ggml.c 677 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986199871998819989199901999119992199931999419995199961999719998199992000020001200022000320004200052000620007200082000920010200112001220013200142001520016200172001820019200202002120022200232002420025200262002720028200292003020031200322003320034200352003620037200382003920040200412004220043200442004520046200472004820049200502005120052200532005420055200562005720058200592006020061200622006320064200652006620067200682006920070200712007220073200742007520076200772007820079200802008120082200832008420085200862008720088200892009020091200922009320094200952009620097200982009920100201012010220103201042010520106201072010820109201102011120112201132011420115201162011720118201192012020121201222012320124201252012620127201282012920130201312013220133201342013520136201372013820139201402014120142201432014420145201462014720148201492015020151201522015320154201552015620157201582015920160201612016220163201642016520166201672016820169201702017120172201732017420175201762017720178201792018020181201822018320184201852018620187201882018920190201912019220193201942019520196201972019820199202002020120202202032020420205202062020720208202092021020211202122021320214202152021620217202182021920220202212022220223202242022520226202272022820229202302023120232202332023420235202362023720238202392024020241202422024320244202452024620247202482024920250202512025220253202542025520256202572025820259202602026120262202632026420265202662026720268202692027020271202722027320274202752027620277202782027920280202812028220283202842028520286202872028820289202902029120292202932029420295202962029720298202992030020301203022030320304203052030620307203082030920310203112031220313203142031520316203172031820319203202032120322203232032420325203262032720328203292033020331203322033320334203352033620337203382033920340203412034220343203442034520346203472034820349203502035120352203532035420355203562035720358203592036020361203622036320364203652036620367203682036920370203712037220373203742037520376203772037820379203802038120382203832038420385203862038720388203892039020391203922039320394203952039620397203982039920400204012040220403204042040520406204072040820409204102041120412204132041420415204162041720418204192042020421204222042320424204252042620427204282042920430204312043220433204342043520436204372043820439204402044120442204432044420445204462044720448204492045020451204522045320454204552045620457204582045920460204612046220463204642046520466204672046820469204702047120472204732047420475204762047720478204792048020481204822048320484204852048620487204882048920490204912049220493204942049520496204972049820499205002050120502205032050420505205062050720508205092051020511205122051320514205152051620517205182051920520205212052220523205242052520526205272052820529205302053120532205332053420535205362053720538205392054020541205422054320544205452054620547205482054920550205512055220553205542055520556205572055820559205602056120562205632056420565205662056720568205692057020571205722057320574205752057620577205782057920580205812058220583205842058520586205872058820589205902059120592205932059420595205962059720598205992060020601206022060320604206052060620607206082060920610206112061220613206142061520616206172061820619206202062120622206232062420625206262062720628206292063020631206322063320634206352063620637206382063920640206412064220643206442064520646206472064820649206502065120652206532065420655206562065720658206592066020661206622066320664206652066620667206682066920670206712067220673206742067520676206772067820679206802068120682206832068420685206862068720688206892069020691206922069320694206952069620697206982069920700207012070220703207042070520706207072070820709207102071120712207132071420715207162071720718207192072020721207222072320724207252072620727207282072920730207312073220733207342073520736207372073820739207402074120742207432074420745207462074720748207492075020751207522075320754207552075620757207582075920760207612076220763207642076520766207672076820769207702077120772207732077420775207762077720778207792078020781207822078320784207852078620787207882078920790207912079220793207942079520796207972079820799208002080120802208032080420805208062080720808208092081020811208122081320814208152081620817208182081920820208212082220823208242082520826208272082820829208302083120832208332083420835208362083720838208392084020841208422084320844208452084620847208482084920850208512085220853208542085520856208572085820859208602086120862208632086420865208662086720868208692087020871208722087320874208752087620877208782087920880208812088220883208842088520886208872088820889208902089120892208932089420895208962089720898208992090020901209022090320904209052090620907209082090920910209112091220913209142091520916209172091820919209202092120922209232092420925209262092720928209292093020931209322093320934209352093620937209382093920940209412094220943209442094520946209472094820949209502095120952209532095420955209562095720958209592096020961209622096320964209652096620967209682096920970209712097220973209742097520976209772097820979209802098120982209832098420985209862098720988209892099020991209922099320994209952099620997209982099921000210012100221003210042100521006210072100821009210102101121012210132101421015210162101721018210192102021021210222102321024210252102621027210282102921030210312103221033210342103521036210372103821039210402104121042210432104421045210462104721048210492105021051210522105321054210552105621057210582105921060210612106221063210642106521066210672106821069210702107121072210732107421075210762107721078210792108021081210822108321084210852108621087210882108921090210912109221093210942109521096210972109821099211002110121102211032110421105211062110721108211092111021111211122111321114211152111621117211182111921120211212112221123211242112521126211272112821129211302113121132211332113421135211362113721138211392114021141211422114321144211452114621147211482114921150211512115221153211542115521156211572115821159211602116121162211632116421165211662116721168211692117021171211722117321174211752117621177211782117921180211812118221183211842118521186211872118821189211902119121192211932119421195211962119721198211992120021201212022120321204212052120621207212082120921210212112121221213212142121521216212172121821219212202122121222212232122421225212262122721228212292123021231212322123321234212352123621237212382123921240212412124221243212442124521246212472124821249212502125121252212532125421255
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #if defined(__gnu_linux__)
  24. #include <syscall.h>
  25. #endif
  26. #ifdef GGML_USE_METAL
  27. #include <unistd.h>
  28. #endif
  29. #if defined(_MSC_VER)
  30. // disable "possible loss of data" to avoid hundreds of casts
  31. // we should just be careful :)
  32. #pragma warning(disable: 4244 4267)
  33. // disable POSIX deprecation warnings
  34. // these functions are never going away, anyway
  35. #pragma warning(disable: 4996)
  36. #endif
  37. #if defined(_WIN32)
  38. #include <windows.h>
  39. typedef volatile LONG atomic_int;
  40. typedef atomic_int atomic_bool;
  41. static void atomic_store(atomic_int * ptr, LONG val) {
  42. InterlockedExchange(ptr, val);
  43. }
  44. static LONG atomic_load(atomic_int * ptr) {
  45. return InterlockedCompareExchange(ptr, 0, 0);
  46. }
  47. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  48. return InterlockedExchangeAdd(ptr, inc);
  49. }
  50. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  51. return atomic_fetch_add(ptr, -(dec));
  52. }
  53. typedef HANDLE pthread_t;
  54. typedef DWORD thread_ret_t;
  55. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  56. (void) unused;
  57. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  58. if (handle == NULL)
  59. {
  60. return EAGAIN;
  61. }
  62. *out = handle;
  63. return 0;
  64. }
  65. static int pthread_join(pthread_t thread, void * unused) {
  66. (void) unused;
  67. int ret = (int) WaitForSingleObject(thread, INFINITE);
  68. CloseHandle(thread);
  69. return ret;
  70. }
  71. static int sched_yield (void) {
  72. Sleep (0);
  73. return 0;
  74. }
  75. #else
  76. #include <pthread.h>
  77. #include <stdatomic.h>
  78. typedef void * thread_ret_t;
  79. #include <sys/types.h>
  80. #include <sys/stat.h>
  81. #include <unistd.h>
  82. #endif
  83. #ifdef GGML_USE_CPU_HBM
  84. #include <hbwmalloc.h>
  85. #endif
  86. #if defined(__APPLE__)
  87. #include <TargetConditionals.h>
  88. #endif
  89. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  90. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  91. #include <sys/wait.h>
  92. void ggml_print_backtrace(void) {
  93. /*
  94. #include <execinfo.h>
  95. #include <dlfcn.h>
  96. void * trace[100];
  97. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  98. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  99. */
  100. // backtrack_symbols does not show line numbers, use gdb instead
  101. char attach[32];
  102. snprintf(attach, sizeof(attach), "attach %d", getpid());
  103. int pid = fork();
  104. if (pid == 0) {
  105. execlp("gdb", "gdb", "--batch",
  106. "-ex", "set style enabled on",
  107. "-ex", attach,
  108. "-ex", "bt -frame-info source-and-location",
  109. "-ex", "detach",
  110. "-ex", "quit",
  111. (char *) NULL);
  112. } else {
  113. waitpid(pid, NULL, 0);
  114. }
  115. }
  116. #else
  117. void ggml_print_backtrace(void) {
  118. // platform not supported
  119. }
  120. #endif
  121. /*#define GGML_PERF*/
  122. #define GGML_DEBUG 0
  123. #define GGML_GELU_FP16
  124. #define GGML_GELU_QUICK_FP16
  125. #define GGML_SILU_FP16
  126. // #define GGML_CROSS_ENTROPY_EXP_FP16
  127. // #define GGML_FLASH_ATTN_EXP_FP16
  128. #define GGML_SOFT_MAX_UNROLL 4
  129. #define GGML_VEC_DOT_UNROLL 2
  130. #define GGML_VEC_MAD_UNROLL 32
  131. //
  132. // logging
  133. //
  134. #if (GGML_DEBUG >= 1)
  135. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  136. #else
  137. #define GGML_PRINT_DEBUG(...)
  138. #endif
  139. #if (GGML_DEBUG >= 5)
  140. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  141. #else
  142. #define GGML_PRINT_DEBUG_5(...)
  143. #endif
  144. #if (GGML_DEBUG >= 10)
  145. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  146. #else
  147. #define GGML_PRINT_DEBUG_10(...)
  148. #endif
  149. #define GGML_PRINT(...) printf(__VA_ARGS__)
  150. //
  151. // end of logging block
  152. //
  153. #ifdef GGML_USE_ACCELERATE
  154. // uncomment to use vDSP for soft max computation
  155. // note: not sure if it is actually faster
  156. //#define GGML_SOFT_MAX_ACCELERATE
  157. #endif
  158. #if defined(_MSC_VER) || defined(__MINGW32__)
  159. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  160. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  161. #else
  162. inline static void * ggml_aligned_malloc(size_t size) {
  163. if (size == 0) {
  164. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  165. return NULL;
  166. }
  167. void * aligned_memory = NULL;
  168. #ifdef GGML_USE_CPU_HBM
  169. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  170. #elif GGML_USE_METAL
  171. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  172. #else
  173. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  174. #endif
  175. if (result != 0) {
  176. // Handle allocation failure
  177. const char *error_desc = "unknown allocation error";
  178. switch (result) {
  179. case EINVAL:
  180. error_desc = "invalid alignment value";
  181. break;
  182. case ENOMEM:
  183. error_desc = "insufficient memory";
  184. break;
  185. }
  186. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  187. GGML_ASSERT(false);
  188. return NULL;
  189. }
  190. return aligned_memory;
  191. }
  192. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  193. #ifdef GGML_USE_CPU_HBM
  194. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  195. #else
  196. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  197. #endif
  198. #endif
  199. inline static void * ggml_malloc(size_t size) {
  200. if (size == 0) {
  201. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  202. return NULL;
  203. }
  204. void * result = malloc(size);
  205. if (result == NULL) {
  206. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  207. GGML_ASSERT(false);
  208. }
  209. return result;
  210. }
  211. // calloc
  212. inline static void * ggml_calloc(size_t num, size_t size) {
  213. if (num == 0 || size == 0) {
  214. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  215. return NULL;
  216. }
  217. void * result = calloc(num, size);
  218. if (result == NULL) {
  219. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  220. GGML_ASSERT(false);
  221. }
  222. return result;
  223. }
  224. #define GGML_MALLOC(size) ggml_malloc(size)
  225. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  226. #define GGML_FREE(ptr) free(ptr)
  227. #define UNUSED GGML_UNUSED
  228. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  229. #if defined(GGML_USE_ACCELERATE)
  230. #include <Accelerate/Accelerate.h>
  231. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  232. #include "ggml-opencl.h"
  233. #elif defined(GGML_USE_VULKAN)
  234. #include "ggml-vulkan.h"
  235. #endif
  236. #elif defined(GGML_USE_OPENBLAS)
  237. #if defined(GGML_BLAS_USE_MKL)
  238. #include <mkl.h>
  239. #else
  240. #include <cblas.h>
  241. #endif
  242. #elif defined(GGML_USE_CUBLAS)
  243. #include "ggml-cuda.h"
  244. #elif defined(GGML_USE_CLBLAST)
  245. #include "ggml-opencl.h"
  246. #elif defined(GGML_USE_VULKAN)
  247. #include "ggml-vulkan.h"
  248. #elif defined(GGML_USE_SYCL)
  249. #include "ggml-sycl.h"
  250. #endif
  251. // floating point type used to accumulate sums
  252. typedef double ggml_float;
  253. #undef MIN
  254. #undef MAX
  255. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  256. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  257. //
  258. // global data
  259. //
  260. // precomputed gelu table for f16 (128 KB)
  261. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  262. // precomputed quick gelu table for f16 (128 KB)
  263. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  264. // precomputed silu table for f16 (128 KB)
  265. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  266. // precomputed exp table for f16 (128 KB)
  267. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  268. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  269. float ggml_table_f32_f16[1 << 16];
  270. // note: do not use these inside ggml.c
  271. // these are meant to be used via the ggml.h API
  272. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  273. return GGML_FP16_TO_FP32(x);
  274. }
  275. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  276. return GGML_FP32_TO_FP16(x);
  277. }
  278. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  279. for (int i = 0; i < n; i++) {
  280. y[i] = GGML_FP16_TO_FP32(x[i]);
  281. }
  282. }
  283. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  284. int i = 0;
  285. #if defined(__F16C__)
  286. for (; i + 7 < n; i += 8) {
  287. __m256 x_vec = _mm256_loadu_ps(x + i);
  288. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  289. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  290. }
  291. for(; i + 3 < n; i += 4) {
  292. __m128 x_vec = _mm_loadu_ps(x + i);
  293. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  294. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  295. }
  296. #endif
  297. for (; i < n; i++) {
  298. y[i] = GGML_FP32_TO_FP16(x[i]);
  299. }
  300. }
  301. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  302. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  303. }
  304. //
  305. // timing
  306. //
  307. #if defined(_MSC_VER) || defined(__MINGW32__)
  308. static int64_t timer_freq, timer_start;
  309. void ggml_time_init(void) {
  310. LARGE_INTEGER t;
  311. QueryPerformanceFrequency(&t);
  312. timer_freq = t.QuadPart;
  313. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  314. // and the uptime is high enough.
  315. // We subtract the program start time to reduce the likelihood of that happening.
  316. QueryPerformanceCounter(&t);
  317. timer_start = t.QuadPart;
  318. }
  319. int64_t ggml_time_ms(void) {
  320. LARGE_INTEGER t;
  321. QueryPerformanceCounter(&t);
  322. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  323. }
  324. int64_t ggml_time_us(void) {
  325. LARGE_INTEGER t;
  326. QueryPerformanceCounter(&t);
  327. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  328. }
  329. #else
  330. void ggml_time_init(void) {}
  331. int64_t ggml_time_ms(void) {
  332. struct timespec ts;
  333. clock_gettime(CLOCK_MONOTONIC, &ts);
  334. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  335. }
  336. int64_t ggml_time_us(void) {
  337. struct timespec ts;
  338. clock_gettime(CLOCK_MONOTONIC, &ts);
  339. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  340. }
  341. #endif
  342. int64_t ggml_cycles(void) {
  343. return clock();
  344. }
  345. int64_t ggml_cycles_per_ms(void) {
  346. return CLOCKS_PER_SEC/1000;
  347. }
  348. #ifdef GGML_PERF
  349. #define ggml_perf_time_ms() ggml_time_ms()
  350. #define ggml_perf_time_us() ggml_time_us()
  351. #define ggml_perf_cycles() ggml_cycles()
  352. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  353. #else
  354. #define ggml_perf_time_ms() 0
  355. #define ggml_perf_time_us() 0
  356. #define ggml_perf_cycles() 0
  357. #define ggml_perf_cycles_per_ms() 0
  358. #endif
  359. //
  360. // cache line
  361. //
  362. #if defined(__cpp_lib_hardware_interference_size)
  363. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  364. #else
  365. #if defined(__POWER9_VECTOR__)
  366. #define CACHE_LINE_SIZE 128
  367. #else
  368. #define CACHE_LINE_SIZE 64
  369. #endif
  370. #endif
  371. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  372. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  373. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  374. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  375. [GGML_TYPE_I8] = {
  376. .type_name = "i8",
  377. .blck_size = 1,
  378. .type_size = sizeof(int8_t),
  379. .is_quantized = false,
  380. },
  381. [GGML_TYPE_I16] = {
  382. .type_name = "i16",
  383. .blck_size = 1,
  384. .type_size = sizeof(int16_t),
  385. .is_quantized = false,
  386. },
  387. [GGML_TYPE_I32] = {
  388. .type_name = "i32",
  389. .blck_size = 1,
  390. .type_size = sizeof(int32_t),
  391. .is_quantized = false,
  392. },
  393. [GGML_TYPE_F32] = {
  394. .type_name = "f32",
  395. .blck_size = 1,
  396. .type_size = sizeof(float),
  397. .is_quantized = false,
  398. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  399. .vec_dot_type = GGML_TYPE_F32,
  400. .nrows = 1,
  401. },
  402. [GGML_TYPE_F16] = {
  403. .type_name = "f16",
  404. .blck_size = 1,
  405. .type_size = sizeof(ggml_fp16_t),
  406. .is_quantized = false,
  407. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  408. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  409. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  410. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  411. .vec_dot_type = GGML_TYPE_F16,
  412. .nrows = 1,
  413. },
  414. [GGML_TYPE_Q4_0] = {
  415. .type_name = "q4_0",
  416. .blck_size = QK4_0,
  417. .type_size = sizeof(block_q4_0),
  418. .is_quantized = true,
  419. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  420. .from_float = quantize_row_q4_0,
  421. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  422. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  423. .vec_dot_type = GGML_TYPE_Q8_0,
  424. #if defined (__ARM_FEATURE_MATMUL_INT8)
  425. .nrows = 2,
  426. #else
  427. .nrows = 1,
  428. #endif
  429. },
  430. [GGML_TYPE_Q4_1] = {
  431. .type_name = "q4_1",
  432. .blck_size = QK4_1,
  433. .type_size = sizeof(block_q4_1),
  434. .is_quantized = true,
  435. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  436. .from_float = quantize_row_q4_1,
  437. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  438. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  439. .vec_dot_type = GGML_TYPE_Q8_1,
  440. #if defined (__ARM_FEATURE_MATMUL_INT8)
  441. .nrows = 2,
  442. #else
  443. .nrows = 1,
  444. #endif
  445. },
  446. [4] = { // GGML_TYPE_Q4_2
  447. .type_name = "DEPRECATED",
  448. .blck_size = 0,
  449. .type_size = 0,
  450. .is_quantized = false,
  451. .to_float = NULL,
  452. .from_float = NULL,
  453. .from_float_reference = NULL,
  454. .vec_dot = NULL,
  455. .vec_dot_type = GGML_TYPE_COUNT,
  456. .nrows = 1,
  457. },
  458. [5] = { // GGML_TYPE_Q4_3
  459. .type_name = "DEPRECATED",
  460. .blck_size = 0,
  461. .type_size = 0,
  462. .is_quantized = false,
  463. .to_float = NULL,
  464. .from_float = NULL,
  465. .from_float_reference = NULL,
  466. .vec_dot = NULL,
  467. .vec_dot_type = GGML_TYPE_COUNT,
  468. .nrows = 1,
  469. },
  470. [GGML_TYPE_Q5_0] = {
  471. .type_name = "q5_0",
  472. .blck_size = QK5_0,
  473. .type_size = sizeof(block_q5_0),
  474. .is_quantized = true,
  475. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  476. .from_float = quantize_row_q5_0,
  477. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  478. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  479. .vec_dot_type = GGML_TYPE_Q8_0,
  480. .nrows = 1,
  481. },
  482. [GGML_TYPE_Q5_1] = {
  483. .type_name = "q5_1",
  484. .blck_size = QK5_1,
  485. .type_size = sizeof(block_q5_1),
  486. .is_quantized = true,
  487. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  488. .from_float = quantize_row_q5_1,
  489. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  490. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  491. .vec_dot_type = GGML_TYPE_Q8_1,
  492. .nrows = 1,
  493. },
  494. [GGML_TYPE_Q8_0] = {
  495. .type_name = "q8_0",
  496. .blck_size = QK8_0,
  497. .type_size = sizeof(block_q8_0),
  498. .is_quantized = true,
  499. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  500. .from_float = quantize_row_q8_0,
  501. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  502. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  503. .vec_dot_type = GGML_TYPE_Q8_0,
  504. #if defined (__ARM_FEATURE_MATMUL_INT8)
  505. .nrows = 2,
  506. #else
  507. .nrows = 1,
  508. #endif
  509. },
  510. [GGML_TYPE_Q8_1] = {
  511. .type_name = "q8_1",
  512. .blck_size = QK8_1,
  513. .type_size = sizeof(block_q8_1),
  514. .is_quantized = true,
  515. .from_float = quantize_row_q8_1,
  516. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  517. .vec_dot_type = GGML_TYPE_Q8_1,
  518. .nrows = 1,
  519. },
  520. [GGML_TYPE_Q2_K] = {
  521. .type_name = "q2_K",
  522. .blck_size = QK_K,
  523. .type_size = sizeof(block_q2_K),
  524. .is_quantized = true,
  525. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  526. .from_float = quantize_row_q2_K,
  527. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  528. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  529. .vec_dot_type = GGML_TYPE_Q8_K,
  530. .nrows = 1,
  531. },
  532. [GGML_TYPE_Q3_K] = {
  533. .type_name = "q3_K",
  534. .blck_size = QK_K,
  535. .type_size = sizeof(block_q3_K),
  536. .is_quantized = true,
  537. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  538. .from_float = quantize_row_q3_K,
  539. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  540. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  541. .vec_dot_type = GGML_TYPE_Q8_K,
  542. .nrows = 1,
  543. },
  544. [GGML_TYPE_Q4_K] = {
  545. .type_name = "q4_K",
  546. .blck_size = QK_K,
  547. .type_size = sizeof(block_q4_K),
  548. .is_quantized = true,
  549. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  550. .from_float = quantize_row_q4_K,
  551. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  552. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  553. .vec_dot_type = GGML_TYPE_Q8_K,
  554. .nrows = 1,
  555. },
  556. [GGML_TYPE_Q5_K] = {
  557. .type_name = "q5_K",
  558. .blck_size = QK_K,
  559. .type_size = sizeof(block_q5_K),
  560. .is_quantized = true,
  561. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  562. .from_float = quantize_row_q5_K,
  563. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  564. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  565. .vec_dot_type = GGML_TYPE_Q8_K,
  566. .nrows = 1,
  567. },
  568. [GGML_TYPE_Q6_K] = {
  569. .type_name = "q6_K",
  570. .blck_size = QK_K,
  571. .type_size = sizeof(block_q6_K),
  572. .is_quantized = true,
  573. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  574. .from_float = quantize_row_q6_K,
  575. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  576. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  577. .vec_dot_type = GGML_TYPE_Q8_K,
  578. .nrows = 1,
  579. },
  580. [GGML_TYPE_IQ2_XXS] = {
  581. .type_name = "iq2_xxs",
  582. .blck_size = QK_K,
  583. .type_size = sizeof(block_iq2_xxs),
  584. .is_quantized = true,
  585. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  586. .from_float = NULL,
  587. .from_float_reference = NULL,
  588. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  589. .vec_dot_type = GGML_TYPE_Q8_K,
  590. .nrows = 1,
  591. },
  592. [GGML_TYPE_IQ2_XS] = {
  593. .type_name = "iq2_xs",
  594. .blck_size = QK_K,
  595. .type_size = sizeof(block_iq2_xs),
  596. .is_quantized = true,
  597. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  598. .from_float = NULL,
  599. .from_float_reference = NULL,
  600. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  601. .vec_dot_type = GGML_TYPE_Q8_K,
  602. .nrows = 1,
  603. },
  604. [GGML_TYPE_IQ3_XXS] = {
  605. .type_name = "iq3_xxs",
  606. .blck_size = QK_K,
  607. .type_size = sizeof(block_iq3_xxs),
  608. .is_quantized = true,
  609. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  610. .from_float = quantize_row_iq3_xxs,
  611. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  612. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  613. .vec_dot_type = GGML_TYPE_Q8_K,
  614. .nrows = 1,
  615. },
  616. [GGML_TYPE_IQ3_S] = {
  617. .type_name = "iq3_s",
  618. .blck_size = QK_K,
  619. .type_size = sizeof(block_iq3_s),
  620. .is_quantized = true,
  621. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  622. .from_float = quantize_row_iq3_s,
  623. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  624. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  625. .vec_dot_type = GGML_TYPE_Q8_K,
  626. .nrows = 1,
  627. },
  628. [GGML_TYPE_IQ2_S] = {
  629. .type_name = "iq2_s",
  630. .blck_size = QK_K,
  631. .type_size = sizeof(block_iq2_s),
  632. .is_quantized = true,
  633. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  634. .from_float = quantize_row_iq2_s,
  635. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  636. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  637. .vec_dot_type = GGML_TYPE_Q8_K,
  638. .nrows = 1,
  639. },
  640. [GGML_TYPE_IQ1_S] = {
  641. .type_name = "iq1_s",
  642. .blck_size = QK_K,
  643. .type_size = sizeof(block_iq1_s),
  644. .is_quantized = true,
  645. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  646. .from_float = NULL,
  647. .from_float_reference = NULL,
  648. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  649. .vec_dot_type = GGML_TYPE_Q8_K,
  650. .nrows = 1,
  651. },
  652. [GGML_TYPE_IQ4_NL] = {
  653. .type_name = "iq4_nl",
  654. .blck_size = QK4_NL,
  655. .type_size = sizeof(block_iq4_nl),
  656. .is_quantized = true,
  657. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  658. .from_float = quantize_row_iq4_nl,
  659. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  660. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  661. .vec_dot_type = GGML_TYPE_Q8_0,
  662. .nrows = 1,
  663. },
  664. [GGML_TYPE_IQ4_XS] = {
  665. .type_name = "iq4_xs",
  666. #if QK_K == 64
  667. .blck_size = QK4_NL,
  668. #else
  669. .blck_size = QK_K,
  670. #endif
  671. .type_size = sizeof(block_iq4_xs),
  672. .is_quantized = true,
  673. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  674. .from_float = quantize_row_iq4_xs,
  675. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  676. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  677. #if QK_K == 64
  678. .vec_dot_type = GGML_TYPE_Q8_0,
  679. #else
  680. .vec_dot_type = GGML_TYPE_Q8_K,
  681. #endif
  682. .nrows = 1,
  683. },
  684. [GGML_TYPE_Q8_K] = {
  685. .type_name = "q8_K",
  686. .blck_size = QK_K,
  687. .type_size = sizeof(block_q8_K),
  688. .is_quantized = true,
  689. .from_float = quantize_row_q8_K,
  690. }
  691. };
  692. // For internal test use
  693. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  694. GGML_ASSERT(type < GGML_TYPE_COUNT);
  695. return type_traits[type];
  696. }
  697. //
  698. // simd mappings
  699. //
  700. #if defined(__ARM_NEON)
  701. #if !defined(__aarch64__)
  702. // 64-bit compatibility
  703. inline static float vaddvq_f32(float32x4_t v) {
  704. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  705. }
  706. #endif
  707. #endif
  708. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  709. // we then implement the fundamental computation operations below using only these macros
  710. // adding support for new architectures requires to define the corresponding SIMD macros
  711. //
  712. // GGML_F32_STEP / GGML_F16_STEP
  713. // number of elements to process in a single step
  714. //
  715. // GGML_F32_EPR / GGML_F16_EPR
  716. // number of elements to fit in a single register
  717. //
  718. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  719. #define GGML_SIMD
  720. // F32 NEON
  721. #define GGML_F32_STEP 16
  722. #define GGML_F32_EPR 4
  723. #define GGML_F32x4 float32x4_t
  724. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  725. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  726. #define GGML_F32x4_LOAD vld1q_f32
  727. #define GGML_F32x4_STORE vst1q_f32
  728. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  729. #define GGML_F32x4_ADD vaddq_f32
  730. #define GGML_F32x4_MUL vmulq_f32
  731. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  732. #define GGML_F32x4_REDUCE(res, x) \
  733. { \
  734. int offset = GGML_F32_ARR >> 1; \
  735. for (int i = 0; i < offset; ++i) { \
  736. x[i] = vaddq_f32(x[i], x[offset+i]); \
  737. } \
  738. offset >>= 1; \
  739. for (int i = 0; i < offset; ++i) { \
  740. x[i] = vaddq_f32(x[i], x[offset+i]); \
  741. } \
  742. offset >>= 1; \
  743. for (int i = 0; i < offset; ++i) { \
  744. x[i] = vaddq_f32(x[i], x[offset+i]); \
  745. } \
  746. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  747. }
  748. #define GGML_F32_VEC GGML_F32x4
  749. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  750. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  751. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  752. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  753. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  754. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  755. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  756. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  757. // F16 NEON
  758. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  759. #define GGML_F16_STEP 32
  760. #define GGML_F16_EPR 8
  761. #define GGML_F16x8 float16x8_t
  762. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  763. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  764. #define GGML_F16x8_LOAD(x) vld1q_f16((const __fp16 *)(x))
  765. #define GGML_F16x8_STORE vst1q_f16
  766. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  767. #define GGML_F16x8_ADD vaddq_f16
  768. #define GGML_F16x8_MUL vmulq_f16
  769. #define GGML_F16x8_REDUCE(res, x) \
  770. do { \
  771. int offset = GGML_F16_ARR >> 1; \
  772. for (int i = 0; i < offset; ++i) { \
  773. x[i] = vaddq_f16(x[i], x[offset+i]); \
  774. } \
  775. offset >>= 1; \
  776. for (int i = 0; i < offset; ++i) { \
  777. x[i] = vaddq_f16(x[i], x[offset+i]); \
  778. } \
  779. offset >>= 1; \
  780. for (int i = 0; i < offset; ++i) { \
  781. x[i] = vaddq_f16(x[i], x[offset+i]); \
  782. } \
  783. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  784. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  785. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  786. } while (0)
  787. #define GGML_F16_VEC GGML_F16x8
  788. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  789. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  790. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  791. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  792. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  793. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  794. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  795. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  796. #else
  797. // if FP16 vector arithmetic is not supported, we use FP32 instead
  798. // and take advantage of the vcvt_ functions to convert to/from FP16
  799. #define GGML_F16_STEP 16
  800. #define GGML_F16_EPR 4
  801. #define GGML_F32Cx4 float32x4_t
  802. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  803. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  804. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const __fp16 *)(x)))
  805. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  806. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  807. #define GGML_F32Cx4_ADD vaddq_f32
  808. #define GGML_F32Cx4_MUL vmulq_f32
  809. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  810. #define GGML_F16_VEC GGML_F32Cx4
  811. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  812. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  813. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  814. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  815. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  816. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  817. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  818. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  819. #endif
  820. #elif defined(__AVX__)
  821. #define GGML_SIMD
  822. // F32 AVX
  823. #define GGML_F32_STEP 32
  824. #define GGML_F32_EPR 8
  825. #define GGML_F32x8 __m256
  826. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  827. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  828. #define GGML_F32x8_LOAD _mm256_loadu_ps
  829. #define GGML_F32x8_STORE _mm256_storeu_ps
  830. #if defined(__FMA__)
  831. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  832. #else
  833. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  834. #endif
  835. #define GGML_F32x8_ADD _mm256_add_ps
  836. #define GGML_F32x8_MUL _mm256_mul_ps
  837. #define GGML_F32x8_REDUCE(res, x) \
  838. do { \
  839. int offset = GGML_F32_ARR >> 1; \
  840. for (int i = 0; i < offset; ++i) { \
  841. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  842. } \
  843. offset >>= 1; \
  844. for (int i = 0; i < offset; ++i) { \
  845. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  846. } \
  847. offset >>= 1; \
  848. for (int i = 0; i < offset; ++i) { \
  849. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  850. } \
  851. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  852. _mm256_extractf128_ps(x[0], 1)); \
  853. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  854. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  855. } while (0)
  856. // TODO: is this optimal ?
  857. #define GGML_F32_VEC GGML_F32x8
  858. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  859. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  860. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  861. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  862. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  863. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  864. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  865. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  866. // F16 AVX
  867. #define GGML_F16_STEP 32
  868. #define GGML_F16_EPR 8
  869. // F16 arithmetic is not supported by AVX, so we use F32 instead
  870. #define GGML_F32Cx8 __m256
  871. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  872. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  873. #if defined(__F16C__)
  874. // the _mm256_cvt intrinsics require F16C
  875. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  876. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  877. #else
  878. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  879. float tmp[8];
  880. for (int i = 0; i < 8; i++) {
  881. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  882. }
  883. return _mm256_loadu_ps(tmp);
  884. }
  885. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  886. float arr[8];
  887. _mm256_storeu_ps(arr, y);
  888. for (int i = 0; i < 8; i++)
  889. x[i] = GGML_FP32_TO_FP16(arr[i]);
  890. }
  891. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  892. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  893. #endif
  894. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  895. #define GGML_F32Cx8_ADD _mm256_add_ps
  896. #define GGML_F32Cx8_MUL _mm256_mul_ps
  897. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  898. #define GGML_F16_VEC GGML_F32Cx8
  899. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  900. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  901. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  902. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  903. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  904. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  905. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  906. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  907. #elif defined(__POWER9_VECTOR__)
  908. #define GGML_SIMD
  909. // F32 POWER9
  910. #define GGML_F32_STEP 32
  911. #define GGML_F32_EPR 4
  912. #define GGML_F32x4 vector float
  913. #define GGML_F32x4_ZERO 0.0f
  914. #define GGML_F32x4_SET1 vec_splats
  915. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  916. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  917. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  918. #define GGML_F32x4_ADD vec_add
  919. #define GGML_F32x4_MUL vec_mul
  920. #define GGML_F32x4_REDUCE(res, x) \
  921. { \
  922. int offset = GGML_F32_ARR >> 1; \
  923. for (int i = 0; i < offset; ++i) { \
  924. x[i] = vec_add(x[i], x[offset+i]); \
  925. } \
  926. offset >>= 1; \
  927. for (int i = 0; i < offset; ++i) { \
  928. x[i] = vec_add(x[i], x[offset+i]); \
  929. } \
  930. offset >>= 1; \
  931. for (int i = 0; i < offset; ++i) { \
  932. x[i] = vec_add(x[i], x[offset+i]); \
  933. } \
  934. res = vec_extract(x[0], 0) + \
  935. vec_extract(x[0], 1) + \
  936. vec_extract(x[0], 2) + \
  937. vec_extract(x[0], 3); \
  938. }
  939. #define GGML_F32_VEC GGML_F32x4
  940. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  941. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  942. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  943. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  944. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  945. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  946. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  947. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  948. // F16 POWER9
  949. #define GGML_F16_STEP GGML_F32_STEP
  950. #define GGML_F16_EPR GGML_F32_EPR
  951. #define GGML_F16_VEC GGML_F32x4
  952. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  953. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  954. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  955. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  956. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  957. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  958. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  959. vec_extract_fp32_from_shortl(vec_xl(0, p))
  960. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  961. #define GGML_F16_VEC_STORE(p, r, i) \
  962. if (i & 0x1) \
  963. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  964. r[i - GGML_ENDIAN_BYTE(0)]), \
  965. 0, p - GGML_F16_EPR)
  966. #elif defined(__wasm_simd128__)
  967. #define GGML_SIMD
  968. // F32 WASM
  969. #define GGML_F32_STEP 16
  970. #define GGML_F32_EPR 4
  971. #define GGML_F32x4 v128_t
  972. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  973. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  974. #define GGML_F32x4_LOAD wasm_v128_load
  975. #define GGML_F32x4_STORE wasm_v128_store
  976. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  977. #define GGML_F32x4_ADD wasm_f32x4_add
  978. #define GGML_F32x4_MUL wasm_f32x4_mul
  979. #define GGML_F32x4_REDUCE(res, x) \
  980. { \
  981. int offset = GGML_F32_ARR >> 1; \
  982. for (int i = 0; i < offset; ++i) { \
  983. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  984. } \
  985. offset >>= 1; \
  986. for (int i = 0; i < offset; ++i) { \
  987. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  988. } \
  989. offset >>= 1; \
  990. for (int i = 0; i < offset; ++i) { \
  991. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  992. } \
  993. res = wasm_f32x4_extract_lane(x[0], 0) + \
  994. wasm_f32x4_extract_lane(x[0], 1) + \
  995. wasm_f32x4_extract_lane(x[0], 2) + \
  996. wasm_f32x4_extract_lane(x[0], 3); \
  997. }
  998. #define GGML_F32_VEC GGML_F32x4
  999. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1000. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1001. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1002. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1003. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1004. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1005. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1006. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1007. // F16 WASM
  1008. #define GGML_F16_STEP 16
  1009. #define GGML_F16_EPR 4
  1010. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1011. float tmp[4];
  1012. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1013. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1014. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1015. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1016. return wasm_v128_load(tmp);
  1017. }
  1018. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1019. float tmp[4];
  1020. wasm_v128_store(tmp, x);
  1021. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1022. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1023. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1024. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1025. }
  1026. #define GGML_F16x4 v128_t
  1027. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1028. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1029. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1030. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1031. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1032. #define GGML_F16x4_ADD wasm_f32x4_add
  1033. #define GGML_F16x4_MUL wasm_f32x4_mul
  1034. #define GGML_F16x4_REDUCE(res, x) \
  1035. { \
  1036. int offset = GGML_F16_ARR >> 1; \
  1037. for (int i = 0; i < offset; ++i) { \
  1038. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1039. } \
  1040. offset >>= 1; \
  1041. for (int i = 0; i < offset; ++i) { \
  1042. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1043. } \
  1044. offset >>= 1; \
  1045. for (int i = 0; i < offset; ++i) { \
  1046. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1047. } \
  1048. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1049. wasm_f32x4_extract_lane(x[0], 1) + \
  1050. wasm_f32x4_extract_lane(x[0], 2) + \
  1051. wasm_f32x4_extract_lane(x[0], 3); \
  1052. }
  1053. #define GGML_F16_VEC GGML_F16x4
  1054. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1055. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1056. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1057. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1058. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1059. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1060. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1061. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1062. #elif defined(__SSE3__)
  1063. #define GGML_SIMD
  1064. // F32 SSE
  1065. #define GGML_F32_STEP 32
  1066. #define GGML_F32_EPR 4
  1067. #define GGML_F32x4 __m128
  1068. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1069. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1070. #define GGML_F32x4_LOAD _mm_loadu_ps
  1071. #define GGML_F32x4_STORE _mm_storeu_ps
  1072. #if defined(__FMA__)
  1073. // TODO: Does this work?
  1074. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1075. #else
  1076. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1077. #endif
  1078. #define GGML_F32x4_ADD _mm_add_ps
  1079. #define GGML_F32x4_MUL _mm_mul_ps
  1080. #define GGML_F32x4_REDUCE(res, x) \
  1081. { \
  1082. int offset = GGML_F32_ARR >> 1; \
  1083. for (int i = 0; i < offset; ++i) { \
  1084. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1085. } \
  1086. offset >>= 1; \
  1087. for (int i = 0; i < offset; ++i) { \
  1088. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1089. } \
  1090. offset >>= 1; \
  1091. for (int i = 0; i < offset; ++i) { \
  1092. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1093. } \
  1094. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1095. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1096. }
  1097. // TODO: is this optimal ?
  1098. #define GGML_F32_VEC GGML_F32x4
  1099. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1100. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1101. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1102. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1103. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1104. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1105. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1106. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1107. // F16 SSE
  1108. #define GGML_F16_STEP 32
  1109. #define GGML_F16_EPR 4
  1110. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1111. float tmp[4];
  1112. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1113. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1114. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1115. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1116. return _mm_loadu_ps(tmp);
  1117. }
  1118. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1119. float arr[4];
  1120. _mm_storeu_ps(arr, y);
  1121. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1122. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1123. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1124. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1125. }
  1126. #define GGML_F32Cx4 __m128
  1127. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1128. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1129. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1130. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1131. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1132. #define GGML_F32Cx4_ADD _mm_add_ps
  1133. #define GGML_F32Cx4_MUL _mm_mul_ps
  1134. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1135. #define GGML_F16_VEC GGML_F32Cx4
  1136. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1137. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1138. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1139. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1140. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1141. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1142. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1143. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1144. #endif
  1145. // GGML_F32_ARR / GGML_F16_ARR
  1146. // number of registers to use per step
  1147. #ifdef GGML_SIMD
  1148. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1149. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1150. #endif
  1151. //
  1152. // fundamental operations
  1153. //
  1154. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1155. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1156. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1157. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1158. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1159. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1160. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1161. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1162. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1163. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1164. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1165. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1166. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1167. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1168. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1169. assert(nrc == 1);
  1170. UNUSED(nrc);
  1171. UNUSED(bx);
  1172. UNUSED(by);
  1173. UNUSED(bs);
  1174. #ifdef GGML_SIMD
  1175. float sumf = 0.0f;
  1176. const int np = (n & ~(GGML_F32_STEP - 1));
  1177. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1178. GGML_F32_VEC ax[GGML_F32_ARR];
  1179. GGML_F32_VEC ay[GGML_F32_ARR];
  1180. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1181. for (int j = 0; j < GGML_F32_ARR; j++) {
  1182. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1183. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1184. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1185. }
  1186. }
  1187. // reduce sum0..sum3 to sum0
  1188. GGML_F32_VEC_REDUCE(sumf, sum);
  1189. // leftovers
  1190. for (int i = np; i < n; ++i) {
  1191. sumf += x[i]*y[i];
  1192. }
  1193. #else
  1194. // scalar
  1195. ggml_float sumf = 0.0;
  1196. for (int i = 0; i < n; ++i) {
  1197. sumf += (ggml_float)(x[i]*y[i]);
  1198. }
  1199. #endif
  1200. *s = sumf;
  1201. }
  1202. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1203. assert(nrc == 1);
  1204. UNUSED(nrc);
  1205. UNUSED(bx);
  1206. UNUSED(by);
  1207. UNUSED(bs);
  1208. ggml_float sumf = 0.0;
  1209. #if defined(GGML_SIMD)
  1210. const int np = (n & ~(GGML_F16_STEP - 1));
  1211. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1212. GGML_F16_VEC ax[GGML_F16_ARR];
  1213. GGML_F16_VEC ay[GGML_F16_ARR];
  1214. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1215. for (int j = 0; j < GGML_F16_ARR; j++) {
  1216. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1217. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1218. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1219. }
  1220. }
  1221. // reduce sum0..sum3 to sum0
  1222. GGML_F16_VEC_REDUCE(sumf, sum);
  1223. // leftovers
  1224. for (int i = np; i < n; ++i) {
  1225. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1226. }
  1227. #else
  1228. for (int i = 0; i < n; ++i) {
  1229. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1230. }
  1231. #endif
  1232. *s = sumf;
  1233. }
  1234. // compute GGML_VEC_DOT_UNROLL dot products at once
  1235. // xs - x row stride in bytes
  1236. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1237. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1238. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1239. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1240. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1241. }
  1242. #if defined(GGML_SIMD)
  1243. const int np = (n & ~(GGML_F16_STEP - 1));
  1244. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1245. GGML_F16_VEC ax[GGML_F16_ARR];
  1246. GGML_F16_VEC ay[GGML_F16_ARR];
  1247. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1248. for (int j = 0; j < GGML_F16_ARR; j++) {
  1249. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1250. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1251. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1252. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1253. }
  1254. }
  1255. }
  1256. // reduce sum0..sum3 to sum0
  1257. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1258. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1259. }
  1260. // leftovers
  1261. for (int i = np; i < n; ++i) {
  1262. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1263. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1264. }
  1265. }
  1266. #else
  1267. for (int i = 0; i < n; ++i) {
  1268. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1269. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1270. }
  1271. }
  1272. #endif
  1273. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1274. s[i] = sumf[i];
  1275. }
  1276. }
  1277. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1278. #if defined(GGML_SIMD)
  1279. const int np = (n & ~(GGML_F32_STEP - 1));
  1280. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1281. GGML_F32_VEC ax[GGML_F32_ARR];
  1282. GGML_F32_VEC ay[GGML_F32_ARR];
  1283. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1284. for (int j = 0; j < GGML_F32_ARR; j++) {
  1285. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1286. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1287. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1288. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1289. }
  1290. }
  1291. // leftovers
  1292. for (int i = np; i < n; ++i) {
  1293. y[i] += x[i]*v;
  1294. }
  1295. #else
  1296. // scalar
  1297. for (int i = 0; i < n; ++i) {
  1298. y[i] += x[i]*v;
  1299. }
  1300. #endif
  1301. }
  1302. // xs and vs are byte strides of x and v
  1303. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1304. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1305. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1306. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1307. x[i] = (const float *) ((const char *) xv + i*xs);
  1308. v[i] = (const float *) ((const char *) vv + i*vs);
  1309. }
  1310. #if defined(GGML_SIMD)
  1311. const int np = (n & ~(GGML_F32_STEP - 1));
  1312. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1313. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1314. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1315. }
  1316. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1317. GGML_F32_VEC ay[GGML_F32_ARR];
  1318. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1319. for (int j = 0; j < GGML_F32_ARR; j++) {
  1320. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1321. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1322. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1323. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1324. }
  1325. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1326. }
  1327. }
  1328. // leftovers
  1329. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1330. for (int i = np; i < n; ++i) {
  1331. y[i] += x[k][i]*v[k][0];
  1332. }
  1333. }
  1334. #else
  1335. // scalar
  1336. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1337. for (int i = 0; i < n; ++i) {
  1338. y[i] += x[k][i]*v[k][0];
  1339. }
  1340. }
  1341. #endif
  1342. }
  1343. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1344. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1345. #if defined(GGML_USE_ACCELERATE)
  1346. vDSP_vsmul(y, 1, &v, y, 1, n);
  1347. #elif defined(GGML_SIMD)
  1348. const int np = (n & ~(GGML_F32_STEP - 1));
  1349. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1350. GGML_F32_VEC ay[GGML_F32_ARR];
  1351. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1352. for (int j = 0; j < GGML_F32_ARR; j++) {
  1353. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1354. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1355. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1356. }
  1357. }
  1358. // leftovers
  1359. for (int i = np; i < n; ++i) {
  1360. y[i] *= v;
  1361. }
  1362. #else
  1363. // scalar
  1364. for (int i = 0; i < n; ++i) {
  1365. y[i] *= v;
  1366. }
  1367. #endif
  1368. }
  1369. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1370. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1371. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1372. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1373. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1374. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1375. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1376. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1377. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1378. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1379. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1380. // TODO: optimize performance
  1381. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1382. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1383. static const float GELU_COEF_A = 0.044715f;
  1384. static const float GELU_QUICK_COEF = -1.702f;
  1385. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1386. inline static float ggml_gelu_f32(float x) {
  1387. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1388. }
  1389. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1390. const uint16_t * i16 = (const uint16_t *) x;
  1391. for (int i = 0; i < n; ++i) {
  1392. y[i] = ggml_table_gelu_f16[i16[i]];
  1393. }
  1394. }
  1395. #ifdef GGML_GELU_FP16
  1396. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1397. uint16_t t;
  1398. for (int i = 0; i < n; ++i) {
  1399. if (x[i] <= -10.0f) {
  1400. y[i] = 0.0f;
  1401. } else if (x[i] >= 10.0f) {
  1402. y[i] = x[i];
  1403. } else {
  1404. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1405. memcpy(&t, &fp16, sizeof(uint16_t));
  1406. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1407. }
  1408. }
  1409. }
  1410. #else
  1411. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1412. for (int i = 0; i < n; ++i) {
  1413. y[i] = ggml_gelu_f32(x[i]);
  1414. }
  1415. }
  1416. #endif
  1417. inline static float ggml_gelu_quick_f32(float x) {
  1418. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1419. }
  1420. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1421. // const uint16_t * i16 = (const uint16_t *) x;
  1422. // for (int i = 0; i < n; ++i) {
  1423. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1424. // }
  1425. //}
  1426. #ifdef GGML_GELU_QUICK_FP16
  1427. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1428. uint16_t t;
  1429. for (int i = 0; i < n; ++i) {
  1430. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1431. memcpy(&t, &fp16, sizeof(uint16_t));
  1432. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1433. }
  1434. }
  1435. #else
  1436. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1437. for (int i = 0; i < n; ++i) {
  1438. y[i] = ggml_gelu_quick_f32(x[i]);
  1439. }
  1440. }
  1441. #endif
  1442. // Sigmoid Linear Unit (SiLU) function
  1443. inline static float ggml_silu_f32(float x) {
  1444. return x/(1.0f + expf(-x));
  1445. }
  1446. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1447. // const uint16_t * i16 = (const uint16_t *) x;
  1448. // for (int i = 0; i < n; ++i) {
  1449. // y[i] = ggml_table_silu_f16[i16[i]];
  1450. // }
  1451. //}
  1452. #ifdef GGML_SILU_FP16
  1453. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1454. uint16_t t;
  1455. for (int i = 0; i < n; ++i) {
  1456. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1457. memcpy(&t, &fp16, sizeof(uint16_t));
  1458. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1459. }
  1460. }
  1461. #else
  1462. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1463. for (int i = 0; i < n; ++i) {
  1464. y[i] = ggml_silu_f32(x[i]);
  1465. }
  1466. }
  1467. #endif
  1468. inline static float ggml_silu_backward_f32(float x, float dy) {
  1469. const float s = 1.0f/(1.0f + expf(-x));
  1470. return dy*s*(1.0f + x*(1.0f - s));
  1471. }
  1472. #ifdef GGML_SILU_FP16
  1473. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1474. for (int i = 0; i < n; ++i) {
  1475. // we did not use x[i] to compute forward silu but its f16 equivalent
  1476. // take derivative at f16 of x[i]:
  1477. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1478. float usedx = GGML_FP16_TO_FP32(fp16);
  1479. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1480. }
  1481. }
  1482. #else
  1483. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1484. for (int i = 0; i < n; ++i) {
  1485. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1486. }
  1487. }
  1488. #endif
  1489. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1490. #ifndef GGML_USE_ACCELERATE
  1491. ggml_float sum = 0.0;
  1492. for (int i = 0; i < n; ++i) {
  1493. sum += (ggml_float)x[i];
  1494. }
  1495. *s = sum;
  1496. #else
  1497. vDSP_sve(x, 1, s, n);
  1498. #endif
  1499. }
  1500. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1501. ggml_float sum = 0.0;
  1502. for (int i = 0; i < n; ++i) {
  1503. sum += (ggml_float)x[i];
  1504. }
  1505. *s = sum;
  1506. }
  1507. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1508. float sum = 0.0f;
  1509. for (int i = 0; i < n; ++i) {
  1510. sum += GGML_FP16_TO_FP32(x[i]);
  1511. }
  1512. *s = sum;
  1513. }
  1514. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1515. #ifndef GGML_USE_ACCELERATE
  1516. float max = -INFINITY;
  1517. for (int i = 0; i < n; ++i) {
  1518. max = MAX(max, x[i]);
  1519. }
  1520. *s = max;
  1521. #else
  1522. vDSP_maxv(x, 1, s, n);
  1523. #endif
  1524. }
  1525. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1526. ggml_vec_norm_f32(n, s, x);
  1527. *s = 1.f/(*s);
  1528. }
  1529. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1530. float max = -INFINITY;
  1531. int idx = 0;
  1532. for (int i = 0; i < n; ++i) {
  1533. max = MAX(max, x[i]);
  1534. if (max == x[i]) { idx = i; }
  1535. }
  1536. *s = idx;
  1537. }
  1538. //
  1539. // data types
  1540. //
  1541. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1542. "NONE",
  1543. "DUP",
  1544. "ADD",
  1545. "ADD1",
  1546. "ACC",
  1547. "SUB",
  1548. "MUL",
  1549. "DIV",
  1550. "SQR",
  1551. "SQRT",
  1552. "LOG",
  1553. "SUM",
  1554. "SUM_ROWS",
  1555. "MEAN",
  1556. "ARGMAX",
  1557. "REPEAT",
  1558. "REPEAT_BACK",
  1559. "CONCAT",
  1560. "SILU_BACK",
  1561. "NORM",
  1562. "RMS_NORM",
  1563. "RMS_NORM_BACK",
  1564. "GROUP_NORM",
  1565. "MUL_MAT",
  1566. "MUL_MAT_ID",
  1567. "OUT_PROD",
  1568. "SCALE",
  1569. "SET",
  1570. "CPY",
  1571. "CONT",
  1572. "RESHAPE",
  1573. "VIEW",
  1574. "PERMUTE",
  1575. "TRANSPOSE",
  1576. "GET_ROWS",
  1577. "GET_ROWS_BACK",
  1578. "DIAG",
  1579. "DIAG_MASK_INF",
  1580. "DIAG_MASK_ZERO",
  1581. "SOFT_MAX",
  1582. "SOFT_MAX_BACK",
  1583. "ROPE",
  1584. "ROPE_BACK",
  1585. "ALIBI",
  1586. "CLAMP",
  1587. "CONV_TRANSPOSE_1D",
  1588. "IM2COL",
  1589. "CONV_TRANSPOSE_2D",
  1590. "POOL_1D",
  1591. "POOL_2D",
  1592. "UPSCALE",
  1593. "PAD",
  1594. "ARGSORT",
  1595. "LEAKY_RELU",
  1596. "FLASH_ATTN",
  1597. "FLASH_FF",
  1598. "FLASH_ATTN_BACK",
  1599. "WIN_PART",
  1600. "WIN_UNPART",
  1601. "GET_REL_POS",
  1602. "ADD_REL_POS",
  1603. "UNARY",
  1604. "MAP_UNARY",
  1605. "MAP_BINARY",
  1606. "MAP_CUSTOM1_F32",
  1607. "MAP_CUSTOM2_F32",
  1608. "MAP_CUSTOM3_F32",
  1609. "MAP_CUSTOM1",
  1610. "MAP_CUSTOM2",
  1611. "MAP_CUSTOM3",
  1612. "CROSS_ENTROPY_LOSS",
  1613. "CROSS_ENTROPY_LOSS_BACK",
  1614. };
  1615. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1616. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1617. "none",
  1618. "x",
  1619. "x+y",
  1620. "x+y",
  1621. "view(x,nb,offset)+=y->x",
  1622. "x-y",
  1623. "x*y",
  1624. "x/y",
  1625. "x^2",
  1626. "√x",
  1627. "log(x)",
  1628. "Σx",
  1629. "Σx_k",
  1630. "Σx/n",
  1631. "argmax(x)",
  1632. "repeat(x)",
  1633. "repeat_back(x)",
  1634. "concat(x, y)",
  1635. "silu_back(x)",
  1636. "norm(x)",
  1637. "rms_norm(x)",
  1638. "rms_norm_back(x)",
  1639. "group_norm(x)",
  1640. "X*Y",
  1641. "X[i]*Y",
  1642. "X*Y",
  1643. "x*v",
  1644. "y-\\>view(x)",
  1645. "x-\\>y",
  1646. "cont(x)",
  1647. "reshape(x)",
  1648. "view(x)",
  1649. "permute(x)",
  1650. "transpose(x)",
  1651. "get_rows(x)",
  1652. "get_rows_back(x)",
  1653. "diag(x)",
  1654. "diag_mask_inf(x)",
  1655. "diag_mask_zero(x)",
  1656. "soft_max(x)",
  1657. "soft_max_back(x)",
  1658. "rope(x)",
  1659. "rope_back(x)",
  1660. "alibi(x)",
  1661. "clamp(x)",
  1662. "conv_transpose_1d(x)",
  1663. "im2col(x)",
  1664. "conv_transpose_2d(x)",
  1665. "pool_1d(x)",
  1666. "pool_2d(x)",
  1667. "upscale(x)",
  1668. "pad(x)",
  1669. "argsort(x)",
  1670. "leaky_relu(x)",
  1671. "flash_attn(x)",
  1672. "flash_ff(x)",
  1673. "flash_attn_back(x)",
  1674. "win_part(x)",
  1675. "win_unpart(x)",
  1676. "get_rel_pos(x)",
  1677. "add_rel_pos(x)",
  1678. "unary(x)",
  1679. "f(x)",
  1680. "f(x,y)",
  1681. "custom_f32(x)",
  1682. "custom_f32(x,y)",
  1683. "custom_f32(x,y,z)",
  1684. "custom(x)",
  1685. "custom(x,y)",
  1686. "custom(x,y,z)",
  1687. "cross_entropy_loss(x,y)",
  1688. "cross_entropy_loss_back(x,y)",
  1689. };
  1690. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1691. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1692. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1693. "ABS",
  1694. "SGN",
  1695. "NEG",
  1696. "STEP",
  1697. "TANH",
  1698. "ELU",
  1699. "RELU",
  1700. "GELU",
  1701. "GELU_QUICK",
  1702. "SILU",
  1703. "HARDSWISH",
  1704. "HARDSIGMOID",
  1705. };
  1706. static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
  1707. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1708. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1709. // WARN:
  1710. // Mis-configuration can lead to problem that's hard to reason about:
  1711. // * At best it crash or talks nosense.
