. assert min_idx is not None
  1376. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1377. return parts
  1378. def set_vocab(self):
  1379. self._set_vocab_qwen()
  1380. def set_gguf_parameters(self):
  1381. self.gguf_writer.add_name("Qwen")
  1382. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1383. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1384. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1385. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1386. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1387. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1388. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1389. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1390. self.gguf_writer.add_file_type(self.ftype)
  1391. @Model.register("Qwen2ForCausalLM")
  1392. class Qwen2Model(Model):
  1393. model_arch = gguf.MODEL_ARCH.QWEN2
  1394. def set_vocab(self):
  1395. try:
  1396. self._set_vocab_sentencepiece()
  1397. except FileNotFoundError:
  1398. self._set_vocab_gpt2()
  1399. @Model.register("Qwen2MoeForCausalLM")
  1400. class Qwen2MoeModel(Model):
  1401. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1402. def set_gguf_parameters(self):
  1403. super().set_gguf_parameters()
  1404. if (n_experts := self.hparams.get("num_experts")) is not None:
  1405. self.gguf_writer.add_expert_count(n_experts)
  1406. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  1407. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  1408. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  1409. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  1410. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  1411. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  1412. _experts: list[dict[str, Tensor]] | None = None
  1413. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1414. # process the experts separately
  1415. if name.find("experts") != -1:
  1416. n_experts = self.hparams["num_experts"]
  1417. assert bid is not None
  1418. if self._experts is None:
  1419. self._experts = [{} for _ in range(self.block_count)]
  1420. self._experts[bid][name] = data_torch
  1421. if len(self._experts[bid]) >= n_experts * 3:
  1422. tensors: list[tuple[str, Tensor]] = []
  1423. # merge the experts into a single 3d tensor
  1424. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1425. datas: list[Tensor] = []
  1426. for xid in range(n_experts):
  1427. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1428. datas.append(self._experts[bid][ename])
  1429. del self._experts[bid][ename]
  1430. data_torch = torch.stack(datas, dim=0)
  1431. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1432. new_name = self.map_tensor_name(merged_name)
  1433. tensors.append((new_name, data_torch))
  1434. return tensors
  1435. else:
  1436. return []
  1437. return [(self.map_tensor_name(name), data_torch)]
  1438. def write_tensors(self):
  1439. super().write_tensors()
  1440. if self._experts is not None:
  1441. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1442. experts = [k for d in self._experts for k in d.keys()]
  1443. if len(experts) > 0:
  1444. raise ValueError(f"Unprocessed experts: {experts}")
  1445. @Model.register("GPT2LMHeadModel")
  1446. class GPT2Model(Model):
  1447. model_arch = gguf.MODEL_ARCH.GPT2
  1448. def set_gguf_parameters(self):
  1449. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  1450. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1451. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1452. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1453. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1454. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1455. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1456. self.gguf_writer.add_file_type(self.ftype)
  1457. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1458. del bid # unused
  1459. tensors: list[tuple[str, Tensor]] = []
  1460. # we don't need these
  1461. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1462. return tensors
  1463. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1464. data_torch = data_torch.transpose(1, 0)
  1465. new_name = self.map_tensor_name(name)
  1466. tensors.append((new_name, data_torch))
  1467. # note: GPT2 output is tied to (same as) wte in original model
  1468. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1469. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1470. return tensors
  1471. @Model.register("PhiForCausalLM")
  1472. class Phi2Model(Model):
  1473. model_arch = gguf.MODEL_ARCH.PHI2
  1474. def set_gguf_parameters(self):
  1475. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1476. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1477. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1478. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1479. self.gguf_writer.add_name("Phi2")
  1480. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1481. self.gguf_writer.add_embedding_length(n_embd)
  1482. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1483. self.gguf_writer.add_block_count(block_count)
  1484. self.gguf_writer.add_head_count(n_head)
  1485. self.gguf_writer.add_head_count_kv(n_head)
  1486. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1487. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1488. self.gguf_writer.add_file_type(self.ftype)
  1489. self.gguf_writer.add_add_bos_token(False)
  1490. @Model.register("Phi3ForCausalLM")
  1491. class Phi3MiniModel(Model):
  1492. model_arch = gguf.MODEL_ARCH.PHI3
  1493. def set_vocab(self):
  1494. from sentencepiece import SentencePieceProcessor
  1495. tokenizer_path = self.dir_model / 'tokenizer.model'
  1496. if not tokenizer_path.is_file():
  1497. raise ValueError(f'Error: Missing {tokenizer_path}')
  1498. tokenizer = SentencePieceProcessor()
  1499. tokenizer.LoadFromFile(str(tokenizer_path))
  1500. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1501. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1502. scores: list[float] = [-10000.0] * vocab_size
  1503. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  1504. for token_id in range(tokenizer.vocab_size()):
  1505. piece = tokenizer.IdToPiece(token_id)
  1506. text = piece.encode("utf-8")
  1507. score = tokenizer.GetScore(token_id)
  1508. toktype = SentencePieceTokenTypes.NORMAL
  1509. if tokenizer.IsUnknown(token_id):
  1510. toktype = SentencePieceTokenTypes.UNKNOWN
  1511. elif tokenizer.IsControl(token_id):
  1512. toktype = SentencePieceTokenTypes.CONTROL
  1513. elif tokenizer.IsUnused(token_id):
  1514. toktype = SentencePieceTokenTypes.UNUSED
  1515. elif tokenizer.IsByte(token_id):
  1516. toktype = SentencePieceTokenTypes.BYTE
  1517. tokens[token_id] = text
  1518. scores[token_id] = score
  1519. toktypes[token_id] = toktype
  1520. added_tokens_file = self.dir_model / 'added_tokens.json'
  1521. if added_tokens_file.is_file():
  1522. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1523. added_tokens_json = json.load(f)
  1524. for key in added_tokens_json:
  1525. token_id = added_tokens_json[key]
  1526. if (token_id >= vocab_size):
  1527. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1528. continue
  1529. tokens[token_id] = key.encode("utf-8")
  1530. scores[token_id] = -1000.0
  1531. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1532. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1533. if tokenizer_config_file.is_file():
  1534. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1535. tokenizer_config_json = json.load(f)
  1536. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1537. for token_id, foken_data in added_tokens_decoder.items():
  1538. token_id = int(token_id)
  1539. token = foken_data["content"].encode("utf-8")
  1540. if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN:
  1541. assert tokens[token_id] == token
  1542. tokens[token_id] = token
  1543. scores[token_id] = -1000.0
  1544. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1545. if foken_data.get("special"):
  1546. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1547. tokenizer_file = self.dir_model / 'tokenizer.json'
  1548. if tokenizer_file.is_file():
  1549. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1550. tokenizer_json = json.load(f)
  1551. added_tokens = tokenizer_json.get("added_tokens", [])
  1552. for foken_data in added_tokens:
  1553. token_id = int(foken_data["id"])
  1554. token = foken_data["content"].encode("utf-8")
  1555. if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN:
  1556. assert tokens[token_id] == token
  1557. tokens[token_id] = token
  1558. scores[token_id] = -1000.0
  1559. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1560. if foken_data.get("special"):
  1561. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1562. self.gguf_writer.add_tokenizer_model("llama")
  1563. self.gguf_writer.add_tokenizer_pre("default")
  1564. self.gguf_writer.add_token_list(tokens)
  1565. self.gguf_writer.add_token_scores(scores)
