Tidak Ada Deskripsi

Diego Devesa 4da69d1abd Revert "llama : add Falcon3 support (#10864)" (#10876) 1 tahun lalu
.devops e52aba537a nix: allow to override rocm gpu targets (#10794) 1 tahun lalu
.github 7b1ec53f56 vulkan: bugfixes for small subgroup size systems + llvmpipe test (#10809) 1 tahun lalu
Sources 43ed389a3f llama : use cmake for swift build (#10525) 1 tahun lalu
ci 5c7a5aa0c3 ci: add error handling for Python venv creation in run.sh (#10608) 1 tahun lalu
cmake c37fb4cf62 Changes to CMakePresets.json to add ninja clang target on windows (#10668) 1 tahun lalu
common 644fd71b44 sampling : refactor + optimize penalties sampler (#10803) 1 tahun lalu
docs c37fb4cf62 Changes to CMakePresets.json to add ninja clang target on windows (#10668) 1 tahun lalu
examples 05c3a444b8 server : fill usage info in embeddings and rerank responses (#10852) 1 tahun lalu
ggml 081b29bd2a tests: add tests for GGUF (#10830) 1 tahun lalu
gguf-py a0974156f3 llama : add Deepseek MoE v1 & GigaChat models (#10827) 1 tahun lalu
grammars 98036d5670 fix typo of README.md (#10605) 1 tahun lalu
include 644fd71b44 sampling : refactor + optimize penalties sampler (#10803) 1 tahun lalu
media 784e11dea1 README: add graphic for matrix multiplication (#6881) 1 tahun lalu
models 784a14aa49 convert : add support for Roberta embeddings (#10695) 1 tahun lalu
pocs 7cc2d2c889 ggml : move AMX to the CPU backend (#10570) 1 tahun lalu
prompts 37c746d687 llama : add Qwen support (#4281) 2 tahun lalu
requirements 08a43d05b6 py : update transfomers version (#9694) 1 tahun lalu
scripts 5437d4aaf5 sync : ggml 1 tahun lalu
spm-headers 9f40989351 ggml : move CPU backend to a separate file (#10144) 1 tahun lalu
src 4da69d1abd Revert "llama : add Falcon3 support (#10864)" (#10876) 1 tahun lalu
tests 081b29bd2a tests: add tests for GGUF (#10830) 1 tahun lalu
.clang-format fab5d30ff6 llama : add .clang-format file (#10415) 1 tahun lalu
.clang-tidy 7cc2d2c889 ggml : move AMX to the CPU backend (#10570) 1 tahun lalu
.dockerignore ea9c32be71 ci : fix docker build number and tag name (#9638) 1 tahun lalu
.ecrc ad76569f8e common : Update stb_image.h to latest version (#9161) 1 tahun lalu
.editorconfig a71d81cf8c server : revamp chat UI with vuejs and daisyui (#10175) 1 tahun lalu
.flake8 6fbd432211 py : logging and flake8 suppression refactoring (#7081) 1 tahun lalu
.gitignore 91c36c269b server : (web ui) Various improvements, now use vite as bundler (#10599) 1 tahun lalu
.gitmodules ae8de6d50a ggml : build backends as libraries (#10256) 1 tahun lalu
.pre-commit-config.yaml a2ac89d6ef convert.py : add python logging instead of print() (#6511) 1 tahun lalu
AUTHORS dc22344088 ggml : remove redundant copyright notice + update authors 1 tahun lalu
CMakeLists.txt 1a05004743 cmake : simplify msvc charsets (#10672) 1 tahun lalu
CMakePresets.json c37fb4cf62 Changes to CMakePresets.json to add ninja clang target on windows (#10668) 1 tahun lalu
CODEOWNERS 274ec65af6 contrib : add ngxson as codeowner (#10804) 1 tahun lalu
CONTRIBUTING.md 4cb003dd8d contrib : refresh (#10593) 1 tahun lalu
LICENSE e11a8999b5 license : update copyright notice + add AUTHORS (#6405) 1 tahun lalu
Makefile ba1cb19cdd llama : add Qwen2VL support + multimodal RoPE (#10361) 1 tahun lalu
Package.swift 43ed389a3f llama : use cmake for swift build (#10525) 1 tahun lalu
README.md 4f51968aca readme : update typos (#10863) 1 tahun lalu
SECURITY.md 5c4d767ac0 chore: Fix markdown warnings (#6625) 1 tahun lalu
convert_hf_to_gguf.py 4da69d1abd Revert "llama : add Falcon3 support (#10864)" (#10876) 1 tahun lalu
convert_hf_to_gguf_update.py 4da69d1abd Revert "llama : add Falcon3 support (#10864)" (#10876) 1 tahun lalu
convert_llama_ggml_to_gguf.py ee2984bdaf py : fix wrong input type for raw_dtype in ggml to gguf scripts (#8928) 1 tahun lalu
convert_lora_to_gguf.py 7554aa4655 convert-lora : make `--base` optional (#10110) 1 tahun lalu
flake.lock cce5a90075 flake.lock: Update (#10470) 1 tahun lalu
flake.nix 9c1ba55733 build(nix): Package gguf-py (#5664) 1 tahun lalu
mypy.ini b43ebde3b0 convert : partially revert PR #4818 (#5041) 2 tahun lalu
poetry.lock b0a46993df build(python): Package scripts with pip-0517 compliance 1 tahun lalu
pyproject.toml 9c1ba55733 build(nix): Package gguf-py (#5664) 1 tahun lalu
pyrightconfig.json 511636df0c ci : reduce severity of unused Pyright ignore comments (#9697) 1 tahun lalu
requirements.txt 97bdd26eee Refactor lora adapter support (#8332) 1 tahun lalu