  1712. // * At worst it talks slightly difference but hard to perceive.
  1713. //
  1714. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1715. // Take care about compile options (e.g., GGML_USE_xxx).
  1716. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1717. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1718. static void ggml_setup_op_has_task_pass(void) {
  1719. { // INIT
  1720. bool * p = GGML_OP_HAS_INIT;
  1721. p[GGML_OP_ACC ] = true;
  1722. p[GGML_OP_MUL_MAT ] = true;
  1723. p[GGML_OP_MUL_MAT_ID ] = true;
  1724. p[GGML_OP_OUT_PROD ] = true;
  1725. p[GGML_OP_SET ] = true;
  1726. p[GGML_OP_GET_ROWS_BACK ] = true;
  1727. p[GGML_OP_DIAG_MASK_INF ] = true;
  1728. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1729. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1730. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1731. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1732. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1733. p[GGML_OP_ADD_REL_POS ] = true;
  1734. }
  1735. { // FINALIZE
  1736. bool * p = GGML_OP_HAS_FINALIZE;
  1737. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1738. }
  1739. }
  1740. //
  1741. // ggml context
  1742. //
  1743. struct ggml_context {
  1744. size_t mem_size;
  1745. void * mem_buffer;
  1746. bool mem_buffer_owned;
  1747. bool no_alloc;
  1748. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1749. int n_objects;
  1750. struct ggml_object * objects_begin;
  1751. struct ggml_object * objects_end;
  1752. struct ggml_scratch scratch;
  1753. struct ggml_scratch scratch_save;
  1754. };
  1755. struct ggml_context_container {
  1756. bool used;
  1757. struct ggml_context context;
  1758. };
  1759. //
  1760. // NUMA support
  1761. //
  1762. #define GGML_NUMA_MAX_NODES 8
  1763. #define GGML_NUMA_MAX_CPUS 512
  1764. struct ggml_numa_node {
  1765. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1766. uint32_t n_cpus;
  1767. };
  1768. struct ggml_numa_nodes {
  1769. enum ggml_numa_strategy numa_strategy;
  1770. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1771. uint32_t n_nodes;
  1772. uint32_t total_cpus; // hardware threads on system
  1773. uint32_t current_node; // node on which main process is execting
  1774. #if defined(__gnu_linux__)
  1775. cpu_set_t cpuset; // cpuset from numactl
  1776. #else
  1777. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  1778. #endif
  1779. };
  1780. //
  1781. // ggml state
  1782. //
  1783. struct ggml_state {
  1784. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1785. struct ggml_numa_nodes numa;
  1786. };
  1787. // global state
  1788. static struct ggml_state g_state;
  1789. static atomic_int g_state_barrier = 0;
  1790. // barrier via spin lock
  1791. inline static void ggml_critical_section_start(void) {
  1792. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1793. while (processing > 0) {
  1794. // wait for other threads to finish
  1795. atomic_fetch_sub(&g_state_barrier, 1);
  1796. sched_yield(); // TODO: reconsider this
  1797. processing = atomic_fetch_add(&g_state_barrier, 1);
  1798. }
  1799. }
  1800. // TODO: make this somehow automatically executed
  1801. // some sort of "sentry" mechanism
  1802. inline static void ggml_critical_section_end(void) {
  1803. atomic_fetch_sub(&g_state_barrier, 1);
  1804. }
  1805. #if defined(__gnu_linux__)
  1806. static cpu_set_t ggml_get_numa_affinity(void) {
  1807. cpu_set_t cpuset;
  1808. pthread_t thread;
  1809. thread = pthread_self();
  1810. CPU_ZERO(&cpuset);
  1811. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  1812. return cpuset;
  1813. }
  1814. #else
  1815. static uint32_t ggml_get_numa_affinity(void) {
  1816. return 0; // no NUMA support
  1817. }
  1818. #endif
  1819. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  1820. if (g_state.numa.n_nodes > 0) {
  1821. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1822. return;
  1823. }
  1824. #if defined(__gnu_linux__)
  1825. struct stat st;
  1826. char path[256];
  1827. int rv;
  1828. // set numa scheme
  1829. g_state.numa.numa_strategy = numa_flag;
  1830. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  1831. g_state.numa.cpuset = ggml_get_numa_affinity();
  1832. // enumerate nodes
  1833. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1834. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1835. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1836. if (stat(path, &st) != 0) { break; }
  1837. ++g_state.numa.n_nodes;
  1838. }
  1839. // enumerate CPUs
  1840. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1841. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1842. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1843. if (stat(path, &st) != 0) { break; }
  1844. ++g_state.numa.total_cpus;
  1845. }
  1846. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1847. // figure out which node we're on
  1848. uint current_cpu;
  1849. int getcpu_ret = 0;
  1850. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28)
  1851. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  1852. #else
  1853. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  1854. getcpu_ret = syscall(SYS_getcpu,&current_cpu,&g_state.numa.current_node);
  1855. #endif
  1856. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  1857. g_state.numa.n_nodes = 0;
  1858. return;
  1859. }
  1860. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  1861. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1862. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1863. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1864. node->n_cpus = 0;
  1865. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1866. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1867. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1868. if (stat(path, &st) == 0) {
  1869. node->cpus[node->n_cpus++] = c;
  1870. GGML_PRINT_DEBUG(" %u", c);
  1871. }
  1872. }
  1873. GGML_PRINT_DEBUG("\n");
  1874. }
  1875. if (ggml_is_numa()) {
  1876. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1877. if (fptr != NULL) {
  1878. char buf[42];
  1879. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1880. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1881. }
  1882. fclose(fptr);
  1883. }
  1884. }
  1885. #else
  1886. GGML_UNUSED(numa_flag);
  1887. // TODO
  1888. #endif
  1889. }
  1890. bool ggml_is_numa(void) {
  1891. return g_state.numa.n_nodes > 1;
  1892. }
  1893. ////////////////////////////////////////////////////////////////////////////////
  1894. void ggml_print_object(const struct ggml_object * obj) {
  1895. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1896. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1897. }
  1898. void ggml_print_objects(const struct ggml_context * ctx) {
  1899. struct ggml_object * obj = ctx->objects_begin;
  1900. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1901. while (obj != NULL) {
  1902. ggml_print_object(obj);
  1903. obj = obj->next;
  1904. }
  1905. GGML_PRINT("%s: --- end ---\n", __func__);
  1906. }
  1907. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1908. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1909. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1910. }
  1911. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1912. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1913. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1914. }
  1915. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1916. size_t nbytes;
  1917. size_t blck_size = ggml_blck_size(tensor->type);
  1918. if (blck_size == 1) {
  1919. nbytes = ggml_type_size(tensor->type);
  1920. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1921. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1922. }
  1923. }
  1924. else {
  1925. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1926. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1927. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1928. }
  1929. }
  1930. return nbytes;
  1931. }
  1932. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1933. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1934. }
  1935. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  1936. return type_traits[type].blck_size;
  1937. }
  1938. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  1939. return type_traits[type].type_size;
  1940. }
  1941. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  1942. assert(ne % ggml_blck_size(type) == 0);
  1943. return ggml_type_size(type)*ne/ggml_blck_size(type);
  1944. }
  1945. double ggml_type_sizef(enum ggml_type type) {
  1946. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  1947. }
  1948. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  1949. return type_traits[type].type_name;
  1950. }
  1951. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  1952. return type_traits[type].is_quantized;
  1953. }
  1954. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  1955. return GGML_OP_NAME[op];
  1956. }
  1957. const char * ggml_op_symbol(enum ggml_op op) {
  1958. return GGML_OP_SYMBOL[op];
  1959. }
  1960. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  1961. return GGML_UNARY_OP_NAME[op];
  1962. }
  1963. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  1964. if (t->op == GGML_OP_UNARY) {
  1965. enum ggml_unary_op uop = ggml_get_unary_op(t);
  1966. return ggml_unary_op_name(uop);
  1967. }
  1968. else {
  1969. return ggml_op_name(t->op);
  1970. }
  1971. }
  1972. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1973. return ggml_type_size(tensor->type);
  1974. }
  1975. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1976. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1977. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1978. }
  1979. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1980. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1981. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1982. }
  1983. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1984. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1985. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1986. }
  1987. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  1988. return tensor->ne[3] == 1;
  1989. }
  1990. int ggml_n_dims(const struct ggml_tensor * tensor) {
  1991. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  1992. if (tensor->ne[i] > 1) {
  1993. return i + 1;
  1994. }
  1995. }
  1996. return 1;
  1997. }
  1998. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1999. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2000. return (t0->ne[0] == t1->ne[0]) &&
  2001. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2002. (t1->ne[3]%t0->ne[3] == 0);
  2003. }
  2004. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2005. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2006. return (t0->ne[1] == t1->ne[1]) &&
  2007. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2008. (t1->ne[3]%t0->ne[3] == 0);
  2009. }
  2010. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2011. enum ggml_type wtype = GGML_TYPE_COUNT;
  2012. switch (ftype) {
  2013. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2014. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2015. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2016. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2017. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2018. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2019. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2020. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2021. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2022. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2023. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2024. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2025. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2026. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2027. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2028. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2029. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2030. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2031. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2032. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2033. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2034. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2035. }
  2036. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2037. return wtype;
  2038. }
  2039. size_t ggml_tensor_overhead(void) {
  2040. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2041. }
  2042. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2043. return tensor->nb[0] > tensor->nb[1];
  2044. }
  2045. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2046. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2047. return
  2048. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2049. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2050. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2051. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2052. }
  2053. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  2054. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2055. return
  2056. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2057. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2058. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2059. }
  2060. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2061. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2062. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2063. }
  2064. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2065. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2066. return
  2067. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2068. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2069. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2070. }
  2071. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2072. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2073. return
  2074. (t0->ne[0] == t1->ne[0] ) &&
  2075. (t0->ne[1] == t1->ne[1] ) &&
  2076. (t0->ne[2] == t1->ne[2] ) &&
  2077. (t0->ne[3] == t1->ne[3] );
  2078. }
  2079. // check if t1 can be represented as a repeatition of t0
  2080. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2081. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2082. return
  2083. (t1->ne[0]%t0->ne[0] == 0) &&
  2084. (t1->ne[1]%t0->ne[1] == 0) &&
  2085. (t1->ne[2]%t0->ne[2] == 0) &&
  2086. (t1->ne[3]%t0->ne[3] == 0);
  2087. }
  2088. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2089. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2090. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2091. }
  2092. static inline int ggml_up32(int n) {
  2093. return (n + 31) & ~31;
  2094. }
  2095. //static inline int ggml_up64(int n) {
  2096. // return (n + 63) & ~63;
  2097. //}
  2098. static inline int ggml_up(int n, int m) {
  2099. // assert m is a power of 2
  2100. GGML_ASSERT((m & (m - 1)) == 0);
  2101. return (n + m - 1) & ~(m - 1);
  2102. }
  2103. // assert that pointer is aligned to GGML_MEM_ALIGN
  2104. #define ggml_assert_aligned(ptr) \
  2105. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2106. ////////////////////////////////////////////////////////////////////////////////
  2107. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2108. // make this function thread safe
  2109. ggml_critical_section_start();
  2110. static bool is_first_call = true;
  2111. if (is_first_call) {
  2112. // initialize time system (required on Windows)
  2113. ggml_time_init();
  2114. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2115. {
  2116. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2117. ggml_fp16_t ii;
  2118. for (int i = 0; i < (1 << 16); ++i) {
  2119. uint16_t ui = i;
  2120. memcpy(&ii, &ui, sizeof(ii));
  2121. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2122. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2123. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2124. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2125. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2126. }
  2127. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2128. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2129. }
  2130. // initialize g_state
  2131. {
  2132. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2133. g_state = (struct ggml_state) {
  2134. /*.contexts =*/ { { 0 } },
  2135. /*.numa =*/ {
  2136. .n_nodes = 0,
  2137. .total_cpus = 0,
  2138. },
  2139. };
  2140. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2141. g_state.contexts[i].used = false;
  2142. }
  2143. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2144. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2145. }
  2146. #if defined(GGML_USE_CUBLAS)
  2147. ggml_init_cublas();
  2148. #elif defined(GGML_USE_CLBLAST)
  2149. ggml_cl_init();
  2150. #elif defined(GGML_USE_VULKAN)
  2151. ggml_vk_init_cpu_assist();
  2152. #elif defined(GGML_USE_SYCL)
  2153. ggml_init_sycl();
  2154. #endif
  2155. ggml_setup_op_has_task_pass();
  2156. is_first_call = false;
  2157. }
  2158. // find non-used context in g_state
  2159. struct ggml_context * ctx = NULL;
  2160. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2161. if (!g_state.contexts[i].used) {
  2162. g_state.contexts[i].used = true;
  2163. ctx = &g_state.contexts[i].context;
  2164. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2165. break;
  2166. }
  2167. }
  2168. if (ctx == NULL) {
  2169. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2170. ggml_critical_section_end();
  2171. return NULL;
  2172. }
  2173. // allow to call ggml_init with 0 size
  2174. if (params.mem_size == 0) {
  2175. params.mem_size = GGML_MEM_ALIGN;
  2176. }
  2177. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2178. *ctx = (struct ggml_context) {
  2179. /*.mem_size =*/ mem_size,
  2180. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2181. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2182. /*.no_alloc =*/ params.no_alloc,
  2183. /*.no_alloc_save =*/ params.no_alloc,
  2184. /*.n_objects =*/ 0,
  2185. /*.objects_begin =*/ NULL,
  2186. /*.objects_end =*/ NULL,
  2187. /*.scratch =*/ { 0, 0, NULL, },
  2188. /*.scratch_save =*/ { 0, 0, NULL, },
  2189. };
  2190. GGML_ASSERT(ctx->mem_buffer != NULL);
  2191. ggml_assert_aligned(ctx->mem_buffer);
  2192. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2193. ggml_critical_section_end();
  2194. return ctx;
  2195. }
  2196. void ggml_free(struct ggml_context * ctx) {
  2197. if (ctx == NULL) {
  2198. return;
  2199. }
  2200. // make this function thread safe
  2201. ggml_critical_section_start();
  2202. bool found = false;
  2203. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2204. if (&g_state.contexts[i].context == ctx) {
  2205. g_state.contexts[i].used = false;
  2206. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2207. __func__, i, ggml_used_mem(ctx));
  2208. if (ctx->mem_buffer_owned) {
  2209. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2210. }
  2211. found = true;
  2212. break;
  2213. }
  2214. }
  2215. if (!found) {
  2216. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2217. }
  2218. ggml_critical_section_end();
  2219. }
  2220. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2221. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2222. }
  2223. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2224. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2225. ctx->scratch = scratch;
  2226. return result;
  2227. }
  2228. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2229. return ctx->no_alloc;
  2230. }
  2231. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2232. ctx->no_alloc = no_alloc;
  2233. }
  2234. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2235. return ctx->mem_buffer;
  2236. }
  2237. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2238. return ctx->mem_size;
  2239. }
  2240. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2241. size_t max_size = 0;
  2242. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2243. size_t bytes = ggml_nbytes(tensor);
  2244. max_size = MAX(max_size, bytes);
  2245. }
  2246. return max_size;
  2247. }
  2248. // IMPORTANT:
  2249. // when creating "opt" tensors, always save and load the scratch buffer
  2250. // this is an error prone process, but it is necessary to support inplace
  2251. // operators when using scratch buffers
  2252. // TODO: implement a better way
  2253. static void ggml_scratch_save(struct ggml_context * ctx) {
  2254. // this is needed to allow opt tensors to store their data
  2255. // TODO: again, need to find a better way
  2256. ctx->no_alloc_save = ctx->no_alloc;
  2257. ctx->no_alloc = false;
  2258. ctx->scratch_save = ctx->scratch;
  2259. ctx->scratch.data = NULL;
  2260. }
  2261. static void ggml_scratch_load(struct ggml_context * ctx) {
  2262. ctx->no_alloc = ctx->no_alloc_save;
  2263. ctx->scratch = ctx->scratch_save;
  2264. }
  2265. ////////////////////////////////////////////////////////////////////////////////
  2266. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2267. // always insert objects at the end of the context's memory pool
  2268. struct ggml_object * obj_cur = ctx->objects_end;
  2269. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2270. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2271. const size_t cur_end = cur_offs + cur_size;
  2272. // align to GGML_MEM_ALIGN
  2273. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2274. char * const mem_buffer = ctx->mem_buffer;
  2275. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2276. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2277. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2278. __func__, cur_end + size_needed, ctx->mem_size);
  2279. assert(false);
  2280. return NULL;
  2281. }
  2282. *obj_new = (struct ggml_object) {
  2283. .offs = cur_end + GGML_OBJECT_SIZE,
  2284. .size = size_needed,
  2285. .next = NULL,
  2286. .type = type,
  2287. };
  2288. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2289. if (obj_cur != NULL) {
  2290. obj_cur->next = obj_new;
  2291. } else {
  2292. // this is the first object in this context
  2293. ctx->objects_begin = obj_new;
  2294. }
  2295. ctx->objects_end = obj_new;
  2296. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2297. return obj_new;
  2298. }
  2299. static struct ggml_tensor * ggml_new_tensor_impl(
  2300. struct ggml_context * ctx,
  2301. enum ggml_type type,
  2302. int n_dims,
  2303. const int64_t * ne,
  2304. struct ggml_tensor * view_src,
  2305. size_t view_offs) {
  2306. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2307. // find the base tensor and absolute offset
  2308. if (view_src != NULL && view_src->view_src != NULL) {
  2309. view_offs += view_src->view_offs;
  2310. view_src = view_src->view_src;
  2311. }
  2312. size_t data_size = ggml_row_size(type, ne[0]);
  2313. for (int i = 1; i < n_dims; i++) {
  2314. data_size *= ne[i];
  2315. }
  2316. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2317. void * data = view_src != NULL ? view_src->data : NULL;
  2318. if (data != NULL) {
  2319. data = (char *) data + view_offs;
  2320. }
  2321. size_t obj_alloc_size = 0;
  2322. if (view_src == NULL && !ctx->no_alloc) {
  2323. if (ctx->scratch.data != NULL) {
  2324. // allocate tensor data in the scratch buffer
  2325. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2326. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2327. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2328. assert(false);
  2329. return NULL;
  2330. }
  2331. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2332. ctx->scratch.offs += data_size;
  2333. } else {
  2334. // allocate tensor data in the context's memory pool
  2335. obj_alloc_size = data_size;
  2336. }
  2337. }
  2338. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2339. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2340. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2341. *result = (struct ggml_tensor) {
  2342. /*.type =*/ type,
  2343. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  2344. /*.buffer =*/ NULL,
  2345. /*.ne =*/ { 1, 1, 1, 1 },
  2346. /*.nb =*/ { 0, 0, 0, 0 },
  2347. /*.op =*/ GGML_OP_NONE,
  2348. /*.op_params =*/ { 0 },
  2349. /*.flags =*/ 0,
  2350. /*.grad =*/ NULL,
  2351. /*.src =*/ { NULL },
  2352. /*.perf_runs =*/ 0,
  2353. /*.perf_cycles =*/ 0,
  2354. /*.perf_time_us =*/ 0,
  2355. /*.view_src =*/ view_src,
  2356. /*.view_offs =*/ view_offs,
  2357. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2358. /*.name =*/ { 0 },
  2359. /*.extra =*/ NULL,
  2360. /*.padding =*/ { 0 },
  2361. };
  2362. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2363. //ggml_assert_aligned(result->data);
  2364. for (int i = 0; i < n_dims; i++) {
  2365. result->ne[i] = ne[i];
  2366. }
  2367. result->nb[0] = ggml_type_size(type);
  2368. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2369. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2370. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2371. }
  2372. ctx->n_objects++;
  2373. return result;
  2374. }
  2375. struct ggml_tensor * ggml_new_tensor(
  2376. struct ggml_context * ctx,
  2377. enum ggml_type type,
  2378. int n_dims,
  2379. const int64_t * ne) {
  2380. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2381. }
  2382. struct ggml_tensor * ggml_new_tensor_1d(
  2383. struct ggml_context * ctx,
  2384. enum ggml_type type,
  2385. int64_t ne0) {
  2386. return ggml_new_tensor(ctx, type, 1, &ne0);
  2387. }
  2388. struct ggml_tensor * ggml_new_tensor_2d(
  2389. struct ggml_context * ctx,
  2390. enum ggml_type type,
  2391. int64_t ne0,
  2392. int64_t ne1) {
  2393. const int64_t ne[2] = { ne0, ne1 };
  2394. return ggml_new_tensor(ctx, type, 2, ne);
  2395. }
  2396. struct ggml_tensor * ggml_new_tensor_3d(
  2397. struct ggml_context * ctx,
  2398. enum ggml_type type,
  2399. int64_t ne0,
  2400. int64_t ne1,
  2401. int64_t ne2) {
  2402. const int64_t ne[3] = { ne0, ne1, ne2 };
  2403. return ggml_new_tensor(ctx, type, 3, ne);
  2404. }
  2405. struct ggml_tensor * ggml_new_tensor_4d(
  2406. struct ggml_context * ctx,
  2407. enum ggml_type type,
  2408. int64_t ne0,
  2409. int64_t ne1,
  2410. int64_t ne2,
  2411. int64_t ne3) {
  2412. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2413. return ggml_new_tensor(ctx, type, 4, ne);
  2414. }
  2415. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2416. ggml_scratch_save(ctx);
  2417. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2418. ggml_scratch_load(ctx);
  2419. ggml_set_i32(result, value);
  2420. return result;
  2421. }
  2422. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2423. ggml_scratch_save(ctx);
  2424. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2425. ggml_scratch_load(ctx);
  2426. ggml_set_f32(result, value);
  2427. return result;
  2428. }
  2429. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2430. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2431. }
  2432. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2433. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2434. assert(params_size <= GGML_MAX_OP_PARAMS);
  2435. memcpy(tensor->op_params, params, params_size);
  2436. }
  2437. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2438. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2439. return ((const int32_t *)(tensor->op_params))[i];
  2440. }
  2441. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2442. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2443. ((int32_t *)(tensor->op_params))[i] = value;
  2444. }
  2445. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2446. memset(tensor->data, 0, ggml_nbytes(tensor));
  2447. return tensor;
  2448. }
  2449. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2450. const int n = ggml_nrows(tensor);
  2451. const int nc = tensor->ne[0];
  2452. const size_t n1 = tensor->nb[1];
  2453. char * const data = tensor->data;
  2454. switch (tensor->type) {
  2455. case GGML_TYPE_I8:
  2456. {
  2457. assert(tensor->nb[0] == sizeof(int8_t));
  2458. for (int i = 0; i < n; i++) {
  2459. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2460. }
  2461. } break;
  2462. case GGML_TYPE_I16:
  2463. {
  2464. assert(tensor->nb[0] == sizeof(int16_t));
  2465. for (int i = 0; i < n; i++) {
  2466. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2467. }
  2468. } break;
  2469. case GGML_TYPE_I32:
  2470. {
  2471. assert(tensor->nb[0] == sizeof(int32_t));
  2472. for (int i = 0; i < n; i++) {
  2473. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2474. }
  2475. } break;
  2476. case GGML_TYPE_F16:
  2477. {
  2478. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2479. for (int i = 0; i < n; i++) {
  2480. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2481. }
  2482. } break;
  2483. case GGML_TYPE_F32:
  2484. {
  2485. assert(tensor->nb[0] == sizeof(float));
  2486. for (int i = 0; i < n; i++) {
  2487. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2488. }
  2489. } break;
  2490. default:
  2491. {
  2492. GGML_ASSERT(false);
  2493. } break;
  2494. }
  2495. return tensor;
  2496. }
  2497. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2498. const int n = ggml_nrows(tensor);
  2499. const int nc = tensor->ne[0];
  2500. const size_t n1 = tensor->nb[1];
  2501. char * const data = tensor->data;
  2502. switch (tensor->type) {
  2503. case GGML_TYPE_I8:
  2504. {
  2505. assert(tensor->nb[0] == sizeof(int8_t));
  2506. for (int i = 0; i < n; i++) {
  2507. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2508. }
  2509. } break;
  2510. case GGML_TYPE_I16:
  2511. {
  2512. assert(tensor->nb[0] == sizeof(int16_t));
  2513. for (int i = 0; i < n; i++) {
  2514. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2515. }
  2516. } break;
  2517. case GGML_TYPE_I32:
  2518. {
  2519. assert(tensor->nb[0] == sizeof(int32_t));
  2520. for (int i = 0; i < n; i++) {
  2521. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2522. }
  2523. } break;
  2524. case GGML_TYPE_F16:
  2525. {
  2526. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2527. for (int i = 0; i < n; i++) {
  2528. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2529. }
  2530. } break;
  2531. case GGML_TYPE_F32:
  2532. {
  2533. assert(tensor->nb[0] == sizeof(float));
  2534. for (int i = 0; i < n; i++) {
  2535. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2536. }
  2537. } break;
  2538. default:
  2539. {
  2540. GGML_ASSERT(false);
  2541. } break;
  2542. }
  2543. return tensor;
  2544. }
  2545. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2546. const int64_t ne2 = tensor->ne[2];
  2547. const int64_t ne1 = tensor->ne[1];
  2548. const int64_t ne0 = tensor->ne[0];
  2549. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2550. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2551. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2552. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2553. if (i0) {
  2554. * i0 = i0_;
  2555. }
  2556. if (i1) {
  2557. * i1 = i1_;
  2558. }
  2559. if (i2) {
  2560. * i2 = i2_;
  2561. }
  2562. if (i3) {
  2563. * i3 = i3_;
  2564. }
  2565. }
  2566. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2567. if (!ggml_is_contiguous(tensor)) {
  2568. int64_t id[4] = { 0, 0, 0, 0 };
  2569. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2570. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2571. }
  2572. switch (tensor->type) {
  2573. case GGML_TYPE_I8:
  2574. {
  2575. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2576. return ((int8_t *)(tensor->data))[i];
  2577. }
  2578. case GGML_TYPE_I16:
  2579. {
  2580. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2581. return ((int16_t *)(tensor->data))[i];
  2582. }
  2583. case GGML_TYPE_I32:
  2584. {
  2585. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2586. return ((int32_t *)(tensor->data))[i];
  2587. }
  2588. case GGML_TYPE_F16:
  2589. {
  2590. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2591. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2592. }
  2593. case GGML_TYPE_F32:
  2594. {
  2595. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2596. return ((float *)(tensor->data))[i];
  2597. }
  2598. default:
  2599. {
  2600. GGML_ASSERT(false);
  2601. }
  2602. }
  2603. return 0.0f;
  2604. }
  2605. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2606. if (!ggml_is_contiguous(tensor)) {
  2607. int64_t id[4] = { 0, 0, 0, 0 };
  2608. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2609. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2610. return;
  2611. }
  2612. switch (tensor->type) {
  2613. case GGML_TYPE_I8:
  2614. {
  2615. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2616. ((int8_t *)(tensor->data))[i] = value;
  2617. } break;
  2618. case GGML_TYPE_I16:
  2619. {
  2620. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2621. ((int16_t *)(tensor->data))[i] = value;
  2622. } break;
  2623. case GGML_TYPE_I32:
  2624. {
  2625. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2626. ((int32_t *)(tensor->data))[i] = value;
  2627. } break;
  2628. case GGML_TYPE_F16:
  2629. {
  2630. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2631. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2632. } break;
  2633. case GGML_TYPE_F32:
  2634. {
  2635. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2636. ((float *)(tensor->data))[i] = value;
  2637. } break;
  2638. default:
  2639. {
  2640. GGML_ASSERT(false);
  2641. } break;
  2642. }
  2643. }
  2644. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2645. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2646. switch (tensor->type) {
  2647. case GGML_TYPE_I8:
  2648. return ((int8_t *) data)[0];
  2649. case GGML_TYPE_I16:
  2650. return ((int16_t *) data)[0];
  2651. case GGML_TYPE_I32:
  2652. return ((int32_t *) data)[0];
  2653. case GGML_TYPE_F16:
  2654. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2655. case GGML_TYPE_F32:
  2656. return ((float *) data)[0];
  2657. default:
  2658. GGML_ASSERT(false);
  2659. }
  2660. return 0.0f;
  2661. }
  2662. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2663. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2664. switch (tensor->type) {
  2665. case GGML_TYPE_I8:
  2666. {
  2667. ((int8_t *)(data))[0] = value;
  2668. } break;
  2669. case GGML_TYPE_I16:
  2670. {
  2671. ((int16_t *)(data))[0] = value;
  2672. } break;
  2673. case GGML_TYPE_I32:
  2674. {
  2675. ((int32_t *)(data))[0] = value;
  2676. } break;
  2677. case GGML_TYPE_F16:
  2678. {
  2679. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2680. } break;
  2681. case GGML_TYPE_F32:
  2682. {
  2683. ((float *)(data))[0] = value;
  2684. } break;
  2685. default:
  2686. {
  2687. GGML_ASSERT(false);
  2688. } break;
  2689. }
  2690. }
  2691. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2692. if (!ggml_is_contiguous(tensor)) {
  2693. int64_t id[4] = { 0, 0, 0, 0 };
  2694. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2695. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2696. }
  2697. switch (tensor->type) {
  2698. case GGML_TYPE_I8:
  2699. {
  2700. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2701. return ((int8_t *)(tensor->data))[i];
  2702. }
  2703. case GGML_TYPE_I16:
  2704. {
  2705. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2706. return ((int16_t *)(tensor->data))[i];
  2707. }
  2708. case GGML_TYPE_I32:
  2709. {
  2710. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2711. return ((int32_t *)(tensor->data))[i];
  2712. }
  2713. case GGML_TYPE_F16:
  2714. {
  2715. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2716. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2717. }
  2718. case GGML_TYPE_F32:
  2719. {
  2720. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2721. return ((float *)(tensor->data))[i];
  2722. }
  2723. default:
  2724. {
  2725. GGML_ASSERT(false);
  2726. }
  2727. }
  2728. return 0.0f;
  2729. }
  2730. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2731. if (!ggml_is_contiguous(tensor)) {
  2732. int64_t id[4] = { 0, 0, 0, 0 };
  2733. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2734. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2735. return;
  2736. }
  2737. switch (tensor->type) {
  2738. case GGML_TYPE_I8:
  2739. {
  2740. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2741. ((int8_t *)(tensor->data))[i] = value;
  2742. } break;
  2743. case GGML_TYPE_I16:
  2744. {
  2745. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2746. ((int16_t *)(tensor->data))[i] = value;
  2747. } break;
  2748. case GGML_TYPE_I32:
  2749. {
  2750. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2751. ((int32_t *)(tensor->data))[i] = value;
  2752. } break;
  2753. case GGML_TYPE_F16:
  2754. {
  2755. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2756. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2757. } break;
  2758. case GGML_TYPE_F32:
  2759. {
  2760. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2761. ((float *)(tensor->data))[i] = value;
  2762. } break;
  2763. default:
  2764. {
  2765. GGML_ASSERT(false);
  2766. } break;
  2767. }
  2768. }
  2769. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2770. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2771. switch (tensor->type) {
  2772. case GGML_TYPE_I8:
  2773. return ((int8_t *) data)[0];
  2774. case GGML_TYPE_I16:
  2775. return ((int16_t *) data)[0];
  2776. case GGML_TYPE_I32:
  2777. return ((int32_t *) data)[0];
  2778. case GGML_TYPE_F16:
  2779. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2780. case GGML_TYPE_F32:
  2781. return ((float *) data)[0];
  2782. default:
  2783. GGML_ASSERT(false);
  2784. }
  2785. return 0.0f;
  2786. }
  2787. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2788. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2789. switch (tensor->type) {
  2790. case GGML_TYPE_I8:
  2791. {
  2792. ((int8_t *)(data))[0] = value;
  2793. } break;
  2794. case GGML_TYPE_I16:
  2795. {
  2796. ((int16_t *)(data))[0] = value;
  2797. } break;
  2798. case GGML_TYPE_I32:
  2799. {
  2800. ((int32_t *)(data))[0] = value;
  2801. } break;
  2802. case GGML_TYPE_F16:
  2803. {
  2804. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2805. } break;
  2806. case GGML_TYPE_F32:
  2807. {
  2808. ((float *)(data))[0] = value;
  2809. } break;
  2810. default:
  2811. {
  2812. GGML_ASSERT(false);
  2813. } break;
  2814. }
  2815. }
  2816. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2817. return tensor->data;
  2818. }
  2819. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2820. assert(tensor->type == GGML_TYPE_F32);
  2821. return (float *)(tensor->data);
  2822. }
  2823. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2824. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2825. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2826. }
  2827. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2828. return tensor->name;
  2829. }
  2830. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2831. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  2832. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2833. return tensor;
  2834. }
  2835. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2836. va_list args;
  2837. va_start(args, fmt);
  2838. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2839. va_end(args);
  2840. return tensor;
  2841. }
  2842. struct ggml_tensor * ggml_view_tensor(
  2843. struct ggml_context * ctx,
  2844. struct ggml_tensor * src) {
  2845. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  2846. ggml_format_name(result, "%s (view)", src->name);
  2847. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2848. result->nb[i] = src->nb[i];
  2849. }
  2850. return result;
  2851. }
  2852. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  2853. struct ggml_object * obj = ctx->objects_begin;
  2854. char * const mem_buffer = ctx->mem_buffer;
  2855. while (obj != NULL) {
  2856. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  2857. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2858. }
  2859. obj = obj->next;
  2860. }
  2861. return NULL;
  2862. }
  2863. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2864. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2865. obj = obj->next;
  2866. char * const mem_buffer = ctx->mem_buffer;
  2867. while (obj != NULL) {
  2868. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  2869. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2870. }
  2871. obj = obj->next;
  2872. }
  2873. return NULL;
  2874. }
  2875. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2876. struct ggml_object * obj = ctx->objects_begin;
  2877. char * const mem_buffer = ctx->mem_buffer;
  2878. while (obj != NULL) {
  2879. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  2880. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2881. if (strcmp(cur->name, name) == 0) {
  2882. return cur;
  2883. }
  2884. }
  2885. obj = obj->next;
  2886. }
  2887. return NULL;
  2888. }
  2889. ////////////////////////////////////////////////////////////////////////////////
  2890. // ggml_dup
  2891. static struct ggml_tensor * ggml_dup_impl(
  2892. struct ggml_context * ctx,
  2893. struct ggml_tensor * a,
  2894. bool inplace) {
  2895. bool is_node = false;
  2896. if (!inplace && (a->grad)) {
  2897. is_node = true;
  2898. }
  2899. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2900. result->op = GGML_OP_DUP;
  2901. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2902. result->src[0] = a;
  2903. return result;
  2904. }
  2905. struct ggml_tensor * ggml_dup(
  2906. struct ggml_context * ctx,
  2907. struct ggml_tensor * a) {
  2908. return ggml_dup_impl(ctx, a, false);
  2909. }
  2910. struct ggml_tensor * ggml_dup_inplace(
  2911. struct ggml_context * ctx,
  2912. struct ggml_tensor * a) {
  2913. return ggml_dup_impl(ctx, a, true);
  2914. }
  2915. // ggml_add
  2916. static struct ggml_tensor * ggml_add_impl(
  2917. struct ggml_context * ctx,
  2918. struct ggml_tensor * a,
  2919. struct ggml_tensor * b,
  2920. bool inplace) {
  2921. GGML_ASSERT(ggml_can_repeat(b, a));
  2922. bool is_node = false;
  2923. if (!inplace && (a->grad || b->grad)) {
  2924. // TODO: support backward pass for broadcasting
  2925. GGML_ASSERT(ggml_are_same_shape(a, b));
  2926. is_node = true;
  2927. }
  2928. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2929. result->op = GGML_OP_ADD;
  2930. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2931. result->src[0] = a;
  2932. result->src[1] = b;
  2933. return result;
  2934. }
  2935. struct ggml_tensor * ggml_add(
  2936. struct ggml_context * ctx,
  2937. struct ggml_tensor * a,
  2938. struct ggml_tensor * b) {
  2939. return ggml_add_impl(ctx, a, b, false);
  2940. }
  2941. struct ggml_tensor * ggml_add_inplace(
  2942. struct ggml_context * ctx,
  2943. struct ggml_tensor * a,
  2944. struct ggml_tensor * b) {
  2945. return ggml_add_impl(ctx, a, b, true);
  2946. }
  2947. // ggml_add_cast
  2948. static struct ggml_tensor * ggml_add_cast_impl(
  2949. struct ggml_context * ctx,
  2950. struct ggml_tensor * a,
  2951. struct ggml_tensor * b,
  2952. enum ggml_type type) {
  2953. // TODO: support less-strict constraint
  2954. // GGML_ASSERT(ggml_can_repeat(b, a));
  2955. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2956. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2957. bool is_node = false;
  2958. if (a->grad || b->grad) {
  2959. // TODO: support backward pass for broadcasting
  2960. GGML_ASSERT(ggml_are_same_shape(a, b));
  2961. is_node = true;
  2962. }
  2963. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  2964. result->op = GGML_OP_ADD;
  2965. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  2966. result->src[0] = a;
  2967. result->src[1] = b;
  2968. return result;
  2969. }
  2970. struct ggml_tensor * ggml_add_cast(
  2971. struct ggml_context * ctx,
  2972. struct ggml_tensor * a,
  2973. struct ggml_tensor * b,
  2974. enum ggml_type type) {
  2975. return ggml_add_cast_impl(ctx, a, b, type);
  2976. }
  2977. // ggml_add1
  2978. static struct ggml_tensor * ggml_add1_impl(
  2979. struct ggml_context * ctx,
  2980. struct ggml_tensor * a,
  2981. struct ggml_tensor * b,
  2982. bool inplace) {
  2983. GGML_ASSERT(ggml_is_scalar(b));
  2984. GGML_ASSERT(ggml_is_padded_1d(a));
  2985. bool is_node = false;
  2986. if (a->grad || b->grad) {
  2987. is_node = true;
  2988. }
  2989. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2990. result->op = GGML_OP_ADD1;
  2991. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2992. result->src[0] = a;
  2993. result->src[1] = b;
  2994. return result;
  2995. }
  2996. struct ggml_tensor * ggml_add1(
  2997. struct ggml_context * ctx,
  2998. struct ggml_tensor * a,
  2999. struct ggml_tensor * b) {
  3000. return ggml_add1_impl(ctx, a, b, false);
  3001. }
  3002. struct ggml_tensor * ggml_add1_inplace(
  3003. struct ggml_context * ctx,
  3004. struct ggml_tensor * a,
  3005. struct ggml_tensor * b) {
  3006. return ggml_add1_impl(ctx, a, b, true);
  3007. }
  3008. // ggml_acc
  3009. static struct ggml_tensor * ggml_acc_impl(
  3010. struct ggml_context * ctx,
  3011. struct ggml_tensor * a,
  3012. struct ggml_tensor * b,
  3013. size_t nb1,
  3014. size_t nb2,
  3015. size_t nb3,
  3016. size_t offset,
  3017. bool inplace) {
  3018. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3019. GGML_ASSERT(ggml_is_contiguous(a));
  3020. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3021. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3022. bool is_node = false;
  3023. if (!inplace && (a->grad || b->grad)) {
  3024. is_node = true;
  3025. }
  3026. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3027. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3028. ggml_set_op_params(result, params, sizeof(params));
  3029. result->op = GGML_OP_ACC;
  3030. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3031. result->src[0] = a;
  3032. result->src[1] = b;
  3033. return result;
  3034. }
  3035. struct ggml_tensor * ggml_acc(
  3036. struct ggml_context * ctx,
  3037. struct ggml_tensor * a,
  3038. struct ggml_tensor * b,
  3039. size_t nb1,
  3040. size_t nb2,
  3041. size_t nb3,
  3042. size_t offset) {
  3043. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3044. }
  3045. struct ggml_tensor * ggml_acc_inplace(
  3046. struct ggml_context * ctx,
  3047. struct ggml_tensor * a,
  3048. struct ggml_tensor * b,
  3049. size_t nb1,
  3050. size_t nb2,
  3051. size_t nb3,
  3052. size_t offset) {
  3053. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3054. }
  3055. // ggml_sub
  3056. static struct ggml_tensor * ggml_sub_impl(
  3057. struct ggml_context * ctx,
  3058. struct ggml_tensor * a,
  3059. struct ggml_tensor * b,
  3060. bool inplace) {
  3061. GGML_ASSERT(ggml_are_same_shape(a, b));
  3062. bool is_node = false;
  3063. if (!inplace && (a->grad || b->grad)) {
  3064. is_node = true;
  3065. }
  3066. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3067. result->op = GGML_OP_SUB;
  3068. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3069. result->src[0] = a;
  3070. result->src[1] = b;
  3071. return result;
  3072. }
  3073. struct ggml_tensor * ggml_sub(
  3074. struct ggml_context * ctx,
  3075. struct ggml_tensor * a,
  3076. struct ggml_tensor * b) {
  3077. return ggml_sub_impl(ctx, a, b, false);
  3078. }
  3079. struct ggml_tensor * ggml_sub_inplace(
  3080. struct ggml_context * ctx,
  3081. struct ggml_tensor * a,
  3082. struct ggml_tensor * b) {
  3083. return ggml_sub_impl(ctx, a, b, true);
  3084. }
  3085. // ggml_mul
  3086. static struct ggml_tensor * ggml_mul_impl(
  3087. struct ggml_context * ctx,
  3088. struct ggml_tensor * a,
  3089. struct ggml_tensor * b,
  3090. bool inplace) {
  3091. GGML_ASSERT(ggml_can_repeat(b, a));
  3092. bool is_node = false;
  3093. if (!inplace && (a->grad || b->grad)) {
  3094. // TODO: support backward pass for broadcasting
  3095. GGML_ASSERT(ggml_are_same_shape(a, b));
  3096. is_node = true;
  3097. }
  3098. if (inplace) {
  3099. GGML_ASSERT(!is_node);
  3100. }
  3101. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3102. result->op = GGML_OP_MUL;
  3103. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3104. result->src[0] = a;
  3105. result->src[1] = b;
  3106. return result;
  3107. }
  3108. struct ggml_tensor * ggml_mul(
  3109. struct ggml_context * ctx,
  3110. struct ggml_tensor * a,
  3111. struct ggml_tensor * b) {
  3112. return ggml_mul_impl(ctx, a, b, false);
  3113. }
  3114. struct ggml_tensor * ggml_mul_inplace(
  3115. struct ggml_context * ctx,
  3116. struct ggml_tensor * a,
  3117. struct ggml_tensor * b) {
  3118. return ggml_mul_impl(ctx, a, b, true);
  3119. }
  3120. // ggml_div
  3121. static struct ggml_tensor * ggml_div_impl(
  3122. struct ggml_context * ctx,
  3123. struct ggml_tensor * a,
  3124. struct ggml_tensor * b,
  3125. bool inplace) {
  3126. GGML_ASSERT(ggml_can_repeat(b, a));
  3127. bool is_node = false;
  3128. if (!inplace && (a->grad || b->grad)) {
  3129. is_node = true;
  3130. }
  3131. if (inplace) {
  3132. GGML_ASSERT(!is_node);
  3133. }
  3134. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3135. result->op = GGML_OP_DIV;
  3136. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3137. result->src[0] = a;
  3138. result->src[1] = b;
  3139. return result;
  3140. }
  3141. struct ggml_tensor * ggml_div(
  3142. struct ggml_context * ctx,
  3143. struct ggml_tensor * a,
  3144. struct ggml_tensor * b) {
  3145. return ggml_div_impl(ctx, a, b, false);
  3146. }
  3147. struct ggml_tensor * ggml_div_inplace(
  3148. struct ggml_context * ctx,
  3149. struct ggml_tensor * a,
  3150. struct ggml_tensor * b) {
  3151. return ggml_div_impl(ctx, a, b, true);
  3152. }
  3153. // ggml_sqr
  3154. static struct ggml_tensor * ggml_sqr_impl(
  3155. struct ggml_context * ctx,
  3156. struct ggml_tensor * a,
  3157. bool inplace) {
  3158. bool is_node = false;
  3159. if (!inplace && (a->grad)) {
  3160. is_node = true;
  3161. }
  3162. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3163. result->op = GGML_OP_SQR;
  3164. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3165. result->src[0] = a;
  3166. return result;
  3167. }
  3168. struct ggml_tensor * ggml_sqr(
  3169. struct ggml_context * ctx,
  3170. struct ggml_tensor * a) {
  3171. return ggml_sqr_impl(ctx, a, false);
  3172. }
  3173. struct ggml_tensor * ggml_sqr_inplace(
  3174. struct ggml_context * ctx,
  3175. struct ggml_tensor * a) {
  3176. return ggml_sqr_impl(ctx, a, true);
  3177. }
  3178. // ggml_sqrt
  3179. static struct ggml_tensor * ggml_sqrt_impl(
  3180. struct ggml_context * ctx,
  3181. struct ggml_tensor * a,
  3182. bool inplace) {
  3183. bool is_node = false;
  3184. if (!inplace && (a->grad)) {
  3185. is_node = true;
  3186. }
  3187. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3188. result->op = GGML_OP_SQRT;
  3189. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3190. result->src[0] = a;
  3191. return result;
  3192. }
  3193. struct ggml_tensor * ggml_sqrt(
  3194. struct ggml_context * ctx,
  3195. struct ggml_tensor * a) {
  3196. return ggml_sqrt_impl(ctx, a, false);
  3197. }
  3198. struct ggml_tensor * ggml_sqrt_inplace(
  3199. struct ggml_context * ctx,
  3200. struct ggml_tensor * a) {
  3201. return ggml_sqrt_impl(ctx, a, true);
  3202. }
  3203. // ggml_log
  3204. static struct ggml_tensor * ggml_log_impl(
  3205. struct ggml_context * ctx,
  3206. struct ggml_tensor * a,
  3207. bool inplace) {
  3208. bool is_node = false;
  3209. if (!inplace && (a->grad)) {
  3210. is_node = true;
  3211. }
  3212. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3213. result->op = GGML_OP_LOG;
  3214. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3215. result->src[0] = a;
  3216. return result;
  3217. }
  3218. struct ggml_tensor * ggml_log(
  3219. struct ggml_context * ctx,
  3220. struct ggml_tensor * a) {
  3221. return ggml_log_impl(ctx, a, false);
  3222. }
  3223. struct ggml_tensor * ggml_log_inplace(
  3224. struct ggml_context * ctx,
  3225. struct ggml_tensor * a) {
  3226. return ggml_log_impl(ctx, a, true);
  3227. }
  3228. // ggml_sum
  3229. struct ggml_tensor * ggml_sum(
  3230. struct ggml_context * ctx,
  3231. struct ggml_tensor * a) {
  3232. bool is_node = false;
  3233. if (a->grad) {
  3234. is_node = true;
  3235. }
  3236. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3237. result->op = GGML_OP_SUM;
  3238. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3239. result->src[0] = a;
  3240. return result;
  3241. }
  3242. // ggml_sum_rows
  3243. struct ggml_tensor * ggml_sum_rows(
  3244. struct ggml_context * ctx,
  3245. struct ggml_tensor * a) {
  3246. bool is_node = false;
  3247. if (a->grad) {
  3248. is_node = true;
  3249. }
  3250. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3251. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3252. ne[i] = a->ne[i];
  3253. }
  3254. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3255. result->op = GGML_OP_SUM_ROWS;
  3256. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3257. result->src[0] = a;
  3258. return result;
  3259. }
  3260. // ggml_mean
  3261. struct ggml_tensor * ggml_mean(
  3262. struct ggml_context * ctx,
  3263. struct ggml_tensor * a) {
  3264. bool is_node = false;
  3265. if (a->grad) {
  3266. GGML_ASSERT(false); // TODO: implement
  3267. is_node = true;
  3268. }
  3269. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3270. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3271. result->op = GGML_OP_MEAN;
  3272. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3273. result->src[0] = a;
  3274. return result;
  3275. }
  3276. // ggml_argmax
  3277. struct ggml_tensor * ggml_argmax(
  3278. struct ggml_context * ctx,
  3279. struct ggml_tensor * a) {
  3280. GGML_ASSERT(ggml_is_matrix(a));
  3281. bool is_node = false;
  3282. if (a->grad) {
  3283. GGML_ASSERT(false);
  3284. is_node = true;
  3285. }
  3286. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3287. result->op = GGML_OP_ARGMAX;
  3288. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3289. result->src[0] = a;
  3290. return result;
  3291. }
  3292. // ggml_repeat
  3293. struct ggml_tensor * ggml_repeat(
  3294. struct ggml_context * ctx,
  3295. struct ggml_tensor * a,
  3296. struct ggml_tensor * b) {
  3297. GGML_ASSERT(ggml_can_repeat(a, b));
  3298. bool is_node = false;
  3299. if (a->grad) {
  3300. is_node = true;
  3301. }
  3302. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3303. result->op = GGML_OP_REPEAT;
  3304. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3305. result->src[0] = a;
  3306. return result;
  3307. }
  3308. // ggml_repeat_back
  3309. struct ggml_tensor * ggml_repeat_back(
  3310. struct ggml_context * ctx,
  3311. struct ggml_tensor * a,
  3312. struct ggml_tensor * b) {
  3313. GGML_ASSERT(ggml_can_repeat(b, a));
  3314. bool is_node = false;
  3315. if (a->grad) {
  3316. is_node = true;
  3317. }