  1566. self.gguf_writer.add_token_types(toktypes)
  1567. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1568. special_vocab.add_to_gguf(self.gguf_writer)
  1569. def set_gguf_parameters(self):
  1570. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1571. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1572. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1573. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  1574. rms_eps = self.find_hparam(["rms_norm_eps"])
  1575. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  1576. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  1577. rope_dims = n_embd // n_head
  1578. self.gguf_writer.add_name("Phi3")
  1579. self.gguf_writer.add_context_length(max_pos_embds)
  1580. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  1581. self.gguf_writer.add_embedding_length(n_embd)
  1582. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  1583. self.gguf_writer.add_block_count(block_count)
  1584. self.gguf_writer.add_head_count(n_head)
  1585. self.gguf_writer.add_head_count_kv(n_head_kv)
  1586. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1587. self.gguf_writer.add_rope_dimension_count(rope_dims)
  1588. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  1589. self.gguf_writer.add_file_type(self.ftype)
  1590. # write rope scaling for long context (128k) model
  1591. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1592. if (rope_scaling is None):
  1593. return
  1594. scale = max_pos_embds / orig_max_pos_embds
  1595. rope_scaling_type = rope_scaling.get('type', '').lower()
  1596. if len(rope_scaling_type) == 0:
  1597. raise KeyError('Missing the required key rope_scaling.type')
  1598. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  1599. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  1600. elif rope_scaling_type == 'yarn':
  1601. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  1602. else:
  1603. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  1604. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  1605. long_factors = rope_scaling.get('long_factor', None)
  1606. short_factors = rope_scaling.get('short_factor', None)
  1607. if long_factors is None or short_factors is None:
  1608. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1609. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1610. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1611. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
  1612. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
  1613. @Model.register("PlamoForCausalLM")
  1614. class PlamoModel(Model):
  1615. model_arch = gguf.MODEL_ARCH.PLAMO
  1616. def set_vocab(self):
  1617. self._set_vocab_sentencepiece()
  1618. def set_gguf_parameters(self):
  1619. hparams = self.hparams
  1620. block_count = hparams["num_hidden_layers"]
  1621. self.gguf_writer.add_name("PLaMo")
  1622. self.gguf_writer.add_context_length(4096) # not in config.json
  1623. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1624. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1625. self.gguf_writer.add_block_count(block_count)
  1626. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1627. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1628. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1629. self.gguf_writer.add_file_type(self.ftype)
  1630. def shuffle_attn_q_weight(self, data_torch):
  1631. assert data_torch.size() == (5120, 5120)
  1632. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1633. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1634. data_torch = torch.reshape(data_torch, (5120, 5120))
  1635. return data_torch
  1636. def shuffle_attn_output_weight(self, data_torch):
  1637. assert data_torch.size() == (5120, 5120)
  1638. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1639. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1640. data_torch = torch.reshape(data_torch, (5120, 5120))
  1641. return data_torch
  1642. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1643. del bid # unused
  1644. new_name = self.map_tensor_name(name)
  1645. # shuffle for broadcasting of gqa in ggml_mul_mat
  1646. if new_name.endswith("attn_q.weight"):
  1647. data_torch = self.shuffle_attn_q_weight(data_torch)
  1648. elif new_name.endswith("attn_output.weight"):
  1649. data_torch = self.shuffle_attn_output_weight(data_torch)
  1650. return [(new_name, data_torch)]
  1651. @Model.register("CodeShellForCausalLM")
  1652. class CodeShellModel(Model):
  1653. model_arch = gguf.MODEL_ARCH.CODESHELL
  1654. def set_gguf_parameters(self):
  1655. block_count = self.hparams["n_layer"]
  1656. self.gguf_writer.add_name("CodeShell")
  1657. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1658. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1659. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1660. self.gguf_writer.add_block_count(block_count)
  1661. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1662. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1663. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1664. self.gguf_writer.add_file_type(self.ftype)
  1665. self.gguf_writer.add_rope_freq_base(10000.0)
  1666. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1667. self.gguf_writer.add_rope_scaling_factor(1.0)
  1668. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1669. del bid # unused
  1670. new_name = self.map_tensor_name(name)
  1671. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  1672. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1673. assert self.tensor_names is not None
  1674. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  1675. # copy tok_embd.weight to output.weight
  1676. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1677. return tensors
  1678. @Model.register("InternLM2ForCausalLM")
  1679. class InternLM2Model(Model):
  1680. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1681. def set_vocab(self):
  1682. # (TODO): Is there a better way?
  1683. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1684. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1685. # recognized as an empty string in C++.
  1686. from sentencepiece import SentencePieceProcessor
  1687. from sentencepiece import sentencepiece_model_pb2 as model
  1688. tokenizer_path = self.dir_model / 'tokenizer.model'
  1689. tokens: list[bytes] = []
  1690. scores: list[float] = []
  1691. toktypes: list[int] = []
  1692. if not tokenizer_path.is_file():
  1693. logger.error(f'Error: Missing {tokenizer_path}')
  1694. sys.exit(1)
  1695. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  1696. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1697. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1698. tokenizer = SentencePieceProcessor()
  1699. tokenizer.LoadFromFile(str(tokenizer_path))
  1700. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1701. for token_id in range(vocab_size):
  1702. piece = tokenizer.IdToPiece(token_id)
  1703. text = piece.encode("utf-8")
  1704. score = tokenizer.GetScore(token_id)
  1705. if text == b"\x00":
  1706. # (TODO): fixme
  1707. # Hack here and replace the \x00 characters.
  1708. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  1709. text = "🐉".encode("utf-8")
  1710. toktype = SentencePieceTokenTypes.NORMAL
  1711. if tokenizer.IsUnknown(token_id):
  1712. toktype = SentencePieceTokenTypes.UNKNOWN
  1713. elif tokenizer.IsControl(token_id):
  1714. toktype = SentencePieceTokenTypes.CONTROL
  1715. elif tokenizer.IsUnused(token_id):
  1716. toktype = SentencePieceTokenTypes.UNUSED
  1717. elif tokenizer.IsByte(token_id):
  1718. toktype = SentencePieceTokenTypes.BYTE
  1719. tokens.append(text)
  1720. scores.append(score)
  1721. toktypes.append(toktype)
  1722. added_tokens_file = self.dir_model / 'added_tokens.json'
  1723. if added_tokens_file.is_file():
  1724. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1725. added_tokens_json = json.load(f)
  1726. for key in added_tokens_json:
  1727. tokens.append(key.encode("utf-8"))
  1728. scores.append(-1000.0)
  1729. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1730. self.gguf_writer.add_tokenizer_model("llama")
  1731. self.gguf_writer.add_tokenizer_pre("default")
  1732. self.gguf_writer.add_token_list(tokens)
  1733. self.gguf_writer.add_token_scores(scores)
  1734. self.gguf_writer.add_token_types(toktypes)
  1735. self.gguf_writer.add_add_space_prefix(add_prefix)
  1736. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1737. old_eos = special_vocab.special_token_ids["eos"]
  1738. if "chat" in os.path.basename(self.dir_model.absolute()):
  1739. # For the chat model, we replace the eos with '<|im_end|>'.
  1740. # TODO: this is a hack, should be fixed
  1741. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  1742. special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
  1743. logger.warning(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
  1744. in chat mode so that the conversation can end normally.")