README.md

llama.cpp

llama

Server

Roadmap / Project status / Manifesto / ggml

Inference of Meta's LLaMA model (and others) in pure C/C++

Recent API changes

Hot topics


Description

The main goal of llama.cpp is to enable LLM inference with minimal setup and state-of-the-art performance on a wide range of hardware - locally and in the cloud.

  • Plain C/C++ implementation without any dependencies
  • Apple silicon is a first-class citizen - optimized via ARM NEON, Accelerate and Metal frameworks
  • AVX, AVX2, AVX512 and AMX support for x86 architectures
  • 1.5-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and 8-bit integer quantization for faster inference and reduced memory use
  • Custom CUDA kernels for running LLMs on NVIDIA GPUs (support for AMD GPUs via HIP and Moore Threads MTT GPUs via MUSA)
  • Vulkan and SYCL backend support
  • CPU+GPU hybrid inference to partially accelerate models larger than the total VRAM capacity

The llama.cpp project is the main playground for developing new features for the ggml library.

Models Typically finetunes of the base models below are supported as well. Instructions for adding support for new models: [HOWTO-add-model.md](docs/development/HOWTO-add-model.md) #### Text-only - [X] LLaMA 🦙 - [x] LLaMA 2 🦙🦙 - [x] LLaMA 3 🦙🦙🦙 - [X] [Mistral 7B](https://huggingface.co/mistralai/Mistral-7B-v0.1) - [x] [Mixtral MoE](https://huggingface.co/models?search=mistral-ai/Mixtral) - [x] [DBRX](https://huggingface.co/databricks/dbrx-instruct) - [X] [Falcon](https://huggingface.co/models?search=tiiuae/falcon) - [X] [Chinese LLaMA / Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca) and [Chinese LLaMA-2 / Alpaca-2](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2) - [X] [Vigogne (French)](https://github.com/bofenghuang/vigogne) - [X] [BERT](https://github.com/ggerganov/llama.cpp/pull/5423) - [X] [Koala](https://bair.berkeley.edu/blog/2023/04/03/koala/) - [X] [Baichuan 1 & 2](https://huggingface.co/models?search=baichuan-inc/Baichuan) + [derivations](https://huggingface.co/hiyouga/baichuan-7b-sft) - [X] [Aquila 1 & 2](https://huggingface.co/models?search=BAAI/Aquila) - [X] [Starcoder models](https://github.com/ggerganov/llama.cpp/pull/3187) - [X] [Refact](https://huggingface.co/smallcloudai/Refact-1_6B-fim) - [X] [MPT](https://github.com/ggerganov/llama.cpp/pull/3417) - [X] [Bloom](https://github.com/ggerganov/llama.cpp/pull/3553) - [x] [Yi models](https://huggingface.co/models?search=01-ai/Yi) - [X] [StableLM models](https://huggingface.co/stabilityai) - [x] [Deepseek models](https://huggingface.co/models?search=deepseek-ai/deepseek) - [x] [Qwen models](https://huggingface.co/models?search=Qwen/Qwen) - [x] [PLaMo-13B](https://github.com/ggerganov/llama.cpp/pull/3557) - [x] [Phi models](https://huggingface.co/models?search=microsoft/phi) - [x] [GPT-2](https://huggingface.co/gpt2) - [x] [Orion 14B](https://github.com/ggerganov/llama.cpp/pull/5118) - [x] [InternLM2](https://huggingface.co/models?search=internlm2) - [x] [CodeShell](https://github.com/WisdomShell/codeshell) - [x] [Gemma](https://ai.google.dev/gemma) - [x] [Mamba](https://github.com/state-spaces/mamba) - [x] [Grok-1](https://huggingface.co/keyfan/grok-1-hf) - [x] [Xverse](https://huggingface.co/models?search=xverse) - [x] [Command-R models](https://huggingface.co/models?search=CohereForAI/c4ai-command-r) - [x] [SEA-LION](https://huggingface.co/models?search=sea-lion) - [x] [GritLM-7B](https://huggingface.co/GritLM/GritLM-7B) + [GritLM-8x7B](https://huggingface.co/GritLM/GritLM-8x7B) - [x] [OLMo](https://allenai.org/olmo) - [x] [OLMo 2](https://allenai.org/olmo) - [x] [OLMoE](https://huggingface.co/allenai/OLMoE-1B-7B-0924) - [x] [Granite