  3318. if (ggml_are_same_shape(a, b) && !is_node) {
  3319. return a;
  3320. }
  3321. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3322. result->op = GGML_OP_REPEAT_BACK;
  3323. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3324. result->src[0] = a;
  3325. return result;
  3326. }
  3327. // ggml_concat
  3328. struct ggml_tensor * ggml_concat(
  3329. struct ggml_context* ctx,
  3330. struct ggml_tensor* a,
  3331. struct ggml_tensor* b) {
  3332. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3333. bool is_node = false;
  3334. if (a->grad || b->grad) {
  3335. is_node = true;
  3336. }
  3337. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3338. result->op = GGML_OP_CONCAT;
  3339. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3340. result->src[0] = a;
  3341. result->src[1] = b;
  3342. return result;
  3343. }
  3344. // ggml_abs
  3345. struct ggml_tensor * ggml_abs(
  3346. struct ggml_context * ctx,
  3347. struct ggml_tensor * a) {
  3348. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3349. }
  3350. struct ggml_tensor * ggml_abs_inplace(
  3351. struct ggml_context * ctx,
  3352. struct ggml_tensor * a) {
  3353. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3354. }
  3355. // ggml_sgn
  3356. struct ggml_tensor * ggml_sgn(
  3357. struct ggml_context * ctx,
  3358. struct ggml_tensor * a) {
  3359. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3360. }
  3361. struct ggml_tensor * ggml_sgn_inplace(
  3362. struct ggml_context * ctx,
  3363. struct ggml_tensor * a) {
  3364. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3365. }
  3366. // ggml_neg
  3367. struct ggml_tensor * ggml_neg(
  3368. struct ggml_context * ctx,
  3369. struct ggml_tensor * a) {
  3370. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3371. }
  3372. struct ggml_tensor * ggml_neg_inplace(
  3373. struct ggml_context * ctx,
  3374. struct ggml_tensor * a) {
  3375. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3376. }
  3377. // ggml_step
  3378. struct ggml_tensor * ggml_step(
  3379. struct ggml_context * ctx,
  3380. struct ggml_tensor * a) {
  3381. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3382. }
  3383. struct ggml_tensor * ggml_step_inplace(
  3384. struct ggml_context * ctx,
  3385. struct ggml_tensor * a) {
  3386. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3387. }
  3388. // ggml_tanh
  3389. struct ggml_tensor * ggml_tanh(
  3390. struct ggml_context * ctx,
  3391. struct ggml_tensor * a) {
  3392. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3393. }
  3394. struct ggml_tensor * ggml_tanh_inplace(
  3395. struct ggml_context * ctx,
  3396. struct ggml_tensor * a) {
  3397. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3398. }
  3399. // ggml_elu
  3400. struct ggml_tensor * ggml_elu(
  3401. struct ggml_context * ctx,
  3402. struct ggml_tensor * a) {
  3403. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3404. }
  3405. struct ggml_tensor * ggml_elu_inplace(
  3406. struct ggml_context * ctx,
  3407. struct ggml_tensor * a) {
  3408. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3409. }
  3410. // ggml_relu
  3411. struct ggml_tensor * ggml_relu(
  3412. struct ggml_context * ctx,
  3413. struct ggml_tensor * a) {
  3414. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3415. }
  3416. struct ggml_tensor * ggml_relu_inplace(
  3417. struct ggml_context * ctx,
  3418. struct ggml_tensor * a) {
  3419. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3420. }
  3421. // ggml_leaky_relu
  3422. struct ggml_tensor * ggml_leaky_relu(
  3423. struct ggml_context * ctx,
  3424. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3425. bool is_node = false;
  3426. if (!inplace && (a->grad)) {
  3427. is_node = true;
  3428. }
  3429. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3430. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3431. result->op = GGML_OP_LEAKY_RELU;
  3432. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3433. result->src[0] = a;
  3434. return result;
  3435. }
  3436. // ggml_gelu
  3437. struct ggml_tensor * ggml_gelu(
  3438. struct ggml_context * ctx,
  3439. struct ggml_tensor * a) {
  3440. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3441. }
  3442. struct ggml_tensor * ggml_gelu_inplace(
  3443. struct ggml_context * ctx,
  3444. struct ggml_tensor * a) {
  3445. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3446. }
  3447. // ggml_gelu_quick
  3448. struct ggml_tensor * ggml_gelu_quick(
  3449. struct ggml_context * ctx,
  3450. struct ggml_tensor * a) {
  3451. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3452. }
  3453. struct ggml_tensor * ggml_gelu_quick_inplace(
  3454. struct ggml_context * ctx,
  3455. struct ggml_tensor * a) {
  3456. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3457. }
  3458. // ggml_silu
  3459. struct ggml_tensor * ggml_silu(
  3460. struct ggml_context * ctx,
  3461. struct ggml_tensor * a) {
  3462. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3463. }
  3464. struct ggml_tensor * ggml_silu_inplace(
  3465. struct ggml_context * ctx,
  3466. struct ggml_tensor * a) {
  3467. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3468. }
  3469. // ggml_silu_back
  3470. struct ggml_tensor * ggml_silu_back(
  3471. struct ggml_context * ctx,
  3472. struct ggml_tensor * a,
  3473. struct ggml_tensor * b) {
  3474. bool is_node = false;
  3475. if (a->grad || b->grad) {
  3476. // TODO: implement backward
  3477. is_node = true;
  3478. }
  3479. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3480. result->op = GGML_OP_SILU_BACK;
  3481. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3482. result->src[0] = a;
  3483. result->src[1] = b;
  3484. return result;
  3485. }
  3486. // ggml hardswish
  3487. struct ggml_tensor * ggml_hardswish(
  3488. struct ggml_context * ctx,
  3489. struct ggml_tensor * a) {
  3490. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3491. }
  3492. // ggml hardsigmoid
  3493. struct ggml_tensor * ggml_hardsigmoid(
  3494. struct ggml_context * ctx,
  3495. struct ggml_tensor * a) {
  3496. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3497. }
  3498. // ggml_norm
  3499. static struct ggml_tensor * ggml_norm_impl(
  3500. struct ggml_context * ctx,
  3501. struct ggml_tensor * a,
  3502. float eps,
  3503. bool inplace) {
  3504. bool is_node = false;
  3505. if (!inplace && (a->grad)) {
  3506. GGML_ASSERT(false); // TODO: implement backward
  3507. is_node = true;
  3508. }
  3509. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3510. ggml_set_op_params(result, &eps, sizeof(eps));
  3511. result->op = GGML_OP_NORM;
  3512. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3513. result->src[0] = a;
  3514. return result;
  3515. }
  3516. struct ggml_tensor * ggml_norm(
  3517. struct ggml_context * ctx,
  3518. struct ggml_tensor * a,
  3519. float eps) {
  3520. return ggml_norm_impl(ctx, a, eps, false);
  3521. }
  3522. struct ggml_tensor * ggml_norm_inplace(
  3523. struct ggml_context * ctx,
  3524. struct ggml_tensor * a,
  3525. float eps) {
  3526. return ggml_norm_impl(ctx, a, eps, true);
  3527. }
  3528. // ggml_rms_norm
  3529. static struct ggml_tensor * ggml_rms_norm_impl(
  3530. struct ggml_context * ctx,
  3531. struct ggml_tensor * a,
  3532. float eps,
  3533. bool inplace) {
  3534. bool is_node = false;
  3535. if (!inplace && (a->grad)) {
  3536. is_node = true;
  3537. }
  3538. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3539. ggml_set_op_params(result, &eps, sizeof(eps));
  3540. result->op = GGML_OP_RMS_NORM;
  3541. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3542. result->src[0] = a;
  3543. return result;
  3544. }
  3545. struct ggml_tensor * ggml_rms_norm(
  3546. struct ggml_context * ctx,
  3547. struct ggml_tensor * a,
  3548. float eps) {
  3549. return ggml_rms_norm_impl(ctx, a, eps, false);
  3550. }
  3551. struct ggml_tensor * ggml_rms_norm_inplace(
  3552. struct ggml_context * ctx,
  3553. struct ggml_tensor * a,
  3554. float eps) {
  3555. return ggml_rms_norm_impl(ctx, a, eps, true);
  3556. }
  3557. // ggml_rms_norm_back
  3558. struct ggml_tensor * ggml_rms_norm_back(
  3559. struct ggml_context * ctx,
  3560. struct ggml_tensor * a,
  3561. struct ggml_tensor * b,
  3562. float eps) {
  3563. bool is_node = false;
  3564. if (a->grad) {
  3565. // TODO: implement backward
  3566. is_node = true;
  3567. }
  3568. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3569. ggml_set_op_params(result, &eps, sizeof(eps));
  3570. result->op = GGML_OP_RMS_NORM_BACK;
  3571. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3572. result->src[0] = a;
  3573. result->src[1] = b;
  3574. return result;
  3575. }
  3576. // ggml_group_norm
  3577. static struct ggml_tensor * ggml_group_norm_impl(
  3578. struct ggml_context * ctx,
  3579. struct ggml_tensor * a,
  3580. int n_groups,
  3581. bool inplace) {
  3582. bool is_node = false;
  3583. if (!inplace && (a->grad)) {
  3584. GGML_ASSERT(false); // TODO: implement backward
  3585. is_node = true;
  3586. }
  3587. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3588. result->op_params[0] = n_groups;
  3589. result->op = GGML_OP_GROUP_NORM;
  3590. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3591. result->src[0] = a;
  3592. return result;
  3593. }
  3594. struct ggml_tensor * ggml_group_norm(
  3595. struct ggml_context * ctx,
  3596. struct ggml_tensor * a,
  3597. int n_groups) {
  3598. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3599. }
  3600. struct ggml_tensor * ggml_group_norm_inplace(
  3601. struct ggml_context * ctx,
  3602. struct ggml_tensor * a,
  3603. int n_groups) {
  3604. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3605. }
  3606. // ggml_mul_mat
  3607. struct ggml_tensor * ggml_mul_mat(
  3608. struct ggml_context * ctx,
  3609. struct ggml_tensor * a,
  3610. struct ggml_tensor * b) {
  3611. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3612. GGML_ASSERT(!ggml_is_transposed(a));
  3613. bool is_node = false;
  3614. if (a->grad || b->grad) {
  3615. is_node = true;
  3616. }
  3617. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3618. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3619. result->op = GGML_OP_MUL_MAT;
  3620. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3621. result->src[0] = a;
  3622. result->src[1] = b;
  3623. return result;
  3624. }
  3625. void ggml_mul_mat_set_prec(
  3626. struct ggml_tensor * a,
  3627. enum ggml_prec prec) {
  3628. const int32_t prec_i32 = (int32_t) prec;
  3629. ggml_set_op_params_i32(a, 0, prec_i32);
  3630. }
  3631. // ggml_mul_mat_id
  3632. struct ggml_tensor * ggml_mul_mat_id(
  3633. struct ggml_context * ctx,
  3634. struct ggml_tensor * const as[],
  3635. int n_as,
  3636. struct ggml_tensor * ids,
  3637. int id,
  3638. struct ggml_tensor * b) {
  3639. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3640. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3641. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3642. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3643. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3644. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3645. bool is_node = false;
  3646. if (as[0]->grad || b->grad) {
  3647. is_node = true;
  3648. }
  3649. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3650. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3651. ggml_set_op_params_i32(result, 0, id);
  3652. ggml_set_op_params_i32(result, 1, n_as);
  3653. result->op = GGML_OP_MUL_MAT_ID;
  3654. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3655. result->src[0] = ids;
  3656. result->src[1] = b;
  3657. for (int i = 0; i < n_as; i++) {
  3658. struct ggml_tensor * a = as[i];
  3659. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3660. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3661. GGML_ASSERT(!ggml_is_transposed(a));
  3662. result->src[i + 2] = a;
  3663. }
  3664. return result;
  3665. }
  3666. // ggml_out_prod
  3667. struct ggml_tensor * ggml_out_prod(
  3668. struct ggml_context * ctx,
  3669. struct ggml_tensor * a,
  3670. struct ggml_tensor * b) {
  3671. GGML_ASSERT(ggml_can_out_prod(a, b));
  3672. GGML_ASSERT(!ggml_is_transposed(a));
  3673. bool is_node = false;
  3674. if (a->grad || b->grad) {
  3675. is_node = true;
  3676. }
  3677. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3678. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3679. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3680. result->op = GGML_OP_OUT_PROD;
  3681. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3682. result->src[0] = a;
  3683. result->src[1] = b;
  3684. return result;
  3685. }
  3686. // ggml_scale
  3687. static struct ggml_tensor * ggml_scale_impl(
  3688. struct ggml_context * ctx,
  3689. struct ggml_tensor * a,
  3690. float s,
  3691. bool inplace) {
  3692. GGML_ASSERT(ggml_is_padded_1d(a));
  3693. bool is_node = false;
  3694. if (a->grad) {
  3695. is_node = true;
  3696. }
  3697. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3698. ggml_set_op_params(result, &s, sizeof(s));
  3699. result->op = GGML_OP_SCALE;
  3700. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3701. result->src[0] = a;
  3702. return result;
  3703. }
  3704. struct ggml_tensor * ggml_scale(
  3705. struct ggml_context * ctx,
  3706. struct ggml_tensor * a,
  3707. float s) {
  3708. return ggml_scale_impl(ctx, a, s, false);
  3709. }
  3710. struct ggml_tensor * ggml_scale_inplace(
  3711. struct ggml_context * ctx,
  3712. struct ggml_tensor * a,
  3713. float s) {
  3714. return ggml_scale_impl(ctx, a, s, true);
  3715. }
  3716. // ggml_set
  3717. static struct ggml_tensor * ggml_set_impl(
  3718. struct ggml_context * ctx,
  3719. struct ggml_tensor * a,
  3720. struct ggml_tensor * b,
  3721. size_t nb1,
  3722. size_t nb2,
  3723. size_t nb3,
  3724. size_t offset,
  3725. bool inplace) {
  3726. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3727. bool is_node = false;
  3728. if (a->grad || b->grad) {
  3729. is_node = true;
  3730. }
  3731. // make a view of the destination
  3732. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3733. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3734. ggml_set_op_params(result, params, sizeof(params));
  3735. result->op = GGML_OP_SET;
  3736. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3737. result->src[0] = a;
  3738. result->src[1] = b;
  3739. return result;
  3740. }
  3741. struct ggml_tensor * ggml_set(
  3742. struct ggml_context * ctx,
  3743. struct ggml_tensor * a,
  3744. struct ggml_tensor * b,
  3745. size_t nb1,
  3746. size_t nb2,
  3747. size_t nb3,
  3748. size_t offset) {
  3749. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3750. }
  3751. struct ggml_tensor * ggml_set_inplace(
  3752. struct ggml_context * ctx,
  3753. struct ggml_tensor * a,
  3754. struct ggml_tensor * b,
  3755. size_t nb1,
  3756. size_t nb2,
  3757. size_t nb3,
  3758. size_t offset) {
  3759. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3760. }
  3761. struct ggml_tensor * ggml_set_1d(
  3762. struct ggml_context * ctx,
  3763. struct ggml_tensor * a,
  3764. struct ggml_tensor * b,
  3765. size_t offset) {
  3766. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3767. }
  3768. struct ggml_tensor * ggml_set_1d_inplace(
  3769. struct ggml_context * ctx,
  3770. struct ggml_tensor * a,
  3771. struct ggml_tensor * b,
  3772. size_t offset) {
  3773. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3774. }
  3775. struct ggml_tensor * ggml_set_2d(
  3776. struct ggml_context * ctx,
  3777. struct ggml_tensor * a,
  3778. struct ggml_tensor * b,
  3779. size_t nb1,
  3780. size_t offset) {
  3781. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3782. }
  3783. struct ggml_tensor * ggml_set_2d_inplace(
  3784. struct ggml_context * ctx,
  3785. struct ggml_tensor * a,
  3786. struct ggml_tensor * b,
  3787. size_t nb1,
  3788. size_t offset) {
  3789. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3790. }
  3791. // ggml_cpy
  3792. static struct ggml_tensor * ggml_cpy_impl(
  3793. struct ggml_context * ctx,
  3794. struct ggml_tensor * a,
  3795. struct ggml_tensor * b) {
  3796. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3797. bool is_node = false;
  3798. if (a->grad || b->grad) {
  3799. // inplace is false and either one have a grad
  3800. is_node = true;
  3801. }
  3802. // make a view of the destination
  3803. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3804. if (strlen(b->name) > 0) {
  3805. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3806. } else {
  3807. ggml_format_name(result, "%s (copy)", a->name);
  3808. }
  3809. result->op = GGML_OP_CPY;
  3810. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3811. result->src[0] = a;
  3812. result->src[1] = b;
  3813. return result;
  3814. }
  3815. struct ggml_tensor * ggml_cpy(
  3816. struct ggml_context * ctx,
  3817. struct ggml_tensor * a,
  3818. struct ggml_tensor * b) {
  3819. return ggml_cpy_impl(ctx, a, b);
  3820. }
  3821. struct ggml_tensor * ggml_cast(
  3822. struct ggml_context * ctx,
  3823. struct ggml_tensor * a,
  3824. enum ggml_type type) {
  3825. bool is_node = false;
  3826. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3827. ggml_format_name(result, "%s (copy)", a->name);
  3828. result->op = GGML_OP_CPY;
  3829. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3830. result->src[0] = a;
  3831. result->src[1] = result;
  3832. return result;
  3833. }
  3834. // ggml_cont
  3835. static struct ggml_tensor * ggml_cont_impl(
  3836. struct ggml_context * ctx,
  3837. struct ggml_tensor * a) {
  3838. bool is_node = false;
  3839. if (a->grad) {
  3840. is_node = true;
  3841. }
  3842. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3843. ggml_format_name(result, "%s (cont)", a->name);
  3844. result->op = GGML_OP_CONT;
  3845. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3846. result->src[0] = a;
  3847. return result;
  3848. }
  3849. struct ggml_tensor * ggml_cont(
  3850. struct ggml_context * ctx,
  3851. struct ggml_tensor * a) {
  3852. return ggml_cont_impl(ctx, a);
  3853. }
  3854. // make contiguous, with new shape
  3855. GGML_API struct ggml_tensor * ggml_cont_1d(
  3856. struct ggml_context * ctx,
  3857. struct ggml_tensor * a,
  3858. int64_t ne0) {
  3859. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3860. }
  3861. GGML_API struct ggml_tensor * ggml_cont_2d(
  3862. struct ggml_context * ctx,
  3863. struct ggml_tensor * a,
  3864. int64_t ne0,
  3865. int64_t ne1) {
  3866. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3867. }
  3868. GGML_API struct ggml_tensor * ggml_cont_3d(
  3869. struct ggml_context * ctx,
  3870. struct ggml_tensor * a,
  3871. int64_t ne0,
  3872. int64_t ne1,
  3873. int64_t ne2) {
  3874. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3875. }
  3876. struct ggml_tensor * ggml_cont_4d(
  3877. struct ggml_context * ctx,
  3878. struct ggml_tensor * a,
  3879. int64_t ne0,
  3880. int64_t ne1,
  3881. int64_t ne2,
  3882. int64_t ne3) {
  3883. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3884. bool is_node = false;
  3885. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3886. ggml_format_name(result, "%s (cont)", a->name);
  3887. result->op = GGML_OP_CONT;
  3888. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3889. result->src[0] = a;
  3890. return result;
  3891. }
  3892. // ggml_reshape
  3893. struct ggml_tensor * ggml_reshape(
  3894. struct ggml_context * ctx,
  3895. struct ggml_tensor * a,
  3896. struct ggml_tensor * b) {
  3897. GGML_ASSERT(ggml_is_contiguous(a));
  3898. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3899. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3900. bool is_node = false;
  3901. if (a->grad) {
  3902. is_node = true;
  3903. }
  3904. if (b->grad) {
  3905. // gradient propagation is not supported
  3906. //GGML_ASSERT(false);
  3907. }
  3908. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  3909. ggml_format_name(result, "%s (reshaped)", a->name);
  3910. result->op = GGML_OP_RESHAPE;
  3911. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3912. result->src[0] = a;
  3913. return result;
  3914. }
  3915. struct ggml_tensor * ggml_reshape_1d(
  3916. struct ggml_context * ctx,
  3917. struct ggml_tensor * a,
  3918. int64_t ne0) {
  3919. GGML_ASSERT(ggml_is_contiguous(a));
  3920. GGML_ASSERT(ggml_nelements(a) == ne0);
  3921. bool is_node = false;
  3922. if (a->grad) {
  3923. is_node = true;
  3924. }
  3925. const int64_t ne[1] = { ne0 };
  3926. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3927. ggml_format_name(result, "%s (reshaped)", a->name);
  3928. result->op = GGML_OP_RESHAPE;
  3929. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3930. result->src[0] = a;
  3931. return result;
  3932. }
  3933. struct ggml_tensor * ggml_reshape_2d(
  3934. struct ggml_context * ctx,
  3935. struct ggml_tensor * a,
  3936. int64_t ne0,
  3937. int64_t ne1) {
  3938. GGML_ASSERT(ggml_is_contiguous(a));
  3939. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3940. bool is_node = false;
  3941. if (a->grad) {
  3942. is_node = true;
  3943. }
  3944. const int64_t ne[2] = { ne0, ne1 };
  3945. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3946. ggml_format_name(result, "%s (reshaped)", a->name);
  3947. result->op = GGML_OP_RESHAPE;
  3948. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3949. result->src[0] = a;
  3950. return result;
  3951. }
  3952. struct ggml_tensor * ggml_reshape_3d(
  3953. struct ggml_context * ctx,
  3954. struct ggml_tensor * a,
  3955. int64_t ne0,
  3956. int64_t ne1,
  3957. int64_t ne2) {
  3958. GGML_ASSERT(ggml_is_contiguous(a));
  3959. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3960. bool is_node = false;
  3961. if (a->grad) {
  3962. is_node = true;
  3963. }
  3964. const int64_t ne[3] = { ne0, ne1, ne2 };
  3965. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3966. ggml_format_name(result, "%s (reshaped)", a->name);
  3967. result->op = GGML_OP_RESHAPE;
  3968. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3969. result->src[0] = a;
  3970. return result;
  3971. }
  3972. struct ggml_tensor * ggml_reshape_4d(
  3973. struct ggml_context * ctx,
  3974. struct ggml_tensor * a,
  3975. int64_t ne0,
  3976. int64_t ne1,
  3977. int64_t ne2,
  3978. int64_t ne3) {
  3979. GGML_ASSERT(ggml_is_contiguous(a));
  3980. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3981. bool is_node = false;
  3982. if (a->grad) {
  3983. is_node = true;
  3984. }
  3985. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3986. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3987. ggml_format_name(result, "%s (reshaped)", a->name);
  3988. result->op = GGML_OP_RESHAPE;
  3989. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3990. result->src[0] = a;
  3991. return result;
  3992. }
  3993. static struct ggml_tensor * ggml_view_impl(
  3994. struct ggml_context * ctx,
  3995. struct ggml_tensor * a,
  3996. int n_dims,
  3997. const int64_t * ne,
  3998. size_t offset) {
  3999. bool is_node = false;
  4000. if (a->grad) {
  4001. is_node = true;
  4002. }
  4003. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4004. ggml_format_name(result, "%s (view)", a->name);
  4005. ggml_set_op_params(result, &offset, sizeof(offset));
  4006. result->op = GGML_OP_VIEW;
  4007. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4008. result->src[0] = a;
  4009. return result;
  4010. }
  4011. // ggml_view_1d
  4012. struct ggml_tensor * ggml_view_1d(
  4013. struct ggml_context * ctx,
  4014. struct ggml_tensor * a,
  4015. int64_t ne0,
  4016. size_t offset) {
  4017. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4018. return result;
  4019. }
  4020. // ggml_view_2d
  4021. struct ggml_tensor * ggml_view_2d(
  4022. struct ggml_context * ctx,
  4023. struct ggml_tensor * a,
  4024. int64_t ne0,
  4025. int64_t ne1,
  4026. size_t nb1,
  4027. size_t offset) {
  4028. const int64_t ne[2] = { ne0, ne1 };
  4029. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4030. result->nb[1] = nb1;
  4031. result->nb[2] = result->nb[1]*ne1;
  4032. result->nb[3] = result->nb[2];
  4033. return result;
  4034. }
  4035. // ggml_view_3d
  4036. struct ggml_tensor * ggml_view_3d(
  4037. struct ggml_context * ctx,
  4038. struct ggml_tensor * a,
  4039. int64_t ne0,
  4040. int64_t ne1,
  4041. int64_t ne2,
  4042. size_t nb1,
  4043. size_t nb2,
  4044. size_t offset) {
  4045. const int64_t ne[3] = { ne0, ne1, ne2 };
  4046. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4047. result->nb[1] = nb1;
  4048. result->nb[2] = nb2;
  4049. result->nb[3] = result->nb[2]*ne2;
  4050. return result;
  4051. }
  4052. // ggml_view_4d
  4053. struct ggml_tensor * ggml_view_4d(
  4054. struct ggml_context * ctx,
  4055. struct ggml_tensor * a,
  4056. int64_t ne0,
  4057. int64_t ne1,
  4058. int64_t ne2,
  4059. int64_t ne3,
  4060. size_t nb1,
  4061. size_t nb2,
  4062. size_t nb3,
  4063. size_t offset) {
  4064. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4065. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4066. result->nb[1] = nb1;
  4067. result->nb[2] = nb2;
  4068. result->nb[3] = nb3;
  4069. return result;
  4070. }
  4071. // ggml_permute
  4072. struct ggml_tensor * ggml_permute(
  4073. struct ggml_context * ctx,
  4074. struct ggml_tensor * a,
  4075. int axis0,
  4076. int axis1,
  4077. int axis2,
  4078. int axis3) {
  4079. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4080. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4081. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4082. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4083. GGML_ASSERT(axis0 != axis1);
  4084. GGML_ASSERT(axis0 != axis2);
  4085. GGML_ASSERT(axis0 != axis3);
  4086. GGML_ASSERT(axis1 != axis2);
  4087. GGML_ASSERT(axis1 != axis3);
  4088. GGML_ASSERT(axis2 != axis3);
  4089. bool is_node = false;
  4090. if (a->grad) {
  4091. is_node = true;
  4092. }
  4093. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4094. ggml_format_name(result, "%s (permuted)", a->name);
  4095. int ne[GGML_MAX_DIMS];
  4096. int nb[GGML_MAX_DIMS];
  4097. ne[axis0] = a->ne[0];
  4098. ne[axis1] = a->ne[1];
  4099. ne[axis2] = a->ne[2];
  4100. ne[axis3] = a->ne[3];
  4101. nb[axis0] = a->nb[0];
  4102. nb[axis1] = a->nb[1];
  4103. nb[axis2] = a->nb[2];
  4104. nb[axis3] = a->nb[3];
  4105. result->ne[0] = ne[0];
  4106. result->ne[1] = ne[1];
  4107. result->ne[2] = ne[2];
  4108. result->ne[3] = ne[3];
  4109. result->nb[0] = nb[0];
  4110. result->nb[1] = nb[1];
  4111. result->nb[2] = nb[2];
  4112. result->nb[3] = nb[3];
  4113. result->op = GGML_OP_PERMUTE;
  4114. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4115. result->src[0] = a;
  4116. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4117. ggml_set_op_params(result, params, sizeof(params));
  4118. return result;
  4119. }
  4120. // ggml_transpose
  4121. struct ggml_tensor * ggml_transpose(
  4122. struct ggml_context * ctx,
  4123. struct ggml_tensor * a) {
  4124. bool is_node = false;
  4125. if (a->grad) {
  4126. is_node = true;
  4127. }
  4128. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4129. ggml_format_name(result, "%s (transposed)", a->name);
  4130. result->ne[0] = a->ne[1];
  4131. result->ne[1] = a->ne[0];
  4132. result->nb[0] = a->nb[1];
  4133. result->nb[1] = a->nb[0];
  4134. result->op = GGML_OP_TRANSPOSE;
  4135. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4136. result->src[0] = a;
  4137. return result;
  4138. }
  4139. // ggml_get_rows
  4140. struct ggml_tensor * ggml_get_rows(
  4141. struct ggml_context * ctx,
  4142. struct ggml_tensor * a,
  4143. struct ggml_tensor * b) {
  4144. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4145. GGML_ASSERT(b->ne[3] == 1);
  4146. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4147. bool is_node = false;
  4148. if (a->grad || b->grad) {
  4149. is_node = true;
  4150. }
  4151. // TODO: implement non F32 return
  4152. enum ggml_type type = GGML_TYPE_F32;
  4153. if (a->type == GGML_TYPE_I32) {
  4154. type = a->type;
  4155. }
  4156. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4157. result->op = GGML_OP_GET_ROWS;
  4158. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4159. result->src[0] = a;
  4160. result->src[1] = b;
  4161. return result;
  4162. }
  4163. // ggml_get_rows_back
  4164. struct ggml_tensor * ggml_get_rows_back(
  4165. struct ggml_context * ctx,
  4166. struct ggml_tensor * a,
  4167. struct ggml_tensor * b,
  4168. struct ggml_tensor * c) {
  4169. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4170. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4171. bool is_node = false;
  4172. if (a->grad || b->grad) {
  4173. is_node = true;
  4174. }
  4175. // TODO: implement non F32 return
  4176. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4177. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4178. result->op = GGML_OP_GET_ROWS_BACK;
  4179. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4180. result->src[0] = a;
  4181. result->src[1] = b;
  4182. return result;
  4183. }
  4184. // ggml_diag
  4185. struct ggml_tensor * ggml_diag(
  4186. struct ggml_context * ctx,
  4187. struct ggml_tensor * a) {
  4188. GGML_ASSERT(a->ne[1] == 1);
  4189. bool is_node = false;
  4190. if (a->grad) {
  4191. is_node = true;
  4192. }
  4193. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4194. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4195. result->op = GGML_OP_DIAG;
  4196. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4197. result->src[0] = a;
  4198. return result;
  4199. }
  4200. // ggml_diag_mask_inf
  4201. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4202. struct ggml_context * ctx,
  4203. struct ggml_tensor * a,
  4204. int n_past,
  4205. bool inplace) {
  4206. bool is_node = false;
  4207. if (a->grad) {
  4208. is_node = true;
  4209. }
  4210. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4211. int32_t params[] = { n_past };
  4212. ggml_set_op_params(result, params, sizeof(params));
  4213. result->op = GGML_OP_DIAG_MASK_INF;
  4214. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4215. result->src[0] = a;
  4216. return result;
  4217. }
  4218. struct ggml_tensor * ggml_diag_mask_inf(
  4219. struct ggml_context * ctx,
  4220. struct ggml_tensor * a,
  4221. int n_past) {
  4222. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4223. }
  4224. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4225. struct ggml_context * ctx,
  4226. struct ggml_tensor * a,
  4227. int n_past) {
  4228. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4229. }
  4230. // ggml_diag_mask_zero
  4231. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4232. struct ggml_context * ctx,
  4233. struct ggml_tensor * a,
  4234. int n_past,
  4235. bool inplace) {
  4236. bool is_node = false;
  4237. if (a->grad) {
  4238. is_node = true;
  4239. }
  4240. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4241. int32_t params[] = { n_past };
  4242. ggml_set_op_params(result, params, sizeof(params));
  4243. result->op = GGML_OP_DIAG_MASK_ZERO;
  4244. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4245. result->src[0] = a;
  4246. return result;
  4247. }
  4248. struct ggml_tensor * ggml_diag_mask_zero(
  4249. struct ggml_context * ctx,
  4250. struct ggml_tensor * a,
  4251. int n_past) {
  4252. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4253. }
  4254. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4255. struct ggml_context * ctx,
  4256. struct ggml_tensor * a,
  4257. int n_past) {
  4258. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4259. }
  4260. // ggml_soft_max
  4261. static struct ggml_tensor * ggml_soft_max_impl(
  4262. struct ggml_context * ctx,
  4263. struct ggml_tensor * a,
  4264. struct ggml_tensor * mask,
  4265. struct ggml_tensor * pos,
  4266. float scale,
  4267. float max_bias,
  4268. bool inplace) {
  4269. GGML_ASSERT(ggml_is_contiguous(a));
  4270. if (mask) {
  4271. GGML_ASSERT(ggml_is_contiguous(mask));
  4272. GGML_ASSERT(ggml_is_matrix(mask));
  4273. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4274. }
  4275. if (pos) {
  4276. GGML_ASSERT(ggml_is_vector(pos));
  4277. GGML_ASSERT(pos->type == GGML_TYPE_F32);
  4278. GGML_ASSERT(pos->ne[0] == a->ne[0]);
  4279. }
  4280. if (max_bias > 0.0f) {
  4281. GGML_ASSERT(pos);
  4282. }
  4283. bool is_node = false;
  4284. if (a->grad) {
  4285. is_node = true;
  4286. }
  4287. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4288. float params[] = { scale, max_bias };
  4289. ggml_set_op_params(result, params, sizeof(params));
  4290. result->op = GGML_OP_SOFT_MAX;
  4291. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4292. result->src[0] = a;
  4293. result->src[1] = mask;
  4294. result->src[2] = pos;
  4295. return result;
  4296. }
  4297. struct ggml_tensor * ggml_soft_max(
  4298. struct ggml_context * ctx,
  4299. struct ggml_tensor * a) {
  4300. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, false);
  4301. }
  4302. struct ggml_tensor * ggml_soft_max_inplace(
  4303. struct ggml_context * ctx,
  4304. struct ggml_tensor * a) {
  4305. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, true);
  4306. }
  4307. struct ggml_tensor * ggml_soft_max_ext(
  4308. struct ggml_context * ctx,
  4309. struct ggml_tensor * a,
  4310. struct ggml_tensor * mask,
  4311. struct ggml_tensor * pos,
  4312. float scale,
  4313. float max_bias) {
  4314. return ggml_soft_max_impl(ctx, a, mask, pos, scale, max_bias, false);
  4315. }
  4316. // ggml_soft_max_back
  4317. static struct ggml_tensor * ggml_soft_max_back_impl(
  4318. struct ggml_context * ctx,
  4319. struct ggml_tensor * a,
  4320. struct ggml_tensor * b,
  4321. bool inplace) {
  4322. bool is_node = false;
  4323. if (a->grad || b->grad) {
  4324. is_node = true; // TODO : implement backward pass
  4325. }
  4326. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4327. result->op = GGML_OP_SOFT_MAX_BACK;
  4328. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4329. result->src[0] = a;
  4330. result->src[1] = b;
  4331. return result;
  4332. }
  4333. struct ggml_tensor * ggml_soft_max_back(
  4334. struct ggml_context * ctx,
  4335. struct ggml_tensor * a,
  4336. struct ggml_tensor * b) {
  4337. return ggml_soft_max_back_impl(ctx, a, b, false);
  4338. }
  4339. struct ggml_tensor * ggml_soft_max_back_inplace(
  4340. struct ggml_context * ctx,
  4341. struct ggml_tensor * a,
  4342. struct ggml_tensor * b) {
  4343. return ggml_soft_max_back_impl(ctx, a, b, true);
  4344. }
  4345. // ggml_rope
  4346. static struct ggml_tensor * ggml_rope_impl(
  4347. struct ggml_context * ctx,
  4348. struct ggml_tensor * a,
  4349. struct ggml_tensor * b,
  4350. int n_dims,
  4351. int mode,
  4352. int n_ctx,
  4353. int n_orig_ctx,
  4354. float freq_base,
  4355. float freq_scale,
  4356. float ext_factor,
  4357. float attn_factor,
  4358. float beta_fast,
  4359. float beta_slow,
  4360. float xpos_base,
  4361. bool xpos_down,
  4362. bool inplace) {
  4363. GGML_ASSERT(ggml_is_vector(b));
  4364. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4365. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4366. bool is_node = false;
  4367. if (a->grad) {
  4368. is_node = true;
  4369. }
  4370. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4371. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4372. memcpy(params + 5, &freq_base, sizeof(float));
  4373. memcpy(params + 6, &freq_scale, sizeof(float));
  4374. memcpy(params + 7, &ext_factor, sizeof(float));
  4375. memcpy(params + 8, &attn_factor, sizeof(float));
  4376. memcpy(params + 9, &beta_fast, sizeof(float));
  4377. memcpy(params + 10, &beta_slow, sizeof(float));
  4378. memcpy(params + 11, &xpos_base, sizeof(float));
  4379. memcpy(params + 12, &xpos_down, sizeof(bool));
  4380. ggml_set_op_params(result, params, sizeof(params));
  4381. result->op = GGML_OP_ROPE;
  4382. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4383. result->src[0] = a;
  4384. result->src[1] = b;
  4385. return result;
  4386. }
  4387. struct ggml_tensor * ggml_rope(
  4388. struct ggml_context * ctx,
  4389. struct ggml_tensor * a,
  4390. struct ggml_tensor * b,
  4391. int n_dims,
  4392. int mode,
  4393. int n_ctx) {
  4394. return ggml_rope_impl(
  4395. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4396. );
  4397. }
  4398. struct ggml_tensor * ggml_rope_inplace(
  4399. struct ggml_context * ctx,
  4400. struct ggml_tensor * a,
  4401. struct ggml_tensor * b,
  4402. int n_dims,
  4403. int mode,
  4404. int n_ctx) {
  4405. return ggml_rope_impl(
  4406. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4407. );
  4408. }
  4409. struct ggml_tensor * ggml_rope_custom(
  4410. struct ggml_context * ctx,
  4411. struct ggml_tensor * a,
  4412. struct ggml_tensor * b,
  4413. int n_dims,
  4414. int mode,
  4415. int n_ctx,
  4416. int n_orig_ctx,
  4417. float freq_base,
  4418. float freq_scale,
  4419. float ext_factor,
  4420. float attn_factor,
  4421. float beta_fast,
  4422. float beta_slow) {
  4423. return ggml_rope_impl(
  4424. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4425. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4426. );
  4427. }
  4428. struct ggml_tensor * ggml_rope_custom_inplace(
  4429. struct ggml_context * ctx,
  4430. struct ggml_tensor * a,
  4431. struct ggml_tensor * b,
  4432. int n_dims,
  4433. int mode,
  4434. int n_ctx,
  4435. int n_orig_ctx,
  4436. float freq_base,
  4437. float freq_scale,
  4438. float ext_factor,
  4439. float attn_factor,
  4440. float beta_fast,
  4441. float beta_slow) {
  4442. return ggml_rope_impl(
  4443. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4444. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4445. );
  4446. }
  4447. struct ggml_tensor * ggml_rope_xpos_inplace(
  4448. struct ggml_context * ctx,
  4449. struct ggml_tensor * a,
  4450. struct ggml_tensor * b,
  4451. int n_dims,
  4452. float base,
  4453. bool down) {
  4454. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4455. }
  4456. // ggml_rope_back
  4457. struct ggml_tensor * ggml_rope_back(
  4458. struct ggml_context * ctx,
  4459. struct ggml_tensor * a,
  4460. struct ggml_tensor * b,
  4461. int n_dims,
  4462. int mode,
  4463. int n_ctx,
  4464. int n_orig_ctx,
  4465. float freq_base,
  4466. float freq_scale,
  4467. float ext_factor,
  4468. float attn_factor,
  4469. float beta_fast,
  4470. float beta_slow,
  4471. float xpos_base,
  4472. bool xpos_down) {
  4473. GGML_ASSERT(ggml_is_vector(b));
  4474. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4475. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4476. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4477. bool is_node = false;
  4478. if (a->grad) {
  4479. is_node = false; // TODO: implement backward
  4480. }
  4481. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4482. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4483. memcpy(params + 5, &freq_base, sizeof(float));
  4484. memcpy(params + 6, &freq_scale, sizeof(float));
  4485. memcpy(params + 7, &ext_factor, sizeof(float));
  4486. memcpy(params + 8, &attn_factor, sizeof(float));
  4487. memcpy(params + 9, &beta_fast, sizeof(float));
  4488. memcpy(params + 10, &beta_slow, sizeof(float));
  4489. memcpy(params + 11, &xpos_base, sizeof(float));
  4490. memcpy(params + 12, &xpos_down, sizeof(bool));
  4491. ggml_set_op_params(result, params, sizeof(params));
  4492. result->op = GGML_OP_ROPE_BACK;
  4493. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4494. result->src[0] = a;
  4495. result->src[1] = b;
  4496. return result;
  4497. }
  4498. // ggml_alibi
  4499. struct ggml_tensor * ggml_alibi(
  4500. struct ggml_context * ctx,
  4501. struct ggml_tensor * a,
  4502. int n_past,
  4503. int n_head,
  4504. float bias_max) {
  4505. GGML_ASSERT(n_past >= 0);
  4506. bool is_node = false;
  4507. if (a->grad) {
  4508. GGML_ASSERT(false); // TODO: implement backward
  4509. is_node = true;
  4510. }
  4511. // TODO: when implement backward, fix this:
  4512. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4513. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4514. int32_t op_params[3] = { n_past, n_head };
  4515. memcpy(op_params + 2, &bias_max, sizeof(float));
  4516. ggml_set_op_params(result, op_params, sizeof(op_params));
  4517. result->op = GGML_OP_ALIBI;
  4518. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4519. result->src[0] = a;
  4520. return result;
  4521. }
  4522. // ggml_clamp
  4523. struct ggml_tensor * ggml_clamp(
  4524. struct ggml_context * ctx,
  4525. struct ggml_tensor * a,
  4526. float min,
  4527. float max) {
  4528. bool is_node = false;
  4529. if (a->grad) {
  4530. GGML_ASSERT(false); // TODO: implement backward
  4531. is_node = true;
  4532. }
  4533. // TODO: when implement backward, fix this:
  4534. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4535. float params[] = { min, max };
  4536. ggml_set_op_params(result, params, sizeof(params));
  4537. result->op = GGML_OP_CLAMP;
  4538. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4539. result->src[0] = a;
  4540. return result;
  4541. }
  4542. // ggml_conv_1d
  4543. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4544. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4545. }
  4546. GGML_API struct ggml_tensor * ggml_conv_1d(
  4547. struct ggml_context * ctx,
  4548. struct ggml_tensor * a,
  4549. struct ggml_tensor * b,
  4550. int s0,
  4551. int p0,
  4552. int d0) {
  4553. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  4554. struct ggml_tensor * result =
  4555. ggml_mul_mat(ctx,
  4556. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4557. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4558. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4559. return result;
  4560. }
  4561. // ggml_conv_1d_ph
  4562. struct ggml_tensor* ggml_conv_1d_ph(
  4563. struct ggml_context * ctx,
  4564. struct ggml_tensor * a,
  4565. struct ggml_tensor * b,
  4566. int s,
  4567. int d) {
  4568. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4569. }
  4570. // ggml_conv_transpose_1d
  4571. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4572. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4573. }
  4574. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4575. struct ggml_context * ctx,
  4576. struct ggml_tensor * a,
  4577. struct ggml_tensor * b,
  4578. int s0,
  4579. int p0,
  4580. int d0) {
  4581. GGML_ASSERT(ggml_is_matrix(b));
  4582. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4583. GGML_ASSERT(a->ne[3] == 1);
  4584. GGML_ASSERT(p0 == 0);
  4585. GGML_ASSERT(d0 == 1);
  4586. bool is_node = false;
  4587. if (a->grad || b->grad) {
  4588. GGML_ASSERT(false); // TODO: implement backward
  4589. is_node = true;
  4590. }
  4591. const int64_t ne[4] = {
  4592. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4593. a->ne[1], b->ne[2], 1,
  4594. };
  4595. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4596. int32_t params[] = { s0, p0, d0 };
  4597. ggml_set_op_params(result, params, sizeof(params));
  4598. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4599. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4600. result->src[0] = a;
  4601. result->src[1] = b;
  4602. return result;
  4603. }
  4604. // ggml_conv_depthwise
  4605. struct ggml_tensor * ggml_conv_depthwise_2d(
  4606. struct ggml_context * ctx,
  4607. struct ggml_tensor * a,
  4608. struct ggml_tensor * b,
  4609. int s0,
  4610. int s1,
  4611. int p0,
  4612. int p1,
  4613. int d0,
  4614. int d1) {
  4615. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  4616. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  4617. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  4618. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  4619. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  4620. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  4621. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  4622. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  4623. return result;
  4624. }
  4625. // ggml_conv_2d
  4626. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4627. // a: [OC,IC, KH, KW]
  4628. // b: [N, IC, IH, IW]
  4629. // result: [N, OH, OW, IC*KH*KW]
  4630. struct ggml_tensor * ggml_im2col(
  4631. struct ggml_context * ctx,
  4632. struct ggml_tensor * a,
  4633. struct ggml_tensor * b,
  4634. int s0,
  4635. int s1,
  4636. int p0,
  4637. int p1,
  4638. int d0,
  4639. int d1,
  4640. bool is_2D,
  4641. enum ggml_type dst_type) {
  4642. if(is_2D) {
  4643. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4644. } else {
  4645. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4646. }
  4647. bool is_node = false;
  4648. if (a->grad || b->grad) {
  4649. GGML_ASSERT(false); // TODO: implement backward
  4650. is_node = true;
  4651. }
  4652. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4653. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4654. const int64_t ne[4] = {
  4655. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4656. OW,
  4657. is_2D ? OH : b->ne[2],
  4658. is_2D ? b->ne[3] : 1,
  4659. };
  4660. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  4661. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4662. ggml_set_op_params(result, params, sizeof(params));
  4663. result->op = GGML_OP_IM2COL;
  4664. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4665. result->src[0] = a;
  4666. result->src[1] = b;
  4667. return result;
  4668. }
  4669. // a: [OC,IC, KH, KW]
  4670. // b: [N, IC, IH, IW]
  4671. // result: [N, OC, OH, OW]
  4672. struct ggml_tensor * ggml_conv_2d(
  4673. struct ggml_context * ctx,
  4674. struct ggml_tensor * a,
  4675. struct ggml_tensor * b,
  4676. int s0,
  4677. int s1,
  4678. int p0,
  4679. int p1,
  4680. int d0,
  4681. int d1) {
  4682. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  4683. struct ggml_tensor * result =
  4684. ggml_mul_mat(ctx,
  4685. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4686. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4687. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  4688. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  4689. return result;
  4690. }
  4691. // ggml_conv_2d_sk_p0
  4692. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4693. struct ggml_context * ctx,
  4694. struct ggml_tensor * a,
  4695. struct ggml_tensor * b) {
  4696. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4697. }
  4698. // ggml_conv_2d_s1_ph
  4699. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4700. struct ggml_context * ctx,
  4701. struct ggml_tensor * a,
  4702. struct ggml_tensor * b) {
  4703. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4704. }
  4705. // ggml_conv_transpose_2d_p0
  4706. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4707. return (ins - 1) * s - 2 * p + ks;
  4708. }
  4709. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4710. struct ggml_context * ctx,
  4711. struct ggml_tensor * a,
  4712. struct ggml_tensor * b,
  4713. int stride) {
  4714. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4715. bool is_node = false;
  4716. if (a->grad || b->grad) {
  4717. GGML_ASSERT(false); // TODO: implement backward
  4718. is_node = true;
  4719. }
  4720. const int64_t ne[4] = {
  4721. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4722. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4723. a->ne[2], b->ne[3],
  4724. };
  4725. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4726. ggml_set_op_params_i32(result, 0, stride);
  4727. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4728. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4729. result->src[0] = a;
  4730. result->src[1] = b;
  4731. return result;
  4732. }
  4733. // ggml_pool_*
  4734. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4735. return (ins + 2 * p - ks) / s + 1;
  4736. }
  4737. // ggml_pool_1d
  4738. struct ggml_tensor * ggml_pool_1d(
  4739. struct ggml_context * ctx,
  4740. struct ggml_tensor * a,
  4741. enum ggml_op_pool op,
  4742. int k0,
  4743. int s0,
  4744. int p0) {
  4745. bool is_node = false;
  4746. if (a->grad) {
  4747. GGML_ASSERT(false); // TODO: implement backward
  4748. is_node = true;
  4749. }
  4750. const int64_t ne[4] = {
  4751. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4752. a->ne[1],
  4753. a->ne[2],
  4754. a->ne[3],
  4755. };
  4756. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4757. int32_t params[] = { op, k0, s0, p0 };
  4758. ggml_set_op_params(result, params, sizeof(params));
  4759. result->op = GGML_OP_POOL_1D;
  4760. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4761. result->src[0] = a;
  4762. return result;
  4763. }
  4764. // ggml_pool_2d
  4765. struct ggml_tensor * ggml_pool_2d(
  4766. struct ggml_context * ctx,
  4767. struct ggml_tensor * a,
  4768. enum ggml_op_pool op,
  4769. int k0,
  4770. int k1,
  4771. int s0,
  4772. int s1,
  4773. float p0,
  4774. float p1) {
  4775. bool is_node = false;
  4776. if (a->grad) {
  4777. GGML_ASSERT(false); // TODO: implement backward
  4778. is_node = true;
  4779. }
  4780. struct ggml_tensor * result;
  4781. const int64_t ne[3] = {
  4782. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4783. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4784. a->ne[2],
  4785. };
  4786. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4787. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4788. ggml_set_op_params(result, params, sizeof(params));
  4789. result->op = GGML_OP_POOL_2D;
  4790. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4791. result->src[0] = a;
  4792. return result;
  4793. }
  4794. // ggml_upscale
  4795. static struct ggml_tensor * ggml_upscale_impl(
  4796. struct ggml_context * ctx,
  4797. struct ggml_tensor * a,
  4798. int scale_factor) {
  4799. bool is_node = false;
  4800. if (a->grad) {
  4801. GGML_ASSERT(false); // TODO: implement backward
  4802. is_node = true;
  4803. }
  4804. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4805. a->ne[0] * scale_factor,
  4806. a->ne[1] * scale_factor,
  4807. a->ne[2], a->ne[3]);
  4808. result->op = GGML_OP_UPSCALE;
  4809. result->op_params[0] = scale_factor;
  4810. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4811. result->src[0] = a;
  4812. return result;
  4813. }
  4814. struct ggml_tensor * ggml_pad(
  4815. struct ggml_context * ctx,
  4816. struct ggml_tensor * a,
  4817. int p0, int p1, int p2, int p3) {
  4818. bool is_node = false;
  4819. if (a->grad) {
  4820. GGML_ASSERT(false); // TODO: implement backward
  4821. is_node = true;
  4822. }
  4823. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4824. a->ne[0] + p0,
  4825. a->ne[1] + p1,
  4826. a->ne[2] + p2,
  4827. a->ne[3] + p3);
  4828. result->op = GGML_OP_PAD;
  4829. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4830. result->src[0] = a;
  4831. return result;
  4832. }
  4833. struct ggml_tensor * ggml_upscale(
  4834. struct ggml_context * ctx,
  4835. struct ggml_tensor * a,
  4836. int scale_factor) {
  4837. return ggml_upscale_impl(ctx, a, scale_factor);
  4838. }
  4839. // ggml_argsort
  4840. struct ggml_tensor * ggml_argsort(
  4841. struct ggml_context * ctx,
  4842. struct ggml_tensor * a,
  4843. enum ggml_sort_order order) {
  4844. bool is_node = false;
  4845. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  4846. ggml_set_op_params_i32(result, 0, (int32_t) order);
  4847. result->op = GGML_OP_ARGSORT;
  4848. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4849. result->src[0] = a;
  4850. return result;
  4851. }
  4852. // ggml_top_k
  4853. struct ggml_tensor * ggml_top_k(
  4854. struct ggml_context * ctx,
  4855. struct ggml_tensor * a,
  4856. int k) {
  4857. GGML_ASSERT(a->ne[0] >= k);
  4858. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  4859. result = ggml_view_4d(ctx, result,
  4860. k, result->ne[1], result->ne[2], result->ne[3],
  4861. result->nb[1], result->nb[2], result->nb[3],
  4862. 0);
  4863. return result;
  4864. }
  4865. // ggml_flash_attn
  4866. struct ggml_tensor * ggml_flash_attn(
  4867. struct ggml_context * ctx,
  4868. struct ggml_tensor * q,
  4869. struct ggml_tensor * k,
  4870. struct ggml_tensor * v,
  4871. bool masked) {
  4872. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4873. // TODO: check if vT can be multiplied by (k*qT)
  4874. bool is_node = false;
  4875. if (q->grad || k->grad || v->grad) {
  4876. is_node = true;
  4877. }
  4878. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4879. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  4880. int32_t t = masked ? 1 : 0;
  4881. ggml_set_op_params(result, &t, sizeof(t));
  4882. result->op = GGML_OP_FLASH_ATTN;
  4883. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4884. result->src[0] = q;
  4885. result->src[1] = k;
  4886. result->src[2] = v;
  4887. return result;
  4888. }
  4889. // ggml_flash_ff
  4890. struct ggml_tensor * ggml_flash_ff(
  4891. struct ggml_context * ctx,
  4892. struct ggml_tensor * a,
  4893. struct ggml_tensor * b0,
  4894. struct ggml_tensor * b1,
  4895. struct ggml_tensor * c0,
  4896. struct ggml_tensor * c1) {
  4897. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4898. // TODO: more checks
  4899. bool is_node = false;
  4900. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4901. is_node = true;
  4902. }
  4903. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4904. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  4905. result->op = GGML_OP_FLASH_FF;
  4906. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4907. result->src[0] = a;
  4908. result->src[1] = b0;
  4909. result->src[2] = b1;
  4910. result->src[3] = c0;
  4911. result->src[4] = c1;
  4912. return result;
  4913. }
  4914. // ggml_flash_attn_back
  4915. struct ggml_tensor * ggml_flash_attn_back(
  4916. struct ggml_context * ctx,
  4917. struct ggml_tensor * q,
  4918. struct ggml_tensor * k,
  4919. struct ggml_tensor * v,
  4920. struct ggml_tensor * d,
  4921. bool masked) {
  4922. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4923. // TODO: check if vT can be multiplied by (k*qT)
  4924. // d shape [D,N,ne2,ne3]
  4925. // q shape [D,N,ne2,ne3]
  4926. // k shape [D,M,kvne2,ne3]
  4927. // v shape [M,D,kvne2,ne3]
  4928. const int64_t D = q->ne[0];
  4929. const int64_t N = q->ne[1];
  4930. const int64_t M = k->ne[1];
  4931. const int64_t ne2 = q->ne[2];
  4932. const int64_t ne3 = q->ne[3];
  4933. const int64_t kvne2 = k->ne[2];
  4934. GGML_ASSERT(k->ne[0] == D);
  4935. GGML_ASSERT(v->ne[0] == M);
  4936. GGML_ASSERT(v->ne[1] == D);
  4937. GGML_ASSERT(d->ne[0] == D);
  4938. GGML_ASSERT(d->ne[1] == N);
  4939. GGML_ASSERT(k->ne[2] == kvne2);
  4940. GGML_ASSERT(k->ne[3] == ne3);
  4941. GGML_ASSERT(v->ne[2] == kvne2);
  4942. GGML_ASSERT(v->ne[3] == ne3);
  4943. GGML_ASSERT(d->ne[2] == ne2);
  4944. GGML_ASSERT(d->ne[3] == ne3);
  4945. GGML_ASSERT(ne2 % kvne2 == 0);
  4946. bool is_node = false;
  4947. if (q->grad || k->grad || v->grad) {
  4948. // when using this operation (in backwards pass) these grads are set.