  1745. special_vocab.add_to_gguf(self.gguf_writer)
  1746. def _try_get_sft_eos(self, tokenizer):
  1747. unused_145_list = tokenizer.Encode('[UNUSED_TOKEN_145]')
  1748. im_end_list = tokenizer.Encode('<|im_end|>')
  1749. eos_token = None
  1750. assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1)
  1751. if len(unused_145_list) == 1:
  1752. eos_token = unused_145_list[0]
  1753. if len(im_end_list) == 1:
  1754. eos_token = im_end_list[0]
  1755. assert eos_token
  1756. return eos_token
  1757. def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
  1758. if n_head_kv is not None and n_head != n_head_kv:
  1759. n_head = n_head_kv
  1760. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1761. .swapaxes(1, 2)
  1762. .reshape(weights.shape))
  1763. def set_gguf_parameters(self):
  1764. self.gguf_writer.add_name("InternLM2")
  1765. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1766. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1767. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1768. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1769. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1770. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1771. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1772. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1773. self.gguf_writer.add_file_type(self.ftype)
  1774. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1775. num_heads = self.hparams["num_attention_heads"]
  1776. num_kv_heads = self.hparams["num_key_value_heads"]
  1777. hidden_size = self.hparams["hidden_size"]
  1778. q_per_kv = num_heads // num_kv_heads
  1779. head_dim = hidden_size // num_heads
  1780. num_groups = num_heads // q_per_kv
  1781. qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
  1782. if re.match(qkv_pattern, name):
  1783. bid = re.findall(qkv_pattern, name)[0]
  1784. qkv = data_torch
  1785. # qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
  1786. qkv = qkv.T.reshape((-1, num_groups, q_per_kv + 2, head_dim))
  1787. q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
  1788. # The model weights of q and k equire additional reshape.
  1789. # q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads)
  1790. q = self._hf_permute_qk(q.reshape((q.shape[0], -1)).T, num_heads, num_heads)
  1791. # k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads)
  1792. k = self._hf_permute_qk(k.reshape((k.shape[0], -1)).T, num_heads, num_kv_heads)
  1793. # v = rearrange(v, " o g n i -> o (g n i)").T
  1794. v = v.reshape((v.shape[0], -1)).T
  1795. return [
  1796. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  1797. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  1798. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  1799. ]
  1800. else:
  1801. return [(self.map_tensor_name(name), data_torch)]
  1802. @Model.register("BertModel", "CamembertModel")
  1803. class BertModel(Model):
  1804. model_arch = gguf.MODEL_ARCH.BERT
  1805. def __init__(self, *args, **kwargs):
  1806. super().__init__(*args, **kwargs)
  1807. self.vocab_size = None
  1808. def set_gguf_parameters(self):
  1809. super().set_gguf_parameters()
  1810. self.gguf_writer.add_causal_attention(False)
  1811. # get pooling path
  1812. pooling_path = None
  1813. module_path = self.dir_model / "modules.json"
  1814. if module_path.is_file():
  1815. with open(module_path, encoding="utf-8") as f:
  1816. modules = json.load(f)
  1817. for mod in modules:
  1818. if mod["type"] == "sentence_transformers.models.Pooling":
  1819. pooling_path = mod["path"]
  1820. break
  1821. # get pooling type
  1822. if pooling_path is not None:
  1823. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1824. pooling = json.load(f)
  1825. if pooling["pooling_mode_mean_tokens"]:
  1826. pooling_type = gguf.PoolingType.MEAN
  1827. elif pooling["pooling_mode_cls_token"]:
  1828. pooling_type = gguf.PoolingType.CLS
  1829. else:
  1830. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1831. self.gguf_writer.add_pooling_type(pooling_type)
  1832. def set_vocab(self):
  1833. tokens, toktypes, tokpre = self.get_vocab_base()
  1834. self.vocab_size = len(tokens)
  1835. # we need this to validate the size of the token_type embeddings
  1836. # though currently we are passing all zeros to the token_type embeddings
  1837. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  1838. # convert to phantom space vocab
  1839. def phantom(tok):
  1840. if tok.startswith("[") and tok.endswith("]"):
  1841. return tok
  1842. if tok.startswith("##"):
  1843. return tok[2:]
  1844. return "\u2581" + tok
  1845. tokens = list(map(phantom, tokens))
  1846. # add vocab to gguf
  1847. self.gguf_writer.add_tokenizer_model("bert")
  1848. self.gguf_writer.add_tokenizer_pre(tokpre)
  1849. self.gguf_writer.add_token_list(tokens)
  1850. self.gguf_writer.add_token_types(toktypes)
  1851. # handle special tokens
  1852. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1853. special_vocab.add_to_gguf(self.gguf_writer)
  1854. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1855. del bid # unused
  1856. # we are only using BERT for embeddings so we don't need the pooling layer
  1857. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  1858. return [] # we don't need these
  1859. return [(self.map_tensor_name(name), data_torch)]
  1860. @Model.register("NomicBertModel")
  1861. class NomicBertModel(BertModel):
  1862. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  1863. def __init__(self, *args, **kwargs):
  1864. super().__init__(*args, **kwargs)
  1865. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  1866. self.hparams["n_ctx"] = 2048
  1867. # SwigLU activation
  1868. assert self.hparams["activation_function"] == "swiglu"
  1869. # this doesn't do anything in the HF version
  1870. assert self.hparams["causal"] is False
  1871. # no bias tensors
  1872. assert self.hparams["qkv_proj_bias"] is False
  1873. assert self.hparams["mlp_fc1_bias"] is False
  1874. assert self.hparams["mlp_fc2_bias"] is False
  1875. # norm at end of layer
  1876. assert self.hparams["prenorm"] is False
  1877. # standard RoPE
  1878. assert self.hparams["rotary_emb_fraction"] == 1.0
  1879. assert self.hparams["rotary_emb_interleaved"] is False
  1880. assert self.hparams["rotary_emb_scale_base"] is None
  1881. def set_gguf_parameters(self):
  1882. super().set_gguf_parameters()
  1883. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1884. @Model.register("GemmaForCausalLM")
  1885. class GemmaModel(Model):
  1886. model_arch = gguf.MODEL_ARCH.GEMMA
  1887. def set_vocab(self):
  1888. self._set_vocab_sentencepiece()
  1889. # TODO: these special tokens should be exported only for the CodeGemma family
  1890. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1891. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  1892. special_vocab._set_special_token("prefix", 67)
  1893. special_vocab._set_special_token("suffix", 69)
  1894. special_vocab._set_special_token("middle", 68)
  1895. special_vocab._set_special_token("fsep", 70)
  1896. special_vocab._set_special_token("eot", 107)
  1897. special_vocab.add_to_gguf(self.gguf_writer)
  1898. self.gguf_writer.add_add_space_prefix(False)
  1899. def set_gguf_parameters(self):
  1900. hparams = self.hparams
  1901. block_count = hparams["num_hidden_layers"]
  1902. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  1903. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1904. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1905. self.gguf_writer.add_block_count(block_count)
  1906. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1907. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1908. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  1909. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1910. self.gguf_writer.add_key_length(hparams["head_dim"])
  1911. self.gguf_writer.add_value_length(hparams["head_dim"])
  1912. self.gguf_writer.add_file_type(self.ftype)
  1913. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1914. del bid # unused
  1915. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  1916. # To prevent errors, skip loading lm_head.weight.