models](https://huggingface.co/collections/ibm-granite/granite-code-models-6624c5cec3) - [x] [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) + [Pythia](https://github.com/EleutherAI/pythia) - [x] [Snowflake-Arctic MoE](https://huggingface.co/collections/Snowflake/arctic-66290090ab) - [x] [Smaug](https://huggingface.co/models?search=Smaug) - [x] [Poro 34B](https://huggingface.co/LumiOpen/Poro-34B) - [x] [Bitnet b1.58 models](https://huggingface.co/1bitLLM) - [x] [Flan T5](https://huggingface.co/models?search=flan-t5) - [x] [Open Elm models](https://huggingface.co/collections/apple/openelm-instruct-models-6619ad295d) - [x] [ChatGLM3-6b](https://huggingface.co/THUDM/chatglm3-6b) + [ChatGLM4-9b](https://huggingface.co/THUDM/glm-4-9b) - [x] [SmolLM](https://huggingface.co/collections/HuggingFaceTB/smollm-6695016cad) - [x] [EXAONE-3.0-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct) - [x] [FalconMamba Models](https://huggingface.co/collections/tiiuae/falconmamba-7b-66b9a58032) - [x] [Jais](https://huggingface.co/inceptionai/jais-13b-chat) - [x] [Bielik-11B-v2.3](https://huggingface.co/collections/speakleash/bielik-11b-v23-66ee813238) - [x] [RWKV-6](https://github.com/BlinkDL/RWKV-LM) - [x] [GigaChat-20B-A3B](https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct) #### Multimodal - [x] [LLaVA 1.5 models](https://huggingface.co/collections/liuhaotian/llava-15-653aac15d9), [LLaVA 1.6 models](https://huggingface.co/collections/liuhaotian/llava-16-65b9e40155) - [x] [BakLLaVA](https://huggingface.co/models?search=SkunkworksAI/Bakllava) - [x] [Obsidian](https://huggingface.co/NousResearch/Obsidian-3B-V0.5) - [x] [ShareGPT4V](https://huggingface.co/models?search=Lin-Chen/ShareGPT4V) - [x] [MobileVLM 1.7B/3B models](https://huggingface.co/models?search=mobileVLM) - [x] [Yi-VL](https://huggingface.co/models?search=Yi-VL) - [x] [Mini CPM](https://huggingface.co/models?search=MiniCPM) - [x] [Moondream](https://huggingface.co/vikhyatk/moondream2) - [x] [Bunny](https://github.com/BAAI-DCAI/Bunny) - [x] [Qwen2-VL](https://huggingface.co/collections/Qwen/qwen2-vl-66cee74555)
Bindings - Python: [abetlen/llama-cpp-python](https://github.com/abetlen/llama-cpp-python) - Go: [go-skynet/go-llama.cpp](https://github.com/go-skynet/go-llama.cpp) - Node.js: [withcatai/node-llama-cpp](https://github.com/withcatai/node-llama-cpp) - JS/TS (llama.cpp server client): [lgrammel/modelfusion](https://modelfusion.dev/integration/model-provider/llamacpp) - JS/TS (Programmable Prompt Engine CLI): [offline-ai/cli](https://github.com/offline-ai/cli) - JavaScript/Wasm (works in browser): [tangledgroup/llama-cpp-wasm](https://github.com/tangledgroup/llama-cpp-wasm) - Typescript/Wasm (nicer API, available on npm): [ngxson/wllama](https://github.com/ngxson/wllama) - Ruby: [yoshoku/llama_cpp.rb](https://github.com/yoshoku/llama_cpp.rb) - Rust (more features): [edgenai/llama_cpp-rs](https://github.com/edgenai/llama_cpp-rs) - Rust (nicer API): [mdrokz/rust-llama.cpp](https://github.com/mdrokz/rust-llama.cpp) - Rust (more direct bindings): [utilityai/llama-cpp-rs](https://github.com/utilityai/llama-cpp-rs) - C#/.NET: [SciSharp/LLamaSharp](https://github.com/SciSharp/LLamaSharp) - C#/VB.NET (more features - community license): [LM-Kit.NET](https://docs.lm-kit.com/lm-kit-net/index.html) - Scala 3: [donderom/llm4s](https://github.com/donderom/llm4s) - Clojure: [phronmophobic/llama.clj](https://github.com/phronmophobic/llama.clj) - React Native: [mybigday/llama.rn](https://github.com/mybigday/llama.rn) - Java: [kherud/java-llama.cpp](https://github.com/kherud/java-llama.cpp) - Zig: [deins/llama.cpp.zig](https://github.com/Deins/llama.cpp.zig) - Flutter/Dart: [netdur/llama_cpp_dart](https://github.com/netdur/llama_cpp_dart) - Flutter: [xuegao-tzx/Fllama](https://github.com/xuegao-tzx/Fllama) - PHP (API bindings and features built on top of llama.cpp): [distantmagic/resonance](https://github.com/distantmagic/resonance) [(more info)](https://github.com/ggerganov/llama.cpp/pull/6326) - Guile Scheme: [guile_llama_cpp](https://savannah.nongnu.org/projects/guile-llama-cpp) - Swift [srgtuszy/llama-cpp-swift](https://github.com/srgtuszy/llama-cpp-swift) - Swift [ShenghaiWang/SwiftLlama](https://github.com/ShenghaiWang/SwiftLlama)