  4949. // we don't want to create (big) grad of our result, so is_node is false.
  4950. is_node = false;
  4951. }
  4952. // store gradients of q, k and v as continuous tensors concatenated in result.
  4953. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4954. const int64_t elem_q = ggml_nelements(q);
  4955. const int64_t elem_k = ggml_nelements(k);
  4956. const int64_t elem_v = ggml_nelements(v);
  4957. enum ggml_type result_type = GGML_TYPE_F32;
  4958. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4959. const size_t tsize = ggml_type_size(result_type);
  4960. const size_t offs_q = 0;
  4961. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4962. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4963. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4964. const size_t nelements = (end + tsize - 1)/tsize;
  4965. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4966. int32_t masked_i = masked ? 1 : 0;
  4967. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4968. result->op = GGML_OP_FLASH_ATTN_BACK;
  4969. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4970. result->src[0] = q;
  4971. result->src[1] = k;
  4972. result->src[2] = v;
  4973. result->src[3] = d;
  4974. return result;
  4975. }
  4976. // ggml_win_part
  4977. struct ggml_tensor * ggml_win_part(
  4978. struct ggml_context * ctx,
  4979. struct ggml_tensor * a,
  4980. int w) {
  4981. GGML_ASSERT(a->ne[3] == 1);
  4982. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4983. bool is_node = false;
  4984. if (a->grad) {
  4985. GGML_ASSERT(false); // TODO: implement backward
  4986. is_node = true;
  4987. }
  4988. // padding
  4989. const int px = (w - a->ne[1]%w)%w;
  4990. const int py = (w - a->ne[2]%w)%w;
  4991. const int npx = (px + a->ne[1])/w;
  4992. const int npy = (py + a->ne[2])/w;
  4993. const int np = npx*npy;
  4994. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4995. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4996. int32_t params[] = { npx, npy, w };
  4997. ggml_set_op_params(result, params, sizeof(params));
  4998. result->op = GGML_OP_WIN_PART;
  4999. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5000. result->src[0] = a;
  5001. return result;
  5002. }
  5003. // ggml_win_unpart
  5004. struct ggml_tensor * ggml_win_unpart(
  5005. struct ggml_context * ctx,
  5006. struct ggml_tensor * a,
  5007. int w0,
  5008. int h0,
  5009. int w) {
  5010. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5011. bool is_node = false;
  5012. if (a->grad) {
  5013. GGML_ASSERT(false); // TODO: implement backward
  5014. is_node = true;
  5015. }
  5016. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5017. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5018. int32_t params[] = { w };
  5019. ggml_set_op_params(result, params, sizeof(params));
  5020. result->op = GGML_OP_WIN_UNPART;
  5021. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5022. result->src[0] = a;
  5023. return result;
  5024. }
  5025. // ggml_get_rel_pos
  5026. struct ggml_tensor * ggml_get_rel_pos(
  5027. struct ggml_context * ctx,
  5028. struct ggml_tensor * a,
  5029. int qh,
  5030. int kh) {
  5031. GGML_ASSERT(qh == kh);
  5032. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5033. bool is_node = false;
  5034. if (a->grad) {
  5035. GGML_ASSERT(false); // TODO: implement backward
  5036. is_node = true;
  5037. }
  5038. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  5039. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  5040. result->op = GGML_OP_GET_REL_POS;
  5041. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5042. result->src[0] = a;
  5043. return result;
  5044. }
  5045. // ggml_add_rel_pos
  5046. static struct ggml_tensor * ggml_add_rel_pos_impl(
  5047. struct ggml_context * ctx,
  5048. struct ggml_tensor * a,
  5049. struct ggml_tensor * pw,
  5050. struct ggml_tensor * ph,
  5051. bool inplace) {
  5052. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  5053. GGML_ASSERT(ggml_is_contiguous(a));
  5054. GGML_ASSERT(ggml_is_contiguous(pw));
  5055. GGML_ASSERT(ggml_is_contiguous(ph));
  5056. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  5057. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  5058. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  5059. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  5060. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  5061. bool is_node = false;
  5062. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  5063. is_node = true;
  5064. }
  5065. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5066. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  5067. result->op = GGML_OP_ADD_REL_POS;
  5068. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5069. result->src[0] = a;
  5070. result->src[1] = pw;
  5071. result->src[2] = ph;
  5072. return result;
  5073. }
  5074. struct ggml_tensor * ggml_add_rel_pos(
  5075. struct ggml_context * ctx,
  5076. struct ggml_tensor * a,
  5077. struct ggml_tensor * pw,
  5078. struct ggml_tensor * ph) {
  5079. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  5080. }
  5081. struct ggml_tensor * ggml_add_rel_pos_inplace(
  5082. struct ggml_context * ctx,
  5083. struct ggml_tensor * a,
  5084. struct ggml_tensor * pw,
  5085. struct ggml_tensor * ph) {
  5086. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  5087. }
  5088. // gmml_unary
  5089. static struct ggml_tensor * ggml_unary_impl(
  5090. struct ggml_context * ctx,
  5091. struct ggml_tensor * a,
  5092. enum ggml_unary_op op,
  5093. bool inplace) {
  5094. bool is_node = false;
  5095. if (!inplace && (a->grad)) {
  5096. is_node = true;
  5097. }
  5098. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5099. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5100. result->op = GGML_OP_UNARY;
  5101. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5102. result->src[0] = a;
  5103. return result;
  5104. }
  5105. struct ggml_tensor * ggml_unary(
  5106. struct ggml_context * ctx,
  5107. struct ggml_tensor * a,
  5108. enum ggml_unary_op op) {
  5109. return ggml_unary_impl(ctx, a, op, false);
  5110. }
  5111. struct ggml_tensor * ggml_unary_inplace(
  5112. struct ggml_context * ctx,
  5113. struct ggml_tensor * a,
  5114. enum ggml_unary_op op) {
  5115. return ggml_unary_impl(ctx, a, op, true);
  5116. }
  5117. // ggml_map_unary
  5118. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5119. struct ggml_context * ctx,
  5120. struct ggml_tensor * a,
  5121. const ggml_unary_op_f32_t fun,
  5122. bool inplace) {
  5123. bool is_node = false;
  5124. if (!inplace && a->grad) {
  5125. is_node = true;
  5126. }
  5127. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5128. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5129. result->op = GGML_OP_MAP_UNARY;
  5130. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5131. result->src[0] = a;
  5132. return result;
  5133. }
  5134. struct ggml_tensor * ggml_map_unary_f32(
  5135. struct ggml_context * ctx,
  5136. struct ggml_tensor * a,
  5137. const ggml_unary_op_f32_t fun) {
  5138. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5139. }
  5140. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5141. struct ggml_context * ctx,
  5142. struct ggml_tensor * a,
  5143. const ggml_unary_op_f32_t fun) {
  5144. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5145. }
  5146. // ggml_map_binary
  5147. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5148. struct ggml_context * ctx,
  5149. struct ggml_tensor * a,
  5150. struct ggml_tensor * b,
  5151. const ggml_binary_op_f32_t fun,
  5152. bool inplace) {
  5153. GGML_ASSERT(ggml_are_same_shape(a, b));
  5154. bool is_node = false;
  5155. if (!inplace && (a->grad || b->grad)) {
  5156. is_node = true;
  5157. }
  5158. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5159. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5160. result->op = GGML_OP_MAP_BINARY;
  5161. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5162. result->src[0] = a;
  5163. result->src[1] = b;
  5164. return result;
  5165. }
  5166. struct ggml_tensor * ggml_map_binary_f32(
  5167. struct ggml_context * ctx,
  5168. struct ggml_tensor * a,
  5169. struct ggml_tensor * b,
  5170. const ggml_binary_op_f32_t fun) {
  5171. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5172. }
  5173. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5174. struct ggml_context * ctx,
  5175. struct ggml_tensor * a,
  5176. struct ggml_tensor * b,
  5177. const ggml_binary_op_f32_t fun) {
  5178. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5179. }
  5180. // ggml_map_custom1_f32
  5181. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5182. struct ggml_context * ctx,
  5183. struct ggml_tensor * a,
  5184. const ggml_custom1_op_f32_t fun,
  5185. bool inplace) {
  5186. bool is_node = false;
  5187. if (!inplace && a->grad) {
  5188. is_node = true;
  5189. }
  5190. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5191. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5192. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5193. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5194. result->src[0] = a;
  5195. return result;
  5196. }
  5197. struct ggml_tensor * ggml_map_custom1_f32(
  5198. struct ggml_context * ctx,
  5199. struct ggml_tensor * a,
  5200. const ggml_custom1_op_f32_t fun) {
  5201. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5202. }
  5203. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5204. struct ggml_context * ctx,
  5205. struct ggml_tensor * a,
  5206. const ggml_custom1_op_f32_t fun) {
  5207. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5208. }
  5209. // ggml_map_custom2_f32
  5210. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5211. struct ggml_context * ctx,
  5212. struct ggml_tensor * a,
  5213. struct ggml_tensor * b,
  5214. const ggml_custom2_op_f32_t fun,
  5215. bool inplace) {
  5216. bool is_node = false;
  5217. if (!inplace && (a->grad || b->grad)) {
  5218. is_node = true;
  5219. }
  5220. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5221. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5222. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5223. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5224. result->src[0] = a;
  5225. result->src[1] = b;
  5226. return result;
  5227. }
  5228. struct ggml_tensor * ggml_map_custom2_f32(
  5229. struct ggml_context * ctx,
  5230. struct ggml_tensor * a,
  5231. struct ggml_tensor * b,
  5232. const ggml_custom2_op_f32_t fun) {
  5233. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5234. }
  5235. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5236. struct ggml_context * ctx,
  5237. struct ggml_tensor * a,
  5238. struct ggml_tensor * b,
  5239. const ggml_custom2_op_f32_t fun) {
  5240. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5241. }
  5242. // ggml_map_custom3_f32
  5243. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5244. struct ggml_context * ctx,
  5245. struct ggml_tensor * a,
  5246. struct ggml_tensor * b,
  5247. struct ggml_tensor * c,
  5248. const ggml_custom3_op_f32_t fun,
  5249. bool inplace) {
  5250. bool is_node = false;
  5251. if (!inplace && (a->grad || b->grad || c->grad)) {
  5252. is_node = true;
  5253. }
  5254. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5255. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5256. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5257. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5258. result->src[0] = a;
  5259. result->src[1] = b;
  5260. result->src[2] = c;
  5261. return result;
  5262. }
  5263. struct ggml_tensor * ggml_map_custom3_f32(
  5264. struct ggml_context * ctx,
  5265. struct ggml_tensor * a,
  5266. struct ggml_tensor * b,
  5267. struct ggml_tensor * c,
  5268. const ggml_custom3_op_f32_t fun) {
  5269. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5270. }
  5271. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5272. struct ggml_context * ctx,
  5273. struct ggml_tensor * a,
  5274. struct ggml_tensor * b,
  5275. struct ggml_tensor * c,
  5276. const ggml_custom3_op_f32_t fun) {
  5277. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5278. }
  5279. // ggml_map_custom1
  5280. struct ggml_map_custom1_op_params {
  5281. ggml_custom1_op_t fun;
  5282. int n_tasks;
  5283. void * userdata;
  5284. };
  5285. static struct ggml_tensor * ggml_map_custom1_impl(
  5286. struct ggml_context * ctx,
  5287. struct ggml_tensor * a,
  5288. const ggml_custom1_op_t fun,
  5289. int n_tasks,
  5290. void * userdata,
  5291. bool inplace) {
  5292. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5293. bool is_node = false;
  5294. if (!inplace && a->grad) {
  5295. is_node = true;
  5296. }
  5297. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5298. struct ggml_map_custom1_op_params params = {
  5299. /*.fun =*/ fun,
  5300. /*.n_tasks =*/ n_tasks,
  5301. /*.userdata =*/ userdata
  5302. };
  5303. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5304. result->op = GGML_OP_MAP_CUSTOM1;
  5305. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5306. result->src[0] = a;
  5307. return result;
  5308. }
  5309. struct ggml_tensor * ggml_map_custom1(
  5310. struct ggml_context * ctx,
  5311. struct ggml_tensor * a,
  5312. const ggml_custom1_op_t fun,
  5313. int n_tasks,
  5314. void * userdata) {
  5315. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5316. }
  5317. struct ggml_tensor * ggml_map_custom1_inplace(
  5318. struct ggml_context * ctx,
  5319. struct ggml_tensor * a,
  5320. const ggml_custom1_op_t fun,
  5321. int n_tasks,
  5322. void * userdata) {
  5323. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5324. }
  5325. // ggml_map_custom2
  5326. struct ggml_map_custom2_op_params {
  5327. ggml_custom2_op_t fun;
  5328. int n_tasks;
  5329. void * userdata;
  5330. };
  5331. static struct ggml_tensor * ggml_map_custom2_impl(
  5332. struct ggml_context * ctx,
  5333. struct ggml_tensor * a,
  5334. struct ggml_tensor * b,
  5335. const ggml_custom2_op_t fun,
  5336. int n_tasks,
  5337. void * userdata,
  5338. bool inplace) {
  5339. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5340. bool is_node = false;
  5341. if (!inplace && (a->grad || b->grad)) {
  5342. is_node = true;
  5343. }
  5344. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5345. struct ggml_map_custom2_op_params params = {
  5346. /*.fun =*/ fun,
  5347. /*.n_tasks =*/ n_tasks,
  5348. /*.userdata =*/ userdata
  5349. };
  5350. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5351. result->op = GGML_OP_MAP_CUSTOM2;
  5352. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5353. result->src[0] = a;
  5354. result->src[1] = b;
  5355. return result;
  5356. }
  5357. struct ggml_tensor * ggml_map_custom2(
  5358. struct ggml_context * ctx,
  5359. struct ggml_tensor * a,
  5360. struct ggml_tensor * b,
  5361. const ggml_custom2_op_t fun,
  5362. int n_tasks,
  5363. void * userdata) {
  5364. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5365. }
  5366. struct ggml_tensor * ggml_map_custom2_inplace(
  5367. struct ggml_context * ctx,
  5368. struct ggml_tensor * a,
  5369. struct ggml_tensor * b,
  5370. const ggml_custom2_op_t fun,
  5371. int n_tasks,
  5372. void * userdata) {
  5373. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5374. }
  5375. // ggml_map_custom3
  5376. struct ggml_map_custom3_op_params {
  5377. ggml_custom3_op_t fun;
  5378. int n_tasks;
  5379. void * userdata;
  5380. };
  5381. static struct ggml_tensor * ggml_map_custom3_impl(
  5382. struct ggml_context * ctx,
  5383. struct ggml_tensor * a,
  5384. struct ggml_tensor * b,
  5385. struct ggml_tensor * c,
  5386. const ggml_custom3_op_t fun,
  5387. int n_tasks,
  5388. void * userdata,
  5389. bool inplace) {
  5390. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5391. bool is_node = false;
  5392. if (!inplace && (a->grad || b->grad || c->grad)) {
  5393. is_node = true;
  5394. }
  5395. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5396. struct ggml_map_custom3_op_params params = {
  5397. /*.fun =*/ fun,
  5398. /*.n_tasks =*/ n_tasks,
  5399. /*.userdata =*/ userdata
  5400. };
  5401. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5402. result->op = GGML_OP_MAP_CUSTOM3;
  5403. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5404. result->src[0] = a;
  5405. result->src[1] = b;
  5406. result->src[2] = c;
  5407. return result;
  5408. }
  5409. struct ggml_tensor * ggml_map_custom3(
  5410. struct ggml_context * ctx,
  5411. struct ggml_tensor * a,
  5412. struct ggml_tensor * b,
  5413. struct ggml_tensor * c,
  5414. const ggml_custom3_op_t fun,
  5415. int n_tasks,
  5416. void * userdata) {
  5417. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5418. }
  5419. struct ggml_tensor * ggml_map_custom3_inplace(
  5420. struct ggml_context * ctx,
  5421. struct ggml_tensor * a,
  5422. struct ggml_tensor * b,
  5423. struct ggml_tensor * c,
  5424. const ggml_custom3_op_t fun,
  5425. int n_tasks,
  5426. void * userdata) {
  5427. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5428. }
  5429. // ggml_cross_entropy_loss
  5430. struct ggml_tensor * ggml_cross_entropy_loss(
  5431. struct ggml_context * ctx,
  5432. struct ggml_tensor * a,
  5433. struct ggml_tensor * b) {
  5434. GGML_ASSERT(ggml_are_same_shape(a, b));
  5435. bool is_node = false;
  5436. if (a->grad || b->grad) {
  5437. is_node = true;
  5438. }
  5439. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5440. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5441. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5442. result->src[0] = a;
  5443. result->src[1] = b;
  5444. return result;
  5445. }
  5446. // ggml_cross_entropy_loss_back
  5447. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5448. struct ggml_context * ctx,
  5449. struct ggml_tensor * a,
  5450. struct ggml_tensor * b,
  5451. struct ggml_tensor * c) {
  5452. GGML_ASSERT(ggml_are_same_shape(a, b));
  5453. GGML_ASSERT(ggml_is_scalar(c));
  5454. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5455. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5456. result->grad = NULL;
  5457. result->src[0] = a;
  5458. result->src[1] = b;
  5459. result->src[2] = c;
  5460. return result;
  5461. }
  5462. ////////////////////////////////////////////////////////////////////////////////
  5463. void ggml_set_param(
  5464. struct ggml_context * ctx,
  5465. struct ggml_tensor * tensor) {
  5466. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  5467. GGML_ASSERT(tensor->grad == NULL);
  5468. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5469. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5470. }
  5471. // ggml_compute_forward_dup
  5472. static void ggml_compute_forward_dup_same_cont(
  5473. const struct ggml_compute_params * params,
  5474. struct ggml_tensor * dst) {
  5475. const struct ggml_tensor * src0 = dst->src[0];
  5476. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5477. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5478. GGML_ASSERT(src0->type == dst->type);
  5479. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5480. return;
  5481. }
  5482. const size_t nb00 = src0->nb[0];
  5483. const size_t nb0 = dst->nb[0];
  5484. const int ith = params->ith; // thread index
  5485. const int nth = params->nth; // number of threads
  5486. // parallelize by elements
  5487. const int ne = ggml_nelements(dst);
  5488. const int dr = (ne + nth - 1) / nth;
  5489. const int ie0 = dr * ith;
  5490. const int ie1 = MIN(ie0 + dr, ne);
  5491. if (ie0 < ie1) {
  5492. memcpy(
  5493. ((char *) dst->data + ie0*nb0),
  5494. ((char *) src0->data + ie0*nb00),
  5495. (ie1 - ie0) * ggml_type_size(src0->type));
  5496. }
  5497. }
  5498. static void ggml_compute_forward_dup_f16(
  5499. const struct ggml_compute_params * params,
  5500. struct ggml_tensor * dst) {
  5501. const struct ggml_tensor * src0 = dst->src[0];
  5502. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5503. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5504. return;
  5505. }
  5506. GGML_TENSOR_UNARY_OP_LOCALS
  5507. const int ith = params->ith; // thread index
  5508. const int nth = params->nth; // number of threads
  5509. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5510. ggml_compute_forward_dup_same_cont(params, dst);
  5511. return;
  5512. }
  5513. // parallelize by rows
  5514. const int nr = ne01;
  5515. // number of rows per thread
  5516. const int dr = (nr + nth - 1) / nth;
  5517. // row range for this thread
  5518. const int ir0 = dr * ith;
  5519. const int ir1 = MIN(ir0 + dr, nr);
  5520. if (src0->type == dst->type &&
  5521. ne00 == ne0 &&
  5522. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5523. // copy by rows
  5524. const size_t rs = ne00*nb00;
  5525. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5526. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5527. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5528. memcpy(
  5529. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5530. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5531. rs);
  5532. }
  5533. }
  5534. }
  5535. return;
  5536. }
  5537. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5538. if (ggml_is_contiguous(dst)) {
  5539. if (nb00 == sizeof(ggml_fp16_t)) {
  5540. if (dst->type == GGML_TYPE_F16) {
  5541. size_t id = 0;
  5542. const size_t rs = ne00 * nb00;
  5543. char * dst_ptr = (char *) dst->data;
  5544. for (int i03 = 0; i03 < ne03; i03++) {
  5545. for (int i02 = 0; i02 < ne02; i02++) {
  5546. id += rs * ir0;
  5547. for (int i01 = ir0; i01 < ir1; i01++) {
  5548. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5549. memcpy(dst_ptr + id, src0_ptr, rs);
  5550. id += rs;
  5551. }
  5552. id += rs * (ne01 - ir1);
  5553. }
  5554. }
  5555. } else if (dst->type == GGML_TYPE_F32) {
  5556. size_t id = 0;
  5557. float * dst_ptr = (float *) dst->data;
  5558. for (int i03 = 0; i03 < ne03; i03++) {
  5559. for (int i02 = 0; i02 < ne02; i02++) {
  5560. id += ne00 * ir0;
  5561. for (int i01 = ir0; i01 < ir1; i01++) {
  5562. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5563. for (int i00 = 0; i00 < ne00; i00++) {
  5564. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5565. id++;
  5566. }
  5567. }
  5568. id += ne00 * (ne01 - ir1);
  5569. }
  5570. }
  5571. } else if (type_traits[dst->type].from_float) {
  5572. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5573. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5574. size_t id = 0;
  5575. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5576. char * dst_ptr = (char *) dst->data;
  5577. for (int i03 = 0; i03 < ne03; i03++) {
  5578. for (int i02 = 0; i02 < ne02; i02++) {
  5579. id += rs * ir0;
  5580. for (int i01 = ir0; i01 < ir1; i01++) {
  5581. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5582. for (int i00 = 0; i00 < ne00; i00++) {
  5583. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5584. }
  5585. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5586. id += rs;
  5587. }
  5588. id += rs * (ne01 - ir1);
  5589. }
  5590. }
  5591. } else {
  5592. GGML_ASSERT(false); // TODO: implement
  5593. }
  5594. } else {
  5595. //printf("%s: this is not optimal - fix me\n", __func__);
  5596. if (dst->type == GGML_TYPE_F32) {
  5597. size_t id = 0;
  5598. float * dst_ptr = (float *) dst->data;
  5599. for (int i03 = 0; i03 < ne03; i03++) {
  5600. for (int i02 = 0; i02 < ne02; i02++) {
  5601. id += ne00 * ir0;
  5602. for (int i01 = ir0; i01 < ir1; i01++) {
  5603. for (int i00 = 0; i00 < ne00; i00++) {
  5604. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5605. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5606. id++;
  5607. }
  5608. }
  5609. id += ne00 * (ne01 - ir1);
  5610. }
  5611. }
  5612. } else if (dst->type == GGML_TYPE_F16) {
  5613. size_t id = 0;
  5614. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5615. for (int i03 = 0; i03 < ne03; i03++) {
  5616. for (int i02 = 0; i02 < ne02; i02++) {
  5617. id += ne00 * ir0;
  5618. for (int i01 = ir0; i01 < ir1; i01++) {
  5619. for (int i00 = 0; i00 < ne00; i00++) {
  5620. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5621. dst_ptr[id] = *src0_ptr;
  5622. id++;
  5623. }
  5624. }
  5625. id += ne00 * (ne01 - ir1);
  5626. }
  5627. }
  5628. } else {
  5629. GGML_ASSERT(false); // TODO: implement
  5630. }
  5631. }
  5632. return;
  5633. }
  5634. // dst counters
  5635. int64_t i10 = 0;
  5636. int64_t i11 = 0;
  5637. int64_t i12 = 0;
  5638. int64_t i13 = 0;
  5639. if (dst->type == GGML_TYPE_F16) {
  5640. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5641. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5642. i10 += ne00 * ir0;
  5643. while (i10 >= ne0) {
  5644. i10 -= ne0;
  5645. if (++i11 == ne1) {
  5646. i11 = 0;
  5647. if (++i12 == ne2) {
  5648. i12 = 0;
  5649. if (++i13 == ne3) {
  5650. i13 = 0;
  5651. }
  5652. }
  5653. }
  5654. }
  5655. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5656. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5657. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5658. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5659. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5660. if (++i10 == ne00) {
  5661. i10 = 0;
  5662. if (++i11 == ne01) {
  5663. i11 = 0;
  5664. if (++i12 == ne02) {
  5665. i12 = 0;
  5666. if (++i13 == ne03) {
  5667. i13 = 0;
  5668. }
  5669. }
  5670. }
  5671. }
  5672. }
  5673. }
  5674. i10 += ne00 * (ne01 - ir1);
  5675. while (i10 >= ne0) {
  5676. i10 -= ne0;
  5677. if (++i11 == ne1) {
  5678. i11 = 0;
  5679. if (++i12 == ne2) {
  5680. i12 = 0;
  5681. if (++i13 == ne3) {
  5682. i13 = 0;
  5683. }
  5684. }
  5685. }
  5686. }
  5687. }
  5688. }
  5689. } else if (dst->type == GGML_TYPE_F32) {
  5690. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5691. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5692. i10 += ne00 * ir0;
  5693. while (i10 >= ne0) {
  5694. i10 -= ne0;
  5695. if (++i11 == ne1) {
  5696. i11 = 0;
  5697. if (++i12 == ne2) {
  5698. i12 = 0;
  5699. if (++i13 == ne3) {
  5700. i13 = 0;
  5701. }
  5702. }
  5703. }
  5704. }
  5705. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5706. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5707. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5708. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5709. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5710. if (++i10 == ne0) {
  5711. i10 = 0;
  5712. if (++i11 == ne1) {
  5713. i11 = 0;
  5714. if (++i12 == ne2) {
  5715. i12 = 0;
  5716. if (++i13 == ne3) {
  5717. i13 = 0;
  5718. }
  5719. }
  5720. }
  5721. }
  5722. }
  5723. }
  5724. i10 += ne00 * (ne01 - ir1);
  5725. while (i10 >= ne0) {
  5726. i10 -= ne0;
  5727. if (++i11 == ne1) {
  5728. i11 = 0;
  5729. if (++i12 == ne2) {
  5730. i12 = 0;
  5731. if (++i13 == ne3) {
  5732. i13 = 0;
  5733. }
  5734. }
  5735. }
  5736. }
  5737. }
  5738. }
  5739. } else {
  5740. GGML_ASSERT(false); // TODO: implement
  5741. }
  5742. }
  5743. static void ggml_compute_forward_dup_f32(
  5744. const struct ggml_compute_params * params,
  5745. struct ggml_tensor * dst) {
  5746. const struct ggml_tensor * src0 = dst->src[0];
  5747. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5748. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5749. return;
  5750. }
  5751. GGML_TENSOR_UNARY_OP_LOCALS
  5752. const int ith = params->ith; // thread index
  5753. const int nth = params->nth; // number of threads
  5754. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5755. ggml_compute_forward_dup_same_cont(params, dst);
  5756. return;
  5757. }
  5758. // parallelize by rows
  5759. const int nr = ne01;
  5760. // number of rows per thread
  5761. const int dr = (nr + nth - 1) / nth;
  5762. // row range for this thread
  5763. const int ir0 = dr * ith;
  5764. const int ir1 = MIN(ir0 + dr, nr);
  5765. if (src0->type == dst->type &&
  5766. ne00 == ne0 &&
  5767. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5768. // copy by rows
  5769. const size_t rs = ne00*nb00;
  5770. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5771. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5772. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5773. memcpy(
  5774. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5775. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5776. rs);
  5777. }
  5778. }
  5779. }
  5780. return;
  5781. }
  5782. if (ggml_is_contiguous(dst)) {
  5783. // TODO: simplify
  5784. if (nb00 == sizeof(float)) {
  5785. if (dst->type == GGML_TYPE_F32) {
  5786. size_t id = 0;
  5787. const size_t rs = ne00 * nb00;
  5788. char * dst_ptr = (char *) dst->data;
  5789. for (int i03 = 0; i03 < ne03; i03++) {
  5790. for (int i02 = 0; i02 < ne02; i02++) {
  5791. id += rs * ir0;
  5792. for (int i01 = ir0; i01 < ir1; i01++) {
  5793. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5794. memcpy(dst_ptr + id, src0_ptr, rs);
  5795. id += rs;
  5796. }
  5797. id += rs * (ne01 - ir1);
  5798. }
  5799. }
  5800. } else if (type_traits[dst->type].from_float) {
  5801. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5802. size_t id = 0;
  5803. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5804. char * dst_ptr = (char *) dst->data;
  5805. for (int i03 = 0; i03 < ne03; i03++) {
  5806. for (int i02 = 0; i02 < ne02; i02++) {
  5807. id += rs * ir0;
  5808. for (int i01 = ir0; i01 < ir1; i01++) {
  5809. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5810. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5811. id += rs;
  5812. }
  5813. id += rs * (ne01 - ir1);
  5814. }
  5815. }
  5816. } else {
  5817. GGML_ASSERT(false); // TODO: implement
  5818. }
  5819. } else {
  5820. //printf("%s: this is not optimal - fix me\n", __func__);
  5821. if (dst->type == GGML_TYPE_F32) {
  5822. size_t id = 0;
  5823. float * dst_ptr = (float *) dst->data;
  5824. for (int i03 = 0; i03 < ne03; i03++) {
  5825. for (int i02 = 0; i02 < ne02; i02++) {
  5826. id += ne00 * ir0;
  5827. for (int i01 = ir0; i01 < ir1; i01++) {
  5828. for (int i00 = 0; i00 < ne00; i00++) {
  5829. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5830. dst_ptr[id] = *src0_ptr;
  5831. id++;
  5832. }
  5833. }
  5834. id += ne00 * (ne01 - ir1);
  5835. }
  5836. }
  5837. } else if (dst->type == GGML_TYPE_F16) {
  5838. size_t id = 0;
  5839. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5840. for (int i03 = 0; i03 < ne03; i03++) {
  5841. for (int i02 = 0; i02 < ne02; i02++) {
  5842. id += ne00 * ir0;
  5843. for (int i01 = ir0; i01 < ir1; i01++) {
  5844. for (int i00 = 0; i00 < ne00; i00++) {
  5845. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5846. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5847. id++;
  5848. }
  5849. }
  5850. id += ne00 * (ne01 - ir1);
  5851. }
  5852. }
  5853. } else {
  5854. GGML_ASSERT(false); // TODO: implement
  5855. }
  5856. }
  5857. return;
  5858. }
  5859. // dst counters
  5860. int64_t i10 = 0;
  5861. int64_t i11 = 0;
  5862. int64_t i12 = 0;
  5863. int64_t i13 = 0;
  5864. if (dst->type == GGML_TYPE_F32) {
  5865. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5866. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5867. i10 += ne00 * ir0;
  5868. while (i10 >= ne0) {
  5869. i10 -= ne0;
  5870. if (++i11 == ne1) {
  5871. i11 = 0;
  5872. if (++i12 == ne2) {
  5873. i12 = 0;
  5874. if (++i13 == ne3) {
  5875. i13 = 0;
  5876. }
  5877. }
  5878. }
  5879. }
  5880. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5881. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5882. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5883. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5884. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5885. if (++i10 == ne0) {
  5886. i10 = 0;
  5887. if (++i11 == ne1) {
  5888. i11 = 0;
  5889. if (++i12 == ne2) {
  5890. i12 = 0;
  5891. if (++i13 == ne3) {
  5892. i13 = 0;
  5893. }
  5894. }
  5895. }
  5896. }
  5897. }
  5898. }
  5899. i10 += ne00 * (ne01 - ir1);
  5900. while (i10 >= ne0) {
  5901. i10 -= ne0;
  5902. if (++i11 == ne1) {
  5903. i11 = 0;
  5904. if (++i12 == ne2) {
  5905. i12 = 0;
  5906. if (++i13 == ne3) {
  5907. i13 = 0;
  5908. }
  5909. }
  5910. }
  5911. }
  5912. }
  5913. }
  5914. } else if (dst->type == GGML_TYPE_F16) {
  5915. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5916. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5917. i10 += ne00 * ir0;
  5918. while (i10 >= ne0) {
  5919. i10 -= ne0;
  5920. if (++i11 == ne1) {
  5921. i11 = 0;
  5922. if (++i12 == ne2) {
  5923. i12 = 0;
  5924. if (++i13 == ne3) {
  5925. i13 = 0;
  5926. }
  5927. }
  5928. }
  5929. }
  5930. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5931. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5932. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5933. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5934. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5935. if (++i10 == ne0) {
  5936. i10 = 0;
  5937. if (++i11 == ne1) {
  5938. i11 = 0;
  5939. if (++i12 == ne2) {
  5940. i12 = 0;
  5941. if (++i13 == ne3) {
  5942. i13 = 0;
  5943. }
  5944. }
  5945. }
  5946. }
  5947. }
  5948. }
  5949. i10 += ne00 * (ne01 - ir1);
  5950. while (i10 >= ne0) {
  5951. i10 -= ne0;
  5952. if (++i11 == ne1) {
  5953. i11 = 0;
  5954. if (++i12 == ne2) {
  5955. i12 = 0;
  5956. if (++i13 == ne3) {
  5957. i13 = 0;
  5958. }
  5959. }
  5960. }
  5961. }
  5962. }
  5963. }
  5964. } else {
  5965. GGML_ASSERT(false); // TODO: implement
  5966. }
  5967. }
  5968. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  5969. static void ggml_compute_forward_dup_bytes(
  5970. const struct ggml_compute_params * params,
  5971. struct ggml_tensor * dst) {
  5972. const struct ggml_tensor * src0 = dst->src[0];
  5973. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5974. GGML_ASSERT(src0->type == dst->type);
  5975. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5976. return;
  5977. }
  5978. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  5979. ggml_compute_forward_dup_same_cont(params, dst);
  5980. return;
  5981. }
  5982. GGML_TENSOR_UNARY_OP_LOCALS;
  5983. const size_t type_size = ggml_type_size(src0->type);
  5984. const int ith = params->ith; // thread index
  5985. const int nth = params->nth; // number of threads
  5986. // parallelize by rows
  5987. const int nr = ne01;
  5988. // number of rows per thread
  5989. const int dr = (nr + nth - 1) / nth;
  5990. // row range for this thread
  5991. const int ir0 = dr * ith;
  5992. const int ir1 = MIN(ir0 + dr, nr);
  5993. if (src0->type == dst->type &&
  5994. ne00 == ne0 &&
  5995. nb00 == type_size && nb0 == type_size) {
  5996. // copy by rows
  5997. const size_t rs = ne00 * type_size;
  5998. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5999. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6000. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6001. memcpy(
  6002. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6003. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6004. rs);
  6005. }
  6006. }
  6007. }
  6008. return;
  6009. }
  6010. if (ggml_is_contiguous(dst)) {
  6011. size_t id = 0;
  6012. char * dst_ptr = (char *) dst->data;
  6013. const size_t rs = ne00 * type_size;
  6014. if (nb00 == type_size) {
  6015. // src0 is contigous on first dimension, copy by rows
  6016. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6017. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6018. id += rs * ir0;
  6019. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6020. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6021. memcpy(dst_ptr + id, src0_ptr, rs);
  6022. id += rs;
  6023. }
  6024. id += rs * (ne01 - ir1);
  6025. }
  6026. }
  6027. } else {
  6028. //printf("%s: this is not optimal - fix me\n", __func__);
  6029. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6030. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6031. id += rs * ir0;
  6032. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6033. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6034. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  6035. memcpy(dst_ptr + id, src0_ptr, type_size);
  6036. id += type_size;
  6037. }
  6038. }
  6039. id += rs * (ne01 - ir1);
  6040. }
  6041. }
  6042. }
  6043. return;
  6044. }
  6045. // dst counters
  6046. int64_t i10 = 0;
  6047. int64_t i11 = 0;
  6048. int64_t i12 = 0;
  6049. int64_t i13 = 0;
  6050. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6051. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6052. i10 += ne00 * ir0;
  6053. while (i10 >= ne0) {
  6054. i10 -= ne0;
  6055. if (++i11 == ne1) {
  6056. i11 = 0;
  6057. if (++i12 == ne2) {
  6058. i12 = 0;
  6059. if (++i13 == ne3) {
  6060. i13 = 0;
  6061. }
  6062. }
  6063. }
  6064. }
  6065. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6066. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6067. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6068. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6069. memcpy(dst_ptr, src0_ptr, type_size);
  6070. if (++i10 == ne0) {
  6071. i10 = 0;
  6072. if (++i11 == ne1) {
  6073. i11 = 0;
  6074. if (++i12 == ne2) {
  6075. i12 = 0;
  6076. if (++i13 == ne3) {
  6077. i13 = 0;
  6078. }
  6079. }
  6080. }
  6081. }
  6082. }
  6083. }
  6084. i10 += ne00 * (ne01 - ir1);
  6085. while (i10 >= ne0) {
  6086. i10 -= ne0;
  6087. if (++i11 == ne1) {
  6088. i11 = 0;
  6089. if (++i12 == ne2) {
  6090. i12 = 0;
  6091. if (++i13 == ne3) {
  6092. i13 = 0;
  6093. }
  6094. }
  6095. }
  6096. }
  6097. }
  6098. }
  6099. }
  6100. static void ggml_compute_forward_dup(
  6101. const struct ggml_compute_params * params,
  6102. struct ggml_tensor * dst) {
  6103. const struct ggml_tensor * src0 = dst->src[0];
  6104. if (src0->type == dst->type) {
  6105. ggml_compute_forward_dup_bytes(params, dst);
  6106. return;
  6107. }
  6108. switch (src0->type) {
  6109. case GGML_TYPE_F16:
  6110. {
  6111. ggml_compute_forward_dup_f16(params, dst);
  6112. } break;
  6113. case GGML_TYPE_F32:
  6114. {
  6115. ggml_compute_forward_dup_f32(params, dst);
  6116. } break;
  6117. default:
  6118. {
  6119. GGML_ASSERT(false);
  6120. } break;
  6121. }
  6122. }
  6123. // ggml_compute_forward_add
  6124. static void ggml_compute_forward_add_f32(
  6125. const struct ggml_compute_params * params,
  6126. struct ggml_tensor * dst) {
  6127. const struct ggml_tensor * src0 = dst->src[0];
  6128. const struct ggml_tensor * src1 = dst->src[1];
  6129. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6130. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6131. return;
  6132. }
  6133. const int ith = params->ith;
  6134. const int nth = params->nth;
  6135. #ifdef GGML_USE_CLBLAST
  6136. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  6137. // TODO: OpenCL kernel support full broadcast
  6138. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6139. if (ith == 0) {
  6140. ggml_cl_add(src0, src1, dst);
  6141. }
  6142. return;
  6143. }
  6144. #endif
  6145. const int nr = ggml_nrows(src0);
  6146. GGML_TENSOR_BINARY_OP_LOCALS
  6147. GGML_ASSERT( nb0 == sizeof(float));
  6148. GGML_ASSERT(nb00 == sizeof(float));
  6149. // rows per thread
  6150. const int dr = (nr + nth - 1)/nth;
  6151. // row range for this thread
  6152. const int ir0 = dr*ith;
  6153. const int ir1 = MIN(ir0 + dr, nr);
  6154. if (nb10 == sizeof(float)) {
  6155. for (int ir = ir0; ir < ir1; ++ir) {
  6156. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6157. const int64_t i03 = ir/(ne02*ne01);
  6158. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6159. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6160. const int64_t i13 = i03 % ne13;
  6161. const int64_t i12 = i02 % ne12;
  6162. const int64_t i11 = i01 % ne11;
  6163. const int64_t nr0 = ne00 / ne10;
  6164. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6165. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6166. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6167. for (int64_t r = 0; r < nr0; ++r) {
  6168. #ifdef GGML_USE_ACCELERATE
  6169. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6170. #else
  6171. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6172. #endif
  6173. }
  6174. }
  6175. } else {
  6176. // src1 is not contiguous
  6177. for (int ir = ir0; ir < ir1; ++ir) {
  6178. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6179. const int64_t i03 = ir/(ne02*ne01);
  6180. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6181. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6182. const int64_t i13 = i03 % ne13;
  6183. const int64_t i12 = i02 % ne12;
  6184. const int64_t i11 = i01 % ne11;
  6185. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6186. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6187. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  6188. const int64_t i10 = i0 % ne10;
  6189. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6190. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6191. }
  6192. }
  6193. }
  6194. }
  6195. static void ggml_compute_forward_add_f16_f32(
  6196. const struct ggml_compute_params * params,
  6197. struct ggml_tensor * dst) {
  6198. const struct ggml_tensor * src0 = dst->src[0];
  6199. const struct ggml_tensor * src1 = dst->src[1];
  6200. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6201. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6202. return;
  6203. }
  6204. const int ith = params->ith;
  6205. const int nth = params->nth;
  6206. const int nr = ggml_nrows(src0);
  6207. GGML_TENSOR_BINARY_OP_LOCALS
  6208. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6209. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6210. if (dst->type == GGML_TYPE_F32) {
  6211. GGML_ASSERT( nb0 == sizeof(float));
  6212. }
  6213. else {
  6214. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6215. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6216. }
  6217. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6218. // rows per thread
  6219. const int dr = (nr + nth - 1)/nth;
  6220. // row range for this thread
  6221. const int ir0 = dr*ith;
  6222. const int ir1 = MIN(ir0 + dr, nr);
  6223. if (nb10 == sizeof(float)) {
  6224. if (dst->type == GGML_TYPE_F16) {
  6225. for (int ir = ir0; ir < ir1; ++ir) {
  6226. // src0, src1 and dst are same shape => same indices
  6227. const int i3 = ir/(ne2*ne1);
  6228. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6229. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6230. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6231. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6232. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6233. for (int i = 0; i < ne0; i++) {
  6234. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6235. }
  6236. }
  6237. } else {
  6238. for (int ir = ir0; ir < ir1; ++ir) {
  6239. // src0, src1 and dst are same shape => same indices
  6240. const int i3 = ir/(ne2*ne1);
  6241. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6242. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6243. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6244. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6245. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6246. for (int i = 0; i < ne0; i++) {
  6247. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  6248. }
  6249. }
  6250. }
  6251. }
  6252. else {
  6253. // src1 is not contiguous
  6254. GGML_ASSERT(false);
  6255. }
  6256. }
  6257. static void ggml_compute_forward_add_f16_f16(
  6258. const struct ggml_compute_params * params,
  6259. struct ggml_tensor * dst) {
  6260. const struct ggml_tensor * src0 = dst->src[0];
  6261. const struct ggml_tensor * src1 = dst->src[1];
  6262. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6263. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6264. return;
  6265. }
  6266. const int ith = params->ith;
  6267. const int nth = params->nth;
  6268. const int nr = ggml_nrows(src0);
  6269. GGML_TENSOR_BINARY_OP_LOCALS
  6270. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6271. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6272. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6273. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6274. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6275. // rows per thread
  6276. const int dr = (nr + nth - 1)/nth;
  6277. // row range for this thread
  6278. const int ir0 = dr*ith;
  6279. const int ir1 = MIN(ir0 + dr, nr);
  6280. if (nb10 == sizeof(ggml_fp16_t)) {
  6281. for (int ir = ir0; ir < ir1; ++ir) {
  6282. // src0, src1 and dst are same shape => same indices
  6283. const int i3 = ir/(ne2*ne1);
  6284. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6285. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6286. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6287. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6288. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6289. for (int i = 0; i < ne0; i++) {
  6290. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6291. }
  6292. }
  6293. }
  6294. else {
  6295. // src1 is not contiguous
  6296. GGML_ASSERT(false);
  6297. }
  6298. }
  6299. static void ggml_compute_forward_add_q_f32(
  6300. const struct ggml_compute_params * params,
  6301. struct ggml_tensor * dst) {
  6302. const struct ggml_tensor * src0 = dst->src[0];
  6303. const struct ggml_tensor * src1 = dst->src[1];
  6304. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6305. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6306. return;
  6307. }
  6308. const int nr = ggml_nrows(src0);
  6309. GGML_TENSOR_BINARY_OP_LOCALS
  6310. const int ith = params->ith;
  6311. const int nth = params->nth;
  6312. const enum ggml_type type = src0->type;
  6313. const enum ggml_type dtype = dst->type;
  6314. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6315. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6316. // we don't support permuted src0 or src1
  6317. GGML_ASSERT(nb00 == ggml_type_size(type));
  6318. GGML_ASSERT(nb10 == sizeof(float));
  6319. // dst cannot be transposed or permuted
  6320. GGML_ASSERT(nb0 <= nb1);
  6321. GGML_ASSERT(nb1 <= nb2);
  6322. GGML_ASSERT(nb2 <= nb3);
  6323. GGML_ASSERT(ggml_is_quantized(src0->type));
  6324. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6325. // rows per thread
  6326. const int dr = (nr + nth - 1)/nth;
  6327. // row range for this thread
  6328. const int ir0 = dr*ith;
  6329. const int ir1 = MIN(ir0 + dr, nr);
  6330. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6331. for (int ir = ir0; ir < ir1; ++ir) {
  6332. // src0 indices
  6333. const int i03 = ir/(ne02*ne01);
  6334. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6335. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6336. // src1 and dst are same shape as src0 => same indices
  6337. const int i13 = i03;
  6338. const int i12 = i02;
  6339. const int i11 = i01;
  6340. const int i3 = i03;
  6341. const int i2 = i02;
  6342. const int i1 = i01;
  6343. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6344. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6345. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6346. assert(ne00 % 32 == 0);
  6347. // unquantize row from src0 to temp buffer
  6348. dequantize_row_q(src0_row, wdata, ne00);
  6349. // add src1
  6350. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6351. // quantize row to dst
  6352. if (quantize_row_q != NULL) {
  6353. quantize_row_q(wdata, dst_row, ne00);
  6354. } else {
  6355. memcpy(dst_row, wdata, ne0*nb0);
  6356. }
  6357. }
  6358. }
  6359. static void ggml_compute_forward_add(
  6360. const struct ggml_compute_params * params,
  6361. struct ggml_tensor * dst) {
  6362. const struct ggml_tensor * src0 = dst->src[0];
  6363. const struct ggml_tensor * src1 = dst->src[1];
  6364. switch (src0->type) {
  6365. case GGML_TYPE_F32:
  6366. {
  6367. if (src1->type == GGML_TYPE_F32) {
  6368. ggml_compute_forward_add_f32(params, dst);
  6369. }
  6370. else {
  6371. GGML_ASSERT(false);
  6372. }
  6373. } break;
  6374. case GGML_TYPE_F16:
  6375. {
  6376. if (src1->type == GGML_TYPE_F16) {
  6377. ggml_compute_forward_add_f16_f16(params, dst);
  6378. }
  6379. else if (src1->type == GGML_TYPE_F32) {
  6380. ggml_compute_forward_add_f16_f32(params, dst);
  6381. }
  6382. else {
  6383. GGML_ASSERT(false);
  6384. }
  6385. } break;
  6386. case GGML_TYPE_Q4_0:
  6387. case GGML_TYPE_Q4_1:
  6388. case GGML_TYPE_Q5_0:
  6389. case GGML_TYPE_Q5_1:
  6390. case GGML_TYPE_Q8_0:
  6391. case GGML_TYPE_Q2_K:
  6392. case GGML_TYPE_Q3_K:
  6393. case GGML_TYPE_Q4_K:
  6394. case GGML_TYPE_Q5_K:
  6395. case GGML_TYPE_Q6_K:
  6396. case GGML_TYPE_IQ2_XXS:
  6397. case GGML_TYPE_IQ2_XS:
  6398. case GGML_TYPE_IQ3_XXS:
  6399. case GGML_TYPE_IQ1_S:
  6400. case GGML_TYPE_IQ4_NL:
  6401. case GGML_TYPE_IQ4_XS:
  6402. case GGML_TYPE_IQ3_S:
  6403. case GGML_TYPE_IQ2_S:
  6404. {
  6405. ggml_compute_forward_add_q_f32(params, dst);
  6406. } break;
  6407. default:
  6408. {
  6409. GGML_ASSERT(false);
  6410. } break;
  6411. }
  6412. }
  6413. // ggml_compute_forward_add1
  6414. static void ggml_compute_forward_add1_f32(
  6415. const struct ggml_compute_params * params,
  6416. struct ggml_tensor * dst) {
  6417. const struct ggml_tensor * src0 = dst->src[0];
  6418. const struct ggml_tensor * src1 = dst->src[1];
  6419. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6420. GGML_ASSERT(ggml_is_scalar(src1));
  6421. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6422. return;
  6423. }
  6424. const int ith = params->ith;
  6425. const int nth = params->nth;
  6426. const int nr = ggml_nrows(src0);
  6427. GGML_TENSOR_UNARY_OP_LOCALS
  6428. GGML_ASSERT( nb0 == sizeof(float));
  6429. GGML_ASSERT(nb00 == sizeof(float));
  6430. // rows per thread
  6431. const int dr = (nr + nth - 1)/nth;
  6432. // row range for this thread
  6433. const int ir0 = dr*ith;
  6434. const int ir1 = MIN(ir0 + dr, nr);
  6435. for (int ir = ir0; ir < ir1; ++ir) {
  6436. // src0 and dst are same shape => same indices
  6437. const int i3 = ir/(ne2*ne1);
  6438. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6439. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6440. #ifdef GGML_USE_ACCELERATE
  6441. UNUSED(ggml_vec_add1_f32);
  6442. vDSP_vadd(
  6443. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6444. (float *) ((char *) src1->data), 0,
  6445. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6446. ne0);
  6447. #else
  6448. ggml_vec_add1_f32(ne0,
  6449. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6450. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6451. *(float *) src1->data);
  6452. #endif
  6453. }
  6454. }
  6455. static void ggml_compute_forward_add1_f16_f32(
  6456. const struct ggml_compute_params * params,
  6457. struct ggml_tensor * dst) {
  6458. const struct ggml_tensor * src0 = dst->src[0];
  6459. const struct ggml_tensor * src1 = dst->src[1];
  6460. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6461. GGML_ASSERT(ggml_is_scalar(src1));
  6462. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6463. return;
  6464. }
  6465. // scalar to add
  6466. const float v = *(float *) src1->data;
  6467. const int ith = params->ith;
  6468. const int nth = params->nth;
  6469. const int nr = ggml_nrows(src0);
  6470. GGML_TENSOR_UNARY_OP_LOCALS
  6471. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6472. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6473. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6474. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6475. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6476. // rows per thread
  6477. const int dr = (nr + nth - 1)/nth;
  6478. // row range for this thread
  6479. const int ir0 = dr*ith;
  6480. const int ir1 = MIN(ir0 + dr, nr);
  6481. for (int ir = ir0; ir < ir1; ++ir) {
  6482. // src0 and dst are same shape => same indices
  6483. const int i3 = ir/(ne2*ne1);
  6484. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6485. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6486. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6487. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6488. for (int i = 0; i < ne0; i++) {
  6489. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6490. }
  6491. }
  6492. }
  6493. static void ggml_compute_forward_add1_f16_f16(
  6494. const struct ggml_compute_params * params,
  6495. struct ggml_tensor * dst) {
  6496. const struct ggml_tensor * src0 = dst->src[0];
  6497. const struct ggml_tensor * src1 = dst->src[1];
  6498. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6499. GGML_ASSERT(ggml_is_scalar(src1));
  6500. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6501. return;
  6502. }
  6503. // scalar to add
  6504. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6505. const int ith = params->ith;
  6506. const int nth = params->nth;
  6507. const int nr = ggml_nrows(src0);
  6508. GGML_TENSOR_UNARY_OP_LOCALS
  6509. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6510. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6511. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6512. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6513. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6514. // rows per thread
  6515. const int dr = (nr + nth - 1)/nth;
  6516. // row range for this thread
  6517. const int ir0 = dr*ith;
  6518. const int ir1 = MIN(ir0 + dr, nr);
  6519. for (int ir = ir0; ir < ir1; ++ir) {
  6520. // src0 and dst are same shape => same indices
  6521. const int i3 = ir/(ne2*ne1);
  6522. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6523. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6524. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6525. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6526. for (int i = 0; i < ne0; i++) {
  6527. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6528. }
  6529. }
  6530. }
  6531. static void ggml_compute_forward_add1_q_f32(
  6532. const struct ggml_compute_params * params,
  6533. struct ggml_tensor * dst) {
  6534. const struct ggml_tensor * src0 = dst->src[0];
  6535. const struct ggml_tensor * src1 = dst->src[1];
  6536. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6537. GGML_ASSERT(ggml_is_scalar(src1));
  6538. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6539. return;
  6540. }
  6541. // scalar to add
  6542. const float v = *(float *) src1->data;
  6543. const int ith = params->ith;
  6544. const int nth = params->nth;
  6545. const int nr = ggml_nrows(src0);
  6546. GGML_TENSOR_UNARY_OP_LOCALS
  6547. const enum ggml_type type = src0->type;
  6548. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6549. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6550. // we don't support permuted src0
  6551. GGML_ASSERT(nb00 == ggml_type_size(type));
  6552. // dst cannot be transposed or permuted
  6553. GGML_ASSERT(nb0 <= nb1);
  6554. GGML_ASSERT(nb1 <= nb2);
  6555. GGML_ASSERT(nb2 <= nb3);
  6556. GGML_ASSERT(ggml_is_quantized(src0->type));
  6557. GGML_ASSERT(dst->type == src0->type);
  6558. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6559. // rows per thread
  6560. const int dr = (nr + nth - 1)/nth;
  6561. // row range for this thread
  6562. const int ir0 = dr*ith;
  6563. const int ir1 = MIN(ir0 + dr, nr);
  6564. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6565. for (int ir = ir0; ir < ir1; ++ir) {
  6566. // src0 and dst are same shape => same indices
  6567. const int i3 = ir/(ne2*ne1);
  6568. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6569. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6570. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6571. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6572. assert(ne0 % 32 == 0);
  6573. // unquantize row from src0 to temp buffer
  6574. dequantize_row_q(src0_row, wdata, ne0);
  6575. // add src1
  6576. ggml_vec_acc1_f32(ne0, wdata, v);
  6577. // quantize row to dst
  6578. quantize_row_q(wdata, dst_row, ne0);
  6579. }
  6580. }
  6581. static void ggml_compute_forward_add1(
  6582. const struct ggml_compute_params * params,
  6583. struct ggml_tensor * dst) {
  6584. const struct ggml_tensor * src0 = dst->src[0];
  6585. const struct ggml_tensor * src1 = dst->src[1];
  6586. switch (src0->type) {
  6587. case GGML_TYPE_F32:
  6588. {
  6589. ggml_compute_forward_add1_f32(params, dst);
  6590. } break;
  6591. case GGML_TYPE_F16:
  6592. {
  6593. if (src1->type == GGML_TYPE_F16) {
  6594. ggml_compute_forward_add1_f16_f16(params, dst);
  6595. }
  6596. else if (src1->type == GGML_TYPE_F32) {
  6597. ggml_compute_forward_add1_f16_f32(params, dst);
  6598. }
  6599. else {
  6600. GGML_ASSERT(false);
  6601. }
  6602. } break;
  6603. case GGML_TYPE_Q4_0:
  6604. case GGML_TYPE_Q4_1:
  6605. case GGML_TYPE_Q5_0:
  6606. case GGML_TYPE_Q5_1:
  6607. case GGML_TYPE_Q8_0:
  6608. case GGML_TYPE_Q8_1:
  6609. case GGML_TYPE_Q2_K:
  6610. case GGML_TYPE_Q3_K:
  6611. case GGML_TYPE_Q4_K:
  6612. case GGML_TYPE_Q5_K:
  6613. case GGML_TYPE_Q6_K:
  6614. case GGML_TYPE_IQ2_XXS:
  6615. case GGML_TYPE_IQ2_XS:
  6616. case GGML_TYPE_IQ3_XXS:
  6617. case GGML_TYPE_IQ1_S:
  6618. case GGML_TYPE_IQ4_NL:
  6619. case GGML_TYPE_IQ4_XS:
  6620. case GGML_TYPE_IQ3_S:
  6621. case GGML_TYPE_IQ2_S:
  6622. {
  6623. ggml_compute_forward_add1_q_f32(params, dst);
  6624. } break;
  6625. default:
  6626. {
  6627. GGML_ASSERT(false);
  6628. } break;
  6629. }
  6630. }
  6631. // ggml_compute_forward_acc
  6632. static void ggml_compute_forward_acc_f32(
  6633. const struct ggml_compute_params * params,
  6634. struct ggml_tensor * dst) {
  6635. const struct ggml_tensor * src0 = dst->src[0];
  6636. const struct ggml_tensor * src1 = dst->src[1];
  6637. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6638. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6639. // view src0 and dst with these strides and data offset inbytes during acc
  6640. // nb0 is implicitly element_size because src0 and dst are contiguous
  6641. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6642. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6643. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6644. size_t offset = ((int32_t *) dst->op_params)[3];
  6645. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6646. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  6647. if (params->ith != 0) {
  6648. return;
  6649. }
  6650. // memcpy needs to be synchronized across threads to avoid race conditions.