  1917. if name == "lm_head.weight":
  1918. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  1919. return []
  1920. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  1921. if name.endswith("norm.weight"):
  1922. data_torch = data_torch + 1
  1923. return [(self.map_tensor_name(name), data_torch)]
  1924. @Model.register("Gemma2ForCausalLM")
  1925. class Gemma2Model(Model):
  1926. model_arch = gguf.MODEL_ARCH.GEMMA2
  1927. def set_vocab(self):
  1928. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  1929. # hack: This is required so that we can properly use start/end-of-turn for chat template
  1930. for i in range(108):
  1931. # including <unusedX>, <start_of_turn>, <end_of_turn>
  1932. toktypes[i] = SentencePieceTokenTypes.CONTROL
  1933. self.gguf_writer.add_tokenizer_model("llama")
  1934. self.gguf_writer.add_tokenizer_pre("default")
  1935. self.gguf_writer.add_token_list(tokens)
  1936. self.gguf_writer.add_token_scores(scores)
  1937. self.gguf_writer.add_token_types(toktypes)
  1938. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1939. special_vocab.add_to_gguf(self.gguf_writer)
  1940. self.gguf_writer.add_add_space_prefix(False)
  1941. def set_gguf_parameters(self):
  1942. hparams = self.hparams
  1943. block_count = hparams["num_hidden_layers"]
  1944. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  1945. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1946. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1947. self.gguf_writer.add_block_count(block_count)
  1948. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1949. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1950. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  1951. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1952. self.gguf_writer.add_key_length(hparams["head_dim"])
  1953. self.gguf_writer.add_value_length(hparams["head_dim"])
  1954. self.gguf_writer.add_file_type(self.ftype)
  1955. self.gguf_writer.add_attn_logit_softcapping(
  1956. self.hparams["attn_logit_softcapping"]
  1957. )
  1958. self.gguf_writer.add_final_logit_softcapping(
  1959. self.hparams["final_logit_softcapping"]
  1960. )
  1961. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  1962. # sanity check
  1963. attn_scalar = self.hparams["query_pre_attn_scalar"]
  1964. if attn_scalar != hparams["hidden_size"] / hparams["num_attention_heads"]:
  1965. raise ValueError("query_pre_attn_scalar must be equal to n_embd / n_head")
  1966. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1967. del bid # unused
  1968. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  1969. # To prevent errors, skip loading lm_head.weight.
  1970. if name == "lm_head.weight":
  1971. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  1972. return []
  1973. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  1974. if name.endswith("norm.weight"):
  1975. data_torch = data_torch + 1
  1976. return [(self.map_tensor_name(name), data_torch)]
  1977. @Model.register("Starcoder2ForCausalLM")
  1978. class StarCoder2Model(Model):
  1979. model_arch = gguf.MODEL_ARCH.STARCODER2
  1980. @Model.register("MambaForCausalLM", "MambaLMHeadModel")
  1981. class MambaModel(Model):
  1982. model_arch = gguf.MODEL_ARCH.MAMBA
  1983. def set_vocab(self):
  1984. vocab_size = self.hparams["vocab_size"]
  1985. # Round vocab size to next multiple of 8
  1986. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  1987. # pad using ceiling division
  1988. # ref: https://stackoverflow.com/a/17511341/22827863
  1989. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  1990. self.hparams["vocab_size"] = vocab_size
  1991. if (self.dir_model / "tokenizer.json").is_file():
  1992. self._set_vocab_gpt2()
  1993. elif (self.dir_model / "tokenizer.model").is_file():
  1994. self._set_vocab_sentencepiece()
  1995. else:
  1996. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  1997. self._set_vocab_builtin("gpt-neox", vocab_size)
  1998. def set_gguf_parameters(self):
  1999. d_model = self.find_hparam(["hidden_size", "d_model"])
  2000. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  2001. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  2002. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  2003. # ceiling division
  2004. # ref: https://stackoverflow.com/a/17511341/22827863
  2005. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  2006. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  2007. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  2008. # Fail early for models which don't have a block expansion factor of 2
  2009. assert d_inner == 2 * d_model
  2010. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  2011. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  2012. self.gguf_writer.add_embedding_length(d_model)
  2013. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  2014. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  2015. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2016. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  2017. self.gguf_writer.add_ssm_inner_size(d_inner)
  2018. self.gguf_writer.add_ssm_state_size(d_state)
  2019. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  2020. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2021. self.gguf_writer.add_file_type(self.ftype)
  2022. _tok_embd = None
  2023. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2024. del bid # unused
  2025. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2026. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2027. new_name = self.map_tensor_name(name)
  2028. if name.endswith(".A_log"):
  2029. logger.debug("A_log --> A ==> " + new_name)
  2030. data_torch = -torch.exp(data_torch)
  2031. # assuming token_embd.weight is seen before output.weight
  2032. if self._tok_embd is not None and new_name == output_name:
  2033. if torch.equal(self._tok_embd, data_torch):
  2034. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  2035. return []
  2036. elif new_name == tok_embd_name:
  2037. self._tok_embd = data_torch
  2038. return [(new_name, data_torch)]
  2039. def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  2040. del n_dims # unused
  2041. return bid is not None and new_name in (
  2042. self.format_tensor_name(n, bid, ".weight" if name.endswith(".weight") else "") for n in [
  2043. gguf.MODEL_TENSOR.SSM_CONV1D,
  2044. gguf.MODEL_TENSOR.SSM_X,
  2045. gguf.MODEL_TENSOR.SSM_DT,
  2046. gguf.MODEL_TENSOR.SSM_A,
  2047. gguf.MODEL_TENSOR.SSM_D,
  2048. ]
  2049. )
  2050. @Model.register("CohereForCausalLM")
  2051. class CommandR2Model(Model):
  2052. model_arch = gguf.MODEL_ARCH.COMMAND_R
  2053. def __init__(self, *args, **kwargs):
  2054. super().__init__(*args, **kwargs)
  2055. # max_position_embeddings = 8192 in config.json but model was actually
  2056. # trained on 128k context length
  2057. # aya-23 models don't have model_max_length specified
  2058. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  2059. def set_gguf_parameters(self):
  2060. super().set_gguf_parameters()
  2061. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2062. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2063. @Model.register("OlmoForCausalLM")
  2064. @Model.register("OLMoForCausalLM")
  2065. class OlmoModel(Model):
  2066. model_arch = gguf.MODEL_ARCH.OLMO
  2067. def set_gguf_parameters(self):
  2068. super().set_gguf_parameters()
  2069. self.gguf_writer.add_layer_norm_eps(1e-5)
  2070. clip_qkv = self.hparams.get("clip_qkv")
  2071. if clip_qkv is not None:
  2072. self.gguf_writer.add_clamp_kqv(clip_qkv)
  2073. # Same as super class, but permuting q_proj, k_proj
  2074. # Copied from: LlamaModel
  2075. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2076. del bid # unused
  2077. n_head = self.hparams["num_attention_heads"]
  2078. n_kv_head = self.hparams.get("num_key_value_heads")
  2079. if name.endswith("q_proj.weight"):
  2080. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2081. if name.endswith("k_proj.weight"):
  2082. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2083. return [(self.map_tensor_name(name), data_torch)]
  2084. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  2085. class JinaBertV2Model(BertModel):
  2086. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  2087. def __init__(self, *args, **kwargs):
  2088. super().__init__(*args, **kwargs)
  2089. self.intermediate_size = self.hparams["intermediate_size"]
  2090. def get_tensors(self):
  2091. for name, data in super().get_tensors():
  2092. if 'gated_layer' in name:
  2093. d1 = data[:self.intermediate_size, :]
  2094. name1 = name.replace('gated_layers', 'gated_layers_w')
  2095. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  2096. d2 = data[self.intermediate_size:, :]
  2097. name2 = name.replace('gated_layers', 'gated_layers_v')
  2098. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  2099. yield name1, d1
  2100. yield name2, d2
  2101. continue
  2102. yield name, data
  2103. def set_vocab(self, *args, **kwargs):
  2104. tokenizer_class = 'BertTokenizer'
  2105. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  2106. tokenizer_class = json.load(f)['tokenizer_class']
  2107. if tokenizer_class == 'BertTokenizer':
  2108. super().set_vocab()
  2109. elif tokenizer_class == 'RobertaTokenizer':
  2110. self._set_vocab_gpt2()
  2111. self.gguf_writer.add_token_type_count(2)
  2112. else:
  2113. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  2114. self.gguf_writer.add_add_bos_token(True)
  2115. self.gguf_writer.add_add_eos_token(True)
  2116. @Model.register("OpenELMForCausalLM")
  2117. class OpenELMModel(Model):
  2118. model_arch = gguf.MODEL_ARCH.OPENELM
  2119. @staticmethod
  2120. def _make_divisible(v: float | int, divisor: int) -> int:
  2121. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  2122. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  2123. # Make sure that round down does not go down by more than 10%.