UIs *(to have a project listed here, it should clearly state that it depends on `llama.cpp`)* - [AI Sublime Text plugin](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (MIT) - [cztomsik/ava](https://github.com/cztomsik/ava) (MIT) - [Dot](https://github.com/alexpinel/Dot) (GPL) - [eva](https://github.com/ylsdamxssjxxdd/eva) (MIT) - [iohub/collama](https://github.com/iohub/coLLaMA) (Apache-2.0) - [janhq/jan](https://github.com/janhq/jan) (AGPL) - [KanTV](https://github.com/zhouwg/kantv?tab=readme-ov-file) (Apache-2.0) - [KodiBot](https://github.com/firatkiral/kodibot) (GPL) - [llama.vim](https://github.com/ggml-org/llama.vim) (MIT) - [LARS](https://github.com/abgulati/LARS) (AGPL) - [Llama Assistant](https://github.com/vietanhdev/llama-assistant) (GPL) - [LLMFarm](https://github.com/guinmoon/LLMFarm?tab=readme-ov-file) (MIT) - [LLMUnity](https://github.com/undreamai/LLMUnity) (MIT) - [LMStudio](https://lmstudio.ai/) (proprietary) - [LocalAI](https://github.com/mudler/LocalAI) (MIT) - [LostRuins/koboldcpp](https://github.com/LostRuins/koboldcpp) (AGPL) - [MindMac](https://mindmac.app) (proprietary) - [MindWorkAI/AI-Studio](https://github.com/MindWorkAI/AI-Studio) (FSL-1.1-MIT) - [Mobile-Artificial-Intelligence/maid](https://github.com/Mobile-Artificial-Intelligence/maid) (MIT) - [Mozilla-Ocho/llamafile](https://github.com/Mozilla-Ocho/llamafile) (Apache-2.0) - [nat/openplayground](https://github.com/nat/openplayground) (MIT) - [nomic-ai/gpt4all](https://github.com/nomic-ai/gpt4all) (MIT) - [ollama/ollama](https://github.com/ollama/ollama) (MIT) - [oobabooga/text-generation-webui](https://github.com/oobabooga/text-generation-webui) (AGPL) - [PocketPal AI](https://github.com/a-ghorbani/pocketpal-ai) (MIT) - [psugihara/FreeChat](https://github.com/psugihara/FreeChat) (MIT) - [ptsochantaris/emeltal](https://github.com/ptsochantaris/emeltal) (MIT) - [pythops/tenere](https://github.com/pythops/tenere) (AGPL) - [ramalama](https://github.com/containers/ramalama) (MIT) - [semperai/amica](https://github.com/semperai/amica) (MIT) - [withcatai/catai](https://github.com/withcatai/catai) (MIT)
Tools - [akx/ggify](https://github.com/akx/ggify) – download PyTorch models from HuggingFace Hub and convert them to GGML - [akx/ollama-dl](https://github.com/akx/ollama-dl) – download models from the Ollama library to be used directly with llama.cpp - [crashr/gppm](https://github.com/crashr/gppm) – launch llama.cpp instances utilizing NVIDIA Tesla P40 or P100 GPUs with reduced idle power consumption - [gpustack/gguf-parser](https://github.com/gpustack/gguf-parser-go/tree/main/cmd/gguf-parser) - review/check the GGUF file and estimate the memory usage - [Styled Lines](https://marketplace.unity.com/packages/tools/generative-ai/styled-lines-llama-cpp-model-292902) (proprietary licensed, async wrapper of inference part for game development in Unity3d with pre-built Mobile and Web platform wrappers and a model example)
Infrastructure - [Paddler](https://github.com/distantmagic/paddler) - Stateful load balancer custom-tailored for llama.cpp - [GPUStack](https://github.com/gpustack/gpustack) - Manage GPU clusters for running LLMs - [llama_cpp_canister](https://github.com/onicai/llama_cpp_canister) - llama.cpp as a smart contract on the Internet Computer, using WebAssembly
Games - [Lucy's Labyrinth](https://github.com/MorganRO8/Lucys_Labyrinth) - A simple maze game where agents controlled by an AI model will try to trick you.