  6651. // => do it in INIT phase
  6652. memcpy(
  6653. ((char *) dst->data),
  6654. ((char *) src0->data),
  6655. ggml_nbytes(dst));
  6656. }
  6657. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6658. return;
  6659. }
  6660. const int ith = params->ith;
  6661. const int nth = params->nth;
  6662. const int nr = ggml_nrows(src1);
  6663. const int nc = src1->ne[0];
  6664. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6665. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6666. // src0 and dst as viewed during acc
  6667. const size_t nb0 = ggml_element_size(src0);
  6668. const size_t nb00 = nb0;
  6669. const size_t nb01 = nb1;
  6670. const size_t nb02 = nb2;
  6671. const size_t nb03 = nb3;
  6672. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6673. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6674. GGML_ASSERT(nb10 == sizeof(float));
  6675. // rows per thread
  6676. const int dr = (nr + nth - 1)/nth;
  6677. // row range for this thread
  6678. const int ir0 = dr*ith;
  6679. const int ir1 = MIN(ir0 + dr, nr);
  6680. for (int ir = ir0; ir < ir1; ++ir) {
  6681. // src0 and dst are viewed with shape of src1 and offset
  6682. // => same indices
  6683. const int i3 = ir/(ne12*ne11);
  6684. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6685. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6686. #ifdef GGML_USE_ACCELERATE
  6687. vDSP_vadd(
  6688. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6689. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6690. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6691. #else
  6692. ggml_vec_add_f32(nc,
  6693. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6694. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6695. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6696. #endif
  6697. }
  6698. }
  6699. static void ggml_compute_forward_acc(
  6700. const struct ggml_compute_params * params,
  6701. struct ggml_tensor * dst) {
  6702. const struct ggml_tensor * src0 = dst->src[0];
  6703. switch (src0->type) {
  6704. case GGML_TYPE_F32:
  6705. {
  6706. ggml_compute_forward_acc_f32(params, dst);
  6707. } break;
  6708. case GGML_TYPE_F16:
  6709. case GGML_TYPE_Q4_0:
  6710. case GGML_TYPE_Q4_1:
  6711. case GGML_TYPE_Q5_0:
  6712. case GGML_TYPE_Q5_1:
  6713. case GGML_TYPE_Q8_0:
  6714. case GGML_TYPE_Q8_1:
  6715. case GGML_TYPE_Q2_K:
  6716. case GGML_TYPE_Q3_K:
  6717. case GGML_TYPE_Q4_K:
  6718. case GGML_TYPE_Q5_K:
  6719. case GGML_TYPE_Q6_K:
  6720. case GGML_TYPE_IQ2_XXS:
  6721. case GGML_TYPE_IQ2_XS:
  6722. case GGML_TYPE_IQ3_XXS:
  6723. case GGML_TYPE_IQ1_S:
  6724. case GGML_TYPE_IQ4_NL:
  6725. case GGML_TYPE_IQ4_XS:
  6726. case GGML_TYPE_IQ3_S:
  6727. case GGML_TYPE_IQ2_S:
  6728. default:
  6729. {
  6730. GGML_ASSERT(false);
  6731. } break;
  6732. }
  6733. }
  6734. // ggml_compute_forward_sub
  6735. static void ggml_compute_forward_sub_f32(
  6736. const struct ggml_compute_params * params,
  6737. struct ggml_tensor * dst) {
  6738. const struct ggml_tensor * src0 = dst->src[0];
  6739. const struct ggml_tensor * src1 = dst->src[1];
  6740. assert(params->ith == 0);
  6741. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6742. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6743. return;
  6744. }
  6745. const int nr = ggml_nrows(src0);
  6746. GGML_TENSOR_BINARY_OP_LOCALS
  6747. GGML_ASSERT( nb0 == sizeof(float));
  6748. GGML_ASSERT(nb00 == sizeof(float));
  6749. if (nb10 == sizeof(float)) {
  6750. for (int ir = 0; ir < nr; ++ir) {
  6751. // src0, src1 and dst are same shape => same indices
  6752. const int i3 = ir/(ne2*ne1);
  6753. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6754. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6755. #ifdef GGML_USE_ACCELERATE
  6756. vDSP_vsub(
  6757. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6758. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6759. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6760. ne0);
  6761. #else
  6762. ggml_vec_sub_f32(ne0,
  6763. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6764. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6765. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6766. #endif
  6767. // }
  6768. // }
  6769. }
  6770. } else {
  6771. // src1 is not contiguous
  6772. for (int ir = 0; ir < nr; ++ir) {
  6773. // src0, src1 and dst are same shape => same indices
  6774. const int i3 = ir/(ne2*ne1);
  6775. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6776. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6777. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6778. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6779. for (int i0 = 0; i0 < ne0; i0++) {
  6780. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6781. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6782. }
  6783. }
  6784. }
  6785. }
  6786. static void ggml_compute_forward_sub(
  6787. const struct ggml_compute_params * params,
  6788. struct ggml_tensor * dst) {
  6789. const struct ggml_tensor * src0 = dst->src[0];
  6790. switch (src0->type) {
  6791. case GGML_TYPE_F32:
  6792. {
  6793. ggml_compute_forward_sub_f32(params, dst);
  6794. } break;
  6795. default:
  6796. {
  6797. GGML_ASSERT(false);
  6798. } break;
  6799. }
  6800. }
  6801. // ggml_compute_forward_mul
  6802. static void ggml_compute_forward_mul_f32(
  6803. const struct ggml_compute_params * params,
  6804. struct ggml_tensor * dst) {
  6805. const struct ggml_tensor * src0 = dst->src[0];
  6806. const struct ggml_tensor * src1 = dst->src[1];
  6807. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6808. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6809. return;
  6810. }
  6811. const int ith = params->ith;
  6812. const int nth = params->nth;
  6813. #if defined(GGML_USE_CLBLAST)
  6814. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  6815. // TODO: OpenCL kernel support full broadcast
  6816. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6817. if (ith == 0) {
  6818. ggml_cl_mul(src0, src1, dst);
  6819. }
  6820. return;
  6821. }
  6822. #endif
  6823. const int64_t nr = ggml_nrows(src0);
  6824. GGML_TENSOR_BINARY_OP_LOCALS
  6825. GGML_ASSERT( nb0 == sizeof(float));
  6826. GGML_ASSERT(nb00 == sizeof(float));
  6827. if (nb10 == sizeof(float)) {
  6828. for (int64_t ir = ith; ir < nr; ir += nth) {
  6829. // src0 and dst are same shape => same indices
  6830. const int64_t i03 = ir/(ne02*ne01);
  6831. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6832. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6833. const int64_t i13 = i03 % ne13;
  6834. const int64_t i12 = i02 % ne12;
  6835. const int64_t i11 = i01 % ne11;
  6836. const int64_t nr0 = ne00 / ne10;
  6837. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6838. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6839. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6840. for (int64_t r = 0 ; r < nr0; ++r) {
  6841. #ifdef GGML_USE_ACCELERATE
  6842. UNUSED(ggml_vec_mul_f32);
  6843. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6844. #else
  6845. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6846. #endif
  6847. }
  6848. }
  6849. } else {
  6850. // src1 is not contiguous
  6851. for (int64_t ir = ith; ir < nr; ir += nth) {
  6852. // src0 and dst are same shape => same indices
  6853. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6854. const int64_t i03 = ir/(ne02*ne01);
  6855. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6856. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6857. const int64_t i13 = i03 % ne13;
  6858. const int64_t i12 = i02 % ne12;
  6859. const int64_t i11 = i01 % ne11;
  6860. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6861. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6862. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6863. const int64_t i10 = i0 % ne10;
  6864. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6865. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6866. }
  6867. }
  6868. }
  6869. }
  6870. static void ggml_compute_forward_mul(
  6871. const struct ggml_compute_params * params,
  6872. struct ggml_tensor * dst) {
  6873. const struct ggml_tensor * src0 = dst->src[0];
  6874. const struct ggml_tensor * src1 = dst->src[1];
  6875. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6876. switch (src0->type) {
  6877. case GGML_TYPE_F32:
  6878. {
  6879. ggml_compute_forward_mul_f32(params, dst);
  6880. } break;
  6881. default:
  6882. {
  6883. GGML_ASSERT(false);
  6884. } break;
  6885. }
  6886. }
  6887. // ggml_compute_forward_div
  6888. static void ggml_compute_forward_div_f32(
  6889. const struct ggml_compute_params * params,
  6890. struct ggml_tensor * dst) {
  6891. const struct ggml_tensor * src0 = dst->src[0];
  6892. const struct ggml_tensor * src1 = dst->src[1];
  6893. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6894. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6895. return;
  6896. }
  6897. const int ith = params->ith;
  6898. const int nth = params->nth;
  6899. const int64_t nr = ggml_nrows(src0);
  6900. GGML_TENSOR_BINARY_OP_LOCALS
  6901. GGML_ASSERT( nb0 == sizeof(float));
  6902. GGML_ASSERT(nb00 == sizeof(float));
  6903. if (nb10 == sizeof(float)) {
  6904. for (int64_t ir = ith; ir < nr; ir += nth) {
  6905. // src0 and dst are same shape => same indices
  6906. const int64_t i03 = ir/(ne02*ne01);
  6907. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6908. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6909. const int64_t i13 = i03 % ne13;
  6910. const int64_t i12 = i02 % ne12;
  6911. const int64_t i11 = i01 % ne11;
  6912. const int64_t nr0 = ne00 / ne10;
  6913. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6914. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6915. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6916. for (int64_t r = 0; r < nr0; ++r) {
  6917. #ifdef GGML_USE_ACCELERATE
  6918. UNUSED(ggml_vec_div_f32);
  6919. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  6920. #else
  6921. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6922. #endif
  6923. }
  6924. }
  6925. } else {
  6926. // src1 is not contiguous
  6927. for (int64_t ir = ith; ir < nr; ir += nth) {
  6928. // src0 and dst are same shape => same indices
  6929. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6930. const int64_t i03 = ir/(ne02*ne01);
  6931. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6932. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6933. const int64_t i13 = i03 % ne13;
  6934. const int64_t i12 = i02 % ne12;
  6935. const int64_t i11 = i01 % ne11;
  6936. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6937. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6938. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6939. const int64_t i10 = i0 % ne10;
  6940. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6941. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6942. }
  6943. }
  6944. }
  6945. }
  6946. static void ggml_compute_forward_div(
  6947. const struct ggml_compute_params * params,
  6948. struct ggml_tensor * dst) {
  6949. const struct ggml_tensor * src0 = dst->src[0];
  6950. switch (src0->type) {
  6951. case GGML_TYPE_F32:
  6952. {
  6953. ggml_compute_forward_div_f32(params, dst);
  6954. } break;
  6955. default:
  6956. {
  6957. GGML_ASSERT(false);
  6958. } break;
  6959. }
  6960. }
  6961. // ggml_compute_forward_sqr
  6962. static void ggml_compute_forward_sqr_f32(
  6963. const struct ggml_compute_params * params,
  6964. struct ggml_tensor * dst) {
  6965. const struct ggml_tensor * src0 = dst->src[0];
  6966. assert(params->ith == 0);
  6967. assert(ggml_are_same_shape(src0, dst));
  6968. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6969. return;
  6970. }
  6971. const int n = ggml_nrows(src0);
  6972. const int nc = src0->ne[0];
  6973. assert( dst->nb[0] == sizeof(float));
  6974. assert(src0->nb[0] == sizeof(float));
  6975. for (int i = 0; i < n; i++) {
  6976. ggml_vec_sqr_f32(nc,
  6977. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6978. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6979. }
  6980. }
  6981. static void ggml_compute_forward_sqr(
  6982. const struct ggml_compute_params * params,
  6983. struct ggml_tensor * dst) {
  6984. const struct ggml_tensor * src0 = dst->src[0];
  6985. switch (src0->type) {
  6986. case GGML_TYPE_F32:
  6987. {
  6988. ggml_compute_forward_sqr_f32(params, dst);
  6989. } break;
  6990. default:
  6991. {
  6992. GGML_ASSERT(false);
  6993. } break;
  6994. }
  6995. }
  6996. // ggml_compute_forward_sqrt
  6997. static void ggml_compute_forward_sqrt_f32(
  6998. const struct ggml_compute_params * params,
  6999. struct ggml_tensor * dst) {
  7000. const struct ggml_tensor * src0 = dst->src[0];
  7001. assert(params->ith == 0);
  7002. assert(ggml_are_same_shape(src0, dst));
  7003. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7004. return;
  7005. }
  7006. const int n = ggml_nrows(src0);
  7007. const int nc = src0->ne[0];
  7008. assert( dst->nb[0] == sizeof(float));
  7009. assert(src0->nb[0] == sizeof(float));
  7010. for (int i = 0; i < n; i++) {
  7011. ggml_vec_sqrt_f32(nc,
  7012. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7013. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7014. }
  7015. }
  7016. static void ggml_compute_forward_sqrt(
  7017. const struct ggml_compute_params * params,
  7018. struct ggml_tensor * dst) {
  7019. const struct ggml_tensor * src0 = dst->src[0];
  7020. switch (src0->type) {
  7021. case GGML_TYPE_F32:
  7022. {
  7023. ggml_compute_forward_sqrt_f32(params, dst);
  7024. } break;
  7025. default:
  7026. {
  7027. GGML_ASSERT(false);
  7028. } break;
  7029. }
  7030. }
  7031. // ggml_compute_forward_log
  7032. static void ggml_compute_forward_log_f32(
  7033. const struct ggml_compute_params * params,
  7034. struct ggml_tensor * dst) {
  7035. const struct ggml_tensor * src0 = dst->src[0];
  7036. GGML_ASSERT(params->ith == 0);
  7037. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7038. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7039. return;
  7040. }
  7041. const int n = ggml_nrows(src0);
  7042. const int nc = src0->ne[0];
  7043. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7044. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7045. for (int i = 0; i < n; i++) {
  7046. ggml_vec_log_f32(nc,
  7047. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7048. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7049. }
  7050. }
  7051. static void ggml_compute_forward_log(
  7052. const struct ggml_compute_params * params,
  7053. struct ggml_tensor * dst) {
  7054. const struct ggml_tensor * src0 = dst->src[0];
  7055. switch (src0->type) {
  7056. case GGML_TYPE_F32:
  7057. {
  7058. ggml_compute_forward_log_f32(params, dst);
  7059. } break;
  7060. default:
  7061. {
  7062. GGML_ASSERT(false);
  7063. } break;
  7064. }
  7065. }
  7066. // ggml_compute_forward_sum
  7067. static void ggml_compute_forward_sum_f32(
  7068. const struct ggml_compute_params * params,
  7069. struct ggml_tensor * dst) {
  7070. const struct ggml_tensor * src0 = dst->src[0];
  7071. assert(params->ith == 0);
  7072. assert(ggml_is_scalar(dst));
  7073. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7074. return;
  7075. }
  7076. assert(ggml_is_scalar(dst));
  7077. assert(src0->nb[0] == sizeof(float));
  7078. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7079. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7080. ggml_float sum = 0;
  7081. ggml_float row_sum = 0;
  7082. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7083. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7084. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7085. ggml_vec_sum_f32_ggf(ne00,
  7086. &row_sum,
  7087. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7088. sum += row_sum;
  7089. }
  7090. }
  7091. }
  7092. ((float *) dst->data)[0] = sum;
  7093. }
  7094. static void ggml_compute_forward_sum_f16(
  7095. const struct ggml_compute_params * params,
  7096. struct ggml_tensor * dst) {
  7097. const struct ggml_tensor * src0 = dst->src[0];
  7098. assert(params->ith == 0);
  7099. assert(ggml_is_scalar(dst));
  7100. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7101. return;
  7102. }
  7103. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7104. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7105. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7106. float sum = 0;
  7107. float row_sum = 0;
  7108. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7109. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7110. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7111. ggml_vec_sum_f16_ggf(ne00,
  7112. &row_sum,
  7113. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7114. sum += row_sum;
  7115. }
  7116. }
  7117. }
  7118. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7119. }
  7120. static void ggml_compute_forward_sum(
  7121. const struct ggml_compute_params * params,
  7122. struct ggml_tensor * dst) {
  7123. const struct ggml_tensor * src0 = dst->src[0];
  7124. switch (src0->type) {
  7125. case GGML_TYPE_F32:
  7126. {
  7127. ggml_compute_forward_sum_f32(params, dst);
  7128. } break;
  7129. case GGML_TYPE_F16:
  7130. {
  7131. ggml_compute_forward_sum_f16(params, dst);
  7132. } break;
  7133. default:
  7134. {
  7135. GGML_ASSERT(false);
  7136. } break;
  7137. }
  7138. }
  7139. // ggml_compute_forward_sum_rows
  7140. static void ggml_compute_forward_sum_rows_f32(
  7141. const struct ggml_compute_params * params,
  7142. struct ggml_tensor * dst) {
  7143. const struct ggml_tensor * src0 = dst->src[0];
  7144. GGML_ASSERT(params->ith == 0);
  7145. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7146. return;
  7147. }
  7148. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7149. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7150. GGML_TENSOR_UNARY_OP_LOCALS
  7151. GGML_ASSERT(ne0 == 1);
  7152. GGML_ASSERT(ne1 == ne01);
  7153. GGML_ASSERT(ne2 == ne02);
  7154. GGML_ASSERT(ne3 == ne03);
  7155. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7156. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7157. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7158. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7159. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7160. float row_sum = 0;
  7161. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7162. dst_row[0] = row_sum;
  7163. }
  7164. }
  7165. }
  7166. }
  7167. static void ggml_compute_forward_sum_rows(
  7168. const struct ggml_compute_params * params,
  7169. struct ggml_tensor * dst) {
  7170. const struct ggml_tensor * src0 = dst->src[0];
  7171. switch (src0->type) {
  7172. case GGML_TYPE_F32:
  7173. {
  7174. ggml_compute_forward_sum_rows_f32(params, dst);
  7175. } break;
  7176. default:
  7177. {
  7178. GGML_ASSERT(false);
  7179. } break;
  7180. }
  7181. }
  7182. // ggml_compute_forward_mean
  7183. static void ggml_compute_forward_mean_f32(
  7184. const struct ggml_compute_params * params,
  7185. struct ggml_tensor * dst) {
  7186. const struct ggml_tensor * src0 = dst->src[0];
  7187. assert(params->ith == 0);
  7188. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7189. return;
  7190. }
  7191. assert(src0->nb[0] == sizeof(float));
  7192. GGML_TENSOR_UNARY_OP_LOCALS
  7193. assert(ne0 == 1);
  7194. assert(ne1 == ne01);
  7195. assert(ne2 == ne02);
  7196. assert(ne3 == ne03);
  7197. UNUSED(ne0);
  7198. UNUSED(ne1);
  7199. UNUSED(ne2);
  7200. UNUSED(ne3);
  7201. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7202. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7203. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7204. ggml_vec_sum_f32(ne00,
  7205. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7206. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7207. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7208. }
  7209. }
  7210. }
  7211. }
  7212. static void ggml_compute_forward_mean(
  7213. const struct ggml_compute_params * params,
  7214. struct ggml_tensor * dst) {
  7215. const struct ggml_tensor * src0 = dst->src[0];
  7216. switch (src0->type) {
  7217. case GGML_TYPE_F32:
  7218. {
  7219. ggml_compute_forward_mean_f32(params, dst);
  7220. } break;
  7221. default:
  7222. {
  7223. GGML_ASSERT(false);
  7224. } break;
  7225. }
  7226. }
  7227. // ggml_compute_forward_argmax
  7228. static void ggml_compute_forward_argmax_f32(
  7229. const struct ggml_compute_params * params,
  7230. struct ggml_tensor * dst) {
  7231. const struct ggml_tensor * src0 = dst->src[0];
  7232. assert(params->ith == 0);
  7233. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7234. return;
  7235. }
  7236. assert(src0->nb[0] == sizeof(float));
  7237. assert(dst->nb[0] == sizeof(float));
  7238. const int64_t ne00 = src0->ne[0];
  7239. const int64_t ne01 = src0->ne[1];
  7240. const size_t nb01 = src0->nb[1];
  7241. const size_t nb0 = dst->nb[0];
  7242. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7243. float * src = (float *) ((char *) src0->data + i1*nb01);
  7244. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7245. int v = 0;
  7246. ggml_vec_argmax_f32(ne00, &v, src);
  7247. dst_[0] = v;
  7248. }
  7249. }
  7250. static void ggml_compute_forward_argmax(
  7251. const struct ggml_compute_params * params,
  7252. struct ggml_tensor * dst) {
  7253. const struct ggml_tensor * src0 = dst->src[0];
  7254. switch (src0->type) {
  7255. case GGML_TYPE_F32:
  7256. {
  7257. ggml_compute_forward_argmax_f32(params, dst);
  7258. } break;
  7259. default:
  7260. {
  7261. GGML_ASSERT(false);
  7262. } break;
  7263. }
  7264. }
  7265. // ggml_compute_forward_repeat
  7266. static void ggml_compute_forward_repeat_f32(
  7267. const struct ggml_compute_params * params,
  7268. struct ggml_tensor * dst) {
  7269. const struct ggml_tensor * src0 = dst->src[0];
  7270. GGML_ASSERT(params->ith == 0);
  7271. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7272. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7273. return;
  7274. }
  7275. GGML_TENSOR_UNARY_OP_LOCALS
  7276. // guaranteed to be an integer due to the check in ggml_can_repeat
  7277. const int nr0 = (int)(ne0/ne00);
  7278. const int nr1 = (int)(ne1/ne01);
  7279. const int nr2 = (int)(ne2/ne02);
  7280. const int nr3 = (int)(ne3/ne03);
  7281. // TODO: support for transposed / permuted tensors
  7282. GGML_ASSERT(nb0 == sizeof(float));
  7283. GGML_ASSERT(nb00 == sizeof(float));
  7284. // TODO: maybe this is not optimal?
  7285. for (int i3 = 0; i3 < nr3; i3++) {
  7286. for (int k3 = 0; k3 < ne03; k3++) {
  7287. for (int i2 = 0; i2 < nr2; i2++) {
  7288. for (int k2 = 0; k2 < ne02; k2++) {
  7289. for (int i1 = 0; i1 < nr1; i1++) {
  7290. for (int k1 = 0; k1 < ne01; k1++) {
  7291. for (int i0 = 0; i0 < nr0; i0++) {
  7292. ggml_vec_cpy_f32(ne00,
  7293. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7294. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7295. }
  7296. }
  7297. }
  7298. }
  7299. }
  7300. }
  7301. }
  7302. }
  7303. static void ggml_compute_forward_repeat_f16(
  7304. const struct ggml_compute_params * params,
  7305. struct ggml_tensor * dst) {
  7306. const struct ggml_tensor * src0 = dst->src[0];
  7307. GGML_ASSERT(params->ith == 0);
  7308. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7309. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7310. return;
  7311. }
  7312. GGML_TENSOR_UNARY_OP_LOCALS
  7313. // guaranteed to be an integer due to the check in ggml_can_repeat
  7314. const int nr0 = (int)(ne0/ne00);
  7315. const int nr1 = (int)(ne1/ne01);
  7316. const int nr2 = (int)(ne2/ne02);
  7317. const int nr3 = (int)(ne3/ne03);
  7318. // TODO: support for transposed / permuted tensors
  7319. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7320. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7321. // TODO: maybe this is not optimal?
  7322. for (int i3 = 0; i3 < nr3; i3++) {
  7323. for (int k3 = 0; k3 < ne03; k3++) {
  7324. for (int i2 = 0; i2 < nr2; i2++) {
  7325. for (int k2 = 0; k2 < ne02; k2++) {
  7326. for (int i1 = 0; i1 < nr1; i1++) {
  7327. for (int k1 = 0; k1 < ne01; k1++) {
  7328. for (int i0 = 0; i0 < nr0; i0++) {
  7329. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7330. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7331. // ggml_vec_cpy_f16(ne00, y, x)
  7332. for (int i = 0; i < ne00; ++i) {
  7333. y[i] = x[i];
  7334. }
  7335. }
  7336. }
  7337. }
  7338. }
  7339. }
  7340. }
  7341. }
  7342. }
  7343. static void ggml_compute_forward_repeat(
  7344. const struct ggml_compute_params * params,
  7345. struct ggml_tensor * dst) {
  7346. const struct ggml_tensor * src0 = dst->src[0];
  7347. switch (src0->type) {
  7348. case GGML_TYPE_F16:
  7349. case GGML_TYPE_I16:
  7350. {
  7351. ggml_compute_forward_repeat_f16(params, dst);
  7352. } break;
  7353. case GGML_TYPE_F32:
  7354. case GGML_TYPE_I32:
  7355. {
  7356. ggml_compute_forward_repeat_f32(params, dst);
  7357. } break;
  7358. default:
  7359. {
  7360. GGML_ASSERT(false);
  7361. } break;
  7362. }
  7363. }
  7364. // ggml_compute_forward_repeat_back
  7365. static void ggml_compute_forward_repeat_back_f32(
  7366. const struct ggml_compute_params * params,
  7367. struct ggml_tensor * dst) {
  7368. const struct ggml_tensor * src0 = dst->src[0];
  7369. GGML_ASSERT(params->ith == 0);
  7370. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7371. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7372. return;
  7373. }
  7374. GGML_TENSOR_UNARY_OP_LOCALS
  7375. // guaranteed to be an integer due to the check in ggml_can_repeat
  7376. const int nr0 = (int)(ne00/ne0);
  7377. const int nr1 = (int)(ne01/ne1);
  7378. const int nr2 = (int)(ne02/ne2);
  7379. const int nr3 = (int)(ne03/ne3);
  7380. // TODO: support for transposed / permuted tensors
  7381. GGML_ASSERT(nb0 == sizeof(float));
  7382. GGML_ASSERT(nb00 == sizeof(float));
  7383. if (ggml_is_contiguous(dst)) {
  7384. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7385. } else {
  7386. for (int k3 = 0; k3 < ne3; k3++) {
  7387. for (int k2 = 0; k2 < ne2; k2++) {
  7388. for (int k1 = 0; k1 < ne1; k1++) {
  7389. ggml_vec_set_f32(ne0,
  7390. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7391. 0);
  7392. }
  7393. }
  7394. }
  7395. }
  7396. // TODO: maybe this is not optimal?
  7397. for (int i3 = 0; i3 < nr3; i3++) {
  7398. for (int k3 = 0; k3 < ne3; k3++) {
  7399. for (int i2 = 0; i2 < nr2; i2++) {
  7400. for (int k2 = 0; k2 < ne2; k2++) {
  7401. for (int i1 = 0; i1 < nr1; i1++) {
  7402. for (int k1 = 0; k1 < ne1; k1++) {
  7403. for (int i0 = 0; i0 < nr0; i0++) {
  7404. ggml_vec_acc_f32(ne0,
  7405. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7406. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7407. }
  7408. }
  7409. }
  7410. }
  7411. }
  7412. }
  7413. }
  7414. }
  7415. static void ggml_compute_forward_repeat_back(
  7416. const struct ggml_compute_params * params,
  7417. struct ggml_tensor * dst) {
  7418. const struct ggml_tensor * src0 = dst->src[0];
  7419. switch (src0->type) {
  7420. case GGML_TYPE_F32:
  7421. {
  7422. ggml_compute_forward_repeat_back_f32(params, dst);
  7423. } break;
  7424. default:
  7425. {
  7426. GGML_ASSERT(false);
  7427. } break;
  7428. }
  7429. }
  7430. // ggml_compute_forward_concat
  7431. static void ggml_compute_forward_concat_f32(
  7432. const struct ggml_compute_params * params,
  7433. struct ggml_tensor * dst) {
  7434. const struct ggml_tensor * src0 = dst->src[0];
  7435. const struct ggml_tensor * src1 = dst->src[1];
  7436. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7437. return;
  7438. }
  7439. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7440. const int ith = params->ith;
  7441. const int nth = params->nth;
  7442. GGML_TENSOR_BINARY_OP_LOCALS
  7443. // TODO: support for transposed / permuted tensors
  7444. GGML_ASSERT(nb0 == sizeof(float));
  7445. GGML_ASSERT(nb00 == sizeof(float));
  7446. GGML_ASSERT(nb10 == sizeof(float));
  7447. for (int i3 = 0; i3 < ne3; i3++) {
  7448. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7449. if (i2 < ne02) { // src0
  7450. for (int i1 = 0; i1 < ne1; i1++) {
  7451. for (int i0 = 0; i0 < ne0; i0++) {
  7452. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7453. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7454. *y = *x;
  7455. }
  7456. }
  7457. } // src1
  7458. else {
  7459. for (int i1 = 0; i1 < ne1; i1++) {
  7460. for (int i0 = 0; i0 < ne0; i0++) {
  7461. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7462. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7463. *y = *x;
  7464. }
  7465. }
  7466. }
  7467. }
  7468. }
  7469. }
  7470. static void ggml_compute_forward_concat(
  7471. const struct ggml_compute_params* params,
  7472. struct ggml_tensor* dst) {
  7473. const struct ggml_tensor * src0 = dst->src[0];
  7474. switch (src0->type) {
  7475. case GGML_TYPE_F32:
  7476. case GGML_TYPE_I32:
  7477. {
  7478. ggml_compute_forward_concat_f32(params, dst);
  7479. } break;
  7480. default:
  7481. {
  7482. GGML_ASSERT(false);
  7483. } break;
  7484. }
  7485. }
  7486. // ggml_compute_forward_abs
  7487. static void ggml_compute_forward_abs_f32(
  7488. const struct ggml_compute_params * params,
  7489. struct ggml_tensor * dst) {
  7490. const struct ggml_tensor * src0 = dst->src[0];
  7491. assert(params->ith == 0);
  7492. assert(ggml_are_same_shape(src0, dst));
  7493. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7494. return;
  7495. }
  7496. const int n = ggml_nrows(src0);
  7497. const int nc = src0->ne[0];
  7498. assert(dst->nb[0] == sizeof(float));
  7499. assert(src0->nb[0] == sizeof(float));
  7500. for (int i = 0; i < n; i++) {
  7501. ggml_vec_abs_f32(nc,
  7502. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7503. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7504. }
  7505. }
  7506. static void ggml_compute_forward_abs(
  7507. const struct ggml_compute_params * params,
  7508. struct ggml_tensor * dst) {
  7509. const struct ggml_tensor * src0 = dst->src[0];
  7510. switch (src0->type) {
  7511. case GGML_TYPE_F32:
  7512. {
  7513. ggml_compute_forward_abs_f32(params, dst);
  7514. } break;
  7515. default:
  7516. {
  7517. GGML_ASSERT(false);
  7518. } break;
  7519. }
  7520. }
  7521. // ggml_compute_forward_sgn
  7522. static void ggml_compute_forward_sgn_f32(
  7523. const struct ggml_compute_params * params,
  7524. struct ggml_tensor * dst) {
  7525. const struct ggml_tensor * src0 = dst->src[0];
  7526. assert(params->ith == 0);
  7527. assert(ggml_are_same_shape(src0, dst));
  7528. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7529. return;
  7530. }
  7531. const int n = ggml_nrows(src0);
  7532. const int nc = src0->ne[0];
  7533. assert(dst->nb[0] == sizeof(float));
  7534. assert(src0->nb[0] == sizeof(float));
  7535. for (int i = 0; i < n; i++) {
  7536. ggml_vec_sgn_f32(nc,
  7537. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7538. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7539. }
  7540. }
  7541. static void ggml_compute_forward_sgn(
  7542. const struct ggml_compute_params * params,
  7543. struct ggml_tensor * dst) {
  7544. const struct ggml_tensor * src0 = dst->src[0];
  7545. switch (src0->type) {
  7546. case GGML_TYPE_F32:
  7547. {
  7548. ggml_compute_forward_sgn_f32(params, dst);
  7549. } break;
  7550. default:
  7551. {
  7552. GGML_ASSERT(false);
  7553. } break;
  7554. }
  7555. }
  7556. // ggml_compute_forward_neg
  7557. static void ggml_compute_forward_neg_f32(
  7558. const struct ggml_compute_params * params,
  7559. struct ggml_tensor * dst) {
  7560. const struct ggml_tensor * src0 = dst->src[0];
  7561. assert(params->ith == 0);
  7562. assert(ggml_are_same_shape(src0, dst));
  7563. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7564. return;
  7565. }
  7566. const int n = ggml_nrows(src0);
  7567. const int nc = src0->ne[0];
  7568. assert(dst->nb[0] == sizeof(float));
  7569. assert(src0->nb[0] == sizeof(float));
  7570. for (int i = 0; i < n; i++) {
  7571. ggml_vec_neg_f32(nc,
  7572. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7573. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7574. }
  7575. }
  7576. static void ggml_compute_forward_neg(
  7577. const struct ggml_compute_params * params,
  7578. struct ggml_tensor * dst) {
  7579. const struct ggml_tensor * src0 = dst->src[0];
  7580. switch (src0->type) {
  7581. case GGML_TYPE_F32:
  7582. {
  7583. ggml_compute_forward_neg_f32(params, dst);
  7584. } break;
  7585. default:
  7586. {
  7587. GGML_ASSERT(false);
  7588. } break;
  7589. }
  7590. }
  7591. // ggml_compute_forward_step
  7592. static void ggml_compute_forward_step_f32(
  7593. const struct ggml_compute_params * params,
  7594. struct ggml_tensor * dst) {
  7595. const struct ggml_tensor * src0 = dst->src[0];
  7596. assert(params->ith == 0);
  7597. assert(ggml_are_same_shape(src0, dst));
  7598. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7599. return;
  7600. }
  7601. const int n = ggml_nrows(src0);
  7602. const int nc = src0->ne[0];
  7603. assert(dst->nb[0] == sizeof(float));
  7604. assert(src0->nb[0] == sizeof(float));
  7605. for (int i = 0; i < n; i++) {
  7606. ggml_vec_step_f32(nc,
  7607. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7608. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7609. }
  7610. }
  7611. static void ggml_compute_forward_step(
  7612. const struct ggml_compute_params * params,
  7613. struct ggml_tensor * dst) {
  7614. const struct ggml_tensor * src0 = dst->src[0];
  7615. switch (src0->type) {
  7616. case GGML_TYPE_F32:
  7617. {
  7618. ggml_compute_forward_step_f32(params, dst);
  7619. } break;
  7620. default:
  7621. {
  7622. GGML_ASSERT(false);
  7623. } break;
  7624. }
  7625. }
  7626. // ggml_compute_forward_tanh
  7627. static void ggml_compute_forward_tanh_f32(
  7628. const struct ggml_compute_params * params,
  7629. struct ggml_tensor * dst) {
  7630. const struct ggml_tensor * src0 = dst->src[0];
  7631. assert(params->ith == 0);
  7632. assert(ggml_are_same_shape(src0, dst));
  7633. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7634. return;
  7635. }
  7636. const int n = ggml_nrows(src0);
  7637. const int nc = src0->ne[0];
  7638. assert(dst->nb[0] == sizeof(float));
  7639. assert(src0->nb[0] == sizeof(float));
  7640. for (int i = 0; i < n; i++) {
  7641. ggml_vec_tanh_f32(nc,
  7642. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7643. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7644. }
  7645. }
  7646. static void ggml_compute_forward_tanh(
  7647. const struct ggml_compute_params * params,
  7648. struct ggml_tensor * dst) {
  7649. const struct ggml_tensor * src0 = dst->src[0];
  7650. switch (src0->type) {
  7651. case GGML_TYPE_F32:
  7652. {
  7653. ggml_compute_forward_tanh_f32(params, dst);
  7654. } break;
  7655. default:
  7656. {
  7657. GGML_ASSERT(false);
  7658. } break;
  7659. }
  7660. }
  7661. // ggml_compute_forward_elu
  7662. static void ggml_compute_forward_elu_f32(
  7663. const struct ggml_compute_params * params,
  7664. struct ggml_tensor * dst) {
  7665. const struct ggml_tensor * src0 = dst->src[0];
  7666. assert(params->ith == 0);
  7667. assert(ggml_are_same_shape(src0, dst));
  7668. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7669. return;
  7670. }
  7671. const int n = ggml_nrows(src0);
  7672. const int nc = src0->ne[0];
  7673. assert(dst->nb[0] == sizeof(float));
  7674. assert(src0->nb[0] == sizeof(float));
  7675. for (int i = 0; i < n; i++) {
  7676. ggml_vec_elu_f32(nc,
  7677. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7678. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7679. }
  7680. }
  7681. static void ggml_compute_forward_elu(
  7682. const struct ggml_compute_params * params,
  7683. struct ggml_tensor * dst) {
  7684. const struct ggml_tensor * src0 = dst->src[0];
  7685. switch (src0->type) {
  7686. case GGML_TYPE_F32:
  7687. {
  7688. ggml_compute_forward_elu_f32(params, dst);
  7689. } break;
  7690. default:
  7691. {
  7692. GGML_ASSERT(false);
  7693. } break;
  7694. }
  7695. }
  7696. // ggml_compute_forward_relu
  7697. static void ggml_compute_forward_relu_f32(
  7698. const struct ggml_compute_params * params,
  7699. struct ggml_tensor * dst) {
  7700. const struct ggml_tensor * src0 = dst->src[0];
  7701. assert(params->ith == 0);
  7702. assert(ggml_are_same_shape(src0, dst));
  7703. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7704. return;
  7705. }
  7706. const int n = ggml_nrows(src0);
  7707. const int nc = src0->ne[0];
  7708. assert(dst->nb[0] == sizeof(float));
  7709. assert(src0->nb[0] == sizeof(float));
  7710. for (int i = 0; i < n; i++) {
  7711. ggml_vec_relu_f32(nc,
  7712. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7713. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7714. }
  7715. }
  7716. static void ggml_compute_forward_relu(
  7717. const struct ggml_compute_params * params,
  7718. struct ggml_tensor * dst) {
  7719. const struct ggml_tensor * src0 = dst->src[0];
  7720. switch (src0->type) {
  7721. case GGML_TYPE_F32:
  7722. {
  7723. ggml_compute_forward_relu_f32(params, dst);
  7724. } break;
  7725. default:
  7726. {
  7727. GGML_ASSERT(false);
  7728. } break;
  7729. }
  7730. }
  7731. // ggml_compute_forward_gelu
  7732. static void ggml_compute_forward_gelu_f32(
  7733. const struct ggml_compute_params * params,
  7734. struct ggml_tensor * dst) {
  7735. const struct ggml_tensor * src0 = dst->src[0];
  7736. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7737. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7738. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7739. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7740. return;
  7741. }
  7742. const int ith = params->ith;
  7743. const int nth = params->nth;
  7744. const int nc = src0->ne[0];
  7745. const int nr = ggml_nrows(src0);
  7746. // rows per thread
  7747. const int dr = (nr + nth - 1)/nth;
  7748. // row range for this thread
  7749. const int ir0 = dr*ith;
  7750. const int ir1 = MIN(ir0 + dr, nr);
  7751. for (int i1 = ir0; i1 < ir1; i1++) {
  7752. ggml_vec_gelu_f32(nc,
  7753. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7754. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7755. #ifndef NDEBUG
  7756. for (int k = 0; k < nc; k++) {
  7757. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7758. UNUSED(x);
  7759. assert(!isnan(x));
  7760. assert(!isinf(x));
  7761. }
  7762. #endif
  7763. }
  7764. }
  7765. static void ggml_compute_forward_gelu(
  7766. const struct ggml_compute_params * params,
  7767. struct ggml_tensor * dst) {
  7768. const struct ggml_tensor * src0 = dst->src[0];
  7769. switch (src0->type) {
  7770. case GGML_TYPE_F32:
  7771. {
  7772. ggml_compute_forward_gelu_f32(params, dst);
  7773. } break;
  7774. default:
  7775. {
  7776. GGML_ASSERT(false);
  7777. } break;
  7778. }
  7779. }
  7780. // ggml_compute_forward_gelu_quick
  7781. static void ggml_compute_forward_gelu_quick_f32(
  7782. const struct ggml_compute_params * params,
  7783. struct ggml_tensor * dst) {
  7784. const struct ggml_tensor * src0 = dst->src[0];
  7785. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7786. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7787. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7788. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7789. return;
  7790. }
  7791. const int ith = params->ith;
  7792. const int nth = params->nth;
  7793. const int nc = src0->ne[0];
  7794. const int nr = ggml_nrows(src0);
  7795. // rows per thread
  7796. const int dr = (nr + nth - 1)/nth;
  7797. // row range for this thread
  7798. const int ir0 = dr*ith;
  7799. const int ir1 = MIN(ir0 + dr, nr);
  7800. for (int i1 = ir0; i1 < ir1; i1++) {
  7801. ggml_vec_gelu_quick_f32(nc,
  7802. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7803. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7804. #ifndef NDEBUG
  7805. for (int k = 0; k < nc; k++) {
  7806. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7807. UNUSED(x);
  7808. assert(!isnan(x));
  7809. assert(!isinf(x));
  7810. }
  7811. #endif
  7812. }
  7813. }
  7814. static void ggml_compute_forward_gelu_quick(
  7815. const struct ggml_compute_params * params,
  7816. struct ggml_tensor * dst) {
  7817. const struct ggml_tensor * src0 = dst->src[0];
  7818. switch (src0->type) {
  7819. case GGML_TYPE_F32:
  7820. {
  7821. ggml_compute_forward_gelu_quick_f32(params, dst);
  7822. } break;
  7823. default:
  7824. {
  7825. GGML_ASSERT(false);
  7826. } break;
  7827. }
  7828. }
  7829. // ggml_compute_forward_silu
  7830. static void ggml_compute_forward_silu_f32(
  7831. const struct ggml_compute_params * params,
  7832. struct ggml_tensor * dst) {
  7833. const struct ggml_tensor * src0 = dst->src[0];
  7834. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7835. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7836. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7837. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7838. return;
  7839. }
  7840. const int ith = params->ith;
  7841. const int nth = params->nth;
  7842. const int nc = src0->ne[0];
  7843. const int nr = ggml_nrows(src0);
  7844. // rows per thread
  7845. const int dr = (nr + nth - 1)/nth;
  7846. // row range for this thread
  7847. const int ir0 = dr*ith;
  7848. const int ir1 = MIN(ir0 + dr, nr);
  7849. for (int i1 = ir0; i1 < ir1; i1++) {
  7850. ggml_vec_silu_f32(nc,
  7851. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7852. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7853. #ifndef NDEBUG
  7854. for (int k = 0; k < nc; k++) {
  7855. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7856. UNUSED(x);
  7857. assert(!isnan(x));
  7858. assert(!isinf(x));
  7859. }
  7860. #endif
  7861. }
  7862. }
  7863. static void ggml_compute_forward_silu(
  7864. const struct ggml_compute_params * params,
  7865. struct ggml_tensor * dst) {
  7866. const struct ggml_tensor * src0 = dst->src[0];
  7867. switch (src0->type) {
  7868. case GGML_TYPE_F32:
  7869. {
  7870. ggml_compute_forward_silu_f32(params, dst);
  7871. } break;
  7872. default:
  7873. {
  7874. GGML_ASSERT(false);
  7875. } break;
  7876. }
  7877. }
  7878. // ggml_compute_forward_leaky_relu
  7879. static void ggml_compute_forward_leaky_relu_f32(
  7880. const struct ggml_compute_params * params,
  7881. struct ggml_tensor * dst) {
  7882. const struct ggml_tensor * src0 = dst->src[0];
  7883. assert(params->ith == 0);
  7884. assert(ggml_are_same_shape(src0, dst));
  7885. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7886. return;
  7887. }
  7888. const int n = ggml_nrows(src0);
  7889. const int nc = src0->ne[0];
  7890. float negative_slope;
  7891. memcpy(&negative_slope, dst->op_params, sizeof(float));
  7892. assert(dst->nb[0] == sizeof(float));
  7893. assert(src0->nb[0] == sizeof(float));
  7894. for (int i = 0; i < n; i++) {
  7895. ggml_vec_leaky_relu_f32(nc,
  7896. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7897. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  7898. }
  7899. }
  7900. static void ggml_compute_forward_leaky_relu(
  7901. const struct ggml_compute_params * params,
  7902. struct ggml_tensor * dst) {
  7903. const struct ggml_tensor * src0 = dst->src[0];
  7904. switch (src0->type) {
  7905. case GGML_TYPE_F32:
  7906. {
  7907. ggml_compute_forward_leaky_relu_f32(params, dst);
  7908. } break;
  7909. default:
  7910. {
  7911. GGML_ASSERT(false);
  7912. } break;
  7913. }
  7914. }
  7915. // ggml_compute_forward_silu_back
  7916. static void ggml_compute_forward_silu_back_f32(
  7917. const struct ggml_compute_params * params,
  7918. struct ggml_tensor * dst) {
  7919. const struct ggml_tensor * src0 = dst->src[0];
  7920. const struct ggml_tensor * grad = dst->src[1];
  7921. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7922. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7923. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7924. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7925. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7926. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7927. return;
  7928. }
  7929. const int ith = params->ith;
  7930. const int nth = params->nth;
  7931. const int nc = src0->ne[0];
  7932. const int nr = ggml_nrows(src0);
  7933. // rows per thread
  7934. const int dr = (nr + nth - 1)/nth;
  7935. // row range for this thread
  7936. const int ir0 = dr*ith;
  7937. const int ir1 = MIN(ir0 + dr, nr);
  7938. for (int i1 = ir0; i1 < ir1; i1++) {
  7939. ggml_vec_silu_backward_f32(nc,
  7940. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7941. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7942. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7943. #ifndef NDEBUG
  7944. for (int k = 0; k < nc; k++) {
  7945. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7946. UNUSED(x);
  7947. assert(!isnan(x));
  7948. assert(!isinf(x));
  7949. }
  7950. #endif
  7951. }
  7952. }
  7953. static void ggml_compute_forward_silu_back(
  7954. const struct ggml_compute_params * params,
  7955. struct ggml_tensor * dst) {
  7956. const struct ggml_tensor * src0 = dst->src[0];
  7957. switch (src0->type) {
  7958. case GGML_TYPE_F32:
  7959. {
  7960. ggml_compute_forward_silu_back_f32(params, dst);
  7961. } break;
  7962. default:
  7963. {
  7964. GGML_ASSERT(false);
  7965. } break;
  7966. }
  7967. }
  7968. static void ggml_compute_forward_hardswish_f32(
  7969. const struct ggml_compute_params * params,
  7970. struct ggml_tensor * dst) {
  7971. const struct ggml_tensor * src0 = dst->src[0];
  7972. assert(params->ith == 0);
  7973. assert(ggml_are_same_shape(src0, dst));
  7974. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7975. return;
  7976. }
  7977. const int n = ggml_nrows(src0);
  7978. const int nc = src0->ne[0];
  7979. assert(dst->nb[0] == sizeof(float));
  7980. assert(src0->nb[0] == sizeof(float));
  7981. for (int i = 0; i < n; i++) {
  7982. ggml_vec_hardswish_f32(nc,
  7983. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7984. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7985. }
  7986. }
  7987. static void ggml_compute_forward_hardswish(
  7988. const struct ggml_compute_params * params,
  7989. struct ggml_tensor * dst) {
  7990. const struct ggml_tensor * src0 = dst->src[0];
  7991. switch (src0->type) {
  7992. case GGML_TYPE_F32:
  7993. {
  7994. ggml_compute_forward_hardswish_f32(params, dst);
  7995. } break;
  7996. default:
  7997. {
  7998. GGML_ASSERT(false);
  7999. } break;
  8000. }
  8001. }
  8002. static void ggml_compute_forward_hardsigmoid_f32(
  8003. const struct ggml_compute_params * params,
  8004. struct ggml_tensor * dst) {
  8005. const struct ggml_tensor * src0 = dst->src[0];
  8006. assert(params->ith == 0);
  8007. assert(ggml_are_same_shape(src0, dst));
  8008. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8009. return;
  8010. }
  8011. const int n = ggml_nrows(src0);
  8012. const int nc = src0->ne[0];
  8013. assert(dst->nb[0] == sizeof(float));
  8014. assert(src0->nb[0] == sizeof(float));
  8015. for (int i = 0; i < n; i++) {
  8016. ggml_vec_hardsigmoid_f32(nc,
  8017. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8018. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8019. }
  8020. }
  8021. static void ggml_compute_forward_hardsigmoid(
  8022. const struct ggml_compute_params * params,
  8023. struct ggml_tensor * dst) {
  8024. const struct ggml_tensor * src0 = dst->src[0];
  8025. switch (src0->type) {
  8026. case GGML_TYPE_F32:
  8027. {
  8028. ggml_compute_forward_hardsigmoid_f32(params, dst);
  8029. } break;
  8030. default:
  8031. {
  8032. GGML_ASSERT(false);
  8033. } break;
  8034. }
  8035. }
  8036. // ggml_compute_forward_norm
  8037. static void ggml_compute_forward_norm_f32(
  8038. const struct ggml_compute_params * params,
  8039. struct ggml_tensor * dst) {
  8040. const struct ggml_tensor * src0 = dst->src[0];
  8041. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8042. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8043. return;
  8044. }
  8045. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8046. const int ith = params->ith;
  8047. const int nth = params->nth;
  8048. GGML_TENSOR_UNARY_OP_LOCALS
  8049. float eps;
  8050. memcpy(&eps, dst->op_params, sizeof(float));
  8051. GGML_ASSERT(eps > 0.0f);
  8052. // TODO: optimize
  8053. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8054. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8055. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8056. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8057. ggml_float sum = 0.0;
  8058. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8059. sum += (ggml_float)x[i00];
  8060. }
  8061. float mean = sum/ne00;
  8062. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8063. ggml_float sum2 = 0.0;
  8064. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8065. float v = x[i00] - mean;
  8066. y[i00] = v;
  8067. sum2 += (ggml_float)(v*v);
  8068. }
  8069. float variance = sum2/ne00;
  8070. const float scale = 1.0f/sqrtf(variance + eps);
  8071. ggml_vec_scale_f32(ne00, y, scale);
  8072. }
  8073. }
  8074. }
  8075. }
  8076. static void ggml_compute_forward_norm(
  8077. const struct ggml_compute_params * params,
  8078. struct ggml_tensor * dst) {
  8079. const struct ggml_tensor * src0 = dst->src[0];
  8080. switch (src0->type) {
  8081. case GGML_TYPE_F32:
  8082. {
  8083. ggml_compute_forward_norm_f32(params, dst);
  8084. } break;
  8085. default:
  8086. {
  8087. GGML_ASSERT(false);
  8088. } break;
  8089. }
  8090. }
  8091. // ggml_compute_forward_group_rms_norm
  8092. static void ggml_compute_forward_rms_norm_f32(
  8093. const struct ggml_compute_params * params,
  8094. struct ggml_tensor * dst) {
  8095. const struct ggml_tensor * src0 = dst->src[0];
  8096. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8097. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8098. return;
  8099. }
  8100. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8101. const int ith = params->ith;
  8102. const int nth = params->nth;
  8103. GGML_TENSOR_UNARY_OP_LOCALS
  8104. float eps;
  8105. memcpy(&eps, dst->op_params, sizeof(float));
  8106. GGML_ASSERT(eps > 0.0f);
  8107. // TODO: optimize
  8108. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8109. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8110. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8111. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8112. ggml_float sum = 0.0;
  8113. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8114. sum += (ggml_float)(x[i00] * x[i00]);
  8115. }
  8116. const float mean = sum/ne00;
  8117. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8118. memcpy(y, x, ne00 * sizeof(float));
  8119. // for (int i00 = 0; i00 < ne00; i00++) {
  8120. // y[i00] = x[i00];
  8121. // }
  8122. const float scale = 1.0f/sqrtf(mean + eps);
  8123. ggml_vec_scale_f32(ne00, y, scale);
  8124. }
  8125. }
  8126. }
  8127. }
  8128. static void ggml_compute_forward_rms_norm(
  8129. const struct ggml_compute_params * params,
  8130. struct ggml_tensor * dst) {
  8131. const struct ggml_tensor * src0 = dst->src[0];
  8132. switch (src0->type) {
  8133. case GGML_TYPE_F32:
  8134. {
  8135. ggml_compute_forward_rms_norm_f32(params, dst);
  8136. } break;
  8137. default:
  8138. {
  8139. GGML_ASSERT(false);
  8140. } break;
  8141. }
  8142. }
  8143. static void ggml_compute_forward_rms_norm_back_f32(
  8144. const struct ggml_compute_params * params,
  8145. struct ggml_tensor * dst) {
  8146. const struct ggml_tensor * src0 = dst->src[0];
  8147. const struct ggml_tensor * src1 = dst->src[1];
  8148. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8149. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8150. return;
  8151. }
  8152. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8153. const int ith = params->ith;
  8154. const int nth = params->nth;
  8155. GGML_TENSOR_BINARY_OP_LOCALS
  8156. float eps;
  8157. memcpy(&eps, dst->op_params, sizeof(float));
  8158. // TODO: optimize
  8159. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8160. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8161. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8162. // src1 is same shape as src0 => same indices
  8163. const int64_t i11 = i01;
  8164. const int64_t i12 = i02;
  8165. const int64_t i13 = i03;
  8166. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8167. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8168. ggml_float sum_xx = 0.0;
  8169. ggml_float sum_xdz = 0.0;
  8170. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8171. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8172. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8173. }
  8174. //const float mean = (float)(sum_xx)/ne00;
  8175. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8176. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8177. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8178. // we could cache rms from forward pass to improve performance.