  2124. if new_v < 0.9 * v:
  2125. new_v += divisor
  2126. return new_v
  2127. def __init__(self, *args, **kwargs):
  2128. super().__init__(*args, **kwargs)
  2129. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  2130. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  2131. self._n_embd: int = self.hparams["model_dim"]
  2132. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  2133. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  2134. self._ffn_dims: list[int] = [
  2135. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  2136. for multiplier in ffn_multipliers
  2137. ]
  2138. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2139. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  2140. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  2141. def set_vocab(self):
  2142. try:
  2143. self._set_vocab_sentencepiece()
  2144. except FileNotFoundError:
  2145. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  2146. def set_gguf_parameters(self):
  2147. n_embd = self._n_embd
  2148. head_dim = self.hparams["head_dim"]
  2149. rot_pct = 1.0
  2150. assert self.block_count == len(self._num_kv_heads)
  2151. assert self.block_count == len(self._num_query_heads)
  2152. assert self.block_count == len(self._ffn_dims)
  2153. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  2154. self.gguf_writer.add_block_count(self.block_count)
  2155. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  2156. self.gguf_writer.add_embedding_length(n_embd)
  2157. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2158. self.gguf_writer.add_head_count(self._num_query_heads)
  2159. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2160. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  2161. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  2162. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  2163. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  2164. self.gguf_writer.add_key_length(head_dim)
  2165. self.gguf_writer.add_value_length(head_dim)
  2166. self.gguf_writer.add_file_type(self.ftype)
  2167. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  2168. if "n_layers" in keys:
  2169. return self.hparams["num_transformer_layers"]
  2170. return super().find_hparam(keys, optional)
  2171. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2172. # split ff
  2173. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  2174. ff_dim = self._ffn_dims[bid]
  2175. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  2176. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  2177. return
  2178. yield (self.map_tensor_name(name), data_torch)
  2179. @Model.register("ArcticForCausalLM")
  2180. class ArcticModel(Model):
  2181. model_arch = gguf.MODEL_ARCH.ARCTIC
  2182. def set_vocab(self):
  2183. # The reason for using a custom implementation here is that the
  2184. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  2185. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  2186. from sentencepiece import SentencePieceProcessor
  2187. tokenizer_path = self.dir_model / 'tokenizer.model'
  2188. if not tokenizer_path.is_file():
  2189. logger.error(f'Error: Missing {tokenizer_path}')
  2190. sys.exit(1)
  2191. # Read the whole vocabulary from the tokenizer.model file
  2192. tokenizer = SentencePieceProcessor()
  2193. tokenizer.LoadFromFile(str(tokenizer_path))
  2194. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2195. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2196. scores: list[float] = [-10000.0] * vocab_size
  2197. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  2198. for token_id in range(tokenizer.vocab_size()):
  2199. piece = tokenizer.IdToPiece(token_id)
  2200. text = piece.encode("utf-8")
  2201. score = tokenizer.GetScore(token_id)
  2202. toktype = SentencePieceTokenTypes.NORMAL
  2203. if tokenizer.IsUnknown(token_id):
  2204. toktype = SentencePieceTokenTypes.UNKNOWN
  2205. elif tokenizer.IsControl(token_id):
  2206. toktype = SentencePieceTokenTypes.CONTROL
  2207. elif tokenizer.IsUnused(token_id):
  2208. toktype = SentencePieceTokenTypes.UNUSED
  2209. elif tokenizer.IsByte(token_id):
  2210. toktype = SentencePieceTokenTypes.BYTE
  2211. tokens[token_id] = text
  2212. scores[token_id] = score
  2213. toktypes[token_id] = toktype
  2214. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  2215. # of information about added/redefined tokens and modify them accordingly.
  2216. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2217. if tokenizer_config_file.is_file():
  2218. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2219. tokenizer_config_json = json.load(f)
  2220. if "added_tokens_decoder" in tokenizer_config_json:
  2221. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  2222. for token_id, token_json in added_tokens_decoder.items():
  2223. token_id = int(token_id)
  2224. if (token_id >= vocab_size):
  2225. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2226. continue
  2227. token_content = token_json["content"]
  2228. token_type = SentencePieceTokenTypes.USER_DEFINED
  2229. token_score = -10000.0
  2230. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  2231. # Set the score to 0.0 as in the original tokenizer.model
  2232. if ("special" in token_json) and token_json["special"]:
  2233. if token_content == tokenizer_config_json["unk_token"]:
  2234. token_type = SentencePieceTokenTypes.UNKNOWN
  2235. else:
  2236. token_type = SentencePieceTokenTypes.CONTROL
  2237. token_score = 0.0
  2238. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  2239. tokens[token_id] = token_content.encode("utf-8")
  2240. toktypes[token_id] = token_type
  2241. scores[token_id] = token_score
  2242. self.gguf_writer.add_tokenizer_model("llama")
  2243. self.gguf_writer.add_tokenizer_pre("default")
  2244. self.gguf_writer.add_token_list(tokens)
  2245. self.gguf_writer.add_token_scores(scores)
  2246. self.gguf_writer.add_token_types(toktypes)
  2247. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2248. special_vocab.add_to_gguf(self.gguf_writer)
  2249. def set_gguf_parameters(self):
  2250. super().set_gguf_parameters()
  2251. hparams = self.hparams
  2252. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2253. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  2254. _experts: list[dict[str, Tensor]] | None = None
  2255. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2256. n_head = self.hparams["num_attention_heads"]
  2257. n_kv_head = self.hparams.get("num_key_value_heads")
  2258. if name.endswith("q_proj.weight"):
  2259. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2260. if name.endswith("k_proj.weight"):
  2261. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2262. # process the experts separately
  2263. if name.find("block_sparse_moe.experts") != -1:
  2264. n_experts = self.hparams["num_local_experts"]
  2265. assert bid is not None
  2266. if self._experts is None:
  2267. self._experts = [{} for _ in range(self.block_count)]
  2268. self._experts[bid][name] = data_torch
  2269. if len(self._experts[bid]) >= n_experts * 3:
  2270. tensors: list[tuple[str, Tensor]] = []
  2271. # merge the experts into a single 3d tensor
  2272. for wid in ["w1", "w2", "w3"]:
  2273. datas: list[Tensor] = []
  2274. for xid in range(n_experts):
  2275. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2276. datas.append(self._experts[bid][ename])
  2277. del self._experts[bid][ename]
  2278. data_torch = torch.stack(datas, dim=0)
  2279. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2280. new_name = self.map_tensor_name(merged_name)
  2281. tensors.append((new_name, data_torch))
  2282. return tensors
  2283. else:
  2284. return []
  2285. return [(self.map_tensor_name(name), data_torch)]
  2286. def write_tensors(self):
  2287. super().write_tensors()
  2288. if self._experts is not None:
  2289. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2290. experts = [k for d in self._experts for k in d.keys()]
  2291. if len(experts) > 0:
  2292. raise ValueError(f"Unprocessed experts: {experts}")
  2293. @Model.register("DeepseekV2ForCausalLM")
  2294. class DeepseekV2Model(Model):
  2295. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  2296. def set_vocab(self):
  2297. self._set_vocab_gpt2()
  2298. def set_gguf_parameters(self):
  2299. super().set_gguf_parameters()
  2300. hparams = self.hparams