Supported backends

Backend Target devices
Metal Apple Silicon
BLAS All
BLIS All
SYCL Intel and Nvidia GPU
MUSA Moore Threads MTT GPU
CUDA Nvidia GPU
hipBLAS AMD GPU
Vulkan GPU
CANN Ascend NPU

Building the project

The main product of this project is the llama library. Its C-style interface can be found in include/llama.h. The project also includes many example programs and tools using the llama library. The examples range from simple, minimal code snippets to sophisticated sub-projects such as an OpenAI-compatible HTTP server. Possible methods for obtaining the binaries:

Obtaining and quantizing models

The Hugging Face platform hosts a number of LLMs compatible with llama.cpp:

After downloading a model, use the CLI tools to run it locally - see below.

llama.cpp requires the model to be stored in the GGUF file format. Models in other data formats can be converted to GGUF using the convert_*.py Python scripts in this repo.

The Hugging Face platform provides a variety of online tools for converting, quantizing and hosting models with llama.cpp:

To learn more about model quantization, read this documentation

llama-cli

A CLI tool for accessing and experimenting with most of llama.cpp's functionality.

  • Run simple text completion ```bash llama-cli -m model.gguf -p "I believe the meaning of life is" -n 128 # I believe the meaning of life is to find your own truth and to live in accordance with it. For me, this means being true to myself and following my passions, even if they don't align with societal expectations. I think that's what I love about yoga – it's not just a physical practice, but a spiritual one too. It's about connecting with yourself, listening to your inner voice, and honoring your own unique journey. ```
  • Run in conversation mode ```bash llama-cli -m model.gguf -p "You are a helpful assistant" -cnv # > hi, who are you? # Hi there! I'm your helpful assistant! I'm an AI-powered chatbot designed to assist and provide information to users like you. I'm here to help answer your questions, provide guidance, and offer support on a wide range of topics. I'm a friendly and knowledgeable AI, and I'm always happy to help with anything you need. What's on your mind, and how can I assist you today? # # > what is 1+1? # Easy peasy! The answer to 1+1 is... 2! ```
  • Run with custom chat template ```bash # use the "chatml" template llama-cli -m model.gguf -p "You are a helpful assistant" -cnv --chat-template chatml # use a custom template llama-cli -m model.gguf -p "You are a helpful assistant" -cnv --in-prefix 'User: ' --reverse-prompt 'User:' ``` [Supported templates](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template)
  • Constrain the output with a custom grammar ```bash llama-cli -m model.gguf -n 256 --grammar-file grammars/json.gbnf -p 'Request: schedule a call at 8pm; Command:' # {"appointmentTime": "8pm", "appointmentDetails": "schedule a a call"} ``` The [grammars/](grammars/) folder contains a handful of sample grammars. To write your own, check out the [GBNF Guide](grammars/README.md). For authoring more complex JSON grammars, check out https://grammar.intrinsiclabs.ai/