  8179. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8180. //const float rms = sqrtf(mean_eps);
  8181. const float rrms = 1.0f / sqrtf(mean_eps);
  8182. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8183. {
  8184. // z = rms_norm(x)
  8185. //
  8186. // rms_norm(src0) =
  8187. // scale(
  8188. // src0,
  8189. // div(
  8190. // 1,
  8191. // sqrt(
  8192. // add(
  8193. // scale(
  8194. // sum(
  8195. // sqr(
  8196. // src0)),
  8197. // (1.0/N)),
  8198. // eps))));
  8199. // postorder:
  8200. // ## op args grad
  8201. // 00 param src0 grad[#00]
  8202. // 01 const 1
  8203. // 02 sqr (#00) grad[#02]
  8204. // 03 sum (#02) grad[#03]
  8205. // 04 const 1/N
  8206. // 05 scale (#03, #04) grad[#05]
  8207. // 06 const eps
  8208. // 07 add (#05, #06) grad[#07]
  8209. // 08 sqrt (#07) grad[#08]
  8210. // 09 div (#01,#08) grad[#09]
  8211. // 10 scale (#00,#09) grad[#10]
  8212. //
  8213. // backward pass, given grad[#10]
  8214. // #10: scale
  8215. // grad[#00] += scale(grad[#10],#09)
  8216. // grad[#09] += sum(mul(grad[#10],#00))
  8217. // #09: div
  8218. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8219. // #08: sqrt
  8220. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8221. // #07: add
  8222. // grad[#05] += grad[#07]
  8223. // #05: scale
  8224. // grad[#03] += scale(grad[#05],#04)
  8225. // #03: sum
  8226. // grad[#02] += repeat(grad[#03], #02)
  8227. // #02:
  8228. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8229. //
  8230. // substitute and simplify:
  8231. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8232. // grad[#02] = repeat(grad[#03], #02)
  8233. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8234. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8235. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8236. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8237. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8238. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8239. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8240. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8241. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8242. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8243. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8244. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8245. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8246. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8247. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8248. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8249. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8250. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8251. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8252. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8253. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8254. // a = b*c + d*e
  8255. // a = b*c*f/f + d*e*f/f
  8256. // a = (b*c*f + d*e*f)*(1/f)
  8257. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8258. // a = (b + d*e/c)*c
  8259. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8260. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8261. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8262. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8263. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8264. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8265. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8266. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8267. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8268. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8269. }
  8270. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8271. // post-order:
  8272. // dx := x
  8273. // dx := scale(dx,-mean_xdz/mean_eps)
  8274. // dx := add(dx, dz)
  8275. // dx := scale(dx, rrms)
  8276. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8277. ggml_vec_cpy_f32 (ne00, dx, x);
  8278. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8279. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8280. ggml_vec_acc_f32 (ne00, dx, dz);
  8281. ggml_vec_scale_f32(ne00, dx, rrms);
  8282. }
  8283. }
  8284. }
  8285. }
  8286. static void ggml_compute_forward_rms_norm_back(
  8287. const struct ggml_compute_params * params,
  8288. struct ggml_tensor * dst) {
  8289. const struct ggml_tensor * src0 = dst->src[0];
  8290. switch (src0->type) {
  8291. case GGML_TYPE_F32:
  8292. {
  8293. ggml_compute_forward_rms_norm_back_f32(params, dst);
  8294. } break;
  8295. default:
  8296. {
  8297. GGML_ASSERT(false);
  8298. } break;
  8299. }
  8300. }
  8301. // ggml_compute_forward_group_norm
  8302. static void ggml_compute_forward_group_norm_f32(
  8303. const struct ggml_compute_params * params,
  8304. struct ggml_tensor * dst) {
  8305. const struct ggml_tensor * src0 = dst->src[0];
  8306. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8307. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8308. return;
  8309. }
  8310. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8311. const int ith = params->ith;
  8312. const int nth = params->nth;
  8313. GGML_TENSOR_UNARY_OP_LOCALS
  8314. const float eps = 1e-6f; // TODO: make this a parameter
  8315. // TODO: optimize
  8316. int n_channels = src0->ne[2];
  8317. int n_groups = dst->op_params[0];
  8318. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8319. for (int i = ith; i < n_groups; i+=nth) {
  8320. int start = i * n_channels_per_group;
  8321. int end = start + n_channels_per_group;
  8322. if (end > n_channels) {
  8323. end = n_channels;
  8324. }
  8325. int step = end - start;
  8326. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8327. ggml_float sum = 0.0;
  8328. for (int64_t i02 = start; i02 < end; i02++) {
  8329. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8330. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8331. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8332. sum += (ggml_float)x[i00];
  8333. }
  8334. }
  8335. }
  8336. float mean = sum / (ne00 * ne01 * step);
  8337. ggml_float sum2 = 0.0;
  8338. for (int64_t i02 = start; i02 < end; i02++) {
  8339. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8340. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8341. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8342. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8343. float v = x[i00] - mean;
  8344. y[i00] = v;
  8345. sum2 += (ggml_float)(v * v);
  8346. }
  8347. }
  8348. }
  8349. float variance = sum2 / (ne00 * ne01 * step);
  8350. const float scale = 1.0f / sqrtf(variance + eps);
  8351. for (int64_t i02 = start; i02 < end; i02++) {
  8352. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8353. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8354. ggml_vec_scale_f32(ne00, y, scale);
  8355. }
  8356. }
  8357. }
  8358. }
  8359. }
  8360. static void ggml_compute_forward_group_norm(
  8361. const struct ggml_compute_params * params,
  8362. struct ggml_tensor * dst) {
  8363. const struct ggml_tensor * src0 = dst->src[0];
  8364. switch (src0->type) {
  8365. case GGML_TYPE_F32:
  8366. {
  8367. ggml_compute_forward_group_norm_f32(params, dst);
  8368. } break;
  8369. default:
  8370. {
  8371. GGML_ASSERT(false);
  8372. } break;
  8373. }
  8374. }
  8375. // ggml_compute_forward_mul_mat
  8376. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8377. // helper function to determine if it is better to use BLAS or not
  8378. // for large matrices, BLAS is faster
  8379. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8380. const struct ggml_tensor * src0 = dst->src[0];
  8381. const struct ggml_tensor * src1 = dst->src[1];
  8382. //const int64_t ne00 = src0->ne[0];
  8383. //const int64_t ne01 = src0->ne[1];
  8384. const int64_t ne10 = src1->ne[0];
  8385. const int64_t ne0 = dst->ne[0];
  8386. const int64_t ne1 = dst->ne[1];
  8387. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8388. // all the experts for each batch element and the processing would become incredibly slow
  8389. // TODO: find the optimal values for these
  8390. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8391. ggml_is_contiguous(src0) &&
  8392. ggml_is_contiguous(src1) &&
  8393. //src0->type == GGML_TYPE_F32 &&
  8394. src1->type == GGML_TYPE_F32 &&
  8395. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8396. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8397. return true;
  8398. }
  8399. return false;
  8400. }
  8401. #endif
  8402. static void ggml_compute_forward_mul_mat(
  8403. const struct ggml_compute_params * params,
  8404. struct ggml_tensor * dst) {
  8405. const struct ggml_tensor * src0 = dst->src[0];
  8406. const struct ggml_tensor * src1 = dst->src[1];
  8407. int64_t t0 = ggml_perf_time_us();
  8408. UNUSED(t0);
  8409. GGML_TENSOR_BINARY_OP_LOCALS
  8410. const int ith = params->ith;
  8411. const int nth = params->nth;
  8412. const enum ggml_type type = src0->type;
  8413. const bool src1_cont = ggml_is_contiguous(src1);
  8414. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8415. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8416. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8417. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  8418. GGML_ASSERT(ne0 == ne01);
  8419. GGML_ASSERT(ne1 == ne11);
  8420. GGML_ASSERT(ne2 == ne12);
  8421. GGML_ASSERT(ne3 == ne13);
  8422. // we don't support permuted src0 or src1
  8423. GGML_ASSERT(nb00 == ggml_type_size(type));
  8424. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8425. // dst cannot be transposed or permuted
  8426. GGML_ASSERT(nb0 == sizeof(float));
  8427. GGML_ASSERT(nb0 <= nb1);
  8428. GGML_ASSERT(nb1 <= nb2);
  8429. GGML_ASSERT(nb2 <= nb3);
  8430. // broadcast factors
  8431. const int64_t r2 = ne12/ne02;
  8432. const int64_t r3 = ne13/ne03;
  8433. // nb01 >= nb00 - src0 is not transposed
  8434. // compute by src0 rows
  8435. #if defined(GGML_USE_CLBLAST)
  8436. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8437. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  8438. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8439. }
  8440. return;
  8441. }
  8442. #endif
  8443. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8444. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8445. const int64_t ne_plane = ne01*ne00;
  8446. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  8447. UNUSED(desired_wsize);
  8448. if (params->type == GGML_TASK_TYPE_INIT) {
  8449. if (type != GGML_TYPE_F32) {
  8450. assert(params->wsize >= desired_wsize);
  8451. // parallelize by src0 rows
  8452. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8453. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8454. // broadcast src0 into src1 across 2nd,3rd dimension
  8455. const int64_t i03 = i13/r3;
  8456. const int64_t i02 = i12/r2;
  8457. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8458. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8459. ggml_to_float_t const to_float = type_traits[type].to_float;
  8460. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8461. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  8462. }
  8463. }
  8464. }
  8465. }
  8466. return;
  8467. }
  8468. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8469. return;
  8470. }
  8471. // perform sgemm, parallelization controlled by blas lib
  8472. if (ith != 0) {
  8473. return;
  8474. }
  8475. //const int64_t tgemm0 = ggml_perf_time_us();
  8476. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8477. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8478. const int64_t i03 = i13/r3;
  8479. const int64_t i02 = i12/r2;
  8480. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8481. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8482. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8483. if (type != GGML_TYPE_F32) {
  8484. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8485. }
  8486. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8487. ne1, ne01, ne10,
  8488. 1.0f, y, ne10,
  8489. x, ne00,
  8490. 0.0f, d, ne01);
  8491. }
  8492. }
  8493. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  8494. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8495. return;
  8496. }
  8497. #endif
  8498. if (params->type == GGML_TASK_TYPE_INIT) {
  8499. if (ith != 0) {
  8500. return;
  8501. }
  8502. if (src1->type != vec_dot_type) {
  8503. char * wdata = params->wdata;
  8504. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8505. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8506. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8507. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8508. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8509. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8510. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8511. wdata += row_size;
  8512. }
  8513. }
  8514. }
  8515. }
  8516. return;
  8517. }
  8518. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8519. return;
  8520. }
  8521. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8522. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8523. const int64_t nr0 = ne01; // src0 rows
  8524. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8525. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8526. // distribute the thread work across the inner or outer loop based on which one is larger
  8527. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8528. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8529. const int64_t ith0 = ith % nth0;
  8530. const int64_t ith1 = ith / nth0;
  8531. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8532. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8533. const int64_t ir010 = dr0*ith0;
  8534. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8535. const int64_t ir110 = dr1*ith1;
  8536. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8537. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8538. // threads with no work simply yield (not sure if it helps)
  8539. if (ir010 >= ir011 || ir110 >= ir111) {
  8540. sched_yield();
  8541. return;
  8542. }
  8543. assert(ne12 % ne02 == 0);
  8544. assert(ne13 % ne03 == 0);
  8545. // block-tiling attempt
  8546. const int64_t blck_0 = 16;
  8547. const int64_t blck_1 = 16;
  8548. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  8549. int64_t nrc = vec_dot_num_rows;
  8550. // TODO: currently the mmla kernels support only even numbered rows/cols.
  8551. // this check can be removed once they are extended to support odd numbered rows/cols too
  8552. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  8553. nrc = 1;
  8554. }
  8555. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  8556. // attempt to reduce false-sharing (does not seem to make a difference)
  8557. // 16 * 2, accounting for mmla kernels
  8558. float tmp[32];
  8559. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8560. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8561. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ir1 += nrc) {
  8562. const int64_t i13 = (ir1/(ne12*ne1));
  8563. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8564. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8565. // broadcast src0 into src1
  8566. const int64_t i03 = i13/r3;
  8567. const int64_t i02 = i12/r2;
  8568. const int64_t i1 = i11;
  8569. const int64_t i2 = i12;
  8570. const int64_t i3 = i13;
  8571. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8572. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8573. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8574. // the original src1 data pointer, so we should index using the indices directly
  8575. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8576. const char * src1_col = (const char *) wdata +
  8577. (src1_cont || src1->type != vec_dot_type
  8578. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8579. : (i11*nb11 + i12*nb12 + i13*nb13));
  8580. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8581. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8582. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8583. //}
  8584. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ir0 += nrc) {
  8585. vec_dot(ne00, &tmp[ir0 - iir0], (nrc>1 ? 16 : 0), src0_row + ir0*nb01, (nrc>1 ? nb01 : 0), src1_col, (nrc>1 ? src1_col_stride : 0), nrc);
  8586. }
  8587. for (int cn = 0; cn < nrc; ++cn) {
  8588. memcpy(&dst_col[iir0 + cn*nb1/nb0], tmp + (cn*16), (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8589. }
  8590. }
  8591. }
  8592. }
  8593. }
  8594. // ggml_compute_forward_mul_mat_id
  8595. static void ggml_compute_forward_mul_mat_id(
  8596. const struct ggml_compute_params * params,
  8597. struct ggml_tensor * dst) {
  8598. const struct ggml_tensor * ids = dst->src[0];
  8599. const struct ggml_tensor * src1 = dst->src[1];
  8600. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8601. GGML_TENSOR_BINARY_OP_LOCALS
  8602. const int ith = params->ith;
  8603. const int nth = params->nth;
  8604. const enum ggml_type type = src0->type;
  8605. const bool src1_cont = ggml_is_contiguous(src1);
  8606. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8607. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8608. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8609. GGML_ASSERT(ne0 == ne01);
  8610. GGML_ASSERT(ne1 == ne11);
  8611. GGML_ASSERT(ne2 == ne12);
  8612. GGML_ASSERT(ne3 == ne13);
  8613. // we don't support permuted src0 or src1
  8614. GGML_ASSERT(nb00 == ggml_type_size(type));
  8615. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8616. // dst cannot be transposed or permuted
  8617. GGML_ASSERT(nb0 == sizeof(float));
  8618. GGML_ASSERT(nb0 <= nb1);
  8619. GGML_ASSERT(nb1 <= nb2);
  8620. GGML_ASSERT(nb2 <= nb3);
  8621. // broadcast factors
  8622. const int64_t r2 = ne12/ne02;
  8623. const int64_t r3 = ne13/ne03;
  8624. // row groups
  8625. const int id = ggml_get_op_params_i32(dst, 0);
  8626. const int n_as = ggml_get_op_params_i32(dst, 1);
  8627. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8628. (char *) params->wdata :
  8629. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8630. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8631. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8632. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8633. if (params->type == GGML_TASK_TYPE_INIT) {
  8634. if (ith != 0) {
  8635. return;
  8636. }
  8637. char * wdata = params->wdata;
  8638. if (src1->type != vec_dot_type) {
  8639. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8640. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8641. assert(src1->type == GGML_TYPE_F32);
  8642. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8643. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8644. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8645. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8646. wdata += row_size;
  8647. }
  8648. }
  8649. }
  8650. }
  8651. // initialize matrix_row_counts
  8652. GGML_ASSERT(wdata == wdata_src1_end);
  8653. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8654. // group rows by src0 matrix
  8655. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8656. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8657. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8658. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8659. matrix_row_counts[row_id] += 1;
  8660. }
  8661. return;
  8662. }
  8663. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8664. return;
  8665. }
  8666. // compute each matrix multiplication in sequence
  8667. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8668. const int64_t cne1 = matrix_row_counts[cur_a];
  8669. if (cne1 == 0) {
  8670. continue;
  8671. }
  8672. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8673. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8674. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8675. const int64_t nr0 = ne01; // src0 rows
  8676. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8677. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8678. // distribute the thread work across the inner or outer loop based on which one is larger
  8679. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8680. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8681. const int64_t ith0 = ith % nth0;
  8682. const int64_t ith1 = ith / nth0;
  8683. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8684. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8685. const int64_t ir010 = dr0*ith0;
  8686. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8687. const int64_t ir110 = dr1*ith1;
  8688. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8689. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8690. // threads with no work simply yield (not sure if it helps)
  8691. if (ir010 >= ir011 || ir110 >= ir111) {
  8692. sched_yield();
  8693. continue;
  8694. }
  8695. assert(ne12 % ne02 == 0);
  8696. assert(ne13 % ne03 == 0);
  8697. // block-tiling attempt
  8698. const int64_t blck_0 = 16;
  8699. const int64_t blck_1 = 16;
  8700. // attempt to reduce false-sharing (does not seem to make a difference)
  8701. float tmp[16];
  8702. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8703. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8704. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8705. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  8706. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  8707. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  8708. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  8709. // broadcast src0 into src1
  8710. const int64_t i03 = i13/r3;
  8711. const int64_t i02 = i12/r2;
  8712. const int64_t i1 = i11;
  8713. const int64_t i2 = i12;
  8714. const int64_t i3 = i13;
  8715. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  8716. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8717. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8718. // the original src1 data pointer, so we should index using the indices directly
  8719. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8720. const char * src1_col = (const char *) wdata +
  8721. (src1_cont || src1->type != vec_dot_type
  8722. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8723. : (i11*nb11 + i12*nb12 + i13*nb13));
  8724. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8725. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8726. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8727. //}
  8728. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8729. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_row + ir0*nb01, 0, src1_col, 0, 1);
  8730. }
  8731. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8732. }
  8733. }
  8734. }
  8735. }
  8736. #undef MMID_MATRIX_ROW
  8737. }
  8738. // ggml_compute_forward_out_prod
  8739. static void ggml_compute_forward_out_prod_f32(
  8740. const struct ggml_compute_params * params,
  8741. struct ggml_tensor * dst) {
  8742. const struct ggml_tensor * src0 = dst->src[0];
  8743. const struct ggml_tensor * src1 = dst->src[1];
  8744. // int64_t t0 = ggml_perf_time_us();
  8745. // UNUSED(t0);
  8746. GGML_TENSOR_BINARY_OP_LOCALS
  8747. const int ith = params->ith;
  8748. const int nth = params->nth;
  8749. GGML_ASSERT(ne0 == ne00);
  8750. GGML_ASSERT(ne1 == ne10);
  8751. GGML_ASSERT(ne2 == ne02);
  8752. GGML_ASSERT(ne02 == ne12);
  8753. GGML_ASSERT(ne3 == ne13);
  8754. GGML_ASSERT(ne03 == ne13);
  8755. // we don't support permuted src0 or src1
  8756. GGML_ASSERT(nb00 == sizeof(float));
  8757. // dst cannot be transposed or permuted
  8758. GGML_ASSERT(nb0 == sizeof(float));
  8759. // GGML_ASSERT(nb0 <= nb1);
  8760. // GGML_ASSERT(nb1 <= nb2);
  8761. // GGML_ASSERT(nb2 <= nb3);
  8762. // nb01 >= nb00 - src0 is not transposed
  8763. // compute by src0 rows
  8764. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8765. // TODO: #if defined(GGML_USE_CLBLAST)
  8766. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8767. bool use_blas = ggml_is_matrix(src0) &&
  8768. ggml_is_matrix(src1) &&
  8769. ggml_is_contiguous(src0) &&
  8770. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  8771. #endif
  8772. if (params->type == GGML_TASK_TYPE_INIT) {
  8773. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  8774. if (use_blas) {
  8775. return;
  8776. }
  8777. #endif
  8778. if (ith != 0) {
  8779. return;
  8780. }
  8781. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8782. return;
  8783. }
  8784. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8785. return;
  8786. }
  8787. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8788. if (use_blas) {
  8789. if (params->ith != 0) { // All threads other than the first do no work.
  8790. return;
  8791. }
  8792. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  8793. // src0: (k,n)
  8794. // src1: (k,m)
  8795. // dst: (m,n)
  8796. //
  8797. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  8798. // Also expressed as (major,minor)
  8799. // a: (m,k): so src1 transposed
  8800. // b: (k,n): so src0
  8801. // c: (m,n)
  8802. //
  8803. // However, if ggml_is_transposed(src1) is true, then
  8804. // src1->data already contains a transposed version, so sgemm mustn't
  8805. // transpose it further.
  8806. int n = src0->ne[0];
  8807. int k = src0->ne[1];
  8808. int m = src1->ne[0];
  8809. int transposeA, lda;
  8810. if (!ggml_is_transposed(src1)) {
  8811. transposeA = CblasTrans;
  8812. lda = m;
  8813. } else {
  8814. transposeA = CblasNoTrans;
  8815. lda = k;
  8816. }
  8817. float * a = (float *) ((char *) src1->data);
  8818. float * b = (float *) ((char *) src0->data);
  8819. float * c = (float *) ((char *) dst->data);
  8820. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  8821. return;
  8822. }
  8823. #endif
  8824. // dst[:,:,:,:] = 0
  8825. // for i2,i3:
  8826. // for i1:
  8827. // for i01:
  8828. // for i0:
  8829. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8830. // parallelize by last three dimensions
  8831. // total rows in dst
  8832. const int64_t nr = ne1*ne2*ne3;
  8833. // rows per thread
  8834. const int64_t dr = (nr + nth - 1)/nth;
  8835. // row range for this thread
  8836. const int64_t ir0 = dr*ith;
  8837. const int64_t ir1 = MIN(ir0 + dr, nr);
  8838. // block-tiling attempt
  8839. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  8840. const int64_t blck_1 = 16;
  8841. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  8842. const int64_t bir1 = MIN(bir + blck_1, ir1);
  8843. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  8844. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  8845. for (int64_t ir = bir; ir < bir1; ++ir) {
  8846. // dst indices
  8847. const int64_t i3 = ir/(ne2*ne1);
  8848. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8849. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8850. const int64_t i02 = i2;
  8851. const int64_t i03 = i3;
  8852. //const int64_t i10 = i1;
  8853. const int64_t i12 = i2;
  8854. const int64_t i13 = i3;
  8855. #if GGML_VEC_MAD_UNROLL > 2
  8856. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  8857. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  8858. const int64_t i11 = i01;
  8859. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8860. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8861. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8862. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  8863. }
  8864. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  8865. const int64_t i11 = i01;
  8866. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8867. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8868. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8869. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8870. }
  8871. #else
  8872. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  8873. const int64_t i11 = i01;
  8874. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8875. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8876. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8877. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8878. }
  8879. #endif
  8880. }
  8881. }
  8882. }
  8883. //int64_t t1 = ggml_perf_time_us();
  8884. //static int64_t acc = 0;
  8885. //acc += t1 - t0;
  8886. //if (t1 - t0 > 10) {
  8887. // printf("\n");
  8888. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8889. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8890. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8891. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8892. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8893. //}
  8894. }
  8895. static void ggml_compute_forward_out_prod_q_f32(
  8896. const struct ggml_compute_params * params,
  8897. struct ggml_tensor * dst) {
  8898. const struct ggml_tensor * src0 = dst->src[0];
  8899. const struct ggml_tensor * src1 = dst->src[1];
  8900. // int64_t t0 = ggml_perf_time_us();
  8901. // UNUSED(t0);
  8902. GGML_TENSOR_BINARY_OP_LOCALS;
  8903. const int ith = params->ith;
  8904. const int nth = params->nth;
  8905. const enum ggml_type type = src0->type;
  8906. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8907. GGML_ASSERT(ne02 == ne12);
  8908. GGML_ASSERT(ne03 == ne13);
  8909. GGML_ASSERT(ne2 == ne12);
  8910. GGML_ASSERT(ne3 == ne13);
  8911. // we don't support permuted src0 dim0
  8912. GGML_ASSERT(nb00 == ggml_type_size(type));
  8913. // dst dim0 cannot be transposed or permuted
  8914. GGML_ASSERT(nb0 == sizeof(float));
  8915. // GGML_ASSERT(nb0 <= nb1);
  8916. // GGML_ASSERT(nb1 <= nb2);
  8917. // GGML_ASSERT(nb2 <= nb3);
  8918. GGML_ASSERT(ne0 == ne00);
  8919. GGML_ASSERT(ne1 == ne10);
  8920. GGML_ASSERT(ne2 == ne02);
  8921. GGML_ASSERT(ne3 == ne03);
  8922. // nb01 >= nb00 - src0 is not transposed
  8923. // compute by src0 rows
  8924. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8925. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8926. if (params->type == GGML_TASK_TYPE_INIT) {
  8927. if (ith != 0) {
  8928. return;
  8929. }
  8930. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8931. return;
  8932. }
  8933. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8934. return;
  8935. }
  8936. // parallelize by last three dimensions
  8937. // total rows in dst
  8938. const int64_t nr = ne1*ne2*ne3;
  8939. // rows per thread
  8940. const int64_t dr = (nr + nth - 1)/nth;
  8941. // row range for this thread
  8942. const int64_t ir0 = dr*ith;
  8943. const int64_t ir1 = MIN(ir0 + dr, nr);
  8944. // dst[:,:,:,:] = 0
  8945. // for i2,i3:
  8946. // for i1:
  8947. // for i01:
  8948. // for i0:
  8949. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8950. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8951. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8952. // dst indices
  8953. const int64_t i3 = ir/(ne2*ne1);
  8954. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8955. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8956. const int64_t i02 = i2;
  8957. const int64_t i03 = i3;
  8958. //const int64_t i10 = i1;
  8959. const int64_t i12 = i2;
  8960. const int64_t i13 = i3;
  8961. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8962. const int64_t i11 = i01;
  8963. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8964. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8965. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8966. dequantize_row_q(s0, wdata, ne0);
  8967. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8968. }
  8969. }
  8970. //int64_t t1 = ggml_perf_time_us();
  8971. //static int64_t acc = 0;
  8972. //acc += t1 - t0;
  8973. //if (t1 - t0 > 10) {
  8974. // printf("\n");
  8975. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8976. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8977. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8978. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8979. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8980. //}
  8981. }
  8982. static void ggml_compute_forward_out_prod(
  8983. const struct ggml_compute_params * params,
  8984. struct ggml_tensor * dst) {
  8985. const struct ggml_tensor * src0 = dst->src[0];
  8986. switch (src0->type) {
  8987. case GGML_TYPE_Q4_0:
  8988. case GGML_TYPE_Q4_1:
  8989. case GGML_TYPE_Q5_0:
  8990. case GGML_TYPE_Q5_1:
  8991. case GGML_TYPE_Q8_0:
  8992. case GGML_TYPE_Q2_K:
  8993. case GGML_TYPE_Q3_K:
  8994. case GGML_TYPE_Q4_K:
  8995. case GGML_TYPE_Q5_K:
  8996. case GGML_TYPE_Q6_K:
  8997. case GGML_TYPE_IQ2_XXS:
  8998. case GGML_TYPE_IQ2_XS:
  8999. case GGML_TYPE_IQ3_XXS:
  9000. case GGML_TYPE_IQ1_S:
  9001. case GGML_TYPE_IQ4_NL:
  9002. case GGML_TYPE_IQ4_XS:
  9003. case GGML_TYPE_IQ3_S:
  9004. case GGML_TYPE_IQ2_S:
  9005. {
  9006. ggml_compute_forward_out_prod_q_f32(params, dst);
  9007. } break;
  9008. case GGML_TYPE_F16:
  9009. {
  9010. GGML_ASSERT(false); // todo
  9011. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  9012. } break;
  9013. case GGML_TYPE_F32:
  9014. {
  9015. ggml_compute_forward_out_prod_f32(params, dst);
  9016. } break;
  9017. default:
  9018. {
  9019. GGML_ASSERT(false);
  9020. } break;
  9021. }
  9022. }
  9023. // ggml_compute_forward_scale
  9024. static void ggml_compute_forward_scale_f32(
  9025. const struct ggml_compute_params * params,
  9026. struct ggml_tensor * dst) {
  9027. const struct ggml_tensor * src0 = dst->src[0];
  9028. GGML_ASSERT(ggml_is_contiguous(src0));
  9029. GGML_ASSERT(ggml_is_contiguous(dst));
  9030. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9031. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9032. return;
  9033. }
  9034. // scale factor
  9035. float v;
  9036. memcpy(&v, dst->op_params, sizeof(float));
  9037. const int ith = params->ith;
  9038. const int nth = params->nth;
  9039. const int nc = src0->ne[0];
  9040. const int nr = ggml_nrows(src0);
  9041. // rows per thread
  9042. const int dr = (nr + nth - 1)/nth;
  9043. // row range for this thread
  9044. const int ir0 = dr*ith;
  9045. const int ir1 = MIN(ir0 + dr, nr);
  9046. const size_t nb01 = src0->nb[1];
  9047. const size_t nb1 = dst->nb[1];
  9048. for (int i1 = ir0; i1 < ir1; i1++) {
  9049. if (dst->data != src0->data) {
  9050. // src0 is same shape as dst => same indices
  9051. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9052. }
  9053. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9054. }
  9055. }
  9056. static void ggml_compute_forward_scale(
  9057. const struct ggml_compute_params * params,
  9058. struct ggml_tensor * dst) {
  9059. const struct ggml_tensor * src0 = dst->src[0];
  9060. switch (src0->type) {
  9061. case GGML_TYPE_F32:
  9062. {
  9063. ggml_compute_forward_scale_f32(params, dst);
  9064. } break;
  9065. default:
  9066. {
  9067. GGML_ASSERT(false);
  9068. } break;
  9069. }
  9070. }
  9071. // ggml_compute_forward_set
  9072. static void ggml_compute_forward_set_f32(
  9073. const struct ggml_compute_params * params,
  9074. struct ggml_tensor * dst) {
  9075. const struct ggml_tensor * src0 = dst->src[0];
  9076. const struct ggml_tensor * src1 = dst->src[1];
  9077. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9078. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9079. // view src0 and dst with these strides and data offset inbytes during set
  9080. // nb0 is implicitly element_size because src0 and dst are contiguous
  9081. size_t nb1 = ((int32_t *) dst->op_params)[0];
  9082. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9083. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9084. size_t offset = ((int32_t *) dst->op_params)[3];
  9085. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9086. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9087. if (params->ith != 0) {
  9088. return;
  9089. }
  9090. // memcpy needs to be synchronized across threads to avoid race conditions.
  9091. // => do it in INIT phase
  9092. memcpy(
  9093. ((char *) dst->data),
  9094. ((char *) src0->data),
  9095. ggml_nbytes(dst));
  9096. }
  9097. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9098. return;
  9099. }
  9100. const int ith = params->ith;
  9101. const int nth = params->nth;
  9102. const int nr = ggml_nrows(src1);
  9103. const int nc = src1->ne[0];
  9104. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  9105. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  9106. // src0 and dst as viewed during set
  9107. const size_t nb0 = ggml_element_size(src0);
  9108. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9109. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9110. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9111. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9112. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9113. GGML_ASSERT(nb10 == sizeof(float));
  9114. // rows per thread
  9115. const int dr = (nr + nth - 1)/nth;
  9116. // row range for this thread
  9117. const int ir0 = dr*ith;
  9118. const int ir1 = MIN(ir0 + dr, nr);
  9119. for (int ir = ir0; ir < ir1; ++ir) {
  9120. // src0 and dst are viewed with shape of src1 and offset
  9121. // => same indices
  9122. const int i3 = ir/(ne12*ne11);
  9123. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9124. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9125. ggml_vec_cpy_f32(nc,
  9126. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9127. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9128. }
  9129. }
  9130. static void ggml_compute_forward_set(
  9131. const struct ggml_compute_params * params,
  9132. struct ggml_tensor * dst) {
  9133. const struct ggml_tensor * src0 = dst->src[0];
  9134. switch (src0->type) {
  9135. case GGML_TYPE_F32:
  9136. {
  9137. ggml_compute_forward_set_f32(params, dst);
  9138. } break;
  9139. case GGML_TYPE_F16:
  9140. case GGML_TYPE_Q4_0:
  9141. case GGML_TYPE_Q4_1:
  9142. case GGML_TYPE_Q5_0:
  9143. case GGML_TYPE_Q5_1:
  9144. case GGML_TYPE_Q8_0:
  9145. case GGML_TYPE_Q8_1:
  9146. case GGML_TYPE_Q2_K:
  9147. case GGML_TYPE_Q3_K:
  9148. case GGML_TYPE_Q4_K:
  9149. case GGML_TYPE_Q5_K:
  9150. case GGML_TYPE_Q6_K:
  9151. case GGML_TYPE_IQ2_XXS:
  9152. case GGML_TYPE_IQ2_XS:
  9153. case GGML_TYPE_IQ3_XXS:
  9154. case GGML_TYPE_IQ1_S:
  9155. case GGML_TYPE_IQ4_NL:
  9156. case GGML_TYPE_IQ4_XS:
  9157. case GGML_TYPE_IQ3_S:
  9158. case GGML_TYPE_IQ2_S:
  9159. default:
  9160. {
  9161. GGML_ASSERT(false);
  9162. } break;
  9163. }
  9164. }
  9165. // ggml_compute_forward_cpy
  9166. static void ggml_compute_forward_cpy(
  9167. const struct ggml_compute_params * params,
  9168. struct ggml_tensor * dst) {
  9169. ggml_compute_forward_dup(params, dst);
  9170. }
  9171. // ggml_compute_forward_cont
  9172. static void ggml_compute_forward_cont(
  9173. const struct ggml_compute_params * params,
  9174. struct ggml_tensor * dst) {
  9175. ggml_compute_forward_dup(params, dst);
  9176. }
  9177. // ggml_compute_forward_reshape
  9178. static void ggml_compute_forward_reshape(
  9179. const struct ggml_compute_params * params,
  9180. struct ggml_tensor * dst) {
  9181. // NOP
  9182. UNUSED(params);
  9183. UNUSED(dst);
  9184. }
  9185. // ggml_compute_forward_view
  9186. static void ggml_compute_forward_view(
  9187. const struct ggml_compute_params * params,
  9188. const struct ggml_tensor * dst) {
  9189. // NOP
  9190. UNUSED(params);
  9191. UNUSED(dst);
  9192. }
  9193. // ggml_compute_forward_permute
  9194. static void ggml_compute_forward_permute(
  9195. const struct ggml_compute_params * params,
  9196. const struct ggml_tensor * dst) {
  9197. // NOP
  9198. UNUSED(params);
  9199. UNUSED(dst);
  9200. }
  9201. // ggml_compute_forward_transpose
  9202. static void ggml_compute_forward_transpose(
  9203. const struct ggml_compute_params * params,
  9204. const struct ggml_tensor * dst) {
  9205. // NOP
  9206. UNUSED(params);
  9207. UNUSED(dst);
  9208. }
  9209. // ggml_compute_forward_get_rows
  9210. static void ggml_compute_forward_get_rows_q(
  9211. const struct ggml_compute_params * params,
  9212. struct ggml_tensor * dst) {
  9213. const struct ggml_tensor * src0 = dst->src[0];
  9214. const struct ggml_tensor * src1 = dst->src[1];
  9215. assert(params->ith == 0);
  9216. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9217. return;
  9218. }
  9219. GGML_TENSOR_BINARY_OP_LOCALS
  9220. const int64_t nc = ne00;
  9221. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9222. const enum ggml_type type = src0->type;
  9223. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9224. assert(ne0 == nc);
  9225. assert(ne02 == ne11);
  9226. assert(nb00 == ggml_type_size(type));
  9227. assert(ggml_nrows(dst) == nr);
  9228. // TODO: multi-thread
  9229. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9230. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9231. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9232. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9233. dequantize_row_q(
  9234. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9235. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9236. }
  9237. }
  9238. }
  9239. }
  9240. static void ggml_compute_forward_get_rows_f16(
  9241. const struct ggml_compute_params * params,
  9242. struct ggml_tensor * dst) {
  9243. const struct ggml_tensor * src0 = dst->src[0];
  9244. const struct ggml_tensor * src1 = dst->src[1];
  9245. assert(params->ith == 0);
  9246. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9247. return;
  9248. }
  9249. GGML_TENSOR_BINARY_OP_LOCALS
  9250. const int64_t nc = ne00;
  9251. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9252. assert(ne0 == nc);
  9253. assert(ne02 == ne11);
  9254. assert(nb00 == sizeof(ggml_fp16_t));
  9255. assert(ggml_nrows(dst) == nr);
  9256. // TODO: multi-thread
  9257. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9258. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9259. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9260. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9261. ggml_fp16_to_fp32_row(
  9262. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9263. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9264. }
  9265. }
  9266. }
  9267. }
  9268. static void ggml_compute_forward_get_rows_f32(
  9269. const struct ggml_compute_params * params,
  9270. struct ggml_tensor * dst) {
  9271. const struct ggml_tensor * src0 = dst->src[0];
  9272. const struct ggml_tensor * src1 = dst->src[1];
  9273. assert(params->ith == 0);
  9274. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9275. return;
  9276. }
  9277. GGML_TENSOR_BINARY_OP_LOCALS
  9278. const int64_t nc = ne00;
  9279. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9280. assert(ne0 == nc);
  9281. assert(ne02 == ne11);
  9282. assert(nb00 == sizeof(float));
  9283. assert(ggml_nrows(dst) == nr);
  9284. // TODO: multi-thread
  9285. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9286. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9287. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9288. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9289. ggml_vec_cpy_f32(nc,
  9290. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  9291. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  9292. }
  9293. }
  9294. }
  9295. }
  9296. static void ggml_compute_forward_get_rows(
  9297. const struct ggml_compute_params * params,
  9298. struct ggml_tensor * dst) {
  9299. const struct ggml_tensor * src0 = dst->src[0];
  9300. switch (src0->type) {
  9301. case GGML_TYPE_Q4_0:
  9302. case GGML_TYPE_Q4_1:
  9303. case GGML_TYPE_Q5_0:
  9304. case GGML_TYPE_Q5_1:
  9305. case GGML_TYPE_Q8_0:
  9306. case GGML_TYPE_Q8_1:
  9307. case GGML_TYPE_Q2_K:
  9308. case GGML_TYPE_Q3_K:
  9309. case GGML_TYPE_Q4_K:
  9310. case GGML_TYPE_Q5_K:
  9311. case GGML_TYPE_Q6_K:
  9312. case GGML_TYPE_IQ2_XXS:
  9313. case GGML_TYPE_IQ2_XS:
  9314. case GGML_TYPE_IQ3_XXS:
  9315. case GGML_TYPE_IQ1_S:
  9316. case GGML_TYPE_IQ4_NL:
  9317. case GGML_TYPE_IQ4_XS:
  9318. case GGML_TYPE_IQ3_S:
  9319. case GGML_TYPE_IQ2_S:
  9320. {
  9321. ggml_compute_forward_get_rows_q(params, dst);
  9322. } break;
  9323. case GGML_TYPE_F16:
  9324. {
  9325. ggml_compute_forward_get_rows_f16(params, dst);
  9326. } break;
  9327. case GGML_TYPE_F32:
  9328. case GGML_TYPE_I32:
  9329. {
  9330. ggml_compute_forward_get_rows_f32(params, dst);
  9331. } break;
  9332. default:
  9333. {
  9334. GGML_ASSERT(false);
  9335. } break;
  9336. }
  9337. //static bool first = true;
  9338. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9339. //if (first) {
  9340. // first = false;
  9341. //} else {
  9342. // for (int k = 0; k < dst->ne[1]; ++k) {
  9343. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9344. // for (int i = 0; i < 16; ++i) {
  9345. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9346. // }
  9347. // printf("\n");
  9348. // }
  9349. // printf("\n");
  9350. // }
  9351. // printf("\n");
  9352. // exit(0);
  9353. //}
  9354. }
  9355. // ggml_compute_forward_get_rows_back
  9356. static void ggml_compute_forward_get_rows_back_f32_f16(
  9357. const struct ggml_compute_params * params,
  9358. struct ggml_tensor * dst) {
  9359. const struct ggml_tensor * src0 = dst->src[0];
  9360. const struct ggml_tensor * src1 = dst->src[1];
  9361. GGML_ASSERT(params->ith == 0);
  9362. GGML_ASSERT(ggml_is_contiguous(dst));
  9363. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9364. if (params->type == GGML_TASK_TYPE_INIT) {
  9365. if (params->ith != 0) {
  9366. return;
  9367. }
  9368. memset(dst->data, 0, ggml_nbytes(dst));
  9369. }
  9370. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9371. return;
  9372. }
  9373. const int nc = src0->ne[0];
  9374. const int nr = ggml_nelements(src1);
  9375. GGML_ASSERT( dst->ne[0] == nc);
  9376. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9377. for (int i = 0; i < nr; ++i) {
  9378. const int r = ((int32_t *) src1->data)[i];
  9379. for (int j = 0; j < nc; ++j) {
  9380. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9381. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9382. }
  9383. }
  9384. }
  9385. static void ggml_compute_forward_get_rows_back_f32(
  9386. const struct ggml_compute_params * params,
  9387. struct ggml_tensor * dst) {
  9388. const struct ggml_tensor * src0 = dst->src[0];
  9389. const struct ggml_tensor * src1 = dst->src[1];
  9390. GGML_ASSERT(params->ith == 0);
  9391. GGML_ASSERT(ggml_is_contiguous(dst));
  9392. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9393. if (params->type == GGML_TASK_TYPE_INIT) {
  9394. if (params->ith != 0) {
  9395. return;
  9396. }
  9397. memset(dst->data, 0, ggml_nbytes(dst));
  9398. }
  9399. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9400. return;
  9401. }
  9402. const int nc = src0->ne[0];
  9403. const int nr = ggml_nelements(src1);
  9404. GGML_ASSERT( dst->ne[0] == nc);
  9405. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9406. for (int i = 0; i < nr; ++i) {
  9407. const int r = ((int32_t *) src1->data)[i];
  9408. ggml_vec_add_f32(nc,
  9409. (float *) ((char *) dst->data + r*dst->nb[1]),
  9410. (float *) ((char *) dst->data + r*dst->nb[1]),
  9411. (float *) ((char *) src0->data + i*src0->nb[1]));
  9412. }
  9413. }
  9414. static void ggml_compute_forward_get_rows_back(
  9415. const struct ggml_compute_params * params,
  9416. struct ggml_tensor * dst) {
  9417. const struct ggml_tensor * src0 = dst->src[0];
  9418. switch (src0->type) {
  9419. case GGML_TYPE_F16:
  9420. {
  9421. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  9422. } break;
  9423. case GGML_TYPE_F32:
  9424. {
  9425. ggml_compute_forward_get_rows_back_f32(params, dst);
  9426. } break;
  9427. default:
  9428. {
  9429. GGML_ASSERT(false);
  9430. } break;
  9431. }
  9432. //static bool first = true;
  9433. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9434. //if (first) {
  9435. // first = false;
  9436. //} else {
  9437. // for (int k = 0; k < dst->ne[1]; ++k) {
  9438. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9439. // for (int i = 0; i < 16; ++i) {
  9440. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9441. // }
  9442. // printf("\n");
  9443. // }
  9444. // printf("\n");
  9445. // }
  9446. // printf("\n");
  9447. // exit(0);
  9448. //}
  9449. }
  9450. // ggml_compute_forward_diag
  9451. static void ggml_compute_forward_diag_f32(
  9452. const struct ggml_compute_params * params,
  9453. struct ggml_tensor * dst) {
  9454. const struct ggml_tensor * src0 = dst->src[0];
  9455. GGML_ASSERT(params->ith == 0);
  9456. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9457. return;
  9458. }
  9459. // TODO: handle transposed/permuted matrices
  9460. GGML_TENSOR_UNARY_OP_LOCALS
  9461. GGML_ASSERT(ne00 == ne0);
  9462. GGML_ASSERT(ne00 == ne1);
  9463. GGML_ASSERT(ne01 == 1);
  9464. GGML_ASSERT(ne02 == ne2);
  9465. GGML_ASSERT(ne03 == ne3);
  9466. GGML_ASSERT(nb00 == sizeof(float));
  9467. GGML_ASSERT(nb0 == sizeof(float));
  9468. for (int i3 = 0; i3 < ne3; i3++) {
  9469. for (int i2 = 0; i2 < ne2; i2++) {
  9470. for (int i1 = 0; i1 < ne1; i1++) {
  9471. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9472. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9473. for (int i0 = 0; i0 < i1; i0++) {
  9474. d[i0] = 0;
  9475. }
  9476. d[i1] = s[i1];
  9477. for (int i0 = i1+1; i0 < ne0; i0++) {
  9478. d[i0] = 0;
  9479. }
  9480. }
  9481. }
  9482. }
  9483. }
  9484. static void ggml_compute_forward_diag(
  9485. const struct ggml_compute_params * params,
  9486. struct ggml_tensor * dst) {
  9487. const struct ggml_tensor * src0 = dst->src[0];
  9488. switch (src0->type) {
  9489. case GGML_TYPE_F32:
  9490. {
  9491. ggml_compute_forward_diag_f32(params, dst);
  9492. } break;
  9493. default:
  9494. {
  9495. GGML_ASSERT(false);
  9496. } break;
  9497. }
  9498. }
  9499. // ggml_compute_forward_diag_mask_inf
  9500. static void ggml_compute_forward_diag_mask_f32(
  9501. const struct ggml_compute_params * params,
  9502. struct ggml_tensor * dst,
  9503. const float value) {
  9504. const struct ggml_tensor * src0 = dst->src[0];
  9505. const int ith = params->ith;
  9506. const int nth = params->nth;
  9507. const int n_past = ((int32_t *) dst->op_params)[0];
  9508. const bool inplace = src0->data == dst->data;
  9509. GGML_ASSERT(n_past >= 0);
  9510. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9511. if (ith != 0) {
  9512. return;
  9513. }
  9514. // memcpy needs to be synchronized across threads to avoid race conditions.
  9515. // => do it in INIT phase
  9516. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9517. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9518. memcpy(
  9519. ((char *) dst->data),
  9520. ((char *) src0->data),
  9521. ggml_nbytes(dst));
  9522. }
  9523. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9524. return;
  9525. }
  9526. // TODO: handle transposed/permuted matrices
  9527. const int n = ggml_nrows(src0);
  9528. const int nc = src0->ne[0];
  9529. const int nr = src0->ne[1];
  9530. const int nz = n/nr;
  9531. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9532. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9533. for (int k = 0; k < nz; k++) {
  9534. for (int j = ith; j < nr; j += nth) {
  9535. for (int i = n_past; i < nc; i++) {
  9536. if (i > n_past + j) {
  9537. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9538. }
  9539. }
  9540. }
  9541. }
  9542. }
  9543. static void ggml_compute_forward_diag_mask_inf(
  9544. const struct ggml_compute_params * params,
  9545. struct ggml_tensor * dst) {
  9546. const struct ggml_tensor * src0 = dst->src[0];
  9547. switch (src0->type) {
  9548. case GGML_TYPE_F32:
  9549. {
  9550. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  9551. } break;
  9552. default:
  9553. {
  9554. GGML_ASSERT(false);
  9555. } break;
  9556. }
  9557. }
  9558. static void ggml_compute_forward_diag_mask_zero(
  9559. const struct ggml_compute_params * params,
  9560. struct ggml_tensor * dst) {
  9561. const struct ggml_tensor * src0 = dst->src[0];
  9562. switch (src0->type) {
  9563. case GGML_TYPE_F32:
  9564. {
  9565. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  9566. } break;
  9567. default:
  9568. {
  9569. GGML_ASSERT(false);
  9570. } break;
  9571. }
  9572. }
  9573. // ggml_compute_forward_soft_max
  9574. static void ggml_compute_forward_soft_max_f32(
  9575. const struct ggml_compute_params * params,
  9576. struct ggml_tensor * dst) {
  9577. const struct ggml_tensor * src0 = dst->src[0];
  9578. const struct ggml_tensor * src1 = dst->src[1];
  9579. const struct ggml_tensor * src2 = dst->src[2];
  9580. assert(ggml_is_contiguous(dst));
  9581. assert(ggml_are_same_shape(src0, dst));
  9582. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9583. return;
  9584. }
  9585. float scale = 1.0f;
  9586. float max_bias = 0.0f;
  9587. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9588. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  9589. // TODO: handle transposed/permuted matrices
  9590. const int ith = params->ith;
  9591. const int nth = params->nth;
  9592. GGML_TENSOR_UNARY_OP_LOCALS
  9593. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9594. // TODO: is this supposed to be ceil instead of floor?