  2301. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  2302. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2303. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2304. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2305. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2306. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2307. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  2308. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  2309. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  2310. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  2311. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  2312. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2313. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2314. if self.hparams["rope_scaling"].get("type") == "yarn":
  2315. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2316. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2317. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  2318. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  2319. _experts: list[dict[str, Tensor]] | None = None
  2320. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2321. # process the experts separately
  2322. if name.find("mlp.experts") != -1:
  2323. n_experts = self.hparams["n_routed_experts"]
  2324. assert bid is not None
  2325. if self._experts is None:
  2326. self._experts = [{} for _ in range(self.block_count)]
  2327. self._experts[bid][name] = data_torch
  2328. if len(self._experts[bid]) >= n_experts * 3:
  2329. tensors: list[tuple[str, Tensor]] = []
  2330. # merge the experts into a single 3d tensor
  2331. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2332. datas: list[Tensor] = []
  2333. for xid in range(n_experts):
  2334. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2335. datas.append(self._experts[bid][ename])
  2336. del self._experts[bid][ename]
  2337. data_torch = torch.stack(datas, dim=0)
  2338. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2339. new_name = self.map_tensor_name(merged_name)
  2340. tensors.append((new_name, data_torch))
  2341. return tensors
  2342. else:
  2343. return []
  2344. return [(self.map_tensor_name(name), data_torch)]
  2345. def write_tensors(self):
  2346. super().write_tensors()
  2347. if self._experts is not None:
  2348. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2349. experts = [k for d in self._experts for k in d.keys()]
  2350. if len(experts) > 0:
  2351. raise ValueError(f"Unprocessed experts: {experts}")
  2352. @Model.register("T5WithLMHeadModel")
  2353. @Model.register("T5ForConditionalGeneration")
  2354. @Model.register("MT5ForConditionalGeneration")
  2355. @Model.register("UMT5ForConditionalGeneration")
  2356. class T5Model(Model):
  2357. model_arch = gguf.MODEL_ARCH.T5
  2358. def __init__(self, *args, **kwargs):
  2359. super().__init__(*args, **kwargs)
  2360. self.shared_token_embeddings_found = False
  2361. def set_vocab(self):
  2362. # to avoid TypeError: Descriptors cannot be created directly
  2363. # exception when importing sentencepiece_model_pb2
  2364. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2365. from sentencepiece import SentencePieceProcessor
  2366. from sentencepiece import sentencepiece_model_pb2 as model
  2367. tokenizer_path = self.dir_model / 'tokenizer.model'
  2368. # many older models use spiece.model tokenizer model filename
  2369. if not tokenizer_path.is_file():
  2370. tokenizer_path = self.dir_model / 'spiece.model'
  2371. if not tokenizer_path.is_file():
  2372. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2373. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2374. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2375. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  2376. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  2377. # assure the tokenizer model file name is correct
  2378. assert tokenizer_path.name == 'tokenizer.model'
  2379. return self._set_vocab_sentencepiece()
  2380. else:
  2381. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2382. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2383. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2384. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2385. tokenizer = SentencePieceProcessor()
  2386. tokenizer.LoadFromFile(str(tokenizer_path))
  2387. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2388. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2389. scores: list[float] = [-10000.0] * vocab_size
  2390. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  2391. for token_id in range(tokenizer.vocab_size()):
  2392. piece = tokenizer.IdToPiece(token_id)
  2393. text = piece.encode("utf-8")
  2394. score = tokenizer.GetScore(token_id)
  2395. toktype = SentencePieceTokenTypes.NORMAL
  2396. if tokenizer.IsUnknown(token_id):
  2397. toktype = SentencePieceTokenTypes.UNKNOWN
  2398. elif tokenizer.IsControl(token_id):
  2399. toktype = SentencePieceTokenTypes.CONTROL
  2400. elif tokenizer.IsUnused(token_id):
  2401. toktype = SentencePieceTokenTypes.UNUSED
  2402. elif tokenizer.IsByte(token_id):
  2403. toktype = SentencePieceTokenTypes.BYTE
  2404. tokens[token_id] = text
  2405. scores[token_id] = score
  2406. toktypes[token_id] = toktype
  2407. added_tokens_file = self.dir_model / 'added_tokens.json'
  2408. if added_tokens_file.is_file():
  2409. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2410. added_tokens_json = json.load(f)
  2411. for key in added_tokens_json:
  2412. token_id = added_tokens_json[key]
  2413. if (token_id >= vocab_size):
  2414. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2415. continue
  2416. tokens[token_id] = key.encode("utf-8")
  2417. scores[token_id] = -1000.0
  2418. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2419. if vocab_size > len(tokens):
  2420. pad_count = vocab_size - len(tokens)
  2421. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2422. for i in range(1, pad_count + 1):
  2423. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2424. scores.append(-1000.0)
  2425. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2426. self.gguf_writer.add_tokenizer_model("t5")
  2427. self.gguf_writer.add_tokenizer_pre("default")
  2428. self.gguf_writer.add_token_list(tokens)
  2429. self.gguf_writer.add_token_scores(scores)
  2430. self.gguf_writer.add_token_types(toktypes)
  2431. self.gguf_writer.add_add_space_prefix(add_prefix)
  2432. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2433. if precompiled_charsmap:
  2434. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2435. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2436. special_vocab.add_to_gguf(self.gguf_writer)
  2437. self.gguf_writer.add_add_bos_token(False)
  2438. self.gguf_writer.add_add_eos_token(True)
  2439. def set_gguf_parameters(self):
  2440. self.gguf_writer.add_name("T5")
  2441. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  2442. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  2443. n_ctx = 512
  2444. self.gguf_writer.add_context_length(n_ctx)
  2445. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2446. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  2447. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2448. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  2449. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  2450. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  2451. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2452. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  2453. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2454. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  2455. self.gguf_writer.add_file_type(self.ftype)
  2456. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2457. del bid # unused
  2458. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  2459. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  2460. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  2461. # and decoder and ignore the remaining ones.
  2462. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  2463. if not self.shared_token_embeddings_found:
  2464. name = "shared.weight"
  2465. self.shared_token_embeddings_found = True
  2466. else:
  2467. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  2468. return []
  2469. return [(self.map_tensor_name(name), data_torch)]
  2470. @Model.register("JAISLMHeadModel")
  2471. class JaisModel(Model):
  2472. model_arch = gguf.MODEL_ARCH.JAIS
  2473. def __init__(self, *args, **kwargs):
  2474. super().__init__(*args, **kwargs)
  2475. # SwigLU activation
  2476. assert self.hparams["activation_function"] == "swiglu"
  2477. # ALiBi position embedding
  2478. assert self.hparams["position_embedding_type"] == "alibi"
  2479. # Embeddings scale
  2480. self.embeddings_scale = 1.0
  2481. # note: For some JAIS flavors, output is tied to (same as) wte in original model
  2482. self.output_is_wte = False
  2483. if 'mup_embeddings_scale' in self.hparams:
  2484. self.output_is_wte = True # Hack (?)