llama-server

A lightweight, OpenAI API compatible, HTTP server for serving LLMs.

  • Start a local HTTP server with default configuration on port 8080 ```bash llama-server -m model.gguf --port 8080 # Basic web UI can be accessed via browser: http://localhost:8080 # Chat completion endpoint: http://localhost:8080/v1/chat/completions ```
  • Support multiple-users and parallel decoding ```bash # up to 4 concurrent requests, each with 4096 max context llama-server -m model.gguf -c 16384 -np 4 ```
  • Enable speculative decoding ```bash # the draft.gguf model should be a small variant of the target model.gguf llama-server -m model.gguf -md draft.gguf ```
  • Serve an embedding model ```bash # use the /embedding endpoint llama-server -m model.gguf --embedding --pooling cls -ub 8192 ```
  • Serve a reranking model ```bash # use the /reranking endpoint llama-server -m model.gguf --reranking ```
  • Constrain all outputs with a grammar ```bash # custom grammar llama-server -m model.gguf --grammar-file grammar.gbnf # JSON llama-server -m model.gguf --grammar-file grammars/json.gbnf ```

llama-perplexity

A tool for measuring the perplexity ^1^2 of a model over a given text.

  • Measure the perplexity over a text file ```bash llama-perplexity -m model.gguf -f file.txt # [1]15.2701,[2]5.4007,[3]5.3073,[4]6.2965,[5]5.8940,[6]5.6096,[7]5.7942,[8]4.9297, ... # Final estimate: PPL = 5.4007 +/- 0.67339 ```
  • Measure KL divergence ```bash # TODO ```

llama-bench

Benchmark the performance of the inference for various parameters.

  • Run default benchmark ```bash llama-bench -m model.gguf # Output: # | model | size | params | backend | threads | test | t/s | # | ------------------- | ---------: | ---------: | ---------- | ------: | ------------: | -------------------: | # | qwen2 1.5B Q4_0 | 885.97 MiB | 1.54 B | Metal,BLAS | 16 | pp512 | 5765.41 ± 20.55 | # | qwen2 1.5B Q4_0 | 885.97 MiB | 1.54 B | Metal,BLAS | 16 | tg128 | 197.71 ± 0.81 | # # build: 3e0ba0e60 (4229) ```

llama-run

A comprehensive example for running llama.cpp models. Useful for inferencing. Used with RamaLama ^3.

  • Run a model with a specific prompt (by default it's pulled from Ollama registry) ```bash llama-run granite-code ```

llama-simple

A minimal example for implementing apps with llama.cpp. Useful for developers.

  • Basic text completion ```bash llama-simple -m model.gguf # Hello my name is Kaitlyn and I am a 16 year old girl. I am a junior in high school and I am currently taking a class called "The Art of ```

Contributing

  • Contributors can open PRs
  • Collaborators can push to branches in the llama.cpp repo and merge PRs into the master branch
  • Collaborators will be invited based on contributions
  • Any help with managing issues, PRs and projects is very appreciated!
  • See good first issues for tasks suitable for first contributions
  • Read the CONTRIBUTING.md for more information
  • Make sure to read this: Inference at the edge
  • A bit of backstory for those who are interested: Changelog podcast

Other documentation

Development documentation

Seminal papers and background on the models

If your issue is with model generation quality, then please at least scan the following links and papers to understand the limitations of LLaMA models. This is especially important when choosing an appropriate model size and appreciating both the significant and subtle differences between LLaMA models and ChatGPT:

References