  9595. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  9596. const uint32_t n_head_kv = ne02;
  9597. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head_kv));
  9598. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  9599. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  9600. const int nc = src0->ne[0];
  9601. const int nr = ggml_nrows(src0);
  9602. // rows per thread
  9603. const int dr = (nr + nth - 1)/nth;
  9604. // row range for this thread
  9605. const int ir0 = dr*ith;
  9606. const int ir1 = MIN(ir0 + dr, nr);
  9607. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9608. // when max_bias <= 0.0f, src2 is not used and we default it to src0 to avoid branching
  9609. float * pos = src2 ? (float *) src2->data : src0->data;
  9610. for (int i1 = ir0; i1 < ir1; i1++) {
  9611. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9612. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9613. // broadcast the mask across rows
  9614. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9615. ggml_vec_cpy_f32 (nc, wp, sp);
  9616. ggml_vec_scale_f32(nc, wp, scale);
  9617. if (mp) {
  9618. ggml_vec_acc_f32(nc, wp, mp);
  9619. }
  9620. // ALiBi bias
  9621. if (max_bias > 0.0f) {
  9622. const uint32_t h = (i1/ne01)%ne02; // head
  9623. const float slope = h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1);
  9624. for (int i = 0; i < nc; i++) {
  9625. wp[i] = wp[i] + slope*pos[i];
  9626. }
  9627. }
  9628. #ifndef NDEBUG
  9629. for (int i = 0; i < nc; ++i) {
  9630. //printf("p[%d] = %f\n", i, p[i]);
  9631. assert(!isnan(wp[i]));
  9632. }
  9633. #endif
  9634. float max = -INFINITY;
  9635. ggml_vec_max_f32(nc, &max, wp);
  9636. ggml_float sum = 0.0;
  9637. uint16_t scvt;
  9638. for (int i = 0; i < nc; i++) {
  9639. if (wp[i] == -INFINITY) {
  9640. dp[i] = 0.0f;
  9641. } else {
  9642. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9643. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9644. memcpy(&scvt, &s, sizeof(scvt));
  9645. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9646. sum += (ggml_float)val;
  9647. dp[i] = val;
  9648. }
  9649. }
  9650. assert(sum > 0.0);
  9651. sum = 1.0/sum;
  9652. ggml_vec_scale_f32(nc, dp, sum);
  9653. #ifndef NDEBUG
  9654. for (int i = 0; i < nc; ++i) {
  9655. assert(!isnan(dp[i]));
  9656. assert(!isinf(dp[i]));
  9657. }
  9658. #endif
  9659. }
  9660. }
  9661. static void ggml_compute_forward_soft_max(
  9662. const struct ggml_compute_params * params,
  9663. struct ggml_tensor * dst) {
  9664. const struct ggml_tensor * src0 = dst->src[0];
  9665. switch (src0->type) {
  9666. case GGML_TYPE_F32:
  9667. {
  9668. ggml_compute_forward_soft_max_f32(params, dst);
  9669. } break;
  9670. default:
  9671. {
  9672. GGML_ASSERT(false);
  9673. } break;
  9674. }
  9675. }
  9676. // ggml_compute_forward_soft_max_back
  9677. static void ggml_compute_forward_soft_max_back_f32(
  9678. const struct ggml_compute_params * params,
  9679. struct ggml_tensor * dst) {
  9680. const struct ggml_tensor * src0 = dst->src[0];
  9681. const struct ggml_tensor * src1 = dst->src[1];
  9682. GGML_ASSERT(ggml_is_contiguous(src0));
  9683. GGML_ASSERT(ggml_is_contiguous(src1));
  9684. GGML_ASSERT(ggml_is_contiguous(dst));
  9685. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9686. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9687. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9688. return;
  9689. }
  9690. // TODO: handle transposed/permuted matrices
  9691. const int ith = params->ith;
  9692. const int nth = params->nth;
  9693. const int nc = src0->ne[0];
  9694. const int nr = ggml_nrows(src0);
  9695. // rows per thread
  9696. const int dr = (nr + nth - 1)/nth;
  9697. // row range for this thread
  9698. const int ir0 = dr*ith;
  9699. const int ir1 = MIN(ir0 + dr, nr);
  9700. for (int i1 = ir0; i1 < ir1; i1++) {
  9701. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9702. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9703. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9704. #ifndef NDEBUG
  9705. for (int i = 0; i < nc; ++i) {
  9706. //printf("p[%d] = %f\n", i, p[i]);
  9707. assert(!isnan(dy[i]));
  9708. assert(!isnan(y[i]));
  9709. }
  9710. #endif
  9711. // Jii = yi - yi*yi
  9712. // Jij = -yi*yj
  9713. // J = diag(y)-y.T*y
  9714. // dx = J * dy
  9715. // dxk = sum_i(Jki * dyi)
  9716. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9717. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9718. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9719. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9720. // dxk = -yk * dot(y, dy) + yk*dyk
  9721. // dxk = yk * (- dot(y, dy) + dyk)
  9722. // dxk = yk * (dyk - dot(y, dy))
  9723. //
  9724. // post-order:
  9725. // dot_y_dy := dot(y, dy)
  9726. // dx := dy
  9727. // dx := dx - dot_y_dy
  9728. // dx := dx * y
  9729. // linear runtime, no additional memory
  9730. float dot_y_dy = 0;
  9731. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  9732. ggml_vec_cpy_f32 (nc, dx, dy);
  9733. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9734. ggml_vec_mul_f32 (nc, dx, dx, y);
  9735. #ifndef NDEBUG
  9736. for (int i = 0; i < nc; ++i) {
  9737. assert(!isnan(dx[i]));
  9738. assert(!isinf(dx[i]));
  9739. }
  9740. #endif
  9741. }
  9742. }
  9743. static void ggml_compute_forward_soft_max_back(
  9744. const struct ggml_compute_params * params,
  9745. struct ggml_tensor * dst) {
  9746. const struct ggml_tensor * src0 = dst->src[0];
  9747. switch (src0->type) {
  9748. case GGML_TYPE_F32:
  9749. {
  9750. ggml_compute_forward_soft_max_back_f32(params, dst);
  9751. } break;
  9752. default:
  9753. {
  9754. GGML_ASSERT(false);
  9755. } break;
  9756. }
  9757. }
  9758. // ggml_compute_forward_alibi
  9759. static void ggml_compute_forward_alibi_f32(
  9760. const struct ggml_compute_params * params,
  9761. struct ggml_tensor * dst) {
  9762. const struct ggml_tensor * src0 = dst->src[0];
  9763. assert(params->ith == 0);
  9764. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9765. return;
  9766. }
  9767. //const int n_past = ((int32_t *) dst->op_params)[0];
  9768. const int n_head = ((int32_t *) dst->op_params)[1];
  9769. float max_bias;
  9770. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9771. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9772. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  9773. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  9774. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  9775. const int64_t n = ggml_nrows(src0);
  9776. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  9777. const size_t nb0 = src0->nb[0];
  9778. const size_t nb1 = src0->nb[1];
  9779. const size_t nb2 = src0->nb[2];
  9780. //const int nb3 = src0->nb[3];
  9781. GGML_ASSERT(nb0 == sizeof(float));
  9782. GGML_ASSERT(n_head == ne2);
  9783. // add alibi to src0 (KQ_scaled)
  9784. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9785. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9786. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9787. for (int64_t k = 0; k < ne2_ne3; k++) {
  9788. // TODO: k*nb2 or k*nb3
  9789. float m_k;
  9790. if (k < n_heads_log2_floor) {
  9791. m_k = powf(m0, k + 1);
  9792. } else {
  9793. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9794. }
  9795. for (int64_t i = 0; i < ne0; i++) {
  9796. for (int64_t j = 0; j < ne1; j++) {
  9797. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9798. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9799. pdst[0] = i * m_k + src[0];
  9800. }
  9801. }
  9802. }
  9803. }
  9804. static void ggml_compute_forward_alibi_f16(
  9805. const struct ggml_compute_params * params,
  9806. struct ggml_tensor * dst) {
  9807. const struct ggml_tensor * src0 = dst->src[0];
  9808. assert(params->ith == 0);
  9809. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9810. return;
  9811. }
  9812. //const int n_past = ((int32_t *) dst->op_params)[0];
  9813. const int n_head = ((int32_t *) dst->op_params)[1];
  9814. float max_bias;
  9815. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9816. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9817. const int ne1 = src0->ne[1]; // seq_len_without_past
  9818. const int ne2 = src0->ne[2]; // n_head -> this is k
  9819. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9820. const int n = ggml_nrows(src0);
  9821. const int ne2_ne3 = n/ne1; // ne2*ne3
  9822. const int nb0 = src0->nb[0];
  9823. const int nb1 = src0->nb[1];
  9824. const int nb2 = src0->nb[2];
  9825. //const int nb3 = src0->nb[3];
  9826. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9827. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9828. GGML_ASSERT(n_head == ne2);
  9829. // add alibi to src0 (KQ_scaled)
  9830. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9831. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9832. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9833. for (int k = 0; k < ne2_ne3; k++) {
  9834. // TODO: k*nb2 or k*nb3
  9835. float m_k;
  9836. if (k < n_heads_log2_floor) {
  9837. m_k = powf(m0, k + 1);
  9838. } else {
  9839. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9840. }
  9841. for (int i = 0; i < ne0; i++) {
  9842. for (int j = 0; j < ne1; j++) {
  9843. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9844. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9845. // we return F32
  9846. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9847. }
  9848. }
  9849. }
  9850. }
  9851. static void ggml_compute_forward_alibi(
  9852. const struct ggml_compute_params * params,
  9853. struct ggml_tensor * dst) {
  9854. const struct ggml_tensor * src0 = dst->src[0];
  9855. switch (src0->type) {
  9856. case GGML_TYPE_F16:
  9857. {
  9858. ggml_compute_forward_alibi_f16(params, dst);
  9859. } break;
  9860. case GGML_TYPE_F32:
  9861. {
  9862. ggml_compute_forward_alibi_f32(params, dst);
  9863. } break;
  9864. case GGML_TYPE_Q4_0:
  9865. case GGML_TYPE_Q4_1:
  9866. case GGML_TYPE_Q5_0:
  9867. case GGML_TYPE_Q5_1:
  9868. case GGML_TYPE_Q8_0:
  9869. case GGML_TYPE_Q8_1:
  9870. case GGML_TYPE_Q2_K:
  9871. case GGML_TYPE_Q3_K:
  9872. case GGML_TYPE_Q4_K:
  9873. case GGML_TYPE_Q5_K:
  9874. case GGML_TYPE_Q6_K:
  9875. case GGML_TYPE_IQ2_XXS:
  9876. case GGML_TYPE_IQ2_XS:
  9877. case GGML_TYPE_IQ3_XXS:
  9878. case GGML_TYPE_IQ1_S:
  9879. case GGML_TYPE_IQ4_NL:
  9880. case GGML_TYPE_IQ4_XS:
  9881. case GGML_TYPE_IQ3_S:
  9882. case GGML_TYPE_IQ2_S:
  9883. case GGML_TYPE_Q8_K:
  9884. case GGML_TYPE_I8:
  9885. case GGML_TYPE_I16:
  9886. case GGML_TYPE_I32:
  9887. case GGML_TYPE_COUNT:
  9888. {
  9889. GGML_ASSERT(false);
  9890. } break;
  9891. }
  9892. }
  9893. // ggml_compute_forward_clamp
  9894. static void ggml_compute_forward_clamp_f32(
  9895. const struct ggml_compute_params * params,
  9896. struct ggml_tensor * dst) {
  9897. const struct ggml_tensor * src0 = dst->src[0];
  9898. assert(params->ith == 0);
  9899. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9900. return;
  9901. }
  9902. float min;
  9903. float max;
  9904. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9905. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9906. const int ith = params->ith;
  9907. const int nth = params->nth;
  9908. const int n = ggml_nrows(src0);
  9909. const int nc = src0->ne[0];
  9910. const size_t nb00 = src0->nb[0];
  9911. const size_t nb01 = src0->nb[1];
  9912. const size_t nb0 = dst->nb[0];
  9913. const size_t nb1 = dst->nb[1];
  9914. GGML_ASSERT( nb0 == sizeof(float));
  9915. GGML_ASSERT(nb00 == sizeof(float));
  9916. for (int j = ith; j < n; j += nth) {
  9917. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9918. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9919. for (int i = 0; i < nc; i++) {
  9920. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9921. }
  9922. }
  9923. }
  9924. static void ggml_compute_forward_clamp(
  9925. const struct ggml_compute_params * params,
  9926. struct ggml_tensor * dst) {
  9927. const struct ggml_tensor * src0 = dst->src[0];
  9928. switch (src0->type) {
  9929. case GGML_TYPE_F32:
  9930. {
  9931. ggml_compute_forward_clamp_f32(params, dst);
  9932. } break;
  9933. case GGML_TYPE_F16:
  9934. case GGML_TYPE_Q4_0:
  9935. case GGML_TYPE_Q4_1:
  9936. case GGML_TYPE_Q5_0:
  9937. case GGML_TYPE_Q5_1:
  9938. case GGML_TYPE_Q8_0:
  9939. case GGML_TYPE_Q8_1:
  9940. case GGML_TYPE_Q2_K:
  9941. case GGML_TYPE_Q3_K:
  9942. case GGML_TYPE_Q4_K:
  9943. case GGML_TYPE_Q5_K:
  9944. case GGML_TYPE_Q6_K:
  9945. case GGML_TYPE_IQ2_XXS:
  9946. case GGML_TYPE_IQ2_XS:
  9947. case GGML_TYPE_IQ3_XXS:
  9948. case GGML_TYPE_IQ1_S:
  9949. case GGML_TYPE_IQ4_NL:
  9950. case GGML_TYPE_IQ4_XS:
  9951. case GGML_TYPE_IQ3_S:
  9952. case GGML_TYPE_IQ2_S:
  9953. case GGML_TYPE_Q8_K:
  9954. case GGML_TYPE_I8:
  9955. case GGML_TYPE_I16:
  9956. case GGML_TYPE_I32:
  9957. case GGML_TYPE_COUNT:
  9958. {
  9959. GGML_ASSERT(false);
  9960. } break;
  9961. }
  9962. }
  9963. // ggml_compute_forward_rope
  9964. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  9965. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  9966. return 1 - MIN(1, MAX(0, y));
  9967. }
  9968. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  9969. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  9970. static void rope_yarn(
  9971. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  9972. float * cos_theta, float * sin_theta
  9973. ) {
  9974. // Get n-d rotational scaling corrected for extrapolation
  9975. float theta_interp = freq_scale * theta_extrap;
  9976. float theta = theta_interp;
  9977. if (ext_factor != 0.0f) {
  9978. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  9979. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  9980. // Get n-d magnitude scaling corrected for interpolation
  9981. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  9982. }
  9983. *cos_theta = cosf(theta) * mscale;
  9984. *sin_theta = sinf(theta) * mscale;
  9985. }
  9986. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  9987. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  9988. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  9989. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  9990. }
  9991. static void ggml_rope_cache_init(
  9992. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  9993. float * cache, float sin_sign, float theta_scale
  9994. ) {
  9995. float theta = theta_base;
  9996. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9997. rope_yarn(
  9998. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  9999. );
  10000. cache[i0 + 1] *= sin_sign;
  10001. theta *= theta_scale;
  10002. }
  10003. }
  10004. GGML_CALL void ggml_rope_yarn_corr_dims(
  10005. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  10006. ) {
  10007. // start and end correction dims
  10008. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  10009. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  10010. dims[0] = MAX(0, start);
  10011. dims[1] = MIN(n_dims - 1, end);
  10012. }
  10013. static void ggml_compute_forward_rope_f32(
  10014. const struct ggml_compute_params * params,
  10015. struct ggml_tensor * dst,
  10016. const bool forward) {
  10017. const struct ggml_tensor * src0 = dst->src[0];
  10018. const struct ggml_tensor * src1 = dst->src[1];
  10019. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10020. return;
  10021. }
  10022. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10023. // these two only relevant for xPos RoPE:
  10024. float xpos_base;
  10025. bool xpos_down;
  10026. //const int n_past = ((int32_t *) dst->op_params)[0];
  10027. const int n_dims = ((int32_t *) dst->op_params)[1];
  10028. const int mode = ((int32_t *) dst->op_params)[2];
  10029. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10030. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10031. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10032. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10033. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10034. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10035. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10036. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10037. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  10038. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  10039. GGML_TENSOR_UNARY_OP_LOCALS
  10040. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10041. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10042. GGML_ASSERT(nb00 == sizeof(float));
  10043. const int ith = params->ith;
  10044. const int nth = params->nth;
  10045. const int nr = ggml_nrows(dst);
  10046. GGML_ASSERT(n_dims <= ne0);
  10047. GGML_ASSERT(n_dims % 2 == 0);
  10048. // rows per thread
  10049. const int dr = (nr + nth - 1)/nth;
  10050. // row range for this thread
  10051. const int ir0 = dr*ith;
  10052. const int ir1 = MIN(ir0 + dr, nr);
  10053. // row index used to determine which thread to use
  10054. int ir = 0;
  10055. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10056. const float inv_ndims = -1.f/n_dims;
  10057. float corr_dims[2];
  10058. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10059. const bool is_neox = mode & 2;
  10060. const bool is_glm = mode & 4;
  10061. // backward process uses inverse rotation by cos and sin.
  10062. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10063. // this essentially just switches the sign of sin.
  10064. const float sin_sign = forward ? 1.0f : -1.0f;
  10065. const int32_t * pos = (const int32_t *) src1->data;
  10066. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10067. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10068. const int64_t p = pos[i2];
  10069. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10070. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10071. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10072. }
  10073. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10074. if (ir++ < ir0) continue;
  10075. if (ir > ir1) break;
  10076. float theta_base = (float)p;
  10077. if (is_glm) {
  10078. theta_base = MIN(p, n_ctx - 2);
  10079. float block_theta = MAX(p - (n_ctx - 2), 0);
  10080. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10081. const float cos_theta = cosf(theta_base);
  10082. const float sin_theta = sinf(theta_base) * sin_sign;
  10083. const float cos_block_theta = cosf(block_theta);
  10084. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10085. theta_base *= theta_scale;
  10086. block_theta *= theta_scale;
  10087. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10088. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10089. const float x0 = src[0];
  10090. const float x1 = src[n_dims/2];
  10091. const float x2 = src[n_dims];
  10092. const float x3 = src[n_dims/2*3];
  10093. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10094. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10095. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10096. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10097. }
  10098. } else if (!is_neox) {
  10099. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10100. const float cos_theta = cache[i0 + 0];
  10101. const float sin_theta = cache[i0 + 1];
  10102. // zeta scaling for xPos only:
  10103. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  10104. if (xpos_down) zeta = 1.0f / zeta;
  10105. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10106. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10107. const float x0 = src[0];
  10108. const float x1 = src[1];
  10109. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10110. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10111. }
  10112. } else {
  10113. // TODO: this might be wrong for ne0 != n_dims - need double check
  10114. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10115. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10116. theta_base *= freq_scale;
  10117. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10118. if (ic < n_dims) {
  10119. const int64_t ib = 0;
  10120. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10121. float cur_rot = inv_ndims * ic - ib;
  10122. float cos_theta, sin_theta;
  10123. rope_yarn(
  10124. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10125. &cos_theta, &sin_theta
  10126. );
  10127. sin_theta *= sin_sign;
  10128. theta_base *= theta_scale;
  10129. const int64_t i0 = ib*n_dims + ic/2;
  10130. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10131. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10132. const float x0 = src[0];
  10133. const float x1 = src[n_dims/2];
  10134. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10135. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10136. } else {
  10137. const int64_t i0 = ic;
  10138. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10139. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10140. dst_data[0] = src[0];
  10141. dst_data[1] = src[1];
  10142. }
  10143. }
  10144. }
  10145. }
  10146. }
  10147. }
  10148. }
  10149. static void ggml_compute_forward_rope_f16(
  10150. const struct ggml_compute_params * params,
  10151. struct ggml_tensor * dst,
  10152. const bool forward) {
  10153. const struct ggml_tensor * src0 = dst->src[0];
  10154. const struct ggml_tensor * src1 = dst->src[1];
  10155. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10156. return;
  10157. }
  10158. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10159. //const int n_past = ((int32_t *) dst->op_params)[0];
  10160. const int n_dims = ((int32_t *) dst->op_params)[1];
  10161. const int mode = ((int32_t *) dst->op_params)[2];
  10162. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10163. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10164. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10165. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10166. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10167. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10168. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10169. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10170. GGML_TENSOR_UNARY_OP_LOCALS
  10171. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10172. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10173. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10174. const int ith = params->ith;
  10175. const int nth = params->nth;
  10176. const int nr = ggml_nrows(dst);
  10177. GGML_ASSERT(n_dims <= ne0);
  10178. GGML_ASSERT(n_dims % 2 == 0);
  10179. // rows per thread
  10180. const int dr = (nr + nth - 1)/nth;
  10181. // row range for this thread
  10182. const int ir0 = dr*ith;
  10183. const int ir1 = MIN(ir0 + dr, nr);
  10184. // row index used to determine which thread to use
  10185. int ir = 0;
  10186. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10187. const float inv_ndims = -1.f/n_dims;
  10188. float corr_dims[2];
  10189. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10190. const bool is_neox = mode & 2;
  10191. const bool is_glm = mode & 4;
  10192. // backward process uses inverse rotation by cos and sin.
  10193. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10194. // this essentially just switches the sign of sin.
  10195. const float sin_sign = forward ? 1.0f : -1.0f;
  10196. const int32_t * pos = (const int32_t *) src1->data;
  10197. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10198. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10199. const int64_t p = pos[i2];
  10200. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10201. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10202. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10203. }
  10204. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10205. if (ir++ < ir0) continue;
  10206. if (ir > ir1) break;
  10207. float theta_base = (float)p;
  10208. if (is_glm) {
  10209. theta_base = MIN(p, n_ctx - 2);
  10210. float block_theta = MAX(p - (n_ctx - 2), 0);
  10211. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10212. const float cos_theta = cosf(theta_base);
  10213. const float sin_theta = sinf(theta_base) * sin_sign;
  10214. const float cos_block_theta = cosf(block_theta);
  10215. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10216. theta_base *= theta_scale;
  10217. block_theta *= theta_scale;
  10218. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10219. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10220. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10221. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10222. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10223. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10224. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10225. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10226. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10227. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10228. }
  10229. } else if (!is_neox) {
  10230. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10231. const float cos_theta = cache[i0 + 0];
  10232. const float sin_theta = cache[i0 + 1];
  10233. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10234. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10235. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10236. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10237. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10238. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10239. }
  10240. } else {
  10241. // TODO: this might be wrong for ne0 != n_dims - need double check
  10242. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10243. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10244. theta_base *= freq_scale;
  10245. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10246. if (ic < n_dims) {
  10247. const int64_t ib = 0;
  10248. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10249. float cur_rot = inv_ndims * ic - ib;
  10250. float cos_theta, sin_theta;
  10251. rope_yarn(
  10252. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10253. &cos_theta, &sin_theta
  10254. );
  10255. sin_theta *= sin_sign;
  10256. theta_base *= theta_scale;
  10257. const int64_t i0 = ib*n_dims + ic/2;
  10258. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10259. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10260. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10261. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10262. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10263. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10264. } else {
  10265. const int64_t i0 = ic;
  10266. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10267. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10268. dst_data[0] = src[0];
  10269. dst_data[1] = src[1];
  10270. }
  10271. }
  10272. }
  10273. }
  10274. }
  10275. }
  10276. }
  10277. static void ggml_compute_forward_rope(
  10278. const struct ggml_compute_params * params,
  10279. struct ggml_tensor * dst) {
  10280. const struct ggml_tensor * src0 = dst->src[0];
  10281. switch (src0->type) {
  10282. case GGML_TYPE_F16:
  10283. {
  10284. ggml_compute_forward_rope_f16(params, dst, true);
  10285. } break;
  10286. case GGML_TYPE_F32:
  10287. {
  10288. ggml_compute_forward_rope_f32(params, dst, true);
  10289. } break;
  10290. default:
  10291. {
  10292. GGML_ASSERT(false);
  10293. } break;
  10294. }
  10295. }
  10296. // ggml_compute_forward_rope_back
  10297. static void ggml_compute_forward_rope_back(
  10298. const struct ggml_compute_params * params,
  10299. struct ggml_tensor * dst) {
  10300. const struct ggml_tensor * src0 = dst->src[0];
  10301. switch (src0->type) {
  10302. case GGML_TYPE_F16:
  10303. {
  10304. ggml_compute_forward_rope_f16(params, dst, false);
  10305. } break;
  10306. case GGML_TYPE_F32:
  10307. {
  10308. ggml_compute_forward_rope_f32(params, dst, false);
  10309. } break;
  10310. default:
  10311. {
  10312. GGML_ASSERT(false);
  10313. } break;
  10314. }
  10315. }
  10316. // ggml_compute_forward_conv_transpose_1d
  10317. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  10318. const struct ggml_compute_params * params,
  10319. struct ggml_tensor * dst) {
  10320. const struct ggml_tensor * src0 = dst->src[0];
  10321. const struct ggml_tensor * src1 = dst->src[1];
  10322. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10323. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10324. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10325. int64_t t0 = ggml_perf_time_us();
  10326. UNUSED(t0);
  10327. GGML_TENSOR_BINARY_OP_LOCALS
  10328. const int ith = params->ith;
  10329. const int nth = params->nth;
  10330. const int nk = ne00*ne01*ne02;
  10331. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10332. GGML_ASSERT(nb10 == sizeof(float));
  10333. if (params->type == GGML_TASK_TYPE_INIT) {
  10334. if (ith != 0) {
  10335. return;
  10336. }
  10337. memset(params->wdata, 0, params->wsize);
  10338. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10339. {
  10340. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10341. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10342. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10343. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10344. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  10345. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10346. dst_data[i00*ne02 + i02] = src[i00];
  10347. }
  10348. }
  10349. }
  10350. }
  10351. // permute source data (src1) from (L x Cin) to (Cin x L)
  10352. {
  10353. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10354. ggml_fp16_t * dst_data = wdata;
  10355. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10356. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10357. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10358. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10359. }
  10360. }
  10361. }
  10362. // need to zero dst since we are accumulating into it
  10363. memset(dst->data, 0, ggml_nbytes(dst));
  10364. return;
  10365. }
  10366. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10367. return;
  10368. }
  10369. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10370. // total rows in dst
  10371. const int nr = ne1;
  10372. // rows per thread
  10373. const int dr = (nr + nth - 1)/nth;
  10374. // row range for this thread
  10375. const int ir0 = dr*ith;
  10376. const int ir1 = MIN(ir0 + dr, nr);
  10377. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10378. ggml_fp16_t * const wdata_src = wdata + nk;
  10379. for (int i1 = ir0; i1 < ir1; i1++) {
  10380. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10381. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  10382. for (int i10 = 0; i10 < ne10; i10++) {
  10383. const int i1n = i10*ne11;
  10384. for (int i00 = 0; i00 < ne00; i00++) {
  10385. float v = 0;
  10386. ggml_vec_dot_f16(ne02, &v, 0,
  10387. (ggml_fp16_t *) wdata_src + i1n, 0,
  10388. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  10389. dst_data[i10*s0 + i00] += v;
  10390. }
  10391. }
  10392. }
  10393. }
  10394. static void ggml_compute_forward_conv_transpose_1d_f32(
  10395. const struct ggml_compute_params * params,
  10396. struct ggml_tensor * dst) {
  10397. const struct ggml_tensor * src0 = dst->src[0];
  10398. const struct ggml_tensor * src1 = dst->src[1];
  10399. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10400. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10401. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10402. int64_t t0 = ggml_perf_time_us();
  10403. UNUSED(t0);
  10404. GGML_TENSOR_BINARY_OP_LOCALS
  10405. const int ith = params->ith;
  10406. const int nth = params->nth;
  10407. const int nk = ne00*ne01*ne02;
  10408. GGML_ASSERT(nb00 == sizeof(float));
  10409. GGML_ASSERT(nb10 == sizeof(float));
  10410. if (params->type == GGML_TASK_TYPE_INIT) {
  10411. if (ith != 0) {
  10412. return;
  10413. }
  10414. memset(params->wdata, 0, params->wsize);
  10415. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10416. {
  10417. float * const wdata = (float *) params->wdata + 0;
  10418. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10419. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10420. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10421. float * dst_data = wdata + i01*ne00*ne02;
  10422. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10423. dst_data[i00*ne02 + i02] = src[i00];
  10424. }
  10425. }
  10426. }
  10427. }
  10428. // prepare source data (src1)
  10429. {
  10430. float * const wdata = (float *) params->wdata + nk;
  10431. float * dst_data = wdata;
  10432. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10433. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10434. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10435. dst_data[i10*ne11 + i11] = src[i10];
  10436. }
  10437. }
  10438. }
  10439. // need to zero dst since we are accumulating into it
  10440. memset(dst->data, 0, ggml_nbytes(dst));
  10441. return;
  10442. }
  10443. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10444. return;
  10445. }
  10446. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10447. // total rows in dst
  10448. const int nr = ne1;
  10449. // rows per thread
  10450. const int dr = (nr + nth - 1)/nth;
  10451. // row range for this thread
  10452. const int ir0 = dr*ith;
  10453. const int ir1 = MIN(ir0 + dr, nr);
  10454. float * const wdata = (float *) params->wdata + 0;
  10455. float * const wdata_src = wdata + nk;
  10456. for (int i1 = ir0; i1 < ir1; i1++) {
  10457. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10458. float * wdata_kernel = wdata + i1*ne02*ne00;
  10459. for (int i10 = 0; i10 < ne10; i10++) {
  10460. const int i1n = i10*ne11;
  10461. for (int i00 = 0; i00 < ne00; i00++) {
  10462. float v = 0;
  10463. ggml_vec_dot_f32(ne02, &v, 0,
  10464. wdata_src + i1n, 0,
  10465. wdata_kernel + i00*ne02, 0, 1);
  10466. dst_data[i10*s0 + i00] += v;
  10467. }
  10468. }
  10469. }
  10470. }
  10471. static void ggml_compute_forward_conv_transpose_1d(
  10472. const struct ggml_compute_params * params,
  10473. struct ggml_tensor * dst) {
  10474. const struct ggml_tensor * src0 = dst->src[0];
  10475. switch (src0->type) {
  10476. case GGML_TYPE_F16:
  10477. {
  10478. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  10479. } break;
  10480. case GGML_TYPE_F32:
  10481. {
  10482. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  10483. } break;
  10484. default:
  10485. {
  10486. GGML_ASSERT(false);
  10487. } break;
  10488. }
  10489. }
  10490. // src0: kernel [OC, IC, KH, KW]
  10491. // src1: image [N, IC, IH, IW]
  10492. // dst: result [N, OH, OW, IC*KH*KW]
  10493. static void ggml_compute_forward_im2col_f32(
  10494. const struct ggml_compute_params * params,
  10495. struct ggml_tensor * dst) {
  10496. const struct ggml_tensor * src0 = dst->src[0];
  10497. const struct ggml_tensor * src1 = dst->src[1];
  10498. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10499. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10500. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10501. int64_t t0 = ggml_perf_time_us();
  10502. UNUSED(t0);
  10503. GGML_TENSOR_BINARY_OP_LOCALS;
  10504. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10505. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10506. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10507. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10508. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10509. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10510. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10511. const int ith = params->ith;
  10512. const int nth = params->nth;
  10513. const int64_t N = is_2D ? ne13 : ne12;
  10514. const int64_t IC = is_2D ? ne12 : ne11;
  10515. const int64_t IH = is_2D ? ne11 : 1;
  10516. const int64_t IW = ne10;
  10517. const int64_t KH = is_2D ? ne01 : 1;
  10518. const int64_t KW = ne00;
  10519. const int64_t OH = is_2D ? ne2 : 1;
  10520. const int64_t OW = ne1;
  10521. int ofs0 = is_2D ? nb13 : nb12;
  10522. int ofs1 = is_2D ? nb12 : nb11;
  10523. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10524. GGML_ASSERT(nb10 == sizeof(float));
  10525. if (params->type == GGML_TASK_TYPE_INIT) {
  10526. return;
  10527. }
  10528. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10529. return;
  10530. }
  10531. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10532. {
  10533. float * const wdata = (float *) dst->data;
  10534. for (int64_t in = 0; in < N; in++) {
  10535. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10536. for (int64_t iow = 0; iow < OW; iow++) {
  10537. for (int64_t iic = ith; iic < IC; iic += nth) {
  10538. // micro kernel
  10539. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10540. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10541. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10542. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10543. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10544. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10545. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10546. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10547. } else {
  10548. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  10549. }
  10550. }
  10551. }
  10552. }
  10553. }
  10554. }
  10555. }
  10556. }
  10557. }
  10558. // src0: kernel [OC, IC, KH, KW]
  10559. // src1: image [N, IC, IH, IW]
  10560. // dst: result [N, OH, OW, IC*KH*KW]
  10561. static void ggml_compute_forward_im2col_f16(
  10562. const struct ggml_compute_params * params,
  10563. struct ggml_tensor * dst) {
  10564. const struct ggml_tensor * src0 = dst->src[0];
  10565. const struct ggml_tensor * src1 = dst->src[1];
  10566. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10567. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10568. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10569. int64_t t0 = ggml_perf_time_us();
  10570. UNUSED(t0);
  10571. GGML_TENSOR_BINARY_OP_LOCALS;
  10572. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10573. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10574. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10575. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10576. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10577. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10578. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10579. const int ith = params->ith;
  10580. const int nth = params->nth;
  10581. const int64_t N = is_2D ? ne13 : ne12;
  10582. const int64_t IC = is_2D ? ne12 : ne11;
  10583. const int64_t IH = is_2D ? ne11 : 1;
  10584. const int64_t IW = ne10;
  10585. const int64_t KH = is_2D ? ne01 : 1;
  10586. const int64_t KW = ne00;
  10587. const int64_t OH = is_2D ? ne2 : 1;
  10588. const int64_t OW = ne1;
  10589. int ofs0 = is_2D ? nb13 : nb12;
  10590. int ofs1 = is_2D ? nb12 : nb11;
  10591. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10592. GGML_ASSERT(nb10 == sizeof(float));
  10593. if (params->type == GGML_TASK_TYPE_INIT) {
  10594. return;
  10595. }
  10596. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10597. return;
  10598. }
  10599. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10600. {
  10601. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10602. for (int64_t in = 0; in < N; in++) {
  10603. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10604. for (int64_t iow = 0; iow < OW; iow++) {
  10605. for (int64_t iic = ith; iic < IC; iic += nth) {
  10606. // micro kernel
  10607. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10608. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10609. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10610. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10611. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10612. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10613. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10614. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10615. } else {
  10616. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10617. }
  10618. }
  10619. }
  10620. }
  10621. }
  10622. }
  10623. }
  10624. }
  10625. }
  10626. static void ggml_compute_forward_im2col(
  10627. const struct ggml_compute_params * params,
  10628. struct ggml_tensor * dst) {
  10629. switch (dst->type) {
  10630. case GGML_TYPE_F16:
  10631. {
  10632. ggml_compute_forward_im2col_f16(params, dst);
  10633. } break;
  10634. case GGML_TYPE_F32:
  10635. {
  10636. ggml_compute_forward_im2col_f32(params, dst);
  10637. } break;
  10638. default:
  10639. {
  10640. GGML_ASSERT(false);
  10641. } break;
  10642. }
  10643. }
  10644. // ggml_compute_forward_conv_transpose_2d
  10645. static void ggml_compute_forward_conv_transpose_2d(
  10646. const struct ggml_compute_params * params,
  10647. struct ggml_tensor * dst) {
  10648. const struct ggml_tensor * src0 = dst->src[0];
  10649. const struct ggml_tensor * src1 = dst->src[1];
  10650. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10651. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10652. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10653. int64_t t0 = ggml_perf_time_us();
  10654. UNUSED(t0);
  10655. GGML_TENSOR_BINARY_OP_LOCALS
  10656. const int ith = params->ith;
  10657. const int nth = params->nth;
  10658. const int nk = ne00*ne01*ne02*ne03;
  10659. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10660. GGML_ASSERT(nb10 == sizeof(float));
  10661. if (params->type == GGML_TASK_TYPE_INIT) {
  10662. if (ith != 0) {
  10663. return;
  10664. }
  10665. memset(params->wdata, 0, params->wsize);
  10666. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10667. {
  10668. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10669. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10670. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10671. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10672. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10673. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10674. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10675. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10676. }
  10677. }
  10678. }
  10679. }
  10680. }
  10681. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10682. {
  10683. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10684. for (int i12 = 0; i12 < ne12; i12++) {
  10685. for (int i11 = 0; i11 < ne11; i11++) {
  10686. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10687. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10688. for (int i10 = 0; i10 < ne10; i10++) {
  10689. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10690. }
  10691. }
  10692. }
  10693. }
  10694. memset(dst->data, 0, ggml_nbytes(dst));
  10695. return;
  10696. }
  10697. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10698. return;
  10699. }
  10700. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10701. // total patches in dst
  10702. const int np = ne2;
  10703. // patches per thread
  10704. const int dp = (np + nth - 1)/nth;
  10705. // patch range for this thread
  10706. const int ip0 = dp*ith;
  10707. const int ip1 = MIN(ip0 + dp, np);
  10708. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10709. ggml_fp16_t * const wdata_src = wdata + nk;
  10710. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10711. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10712. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10713. for (int i11 = 0; i11 < ne11; i11++) {
  10714. for (int i10 = 0; i10 < ne10; i10++) {
  10715. const int i1n = i11*ne10*ne12 + i10*ne12;
  10716. for (int i01 = 0; i01 < ne01; i01++) {
  10717. for (int i00 = 0; i00 < ne00; i00++) {
  10718. float v = 0;
  10719. ggml_vec_dot_f16(ne03, &v, 0,
  10720. wdata_src + i1n, 0,
  10721. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  10722. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10723. }
  10724. }
  10725. }
  10726. }
  10727. }
  10728. }
  10729. // ggml_compute_forward_pool_1d_sk_p0
  10730. static void ggml_compute_forward_pool_1d_sk_p0(
  10731. const struct ggml_compute_params * params,
  10732. const enum ggml_op_pool op,
  10733. const int k,
  10734. struct ggml_tensor * dst) {
  10735. const struct ggml_tensor * src = dst->src[0];
  10736. assert(src->type == GGML_TYPE_F32);
  10737. assert(params->ith == 0);
  10738. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10739. return;
  10740. }
  10741. const char * cdata = (const char *)src->data;
  10742. const char * const data_end = cdata + ggml_nbytes(src);
  10743. float * drow = (float *)dst->data;
  10744. const int64_t rs = dst->ne[0];
  10745. while (cdata < data_end) {
  10746. const float * const srow = (const float *)cdata;
  10747. int j = 0;
  10748. for (int64_t i = 0; i < rs; ++i) {
  10749. switch (op) {
  10750. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10751. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10752. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10753. }
  10754. for (int ki = 0; ki < k; ++ki) {
  10755. switch (op) {
  10756. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10757. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10758. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10759. }
  10760. ++j;
  10761. }
  10762. switch (op) {
  10763. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10764. case GGML_OP_POOL_MAX: break;
  10765. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10766. }
  10767. }
  10768. cdata += src->nb[1];
  10769. drow += rs;
  10770. }
  10771. }
  10772. // ggml_compute_forward_pool_1d
  10773. static void ggml_compute_forward_pool_1d(
  10774. const struct ggml_compute_params * params,
  10775. struct ggml_tensor * dst) {
  10776. const int32_t * opts = (const int32_t *)dst->op_params;
  10777. enum ggml_op_pool op = opts[0];
  10778. const int k0 = opts[1];
  10779. const int s0 = opts[2];
  10780. const int p0 = opts[3];
  10781. GGML_ASSERT(p0 == 0); // padding not supported
  10782. GGML_ASSERT(k0 == s0); // only s = k supported
  10783. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  10784. }
  10785. // ggml_compute_forward_pool_2d
  10786. static void ggml_compute_forward_pool_2d(
  10787. const struct ggml_compute_params * params,
  10788. struct ggml_tensor * dst) {
  10789. const struct ggml_tensor * src = dst->src[0];
  10790. GGML_ASSERT(src->type == GGML_TYPE_F32);
  10791. GGML_ASSERT(params->ith == 0);
  10792. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10793. return;
  10794. }
  10795. const int32_t * opts = (const int32_t *)dst->op_params;
  10796. enum ggml_op_pool op = opts[0];
  10797. const int k0 = opts[1];
  10798. const int k1 = opts[2];
  10799. const int s0 = opts[3];
  10800. const int s1 = opts[4];
  10801. const int p0 = opts[5];
  10802. const int p1 = opts[6];
  10803. const char * cdata = (const char*)src->data;
  10804. const char * const data_end = cdata + ggml_nbytes(src);
  10805. const int64_t px = dst->ne[0];
  10806. const int64_t py = dst->ne[1];
  10807. const int64_t pa = px * py;
  10808. float * dplane = (float *)dst->data;
  10809. const int ka = k0 * k1;
  10810. const int offset0 = -p0;
  10811. const int offset1 = -p1;
  10812. while (cdata < data_end) {
  10813. for (int oy = 0; oy < py; ++oy) {
  10814. float * const drow = dplane + oy * px;
  10815. for (int ox = 0; ox < px; ++ox) {
  10816. float * const out = drow + ox;
  10817. switch (op) {
  10818. case GGML_OP_POOL_AVG: *out = 0; break;
  10819. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10820. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10821. }
  10822. const int ix = offset0 + ox * s0;
  10823. const int iy = offset1 + oy * s1;
  10824. for (int ky = 0; ky < k1; ++ky) {
  10825. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  10826. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10827. for (int kx = 0; kx < k0; ++kx) {
  10828. int j = ix + kx;
  10829. if (j < 0 || j >= src->ne[0]) continue;
  10830. switch (op) {
  10831. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10832. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10833. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10834. }
  10835. }
  10836. }
  10837. switch (op) {
  10838. case GGML_OP_POOL_AVG: *out /= ka; break;
  10839. case GGML_OP_POOL_MAX: break;
  10840. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10841. }
  10842. }
  10843. }
  10844. cdata += src->nb[2];
  10845. dplane += pa;
  10846. }
  10847. }
  10848. // ggml_compute_forward_upscale
  10849. static void ggml_compute_forward_upscale_f32(
  10850. const struct ggml_compute_params * params,
  10851. struct ggml_tensor * dst) {
  10852. const struct ggml_tensor * src0 = dst->src[0];
  10853. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10854. return;
  10855. }
  10856. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10857. const int ith = params->ith;
  10858. const int nth = params->nth;
  10859. GGML_TENSOR_UNARY_OP_LOCALS
  10860. const int scale_factor = dst->op_params[0];
  10861. // TODO: optimize
  10862. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10863. const int64_t i03 = i3;
  10864. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  10865. const int64_t i02 = i2;
  10866. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10867. const int64_t i01 = i1 / scale_factor;
  10868. for (int64_t i0 = 0; i0 < ne0; i0++) {
  10869. const int64_t i00 = i0 / scale_factor;
  10870. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  10871. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  10872. *y = *x;
  10873. }
  10874. }
  10875. }
  10876. }
  10877. }
  10878. static void ggml_compute_forward_upscale(
  10879. const struct ggml_compute_params * params,
  10880. struct ggml_tensor * dst) {
  10881. const struct ggml_tensor * src0 = dst->src[0];
  10882. switch (src0->type) {
  10883. case GGML_TYPE_F32:
  10884. {
  10885. ggml_compute_forward_upscale_f32(params, dst);
  10886. } break;
  10887. default:
  10888. {
  10889. GGML_ASSERT(false);
  10890. } break;
  10891. }
  10892. }
  10893. // ggml_compute_forward_pad
  10894. static void ggml_compute_forward_pad_f32(
  10895. const struct ggml_compute_params * params,
  10896. struct ggml_tensor * dst) {
  10897. const struct ggml_tensor * src0 = dst->src[0];
  10898. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10899. return;
  10900. }
  10901. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10902. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10903. const int ith = params->ith;
  10904. const int nth = params->nth;
  10905. GGML_TENSOR_UNARY_OP_LOCALS
  10906. float * dst_ptr = (float *) dst->data;
  10907. // TODO: optimize
  10908. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10909. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  10910. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10911. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  10912. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  10913. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10914. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  10915. dst_ptr[dst_idx] = *src_ptr;
  10916. } else {
  10917. dst_ptr[dst_idx] = 0;
  10918. }
  10919. }
  10920. }
  10921. }
  10922. }
  10923. }
  10924. static void ggml_compute_forward_pad(
  10925. const struct ggml_compute_params * params,
  10926. struct ggml_tensor * dst) {
  10927. const struct ggml_tensor * src0 = dst->src[0];
  10928. switch (src0->type) {
  10929. case GGML_TYPE_F32:
  10930. {
  10931. ggml_compute_forward_pad_f32(params, dst);
  10932. } break;
  10933. default:
  10934. {
  10935. GGML_ASSERT(false);
  10936. } break;
  10937. }
  10938. }
  10939. // ggml_compute_forward_argsort
  10940. static void ggml_compute_forward_argsort_f32(
  10941. const struct ggml_compute_params * params,
  10942. struct ggml_tensor * dst) {
  10943. const struct ggml_tensor * src0 = dst->src[0];
  10944. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10945. return;
  10946. }
  10947. GGML_TENSOR_UNARY_OP_LOCALS
  10948. GGML_ASSERT(nb0 == sizeof(float));
  10949. const int ith = params->ith;
  10950. const int nth = params->nth;
  10951. const int64_t nr = ggml_nrows(src0);
  10952. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  10953. for (int64_t i = ith; i < nr; i += nth) {
  10954. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  10955. const float * src_data = (float *)((char *) src0->data + i*nb01);
  10956. for (int64_t j = 0; j < ne0; j++) {
  10957. dst_data[j] = j;
  10958. }
  10959. // C doesn't have a functional sort, so we do a bubble sort instead
  10960. for (int64_t j = 0; j < ne0; j++) {
  10961. for (int64_t k = j + 1; k < ne0; k++) {
  10962. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  10963. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  10964. int32_t tmp = dst_data[j];
  10965. dst_data[j] = dst_data[k];
  10966. dst_data[k] = tmp;
  10967. }
  10968. }
  10969. }
  10970. }
  10971. }
  10972. static void ggml_compute_forward_argsort(
  10973. const struct ggml_compute_params * params,
  10974. struct ggml_tensor * dst) {
  10975. const struct ggml_tensor * src0 = dst->src[0];
  10976. switch (src0->type) {
  10977. case GGML_TYPE_F32:
  10978. {
  10979. ggml_compute_forward_argsort_f32(params, dst);
  10980. } break;
  10981. default:
  10982. {
  10983. GGML_ASSERT(false);
  10984. } break;
  10985. }
  10986. }
  10987. // ggml_compute_forward_flash_attn
  10988. static void ggml_compute_forward_flash_attn_f32(
  10989. const struct ggml_compute_params * params,
  10990. const bool masked,
  10991. struct ggml_tensor * dst) {
  10992. const struct ggml_tensor * q = dst->src[0];
  10993. const struct ggml_tensor * k = dst->src[1];
  10994. const struct ggml_tensor * v = dst->src[2];
  10995. int64_t t0 = ggml_perf_time_us();
  10996. UNUSED(t0);
  10997. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10998. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10999. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11000. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11001. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11002. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11003. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11004. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11005. const int ith = params->ith;
  11006. const int nth = params->nth;
  11007. const int64_t D = neq0;
  11008. const int64_t N = neq1;
  11009. const int64_t P = nek1 - N;
  11010. const int64_t M = P + N;
  11011. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11012. GGML_ASSERT(ne0 == D);
  11013. GGML_ASSERT(ne1 == N);
  11014. GGML_ASSERT(P >= 0);
  11015. GGML_ASSERT(nbq0 == sizeof(float));
  11016. GGML_ASSERT(nbk0 == sizeof(float));
  11017. GGML_ASSERT(nbv0 == sizeof(float));
  11018. GGML_ASSERT(neq0 == D);
  11019. GGML_ASSERT(nek0 == D);
  11020. GGML_ASSERT(nev1 == D);
  11021. GGML_ASSERT(neq1 == N);
  11022. GGML_ASSERT(nek1 == N + P);
  11023. GGML_ASSERT(nev1 == D);
  11024. // dst cannot be transposed or permuted
  11025. GGML_ASSERT(nb0 == sizeof(float));
  11026. GGML_ASSERT(nb0 <= nb1);
  11027. GGML_ASSERT(nb1 <= nb2);
  11028. GGML_ASSERT(nb2 <= nb3);
  11029. if (params->type == GGML_TASK_TYPE_INIT) {
  11030. return;
  11031. }
  11032. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11033. return;
  11034. }
  11035. // parallelize by q rows using ggml_vec_dot_f32
  11036. // total rows in q
  11037. const int nr = neq1*neq2*neq3;
  11038. // rows per thread
  11039. const int dr = (nr + nth - 1)/nth;
  11040. // row range for this thread
  11041. const int ir0 = dr*ith;
  11042. const int ir1 = MIN(ir0 + dr, nr);
  11043. const float scale = 1.0f/sqrtf(D);
  11044. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11045. for (int ir = ir0; ir < ir1; ++ir) {
  11046. // q indices
  11047. const int iq3 = ir/(neq2*neq1);
  11048. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11049. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11050. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  11051. for (int i = M; i < Mup; ++i) {
  11052. S[i] = -INFINITY;
  11053. }
  11054. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11055. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11056. // k indices
  11057. const int ik3 = iq3;
  11058. const int ik2 = iq2 % nek2;
  11059. const int ik1 = ic;
  11060. // S indices
  11061. const int i1 = ik1;
  11062. ggml_vec_dot_f32(neq0,
  11063. S + i1, 0,
  11064. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11065. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11066. }
  11067. // scale
  11068. ggml_vec_scale_f32(masked_begin, S, scale);
  11069. for (int64_t i = masked_begin; i < M; i++) {
  11070. S[i] = -INFINITY;
  11071. }
  11072. // softmax
  11073. // exclude known -INF S[..] values from max and loop
  11074. // dont forget to set their SW values to zero
  11075. {
  11076. float max = -INFINITY;
  11077. ggml_vec_max_f32(masked_begin, &max, S);
  11078. ggml_float sum = 0.0;
  11079. {
  11080. #ifdef GGML_SOFT_MAX_ACCELERATE
  11081. max = -max;
  11082. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11083. vvexpf(S, S, &Mup);
  11084. ggml_vec_sum_f32(Mup, &sum, S);
  11085. #else
  11086. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11087. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11088. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11089. if (i >= masked_begin) {
  11090. break;
  11091. }
  11092. float * SS = S + i;
  11093. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11094. if (i + j >= masked_begin) {
  11095. break;
  11096. } else if (SS[j] == -INFINITY) {
  11097. SS[j] = 0.0f;
  11098. } else {
  11099. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11100. const float val = expf(SS[j] - max);
  11101. #else
  11102. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11103. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11104. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11105. #endif
  11106. sump[j] += (ggml_float)val;
  11107. SS[j] = val;
  11108. }
  11109. }
  11110. }
  11111. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11112. sum += sump[i];
  11113. }
  11114. #endif
  11115. }
  11116. assert(sum > 0.0);
  11117. sum = 1.0/sum;
  11118. ggml_vec_scale_f32(masked_begin, S, sum);
  11119. #ifndef NDEBUG
  11120. for (int i = 0; i < masked_begin; ++i) {
  11121. assert(!isnan(S[i]));
  11122. assert(!isinf(S[i]));
  11123. }
  11124. #endif
  11125. }
  11126. for (int64_t ic = 0; ic < nev1; ++ic) {
  11127. // dst indices
  11128. const int i1 = iq1;
  11129. const int i2 = iq2;
  11130. const int i3 = iq3;
  11131. // v indices
  11132. const int iv2 = iq2 % nev2;
  11133. const int iv3 = iq3;
  11134. ggml_vec_dot_f32(masked_begin,
  11135. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11136. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11137. S, 0, 1);
  11138. }
  11139. }
  11140. }
  11141. static void ggml_compute_forward_flash_attn_f16(
  11142. const struct ggml_compute_params * params,
  11143. const bool masked,
  11144. struct ggml_tensor * dst) {
  11145. const struct ggml_tensor * q = dst->src[0];
  11146. const struct ggml_tensor * k = dst->src[1];
  11147. const struct ggml_tensor * v = dst->src[2];
  11148. int64_t t0 = ggml_perf_time_us();
  11149. UNUSED(t0);
  11150. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11151. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11152. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11153. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11154. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11155. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11156. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11157. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11158. const int ith = params->ith;
  11159. const int nth = params->nth;
  11160. const int64_t D = neq0;
  11161. const int64_t N = neq1;
  11162. const int64_t P = nek1 - N;
  11163. const int64_t M = P + N;
  11164. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11165. GGML_ASSERT(ne0 == D);
  11166. GGML_ASSERT(ne1 == N);
  11167. GGML_ASSERT(P >= 0);
  11168. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11169. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11170. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11171. GGML_ASSERT(neq0 == D);
  11172. GGML_ASSERT(nek0 == D);
  11173. GGML_ASSERT(nev1 == D);
  11174. GGML_ASSERT(neq1 == N);
  11175. GGML_ASSERT(nek1 == N + P);
  11176. GGML_ASSERT(nev1 == D);
  11177. // dst cannot be transposed or permuted
  11178. GGML_ASSERT(nb0 == sizeof(float));
  11179. GGML_ASSERT(nb0 <= nb1);
  11180. GGML_ASSERT(nb1 <= nb2);
  11181. GGML_ASSERT(nb2 <= nb3);
  11182. if (params->type == GGML_TASK_TYPE_INIT) {
  11183. return;
  11184. }
  11185. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11186. return;
  11187. }
  11188. // parallelize by q rows using ggml_vec_dot_f32
  11189. // total rows in q
  11190. const int nr = neq1*neq2*neq3;
  11191. // rows per thread
  11192. const int dr = (nr + nth - 1)/nth;
  11193. // row range for this thread
  11194. const int ir0 = dr*ith;
  11195. const int ir1 = MIN(ir0 + dr, nr);
  11196. const float scale = 1.0f/sqrtf(D);
  11197. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11198. for (int ir = ir0; ir < ir1; ++ir) {
  11199. // q indices
  11200. const int iq3 = ir/(neq2*neq1);
  11201. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11202. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11203. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11204. for (int i = M; i < Mup; ++i) {
  11205. S[i] = -INFINITY;
  11206. }
  11207. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11208. for (int64_t ic = 0; ic < nek1; ++ic) {
  11209. // k indices
  11210. const int ik3 = iq3;
  11211. const int ik2 = iq2 % nek2;
  11212. const int ik1 = ic;
  11213. // S indices
  11214. const int i1 = ik1;
  11215. ggml_vec_dot_f16(neq0,
  11216. S + i1, 0,
  11217. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11218. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11219. }
  11220. } else {
  11221. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11222. // k indices
  11223. const int ik3 = iq3;
  11224. const int ik2 = iq2 % nek2;
  11225. const int ik1 = ic;
  11226. // S indices
  11227. const int i1 = ik1;
  11228. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11229. S + i1,
  11230. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11231. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11232. }
  11233. }
  11234. // scale
  11235. ggml_vec_scale_f32(nek1, S, scale);
  11236. if (masked) {
  11237. for (int64_t i = P; i < M; i++) {
  11238. if (i > P + iq1) {
  11239. S[i] = -INFINITY;
  11240. }
  11241. }
  11242. }
  11243. // softmax
  11244. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  11245. // dont forget to set their S values to zero
  11246. {
  11247. float max = -INFINITY;
  11248. ggml_vec_max_f32(M, &max, S);
  11249. ggml_float sum = 0.0;
  11250. {
  11251. #ifdef GGML_SOFT_MAX_ACCELERATE
  11252. max = -max;
  11253. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11254. vvexpf(S, S, &Mup);
  11255. ggml_vec_sum_f32(Mup, &sum, S);
  11256. #else
  11257. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11258. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11259. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11260. float * SS = S + i;
  11261. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11262. if (SS[j] == -INFINITY) {
  11263. SS[j] = 0.0f;
  11264. } else {
  11265. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11266. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11267. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11268. sump[j] += (ggml_float)val;
  11269. SS[j] = val;
  11270. }
  11271. }
  11272. }
  11273. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11274. sum += sump[i];
  11275. }
  11276. #endif
  11277. }
  11278. assert(sum > 0.0);
  11279. sum = 1.0/sum;
  11280. ggml_vec_scale_f32(M, S, sum);
  11281. #ifndef NDEBUG
  11282. for (int i = 0; i < M; ++i) {
  11283. assert(!isnan(S[i]));
  11284. assert(!isinf(S[i]));
  11285. }
  11286. #endif
  11287. }
  11288. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11289. for (int64_t i = 0; i < M; i++) {
  11290. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11291. }
  11292. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  11293. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11294. for (int64_t ic = 0; ic < nev1; ++ic) {
  11295. // dst indices
  11296. const int i1 = iq1;
  11297. const int i2 = iq2;
  11298. const int i3 = iq3;
  11299. // v indices
  11300. const int iv2 = iq2 % nev2;
  11301. const int iv3 = iq3;
  11302. ggml_vec_dot_f16(nev0,
  11303. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11304. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11305. S16, 0, 1);
  11306. }
  11307. } else {
  11308. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11309. // dst indices
  11310. const int i1 = iq1;
  11311. const int i2 = iq2;
  11312. const int i3 = iq3;
  11313. // v indices
  11314. const int iv2 = iq2 % nev2;
  11315. const int iv3 = iq3;
  11316. ggml_vec_dot_f16_unroll(nev0, nbv1,
  11317. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11318. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11319. S16);
  11320. }
  11321. }
  11322. }
  11323. }
  11324. static void ggml_compute_forward_flash_attn(
  11325. const struct ggml_compute_params * params,
  11326. const bool masked,
  11327. struct ggml_tensor * dst) {
  11328. const struct ggml_tensor * q = dst->src[0];
  11329. switch (q->type) {
  11330. case GGML_TYPE_F16:
  11331. {
  11332. ggml_compute_forward_flash_attn_f16(params, masked, dst);
  11333. } break;
  11334. case GGML_TYPE_F32:
  11335. {
  11336. ggml_compute_forward_flash_attn_f32(params, masked, dst);
  11337. } break;
  11338. default:
  11339. {
  11340. GGML_ASSERT(false);
  11341. } break;
  11342. }
  11343. }
  11344. // ggml_compute_forward_flash_ff
  11345. static void ggml_compute_forward_flash_ff_f16(
  11346. const struct ggml_compute_params * params,
  11347. struct ggml_tensor * dst) {
  11348. const struct ggml_tensor * a = dst->src[0]; // F16
  11349. const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
  11350. const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
  11351. const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
  11352. const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
  11353. int64_t t0 = ggml_perf_time_us();
  11354. UNUSED(t0);
  11355. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  11356. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  11357. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  11358. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  11359. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  11360. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  11361. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  11362. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  11363. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  11364. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  11365. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11366. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11367. const int ith = params->ith;
  11368. const int nth = params->nth;
  11369. const int64_t D = nea0;
  11370. //const int64_t N = nea1;
  11371. const int64_t M = neb01;
  11372. GGML_ASSERT(ne0 == nea0);
  11373. GGML_ASSERT(ne1 == nea1);
  11374. GGML_ASSERT(ne2 == nea2);
  11375. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11376. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11377. GGML_ASSERT(nbb10 == sizeof(float));
  11378. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11379. GGML_ASSERT(nbc10 == sizeof(float));
  11380. GGML_ASSERT(neb00 == D);
  11381. GGML_ASSERT(neb01 == M);
  11382. GGML_ASSERT(neb10 == M);
  11383. GGML_ASSERT(neb11 == 1);
  11384. GGML_ASSERT(nec00 == M);
  11385. GGML_ASSERT(nec01 == D);
  11386. GGML_ASSERT(nec10 == D);
  11387. GGML_ASSERT(nec11 == 1);
  11388. // dst cannot be transposed or permuted
  11389. GGML_ASSERT(nb0 == sizeof(float));
  11390. GGML_ASSERT(nb0 <= nb1);
  11391. GGML_ASSERT(nb1 <= nb2);
  11392. GGML_ASSERT(nb2 <= nb3);
  11393. if (params->type == GGML_TASK_TYPE_INIT) {
  11394. return;
  11395. }
  11396. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11397. return;
  11398. }
  11399. // parallelize by a rows using ggml_vec_dot_f32
  11400. // total rows in a
  11401. const int nr = nea1*nea2*nea3;
  11402. // rows per thread
  11403. const int dr = (nr + nth - 1)/nth;
  11404. // row range for this thread
  11405. const int ir0 = dr*ith;
  11406. const int ir1 = MIN(ir0 + dr, nr);
  11407. for (int ir = ir0; ir < ir1; ++ir) {
  11408. // a indices
  11409. const int ia3 = ir/(nea2*nea1);
  11410. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11411. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11412. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11413. for (int64_t ic = 0; ic < neb01; ++ic) {
  11414. // b0 indices
  11415. const int ib03 = ia3;
  11416. const int ib02 = ia2;
  11417. const int ib01 = ic;
  11418. // S indices
  11419. const int i1 = ib01;
  11420. ggml_vec_dot_f16(nea0,
  11421. S + i1, 0,
  11422. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  11423. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  11424. }
  11425. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11426. //ggml_vec_gelu_f32(neb01, S, S);
  11427. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11428. for (int64_t i = 0; i < M; i++) {
  11429. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11430. }
  11431. ggml_vec_gelu_f16(neb01, S16, S16);
  11432. {
  11433. // dst indices
  11434. const int i1 = ia1;
  11435. const int i2 = ia2;
  11436. const int i3 = ia3;
  11437. for (int64_t ic = 0; ic < nec01; ++ic) {
  11438. ggml_vec_dot_f16(neb01,
  11439. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11440. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  11441. S16, 0, 1);
  11442. }
  11443. ggml_vec_add_f32(nec01,
  11444. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11445. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11446. (float *) c1->data);
  11447. }
  11448. }
  11449. }
  11450. static void ggml_compute_forward_flash_ff(
  11451. const struct ggml_compute_params * params,
  11452. struct ggml_tensor * dst) {
  11453. const struct ggml_tensor * b0 = dst->src[1];
  11454. switch (b0->type) {
  11455. case GGML_TYPE_F16:
  11456. {
  11457. ggml_compute_forward_flash_ff_f16(params, dst);
  11458. } break;
  11459. case GGML_TYPE_F32:
  11460. {
  11461. GGML_ASSERT(false); // TODO
  11462. } break;
  11463. default:
  11464. {
  11465. GGML_ASSERT(false);
  11466. } break;
  11467. }
  11468. }
  11469. // ggml_compute_forward_flash_attn_back
  11470. static void ggml_compute_forward_flash_attn_back_f32(
  11471. const struct ggml_compute_params * params,
  11472. const bool masked,
  11473. struct ggml_tensor * dst) {
  11474. const struct ggml_tensor * q = dst->src[0];
  11475. const struct ggml_tensor * k = dst->src[1];
  11476. const struct ggml_tensor * v = dst->src[2];
  11477. const struct ggml_tensor * d = dst->src[3];
  11478. int64_t t0 = ggml_perf_time_us();
  11479. UNUSED(t0);
  11480. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11481. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11482. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11483. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11484. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11485. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11486. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  11487. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  11488. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11489. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11490. const int ith = params->ith;
  11491. const int nth = params->nth;
  11492. const int64_t D = neq0;
  11493. const int64_t N = neq1;
  11494. const int64_t P = nek1 - N;
  11495. const int64_t M = P + N;
  11496. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11497. const int mxDM = MAX(D, Mup);
  11498. // GGML_ASSERT(ne0 == D);
  11499. // GGML_ASSERT(ne1 == N);
  11500. GGML_ASSERT(P >= 0);
  11501. GGML_ASSERT(nbq0 == sizeof(float));
  11502. GGML_ASSERT(nbk0 == sizeof(float));
  11503. GGML_ASSERT(nbv0 == sizeof(float));
  11504. GGML_ASSERT(neq0 == D);
  11505. GGML_ASSERT(nek0 == D);
  11506. GGML_ASSERT(nev1 == D);
  11507. GGML_ASSERT(ned0 == D);
  11508. GGML_ASSERT(neq1 == N);
  11509. GGML_ASSERT(nek1 == N + P);
  11510. GGML_ASSERT(nev1 == D);
  11511. GGML_ASSERT(ned1 == N);
  11512. // dst cannot be transposed or permuted
  11513. GGML_ASSERT(nb0 == sizeof(float));
  11514. GGML_ASSERT(nb0 <= nb1);
  11515. GGML_ASSERT(nb1 <= nb2);
  11516. GGML_ASSERT(nb2 <= nb3);
  11517. if (params->type == GGML_TASK_TYPE_INIT) {
  11518. if (ith == 0) {
  11519. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11520. }
  11521. return;
  11522. }
  11523. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11524. return;
  11525. }
  11526. const int64_t elem_q = ggml_nelements(q);
  11527. const int64_t elem_k = ggml_nelements(k);
  11528. enum ggml_type result_type = dst->type;
  11529. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11530. const size_t tsize = ggml_type_size(result_type);
  11531. const size_t offs_q = 0;
  11532. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11533. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11534. void * grad_q = (char *) dst->data;
  11535. void * grad_k = (char *) dst->data + offs_k;
  11536. void * grad_v = (char *) dst->data + offs_v;
  11537. const size_t nbgq1 = nb0*neq0;
  11538. const size_t nbgq2 = nb0*neq0*neq1;
  11539. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11540. const size_t nbgk1 = nb0*nek0;
  11541. const size_t nbgk2 = nb0*nek0*nek1;
  11542. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11543. const size_t nbgv1 = nb0*nev0;
  11544. const size_t nbgv2 = nb0*nev0*nev1;
  11545. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11546. // parallelize by k rows using ggml_vec_dot_f32
  11547. // total rows in k
  11548. const int nr = nek2*nek3;
  11549. // rows per thread
  11550. const int dr = (nr + nth - 1)/nth;
  11551. // row range for this thread
  11552. const int ir0 = dr*ith;
  11553. const int ir1 = MIN(ir0 + dr, nr);
  11554. const float scale = 1.0f/sqrtf(D);
  11555. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11556. // how often k2 (and v2) is repeated in q2
  11557. int nrep = neq2/nek2;
  11558. for (int ir = ir0; ir < ir1; ++ir) {
  11559. // q indices
  11560. const int ik3 = ir/(nek2);
  11561. const int ik2 = ir - ik3*nek2;
  11562. const int iq3 = ik3;
  11563. const int id3 = ik3;
  11564. const int iv3 = ik3;
  11565. const int iv2 = ik2;
  11566. for (int irep = 0; irep < nrep; ++irep) {
  11567. const int iq2 = ik2 + irep*nek2;
  11568. const int id2 = iq2;
  11569. // (ik2 + irep*nek2) % nek2 == ik2
  11570. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11571. const int id1 = iq1;
  11572. // not sure about CACHE_LINE_SIZE_F32..