  2485. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  2486. elif 'embeddings_scale' in self.hparams:
  2487. self.embeddings_scale = self.hparams['embeddings_scale']
  2488. else:
  2489. assert False
  2490. self.width_scale = 1.0
  2491. if 'mup_output_alpha' in self.hparams:
  2492. assert 'mup_width_scale' in self.hparams
  2493. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  2494. elif 'width_scale' in self.hparams:
  2495. self.width_scale = self.hparams['width_scale']
  2496. else:
  2497. assert False
  2498. self.max_alibi_bias = 8.0
  2499. def set_vocab(self):
  2500. self._set_vocab_gpt2()
  2501. def set_gguf_parameters(self):
  2502. self.gguf_writer.add_name(self.dir_model.name)
  2503. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2504. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2505. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2506. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  2507. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2508. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2509. self.gguf_writer.add_file_type(self.ftype)
  2510. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2511. del bid # unused
  2512. tensors: list[tuple[str, Tensor]] = []
  2513. # we don't need these
  2514. if name.endswith((".attn.bias")):
  2515. return tensors
  2516. if name.endswith(("relative_pe.slopes")):
  2517. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  2518. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  2519. # but Jais's PyTorch model simply precalculates the slope values and places them
  2520. # in relative_pes.slopes
  2521. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  2522. first_val = float(data_torch[0].item())
  2523. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  2524. return tensors
  2525. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  2526. data_torch = data_torch.transpose(1, 0)
  2527. new_name = self.map_tensor_name(name)
  2528. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  2529. tensors.append((new_name, data_torch * self.embeddings_scale))
  2530. if self.output_is_wte:
  2531. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch * self.width_scale))
  2532. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2533. assert not self.output_is_wte
  2534. tensors.append((new_name, data_torch * self.width_scale))
  2535. else:
  2536. tensors.append((new_name, data_torch))
  2537. return tensors
  2538. def write_tensors(self):
  2539. super().write_tensors()
  2540. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  2541. @Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration")
  2542. class ChatGLMModel(Model):
  2543. model_arch = gguf.MODEL_ARCH.CHATGLM
  2544. def set_vocab_chatglm3(self):
  2545. dir_model = self.dir_model
  2546. hparams = self.hparams
  2547. tokens: list[bytes] = []
  2548. toktypes: list[int] = []
  2549. scores: list[float] = []
  2550. from transformers import AutoTokenizer
  2551. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  2552. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  2553. assert max(tokenizer.get_vocab().values()) < vocab_size
  2554. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  2555. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  2556. for token_id in range(vocab_size):
  2557. piece = tokenizer._convert_id_to_token(token_id)
  2558. if token_id == 0:
  2559. piece = "<unk>"
  2560. elif token_id == 1:
  2561. piece = "<bos>"
  2562. elif token_id == 2:
  2563. piece = "<eos>"
  2564. text = piece.encode("utf-8")
  2565. score = 0.0
  2566. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  2567. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  2568. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  2569. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  2570. if len(piece) == 0:
  2571. text = f"[PAD{token_id}]".encode("utf-8")
  2572. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  2573. if piece in special_tokens:
  2574. # show special tokens in prompt
  2575. toktype = SentencePieceTokenTypes.USER_DEFINED
  2576. else:
  2577. toktype = SentencePieceTokenTypes.UNKNOWN
  2578. tokens.append(text)
  2579. scores.append(score)
  2580. toktypes.append(toktype)
  2581. continue
  2582. toktype = SentencePieceTokenTypes.NORMAL
  2583. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  2584. toktype = SentencePieceTokenTypes.UNKNOWN
  2585. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  2586. toktype = SentencePieceTokenTypes.CONTROL
  2587. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  2588. toktype = SentencePieceTokenTypes.UNUSED
  2589. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  2590. toktype = SentencePieceTokenTypes.BYTE
  2591. tokens.append(text)
  2592. scores.append(score)
  2593. toktypes.append(toktype)
  2594. self.gguf_writer.add_tokenizer_model("llama")
  2595. # glm3 needs prefix and suffix formatted as:
  2596. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  2597. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  2598. self.gguf_writer.add_token_list(tokens)
  2599. self.gguf_writer.add_token_scores(scores)
  2600. self.gguf_writer.add_token_types(toktypes)
  2601. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2602. special_vocab.add_to_gguf(self.gguf_writer)
  2603. @staticmethod
  2604. def token_bytes_to_string(b):
  2605. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2606. byte_encoder = bytes_to_unicode()
  2607. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2608. @staticmethod
  2609. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2610. parts = [bytes([b]) for b in token]
  2611. while True:
  2612. min_idx = None
  2613. min_rank = None
  2614. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2615. rank = mergeable_ranks.get(pair[0] + pair[1])
  2616. if rank is not None and (min_rank is None or rank < min_rank):
  2617. min_idx = i
  2618. min_rank = rank
  2619. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2620. break
  2621. assert min_idx is not None
  2622. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2623. return parts
  2624. def set_vocab(self):
  2625. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  2626. self.set_vocab_chatglm3()
  2627. return
  2628. dir_model = self.dir_model
  2629. hparams = self.hparams
  2630. tokens: list[str] = []
  2631. toktypes: list[int] = []
  2632. from transformers import AutoTokenizer
  2633. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  2634. vocab_size = hparams["padded_vocab_size"]
  2635. assert max(tokenizer.get_vocab().values()) < vocab_size
  2636. tokpre = self.get_vocab_base_pre(tokenizer)
  2637. merges = []
  2638. vocab = {}
  2639. mergeable_ranks = tokenizer.mergeable_ranks
  2640. for token, rank in mergeable_ranks.items():
  2641. vocab[ChatGLMModel.token_bytes_to_string(token)] = rank
  2642. if len(token) == 1:
  2643. continue
  2644. merged = ChatGLMModel.bpe(mergeable_ranks, token, max_rank=rank)
  2645. assert len(merged) >= 2 and len(merged) <= 7
  2646. merges.append(' '.join(map(ChatGLMModel.token_bytes_to_string, merged)))
  2647. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  2648. added_vocab = tokenizer.get_added_vocab()
  2649. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  2650. for i in range(vocab_size):
  2651. if i not in reverse_vocab:
  2652. tokens.append(f"[PAD{i}]")
  2653. toktypes.append(gguf.TokenType.USER_DEFINED)
  2654. elif reverse_vocab[i] in added_vocab:
  2655. tokens.append(reverse_vocab[i])
  2656. if tokenizer.added_tokens_decoder[i].special:
  2657. toktypes.append(gguf.TokenType.CONTROL)
  2658. else:
  2659. toktypes.append(gguf.TokenType.USER_DEFINED)
  2660. else:
  2661. tokens.append(reverse_vocab[i])
  2662. toktypes.append(gguf.TokenType.NORMAL)
  2663. self.gguf_writer.add_tokenizer_model("gpt2")
  2664. self.gguf_writer.add_tokenizer_pre(tokpre)
  2665. self.gguf_writer.add_token_list(tokens)
  2666. self.gguf_writer.add_token_types(toktypes)
  2667. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  2668. special_vocab.merges = merges
  2669. # only add special tokens when they were not already loaded from config.json
  2670. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  2671. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  2672. # this one is usually not in config.json anyway
  2673. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  2674. special_vocab.add_to_gguf(self.gguf_writer)
  2675. def set_gguf_parameters(self):
  2676. self.gguf_writer.add_name(self.hparams["_name_or_path"].split("/")[1]) # THUDM/glm4-9b-chat or THUDM/chatglm3-6b
  2677. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  2678. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  2679. n_head_kv = self.hparams.get("multi_query_group_num", n_head)
  2680. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  2681. self.gguf_writer.add_embedding_length(n_embed)
  2682. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", 4 * n_embed))
  2683. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2684. self.gguf_writer.add_head_count(n_head)
  2685. self.gguf_writer.add_head_count_kv(n_head_kv)
  2686. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layernorm_epsilon"])
  2687. self.gguf_writer.add_file_type(self.ftype)
  2688. self.gguf_writer.add_rope_dimension_count(64)
  2689. self.gguf_writer.add_add_bos_token(False)
  2690. rope_freq = 10000
  2691. if "rope_ratio" in self.hparams:
  2692. rope_freq = rope_freq * self.hparams["rope_ratio"]
  2693. self.gguf_writer.add_rope_freq_base(rope_freq)
  2694. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2695. del bid # unused
  2696. if name.endswith(".rotary_pos_emb.inv_freq"):
  2697. return []
  2698. name = name.removeprefix("transformer.")
  2699. return [(self.map_tensor_name(name), data_torch)]
  2700. ###### CONVERSION LOGIC ######
  2701. # tree of lazy tensors
  2702. class LazyTorchTensor(gguf.LazyBase):
  2703. _tensor_type = torch.Tensor
  2704. # to keep the type-checker happy
  2705. dtype: torch.dtype
  2706. shape: torch.Size
  2707. # only used when converting a torch.Tensor to a np.ndarray
  2708. _dtype_map: dict[torch.dtype, type] = {
  2709. torch.float16: np.float16,
  2710. torch.float32: np.float32,
  2711. }
  2712. def numpy(self) -> gguf.LazyNumpyTensor:
  2713. dtype = self._dtype_map[self.dtype]
  2714. return gguf.LazyNumpyTensor(
  2715. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  2716. lazy=self._lazy,
  2717. args=(self,),
  2718. func=(lambda s: s[0].numpy())
  2719. )
  2720. @classmethod
  2721. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: torch.Size) -> Tensor:
  2722. return torch.empty(size=shape, dtype=dtype, device="meta")
  2723. @classmethod
  2724. def __torch_function__(cls, func, types, args=(), kwargs=None):
  2725. del types # unused
  2726. if kwargs is None:
  2727. kwargs = {}
  2728. if func is torch.Tensor.numpy:
  2729. return args[0].numpy()
  2730. return LazyTorchTensor._wrap_fn(func)(*args, **kwargs)
  2731. def parse_args() -> argparse.Namespace:
  2732. parser = argparse.ArgumentParser(
  2733. description="Convert a huggingface model to a GGML compatible file")
  2734. parser.add_argument(
  2735. "--vocab-only", action="store_true",
  2736. help="extract only the vocab",
  2737. )
  2738. parser.add_argument(
  2739. "--outfile", type=Path,
  2740. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  2741. )
  2742. parser.add_argument(
  2743. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
  2744. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  2745. )
  2746. parser.add_argument(
  2747. "--bigendian", action="store_true",
  2748. help="model is executed on big endian machine",
  2749. )
  2750. parser.add_argument(
  2751. "model", type=Path,
  2752. help="directory containing model file",
  2753. )
  2754. parser.add_argument(
  2755. "--use-temp-file", action="store_true",
  2756. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  2757. )
  2758. parser.add_argument(
  2759. "--no-lazy", action="store_true",
  2760. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  2761. )
  2762. parser.add_argument(
  2763. "--model-name", type=str, default=None,
  2764. help="name of the model",
  2765. )
  2766. parser.add_argument(
  2767. "--verbose", action="store_true",
  2768. help="increase output verbosity",
  2769. )
  2770. parser.add_argument(
  2771. "--split-max-tensors", type=int, default=0,
  2772. help="max tensors in each split",
  2773. )
  2774. parser.add_argument(
  2775. "--split-max-size", type=str, default="0",
  2776. help="max size per split N(M|G)",
  2777. )
  2778. parser.add_argument(
  2779. "--dry-run", action="store_true",
  2780. help="only print out a split plan and exit, without writing any new files",
  2781. )
  2782. parser.add_argument(
  2783. "--no-tensor-first-split", action="store_true",
  2784. help="do not add tensors to the first split (disabled by default)"
  2785. )
  2786. return parser.parse_args()
  2787. def split_str_to_n_bytes(split_str: str) -> int:
  2788. if split_str.endswith("K"):
  2789. n = int(split_str[:-1]) * 1000
  2790. elif split_str.endswith("M"):
  2791. n = int(split_str[:-1]) * 1000 * 1000
  2792. elif split_str.endswith("G"):
  2793. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  2794. elif split_str.isnumeric():
  2795. n = int(split_str)
  2796. else:
  2797. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  2798. if n < 0:
  2799. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  2800. return n
  2801. def main() -> None:
  2802. args = parse_args()
  2803. logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
  2804. dir_model = args.model
  2805. if not dir_model.is_dir():
  2806. logger.error(f'Error: {args.model} is not a directory')
  2807. sys.exit(1)
  2808. ftype_map: dict[str, gguf.LlamaFileType] = {
  2809. "f32": gguf.LlamaFileType.ALL_F32,
  2810. "f16": gguf.LlamaFileType.MOSTLY_F16,
  2811. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  2812. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  2813. "auto": gguf.LlamaFileType.GUESSED,
  2814. }
  2815. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  2816. if args.use_temp_file and is_split:
  2817. logger.error("Error: Cannot use temp file when splitting")
  2818. sys.exit(1)
  2819. if args.outfile is not None:
  2820. fname_out = args.outfile
  2821. else:
  2822. # output in the same directory as the model by default
  2823. fname_out = dir_model / 'ggml-model-{ftype}.gguf'
  2824. logger.info(f"Loading model: {dir_model.name}")
  2825. hparams = Model.load_hparams(dir_model)
  2826. with torch.inference_mode():
  2827. try:
  2828. model_class = Model.from_model_architecture(hparams["architectures"][0])
  2829. except NotImplementedError:
  2830. logger.error(f"Model {hparams['architectures'][0]} is not supported")
  2831. sys.exit(1)
  2832. model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file,
  2833. args.no_lazy, args.model_name, split_max_tensors=args.split_max_tensors,
  2834. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  2835. small_first_shard=args.no_tensor_first_split)
  2836. logger.info("Set model parameters")
  2837. model_instance.set_gguf_parameters()
  2838. logger.info("Set model tokenizer")
  2839. model_instance.set_vocab()
  2840. model_instance.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  2841. if args.vocab_only:
  2842. logger.info("Exporting model vocab...")
  2843. model_instance.write_vocab()
  2844. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  2845. else:
  2846. logger.info("Exporting model...")
  2847. model_instance.write()
  2848. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  2849. logger.info(f"Model successfully exported to {out_path}")
  2850. if __name__ == '__main__':
  2851. main()