  11573. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11574. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11575. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11576. for (int i = M; i < Mup; ++i) {
  11577. S[i] = -INFINITY;
  11578. }
  11579. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11580. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11581. // k indices
  11582. const int ik1 = ic;
  11583. // S indices
  11584. const int i1 = ik1;
  11585. ggml_vec_dot_f32(neq0,
  11586. S + i1, 0,
  11587. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11588. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11589. }
  11590. // scale
  11591. ggml_vec_scale_f32(masked_begin, S, scale);
  11592. for (int64_t i = masked_begin; i < M; i++) {
  11593. S[i] = -INFINITY;
  11594. }
  11595. // softmax
  11596. // exclude known -INF S[..] values from max and loop
  11597. // dont forget to set their SM values to zero
  11598. {
  11599. float max = -INFINITY;
  11600. ggml_vec_max_f32(masked_begin, &max, S);
  11601. ggml_float sum = 0.0;
  11602. {
  11603. #ifdef GGML_SOFT_MAX_ACCELERATE
  11604. max = -max;
  11605. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11606. vvexpf(SM, SM, &Mup);
  11607. ggml_vec_sum_f32(Mup, &sum, SM);
  11608. #else
  11609. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11610. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11611. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11612. if (i >= masked_begin) {
  11613. break;
  11614. }
  11615. float * SR = S + i;
  11616. float * SW = SM + i;
  11617. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11618. if (i + j >= masked_begin) {
  11619. break;
  11620. } else if (SR[j] == -INFINITY) {
  11621. SW[j] = 0.0f;
  11622. } else {
  11623. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11624. const float val = expf(SR[j] - max);
  11625. #else
  11626. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11627. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11628. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11629. #endif
  11630. sump[j] += (ggml_float)val;
  11631. SW[j] = val;
  11632. }
  11633. }
  11634. }
  11635. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11636. sum += sump[i];
  11637. }
  11638. #endif
  11639. }
  11640. assert(sum > 0.0);
  11641. sum = 1.0/sum;
  11642. ggml_vec_scale_f32(masked_begin, SM, sum);
  11643. }
  11644. // step-by-step explanation
  11645. {
  11646. // forward-process shape grads from backward process
  11647. // parallel_for ik2,ik3:
  11648. // for irep:
  11649. // iq2 = ik2 + irep*nek2
  11650. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  11651. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11652. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  11653. // for iq1:
  11654. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11655. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11656. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11657. // S0 = -Inf [D,1,1,1]
  11658. // ~S1[i] = dot(kcur[:D,i], qcur)
  11659. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11660. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11661. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11662. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11663. // ~S5[i] = dot(vcur[:,i], S4)
  11664. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  11665. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11666. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  11667. // dst backward-/ grad[dst] = d
  11668. //
  11669. // output gradients with their dependencies:
  11670. //
  11671. // grad[kcur] = grad[S1].T @ qcur
  11672. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11673. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11674. // grad[S4] = grad[S5] @ vcur
  11675. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11676. // grad[qcur] = grad[S1] @ kcur
  11677. // grad[vcur] = grad[S5].T @ S4
  11678. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11679. //
  11680. // in post-order:
  11681. //
  11682. // S1 = qcur @ kcur.T
  11683. // S2 = S1 * scale
  11684. // S3 = diag_mask_inf(S2, P)
  11685. // S4 = softmax(S3)
  11686. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11687. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11688. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11689. // grad[qcur] = grad[S1] @ kcur
  11690. // grad[kcur] = grad[S1].T @ qcur
  11691. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11692. //
  11693. // using less variables (SM=S4):
  11694. //
  11695. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11696. // SM = softmax(S)
  11697. // S = d[:D,iq1,iq2,iq3] @ vcur
  11698. // dot_SM_gradSM = dot(SM, S)
  11699. // S = SM * (S - dot(SM, S))
  11700. // S = diag_mask_zero(S, P) * scale
  11701. //
  11702. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11703. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  11704. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11705. }
  11706. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11707. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11708. // for ic:
  11709. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  11710. // exclude known future zero S[..] values from operation
  11711. ggml_vec_set_f32(masked_begin, S, 0);
  11712. for (int64_t ic = 0; ic < D; ++ic) {
  11713. ggml_vec_mad_f32(masked_begin,
  11714. S,
  11715. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11716. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11717. }
  11718. // S = SM * (S - dot(SM, S))
  11719. float dot_SM_gradSM = 0;
  11720. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  11721. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11722. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  11723. // S = diag_mask_zero(S, P) * scale
  11724. // already done by above ggml_vec_set_f32
  11725. // exclude known zero S[..] values from operation
  11726. ggml_vec_scale_f32(masked_begin, S, scale);
  11727. // S shape [M,1]
  11728. // SM shape [M,1]
  11729. // kcur shape [D,M]
  11730. // qcur shape [D,1]
  11731. // vcur shape [M,D]
  11732. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11733. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11734. // for ic:
  11735. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  11736. // exclude known zero S[..] values from loop
  11737. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11738. ggml_vec_mad_f32(D,
  11739. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  11740. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11741. S[ic]);
  11742. }
  11743. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11744. // for ic:
  11745. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11746. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11747. // exclude known zero S[..] values from loop
  11748. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11749. ggml_vec_mad_f32(D,
  11750. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  11751. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  11752. S[ic]);
  11753. }
  11754. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11755. // for ic:
  11756. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  11757. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  11758. // exclude known zero SM[..] values from mad
  11759. for (int64_t ic = 0; ic < D; ++ic) {
  11760. ggml_vec_mad_f32(masked_begin,
  11761. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  11762. SM,
  11763. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11764. }
  11765. }
  11766. }
  11767. }
  11768. }
  11769. static void ggml_compute_forward_flash_attn_back(
  11770. const struct ggml_compute_params * params,
  11771. const bool masked,
  11772. struct ggml_tensor * dst) {
  11773. const struct ggml_tensor * q = dst->src[0];
  11774. switch (q->type) {
  11775. case GGML_TYPE_F32:
  11776. {
  11777. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  11778. } break;
  11779. default:
  11780. {
  11781. GGML_ASSERT(false);
  11782. } break;
  11783. }
  11784. }
  11785. // ggml_compute_forward_win_part
  11786. static void ggml_compute_forward_win_part_f32(
  11787. const struct ggml_compute_params * params,
  11788. struct ggml_tensor * dst) {
  11789. const struct ggml_tensor * src0 = dst->src[0];
  11790. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11791. return;
  11792. }
  11793. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11794. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11795. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11796. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11797. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11798. assert(ne00 == ne0);
  11799. assert(ne3 == nep0*nep1);
  11800. // TODO: optimize / multi-thread
  11801. for (int py = 0; py < nep1; ++py) {
  11802. for (int px = 0; px < nep0; ++px) {
  11803. const int64_t i3 = py*nep0 + px;
  11804. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11805. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11806. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11807. const int64_t i02 = py*w + i2;
  11808. const int64_t i01 = px*w + i1;
  11809. const int64_t i00 = i0;
  11810. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11811. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11812. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11813. ((float *) dst->data)[i] = 0.0f;
  11814. } else {
  11815. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11816. }
  11817. }
  11818. }
  11819. }
  11820. }
  11821. }
  11822. }
  11823. static void ggml_compute_forward_win_part(
  11824. const struct ggml_compute_params * params,
  11825. struct ggml_tensor * dst) {
  11826. const struct ggml_tensor * src0 = dst->src[0];
  11827. switch (src0->type) {
  11828. case GGML_TYPE_F32:
  11829. {
  11830. ggml_compute_forward_win_part_f32(params, dst);
  11831. } break;
  11832. default:
  11833. {
  11834. GGML_ASSERT(false);
  11835. } break;
  11836. }
  11837. }
  11838. // ggml_compute_forward_win_unpart
  11839. static void ggml_compute_forward_win_unpart_f32(
  11840. const struct ggml_compute_params * params,
  11841. struct ggml_tensor * dst) {
  11842. const struct ggml_tensor * src0 = dst->src[0];
  11843. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11844. return;
  11845. }
  11846. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11847. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11848. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11849. // padding
  11850. const int px = (w - ne1%w)%w;
  11851. //const int py = (w - ne2%w)%w;
  11852. const int npx = (px + ne1)/w;
  11853. //const int npy = (py + ne2)/w;
  11854. assert(ne0 == ne00);
  11855. // TODO: optimize / multi-thread
  11856. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11857. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11858. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11859. const int ip2 = i2/w;
  11860. const int ip1 = i1/w;
  11861. const int64_t i02 = i2%w;
  11862. const int64_t i01 = i1%w;
  11863. const int64_t i00 = i0;
  11864. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11865. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11866. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11867. }
  11868. }
  11869. }
  11870. }
  11871. static void ggml_compute_forward_win_unpart(
  11872. const struct ggml_compute_params * params,
  11873. struct ggml_tensor * dst) {
  11874. const struct ggml_tensor * src0 = dst->src[0];
  11875. switch (src0->type) {
  11876. case GGML_TYPE_F32:
  11877. {
  11878. ggml_compute_forward_win_unpart_f32(params, dst);
  11879. } break;
  11880. default:
  11881. {
  11882. GGML_ASSERT(false);
  11883. } break;
  11884. }
  11885. }
  11886. //gmml_compute_forward_unary
  11887. static void ggml_compute_forward_unary(
  11888. const struct ggml_compute_params * params,
  11889. struct ggml_tensor * dst) {
  11890. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11891. switch (op) {
  11892. case GGML_UNARY_OP_ABS:
  11893. {
  11894. ggml_compute_forward_abs(params, dst);
  11895. } break;
  11896. case GGML_UNARY_OP_SGN:
  11897. {
  11898. ggml_compute_forward_sgn(params, dst);
  11899. } break;
  11900. case GGML_UNARY_OP_NEG:
  11901. {
  11902. ggml_compute_forward_neg(params, dst);
  11903. } break;
  11904. case GGML_UNARY_OP_STEP:
  11905. {
  11906. ggml_compute_forward_step(params, dst);
  11907. } break;
  11908. case GGML_UNARY_OP_TANH:
  11909. {
  11910. ggml_compute_forward_tanh(params, dst);
  11911. } break;
  11912. case GGML_UNARY_OP_ELU:
  11913. {
  11914. ggml_compute_forward_elu(params, dst);
  11915. } break;
  11916. case GGML_UNARY_OP_RELU:
  11917. {
  11918. ggml_compute_forward_relu(params, dst);
  11919. } break;
  11920. case GGML_UNARY_OP_GELU:
  11921. {
  11922. ggml_compute_forward_gelu(params, dst);
  11923. } break;
  11924. case GGML_UNARY_OP_GELU_QUICK:
  11925. {
  11926. ggml_compute_forward_gelu_quick(params, dst);
  11927. } break;
  11928. case GGML_UNARY_OP_SILU:
  11929. {
  11930. ggml_compute_forward_silu(params, dst);
  11931. } break;
  11932. case GGML_UNARY_OP_HARDSWISH:
  11933. {
  11934. ggml_compute_forward_hardswish(params, dst);
  11935. } break;
  11936. case GGML_UNARY_OP_HARDSIGMOID:
  11937. {
  11938. ggml_compute_forward_hardsigmoid(params, dst);
  11939. } break;
  11940. default:
  11941. {
  11942. GGML_ASSERT(false);
  11943. } break;
  11944. }
  11945. }
  11946. // ggml_compute_forward_get_rel_pos
  11947. static void ggml_compute_forward_get_rel_pos_f16(
  11948. const struct ggml_compute_params * params,
  11949. struct ggml_tensor * dst) {
  11950. const struct ggml_tensor * src0 = dst->src[0];
  11951. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11952. return;
  11953. }
  11954. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  11955. GGML_TENSOR_UNARY_OP_LOCALS
  11956. const int64_t w = ne1;
  11957. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  11958. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  11959. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11960. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11961. const int64_t pos = (w - i1 - 1) + i2;
  11962. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11963. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  11964. }
  11965. }
  11966. }
  11967. }
  11968. static void ggml_compute_forward_get_rel_pos(
  11969. const struct ggml_compute_params * params,
  11970. struct ggml_tensor * dst) {
  11971. const struct ggml_tensor * src0 = dst->src[0];
  11972. switch (src0->type) {
  11973. case GGML_TYPE_F16:
  11974. {
  11975. ggml_compute_forward_get_rel_pos_f16(params, dst);
  11976. } break;
  11977. default:
  11978. {
  11979. GGML_ASSERT(false);
  11980. } break;
  11981. }
  11982. }
  11983. // ggml_compute_forward_add_rel_pos
  11984. static void ggml_compute_forward_add_rel_pos_f32(
  11985. const struct ggml_compute_params * params,
  11986. struct ggml_tensor * dst) {
  11987. const struct ggml_tensor * src0 = dst->src[0];
  11988. const struct ggml_tensor * src1 = dst->src[1];
  11989. const struct ggml_tensor * src2 = dst->src[2];
  11990. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  11991. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  11992. if (params->ith != 0) {
  11993. return;
  11994. }
  11995. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  11996. return;
  11997. }
  11998. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11999. return;
  12000. }
  12001. int64_t t0 = ggml_perf_time_us();
  12002. UNUSED(t0);
  12003. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  12004. float * src1_data = (float *) src1->data;
  12005. float * src2_data = (float *) src2->data;
  12006. float * dst_data = (float *) dst->data;
  12007. const int64_t ne10 = src1->ne[0];
  12008. const int64_t ne11 = src1->ne[1];
  12009. const int64_t ne12 = src1->ne[2];
  12010. const int64_t ne13 = src1->ne[3];
  12011. const int ith = params->ith;
  12012. const int nth = params->nth;
  12013. // total patches in dst
  12014. const int np = ne13;
  12015. // patches per thread
  12016. const int dp = (np + nth - 1)/nth;
  12017. // patch range for this thread
  12018. const int ip0 = dp*ith;
  12019. const int ip1 = MIN(ip0 + dp, np);
  12020. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  12021. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  12022. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  12023. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  12024. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  12025. const int64_t jp0 = jp1 + i10;
  12026. const float src1_e = src1_data[jp0];
  12027. const float src2_e = src2_data[jp0];
  12028. const int64_t jdh = jp0 * ne10;
  12029. const int64_t jdw = jdh - (ne10 - 1) * i10;
  12030. for (int64_t j = 0; j < ne10; ++j) {
  12031. dst_data[jdh + j ] += src2_e;
  12032. dst_data[jdw + j*ne10] += src1_e;
  12033. }
  12034. }
  12035. }
  12036. }
  12037. }
  12038. }
  12039. static void ggml_compute_forward_add_rel_pos(
  12040. const struct ggml_compute_params * params,
  12041. struct ggml_tensor * dst) {
  12042. const struct ggml_tensor * src0 = dst->src[0];
  12043. switch (src0->type) {
  12044. case GGML_TYPE_F32:
  12045. {
  12046. ggml_compute_forward_add_rel_pos_f32(params, dst);
  12047. } break;
  12048. default:
  12049. {
  12050. GGML_ASSERT(false);
  12051. } break;
  12052. }
  12053. }
  12054. // ggml_compute_forward_map_unary
  12055. static void ggml_compute_forward_map_unary_f32(
  12056. const struct ggml_compute_params * params,
  12057. struct ggml_tensor * dst,
  12058. const ggml_unary_op_f32_t fun) {
  12059. const struct ggml_tensor * src0 = dst->src[0];
  12060. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12061. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12062. return;
  12063. }
  12064. const int n = ggml_nrows(src0);
  12065. const int nc = src0->ne[0];
  12066. assert( dst->nb[0] == sizeof(float));
  12067. assert(src0->nb[0] == sizeof(float));
  12068. for (int i = 0; i < n; i++) {
  12069. fun(nc,
  12070. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12071. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12072. }
  12073. }
  12074. static void ggml_compute_forward_map_unary(
  12075. const struct ggml_compute_params * params,
  12076. struct ggml_tensor * dst,
  12077. const ggml_unary_op_f32_t fun) {
  12078. const struct ggml_tensor * src0 = dst->src[0];
  12079. switch (src0->type) {
  12080. case GGML_TYPE_F32:
  12081. {
  12082. ggml_compute_forward_map_unary_f32(params, dst, fun);
  12083. } break;
  12084. default:
  12085. {
  12086. GGML_ASSERT(false);
  12087. } break;
  12088. }
  12089. }
  12090. // ggml_compute_forward_map_binary
  12091. static void ggml_compute_forward_map_binary_f32(
  12092. const struct ggml_compute_params * params,
  12093. struct ggml_tensor * dst,
  12094. const ggml_binary_op_f32_t fun) {
  12095. const struct ggml_tensor * src0 = dst->src[0];
  12096. const struct ggml_tensor * src1 = dst->src[1];
  12097. assert(params->ith == 0);
  12098. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12099. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12100. return;
  12101. }
  12102. const int n = ggml_nrows(src0);
  12103. const int nc = src0->ne[0];
  12104. assert( dst->nb[0] == sizeof(float));
  12105. assert(src0->nb[0] == sizeof(float));
  12106. assert(src1->nb[0] == sizeof(float));
  12107. for (int i = 0; i < n; i++) {
  12108. fun(nc,
  12109. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12110. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12111. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12112. }
  12113. }
  12114. static void ggml_compute_forward_map_binary(
  12115. const struct ggml_compute_params * params,
  12116. struct ggml_tensor * dst,
  12117. const ggml_binary_op_f32_t fun) {
  12118. const struct ggml_tensor * src0 = dst->src[0];
  12119. switch (src0->type) {
  12120. case GGML_TYPE_F32:
  12121. {
  12122. ggml_compute_forward_map_binary_f32(params, dst, fun);
  12123. } break;
  12124. default:
  12125. {
  12126. GGML_ASSERT(false);
  12127. } break;
  12128. }
  12129. }
  12130. // ggml_compute_forward_map_custom1
  12131. static void ggml_compute_forward_map_custom1_f32(
  12132. const struct ggml_compute_params * params,
  12133. struct ggml_tensor * dst,
  12134. const ggml_custom1_op_f32_t fun) {
  12135. const struct ggml_tensor * a = dst->src[0];
  12136. assert(params->ith == 0);
  12137. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12138. return;
  12139. }
  12140. fun(dst, a);
  12141. }
  12142. // ggml_compute_forward_map_custom2
  12143. static void ggml_compute_forward_map_custom2_f32(
  12144. const struct ggml_compute_params * params,
  12145. struct ggml_tensor * dst,
  12146. const ggml_custom2_op_f32_t fun) {
  12147. const struct ggml_tensor * a = dst->src[0];
  12148. const struct ggml_tensor * b = dst->src[1];
  12149. assert(params->ith == 0);
  12150. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12151. return;
  12152. }
  12153. fun(dst, a, b);
  12154. }
  12155. // ggml_compute_forward_map_custom3
  12156. static void ggml_compute_forward_map_custom3_f32(
  12157. const struct ggml_compute_params * params,
  12158. struct ggml_tensor * dst,
  12159. const ggml_custom3_op_f32_t fun) {
  12160. const struct ggml_tensor * a = dst->src[0];
  12161. const struct ggml_tensor * b = dst->src[1];
  12162. const struct ggml_tensor * c = dst->src[1];
  12163. assert(params->ith == 0);
  12164. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12165. return;
  12166. }
  12167. fun(dst, a, b, c);
  12168. }
  12169. // ggml_compute_forward_map_custom1
  12170. static void ggml_compute_forward_map_custom1(
  12171. const struct ggml_compute_params * params,
  12172. struct ggml_tensor * dst) {
  12173. const struct ggml_tensor * a = dst->src[0];
  12174. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12175. return;
  12176. }
  12177. struct ggml_map_custom1_op_params p;
  12178. memcpy(&p, dst->op_params, sizeof(p));
  12179. p.fun(dst, a, params->ith, params->nth, p.userdata);
  12180. }
  12181. // ggml_compute_forward_map_custom2
  12182. static void ggml_compute_forward_map_custom2(
  12183. const struct ggml_compute_params * params,
  12184. struct ggml_tensor * dst) {
  12185. const struct ggml_tensor * a = dst->src[0];
  12186. const struct ggml_tensor * b = dst->src[1];
  12187. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12188. return;
  12189. }
  12190. struct ggml_map_custom2_op_params p;
  12191. memcpy(&p, dst->op_params, sizeof(p));
  12192. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  12193. }
  12194. // ggml_compute_forward_map_custom3
  12195. static void ggml_compute_forward_map_custom3(
  12196. const struct ggml_compute_params * params,
  12197. struct ggml_tensor * dst) {
  12198. const struct ggml_tensor * a = dst->src[0];
  12199. const struct ggml_tensor * b = dst->src[1];
  12200. const struct ggml_tensor * c = dst->src[2];
  12201. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12202. return;
  12203. }
  12204. struct ggml_map_custom3_op_params p;
  12205. memcpy(&p, dst->op_params, sizeof(p));
  12206. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  12207. }
  12208. // ggml_compute_forward_cross_entropy_loss
  12209. static void ggml_compute_forward_cross_entropy_loss_f32(
  12210. const struct ggml_compute_params * params,
  12211. struct ggml_tensor * dst) {
  12212. const struct ggml_tensor * src0 = dst->src[0];
  12213. const struct ggml_tensor * src1 = dst->src[1];
  12214. GGML_ASSERT(ggml_is_contiguous(src0));
  12215. GGML_ASSERT(ggml_is_contiguous(src1));
  12216. GGML_ASSERT(ggml_is_scalar(dst));
  12217. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12218. const int ith = params->ith;
  12219. const int nth = params->nth;
  12220. float * sums = (float *) params->wdata;
  12221. // TODO: handle transposed/permuted matrices
  12222. const int nc = src0->ne[0];
  12223. const int nr = ggml_nrows(src0);
  12224. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12225. if (params->type == GGML_TASK_TYPE_INIT) {
  12226. if (ith == 0) {
  12227. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12228. }
  12229. return;
  12230. }
  12231. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12232. if (ith == 0) {
  12233. float * dp = (float *) dst->data;
  12234. ggml_vec_sum_f32(nth, dp, sums);
  12235. dp[0] *= -1.0f / (float) nr;
  12236. }
  12237. return;
  12238. }
  12239. const double eps = 1e-9;
  12240. // rows per thread
  12241. const int dr = (nr + nth - 1)/nth;
  12242. // row range for this thread
  12243. const int ir0 = dr*ith;
  12244. const int ir1 = MIN(ir0 + dr, nr);
  12245. for (int i1 = ir0; i1 < ir1; i1++) {
  12246. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12247. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12248. float * st = ((float *) params->wdata) + nth + ith*nc;
  12249. #ifndef NDEBUG
  12250. for (int i = 0; i < nc; ++i) {
  12251. //printf("p[%d] = %f\n", i, p[i]);
  12252. assert(!isnan(s0[i]));
  12253. assert(!isnan(s1[i]));
  12254. }
  12255. #endif
  12256. // soft_max
  12257. ggml_float sum = 0.0;
  12258. {
  12259. float max = -INFINITY;
  12260. ggml_vec_max_f32(nc, &max, s0);
  12261. uint16_t scvt; UNUSED(scvt);
  12262. for (int i = 0; i < nc; i++) {
  12263. if (s0[i] == -INFINITY) {
  12264. st[i] = 0.0f;
  12265. } else {
  12266. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12267. const float s = s0[i] - max;
  12268. const float val = expf(s);
  12269. #else
  12270. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12271. memcpy(&scvt, &s, sizeof(scvt));
  12272. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12273. #endif
  12274. sum += (ggml_float)val;
  12275. st[i] = val;
  12276. }
  12277. }
  12278. assert(sum > 0.0);
  12279. // sum = 1.0/sum;
  12280. }
  12281. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12282. sum = (1.0 - eps) / sum;
  12283. ggml_vec_scale_f32(nc, st, sum);
  12284. ggml_vec_add1_f32(nc, st, st, eps);
  12285. ggml_vec_log_f32(nc, st, st);
  12286. ggml_vec_mul_f32(nc, st, st, s1);
  12287. float st_sum = 0;
  12288. ggml_vec_sum_f32(nc, &st_sum, st);
  12289. sums[ith] += st_sum;
  12290. #ifndef NDEBUG
  12291. for (int i = 0; i < nc; ++i) {
  12292. assert(!isnan(st[i]));
  12293. assert(!isinf(st[i]));
  12294. }
  12295. #endif
  12296. }
  12297. }
  12298. static void ggml_compute_forward_cross_entropy_loss(
  12299. const struct ggml_compute_params * params,
  12300. struct ggml_tensor * dst) {
  12301. const struct ggml_tensor * src0 = dst->src[0];
  12302. switch (src0->type) {
  12303. case GGML_TYPE_F32:
  12304. {
  12305. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  12306. } break;
  12307. default:
  12308. {
  12309. GGML_ASSERT(false);
  12310. } break;
  12311. }
  12312. }
  12313. // ggml_compute_forward_cross_entropy_loss_back
  12314. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12315. const struct ggml_compute_params * params,
  12316. struct ggml_tensor * dst) {
  12317. const struct ggml_tensor * src0 = dst->src[0];
  12318. const struct ggml_tensor * src1 = dst->src[1];
  12319. const struct ggml_tensor * opt0 = dst->src[2];
  12320. GGML_ASSERT(ggml_is_contiguous(dst));
  12321. GGML_ASSERT(ggml_is_contiguous(src0));
  12322. GGML_ASSERT(ggml_is_contiguous(src1));
  12323. GGML_ASSERT(ggml_is_contiguous(opt0));
  12324. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12325. const int64_t ith = params->ith;
  12326. const int64_t nth = params->nth;
  12327. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12328. return;
  12329. }
  12330. const double eps = 1e-9;
  12331. // TODO: handle transposed/permuted matrices
  12332. const int64_t nc = src0->ne[0];
  12333. const int64_t nr = ggml_nrows(src0);
  12334. // rows per thread
  12335. const int64_t dr = (nr + nth - 1)/nth;
  12336. // row range for this thread
  12337. const int64_t ir0 = dr*ith;
  12338. const int64_t ir1 = MIN(ir0 + dr, nr);
  12339. float * d = (float *) opt0->data;
  12340. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12341. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12342. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12343. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12344. #ifndef NDEBUG
  12345. for (int i = 0; i < nc; ++i) {
  12346. //printf("p[%d] = %f\n", i, p[i]);
  12347. assert(!isnan(s0[i]));
  12348. assert(!isnan(s1[i]));
  12349. }
  12350. #endif
  12351. // soft_max
  12352. ggml_float sum = 0.0;
  12353. {
  12354. float max = -INFINITY;
  12355. ggml_vec_max_f32(nc, &max, s0);
  12356. uint16_t scvt; UNUSED(scvt);
  12357. for (int i = 0; i < nc; i++) {
  12358. if (s0[i] == -INFINITY) {
  12359. ds0[i] = 0.0f;
  12360. } else {
  12361. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12362. const float s = s0[i] - max;
  12363. const float val = expf(s);
  12364. #else
  12365. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12366. memcpy(&scvt, &s, sizeof(scvt));
  12367. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12368. #endif
  12369. sum += (ggml_float)val;
  12370. ds0[i] = val;
  12371. }
  12372. }
  12373. assert(sum > 0.0);
  12374. sum = (1.0 - eps)/sum;
  12375. }
  12376. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  12377. ggml_vec_scale_f32(nc, ds0, sum);
  12378. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  12379. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  12380. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  12381. #ifndef NDEBUG
  12382. for (int i = 0; i < nc; ++i) {
  12383. assert(!isnan(ds0[i]));
  12384. assert(!isinf(ds0[i]));
  12385. }
  12386. #endif
  12387. }
  12388. }
  12389. static void ggml_compute_forward_cross_entropy_loss_back(
  12390. const struct ggml_compute_params * params,
  12391. struct ggml_tensor * dst) {
  12392. const struct ggml_tensor * src0 = dst->src[0];
  12393. switch (src0->type) {
  12394. case GGML_TYPE_F32:
  12395. {
  12396. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  12397. } break;
  12398. default:
  12399. {
  12400. GGML_ASSERT(false);
  12401. } break;
  12402. }
  12403. }
  12404. /////////////////////////////////
  12405. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12406. GGML_ASSERT(params);
  12407. if (tensor->op == GGML_OP_NONE) {
  12408. return;
  12409. }
  12410. #ifdef GGML_USE_CUBLAS
  12411. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12412. if (skip_cpu) {
  12413. return;
  12414. }
  12415. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
  12416. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
  12417. #elif defined(GGML_USE_VULKAN)
  12418. const bool skip_cpu = ggml_vk_compute_forward_cpu_assist(params, tensor);
  12419. #ifdef GGML_VULKAN_CHECK_RESULTS
  12420. if (skip_cpu) {
  12421. ggml_vk_check_results_1_cpu_assist(params, tensor);
  12422. }
  12423. #endif
  12424. if (skip_cpu) {
  12425. return;
  12426. }
  12427. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
  12428. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
  12429. #endif // GGML_USE_CUBLAS
  12430. #ifdef GGML_USE_SYCL
  12431. bool skip_cpu = ggml_sycl_compute_forward(params, tensor);
  12432. if (skip_cpu) {
  12433. return;
  12434. }
  12435. #endif // GGML_USE_SYCL
  12436. switch (tensor->op) {
  12437. case GGML_OP_DUP:
  12438. {
  12439. ggml_compute_forward_dup(params, tensor);
  12440. } break;
  12441. case GGML_OP_ADD:
  12442. {
  12443. ggml_compute_forward_add(params, tensor);
  12444. } break;
  12445. case GGML_OP_ADD1:
  12446. {
  12447. ggml_compute_forward_add1(params, tensor);
  12448. } break;
  12449. case GGML_OP_ACC:
  12450. {
  12451. ggml_compute_forward_acc(params, tensor);
  12452. } break;
  12453. case GGML_OP_SUB:
  12454. {
  12455. ggml_compute_forward_sub(params, tensor);
  12456. } break;
  12457. case GGML_OP_MUL:
  12458. {
  12459. ggml_compute_forward_mul(params, tensor);
  12460. } break;
  12461. case GGML_OP_DIV:
  12462. {
  12463. ggml_compute_forward_div(params, tensor);
  12464. } break;
  12465. case GGML_OP_SQR:
  12466. {
  12467. ggml_compute_forward_sqr(params, tensor);
  12468. } break;
  12469. case GGML_OP_SQRT:
  12470. {
  12471. ggml_compute_forward_sqrt(params, tensor);
  12472. } break;
  12473. case GGML_OP_LOG:
  12474. {
  12475. ggml_compute_forward_log(params, tensor);
  12476. } break;
  12477. case GGML_OP_SUM:
  12478. {
  12479. ggml_compute_forward_sum(params, tensor);
  12480. } break;
  12481. case GGML_OP_SUM_ROWS:
  12482. {
  12483. ggml_compute_forward_sum_rows(params, tensor);
  12484. } break;
  12485. case GGML_OP_MEAN:
  12486. {
  12487. ggml_compute_forward_mean(params, tensor);
  12488. } break;
  12489. case GGML_OP_ARGMAX:
  12490. {
  12491. ggml_compute_forward_argmax(params, tensor);
  12492. } break;
  12493. case GGML_OP_REPEAT:
  12494. {
  12495. ggml_compute_forward_repeat(params, tensor);
  12496. } break;
  12497. case GGML_OP_REPEAT_BACK:
  12498. {
  12499. ggml_compute_forward_repeat_back(params, tensor);
  12500. } break;
  12501. case GGML_OP_CONCAT:
  12502. {
  12503. ggml_compute_forward_concat(params, tensor);
  12504. } break;
  12505. case GGML_OP_SILU_BACK:
  12506. {
  12507. ggml_compute_forward_silu_back(params, tensor);
  12508. } break;
  12509. case GGML_OP_NORM:
  12510. {
  12511. ggml_compute_forward_norm(params, tensor);
  12512. } break;
  12513. case GGML_OP_RMS_NORM:
  12514. {
  12515. ggml_compute_forward_rms_norm(params, tensor);
  12516. } break;
  12517. case GGML_OP_RMS_NORM_BACK:
  12518. {
  12519. ggml_compute_forward_rms_norm_back(params, tensor);
  12520. } break;
  12521. case GGML_OP_GROUP_NORM:
  12522. {
  12523. ggml_compute_forward_group_norm(params, tensor);
  12524. } break;
  12525. case GGML_OP_MUL_MAT:
  12526. {
  12527. ggml_compute_forward_mul_mat(params, tensor);
  12528. } break;
  12529. case GGML_OP_MUL_MAT_ID:
  12530. {
  12531. ggml_compute_forward_mul_mat_id(params, tensor);
  12532. } break;
  12533. case GGML_OP_OUT_PROD:
  12534. {
  12535. ggml_compute_forward_out_prod(params, tensor);
  12536. } break;
  12537. case GGML_OP_SCALE:
  12538. {
  12539. ggml_compute_forward_scale(params, tensor);
  12540. } break;
  12541. case GGML_OP_SET:
  12542. {
  12543. ggml_compute_forward_set(params, tensor);
  12544. } break;
  12545. case GGML_OP_CPY:
  12546. {
  12547. ggml_compute_forward_cpy(params, tensor);
  12548. } break;
  12549. case GGML_OP_CONT:
  12550. {
  12551. ggml_compute_forward_cont(params, tensor);
  12552. } break;
  12553. case GGML_OP_RESHAPE:
  12554. {
  12555. ggml_compute_forward_reshape(params, tensor);
  12556. } break;
  12557. case GGML_OP_VIEW:
  12558. {
  12559. ggml_compute_forward_view(params, tensor);
  12560. } break;
  12561. case GGML_OP_PERMUTE:
  12562. {
  12563. ggml_compute_forward_permute(params, tensor);
  12564. } break;
  12565. case GGML_OP_TRANSPOSE:
  12566. {
  12567. ggml_compute_forward_transpose(params, tensor);
  12568. } break;
  12569. case GGML_OP_GET_ROWS:
  12570. {
  12571. ggml_compute_forward_get_rows(params, tensor);
  12572. } break;
  12573. case GGML_OP_GET_ROWS_BACK:
  12574. {
  12575. ggml_compute_forward_get_rows_back(params, tensor);
  12576. } break;
  12577. case GGML_OP_DIAG:
  12578. {
  12579. ggml_compute_forward_diag(params, tensor);
  12580. } break;
  12581. case GGML_OP_DIAG_MASK_INF:
  12582. {
  12583. ggml_compute_forward_diag_mask_inf(params, tensor);
  12584. } break;
  12585. case GGML_OP_DIAG_MASK_ZERO:
  12586. {
  12587. ggml_compute_forward_diag_mask_zero(params, tensor);
  12588. } break;
  12589. case GGML_OP_SOFT_MAX:
  12590. {
  12591. ggml_compute_forward_soft_max(params, tensor);
  12592. } break;
  12593. case GGML_OP_SOFT_MAX_BACK:
  12594. {
  12595. ggml_compute_forward_soft_max_back(params, tensor);
  12596. } break;
  12597. case GGML_OP_ROPE:
  12598. {
  12599. ggml_compute_forward_rope(params, tensor);
  12600. } break;
  12601. case GGML_OP_ROPE_BACK:
  12602. {
  12603. ggml_compute_forward_rope_back(params, tensor);
  12604. } break;
  12605. case GGML_OP_ALIBI:
  12606. {
  12607. ggml_compute_forward_alibi(params, tensor);
  12608. } break;
  12609. case GGML_OP_CLAMP:
  12610. {
  12611. ggml_compute_forward_clamp(params, tensor);
  12612. } break;
  12613. case GGML_OP_CONV_TRANSPOSE_1D:
  12614. {
  12615. ggml_compute_forward_conv_transpose_1d(params, tensor);
  12616. } break;
  12617. case GGML_OP_IM2COL:
  12618. {
  12619. ggml_compute_forward_im2col(params, tensor);
  12620. } break;
  12621. case GGML_OP_CONV_TRANSPOSE_2D:
  12622. {
  12623. ggml_compute_forward_conv_transpose_2d(params, tensor);
  12624. } break;
  12625. case GGML_OP_POOL_1D:
  12626. {
  12627. ggml_compute_forward_pool_1d(params, tensor);
  12628. } break;
  12629. case GGML_OP_POOL_2D:
  12630. {
  12631. ggml_compute_forward_pool_2d(params, tensor);
  12632. } break;
  12633. case GGML_OP_UPSCALE:
  12634. {
  12635. ggml_compute_forward_upscale(params, tensor);
  12636. } break;
  12637. case GGML_OP_PAD:
  12638. {
  12639. ggml_compute_forward_pad(params, tensor);
  12640. } break;
  12641. case GGML_OP_ARGSORT:
  12642. {
  12643. ggml_compute_forward_argsort(params, tensor);
  12644. } break;
  12645. case GGML_OP_LEAKY_RELU:
  12646. {
  12647. ggml_compute_forward_leaky_relu(params, tensor);
  12648. } break;
  12649. case GGML_OP_FLASH_ATTN:
  12650. {
  12651. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12652. GGML_ASSERT(t == 0 || t == 1);
  12653. const bool masked = t != 0;
  12654. ggml_compute_forward_flash_attn(params, masked, tensor);
  12655. } break;
  12656. case GGML_OP_FLASH_FF:
  12657. {
  12658. ggml_compute_forward_flash_ff(params, tensor);
  12659. } break;
  12660. case GGML_OP_FLASH_ATTN_BACK:
  12661. {
  12662. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12663. GGML_ASSERT(t == 0 || t == 1);
  12664. bool masked = t != 0;
  12665. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  12666. } break;
  12667. case GGML_OP_WIN_PART:
  12668. {
  12669. ggml_compute_forward_win_part(params, tensor);
  12670. } break;
  12671. case GGML_OP_WIN_UNPART:
  12672. {
  12673. ggml_compute_forward_win_unpart(params, tensor);
  12674. } break;
  12675. case GGML_OP_UNARY:
  12676. {
  12677. ggml_compute_forward_unary(params, tensor);
  12678. } break;
  12679. case GGML_OP_GET_REL_POS:
  12680. {
  12681. ggml_compute_forward_get_rel_pos(params, tensor);
  12682. } break;
  12683. case GGML_OP_ADD_REL_POS:
  12684. {
  12685. ggml_compute_forward_add_rel_pos(params, tensor);
  12686. } break;
  12687. case GGML_OP_MAP_UNARY:
  12688. {
  12689. ggml_unary_op_f32_t fun;
  12690. memcpy(&fun, tensor->op_params, sizeof(fun));
  12691. ggml_compute_forward_map_unary(params, tensor, fun);
  12692. }
  12693. break;
  12694. case GGML_OP_MAP_BINARY:
  12695. {
  12696. ggml_binary_op_f32_t fun;
  12697. memcpy(&fun, tensor->op_params, sizeof(fun));
  12698. ggml_compute_forward_map_binary(params, tensor, fun);
  12699. }
  12700. break;
  12701. case GGML_OP_MAP_CUSTOM1_F32:
  12702. {
  12703. ggml_custom1_op_f32_t fun;
  12704. memcpy(&fun, tensor->op_params, sizeof(fun));
  12705. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  12706. }
  12707. break;
  12708. case GGML_OP_MAP_CUSTOM2_F32:
  12709. {
  12710. ggml_custom2_op_f32_t fun;
  12711. memcpy(&fun, tensor->op_params, sizeof(fun));
  12712. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  12713. }
  12714. break;
  12715. case GGML_OP_MAP_CUSTOM3_F32:
  12716. {
  12717. ggml_custom3_op_f32_t fun;
  12718. memcpy(&fun, tensor->op_params, sizeof(fun));
  12719. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  12720. }
  12721. break;
  12722. case GGML_OP_MAP_CUSTOM1:
  12723. {
  12724. ggml_compute_forward_map_custom1(params, tensor);
  12725. }
  12726. break;
  12727. case GGML_OP_MAP_CUSTOM2:
  12728. {
  12729. ggml_compute_forward_map_custom2(params, tensor);
  12730. }
  12731. break;
  12732. case GGML_OP_MAP_CUSTOM3:
  12733. {
  12734. ggml_compute_forward_map_custom3(params, tensor);
  12735. }
  12736. break;
  12737. case GGML_OP_CROSS_ENTROPY_LOSS:
  12738. {
  12739. ggml_compute_forward_cross_entropy_loss(params, tensor);
  12740. }
  12741. break;
  12742. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12743. {
  12744. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  12745. }
  12746. break;
  12747. case GGML_OP_NONE:
  12748. {
  12749. // nop
  12750. } break;
  12751. case GGML_OP_COUNT:
  12752. {
  12753. GGML_ASSERT(false);
  12754. } break;
  12755. }
  12756. }
  12757. ////////////////////////////////////////////////////////////////////////////////
  12758. static size_t ggml_hash_size(size_t min_sz) {
  12759. // next primes after powers of two
  12760. static const size_t primes[] = {
  12761. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  12762. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  12763. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  12764. 16777259, 33554467, 67108879, 134217757, 268435459,
  12765. 536870923, 1073741827, 2147483659
  12766. };
  12767. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  12768. // find the smallest prime that is larger or equal to min_sz
  12769. size_t l = 0;
  12770. size_t r = n_primes;
  12771. while (l < r) {
  12772. size_t m = (l + r)/2;
  12773. if (primes[m] < min_sz) {
  12774. l = m + 1;
  12775. } else {
  12776. r = m;
  12777. }
  12778. }
  12779. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  12780. return sz;
  12781. }
  12782. static size_t ggml_hash(const void * p) {
  12783. return (size_t)p;
  12784. }
  12785. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12786. size_t h = ggml_hash(key) % hash_set.size;
  12787. // linear probing
  12788. size_t i = h;
  12789. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  12790. i = (i + 1) % hash_set.size;
  12791. if (i == h) {
  12792. // visited all hash table entries -> not found
  12793. return GGML_HASHTABLE_FULL;
  12794. }
  12795. }
  12796. return i;
  12797. }
  12798. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12799. size_t i = ggml_hash_find(hash_set, key);
  12800. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  12801. }
  12802. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12803. size_t i = ggml_hash_find(hash_set, key);
  12804. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12805. if (hash_set.keys[i] == key) {
  12806. return GGML_HASHTABLE_ALREADY_EXISTS;
  12807. }
  12808. // insert
  12809. GGML_ASSERT(hash_set.keys[i] == NULL);
  12810. hash_set.keys[i] = key;
  12811. return i;
  12812. }
  12813. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12814. size_t i = ggml_hash_find(hash_set, key);
  12815. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12816. hash_set.keys[i] = key;
  12817. return i;
  12818. }
  12819. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  12820. size = ggml_hash_size(size);
  12821. struct ggml_hash_set result;
  12822. result.size = size;
  12823. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  12824. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  12825. return result;
  12826. }
  12827. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  12828. GGML_FREE(hash_set.keys);
  12829. }
  12830. struct hash_map {
  12831. struct ggml_hash_set set;
  12832. struct ggml_tensor ** vals;
  12833. };
  12834. static struct hash_map * ggml_new_hash_map(size_t size) {
  12835. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  12836. result->set = ggml_hash_set_new(size);
  12837. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  12838. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  12839. return result;
  12840. }
  12841. static void ggml_hash_map_free(struct hash_map * map) {
  12842. ggml_hash_set_free(map->set);
  12843. GGML_FREE(map->vals);
  12844. GGML_FREE(map);
  12845. }
  12846. // gradient checkpointing
  12847. static struct ggml_tensor * ggml_recompute_graph_node(
  12848. struct ggml_context * ctx,
  12849. struct ggml_cgraph * graph,
  12850. struct hash_map * replacements,
  12851. struct ggml_tensor * node) {
  12852. if (node == NULL) {
  12853. return NULL;
  12854. }
  12855. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  12856. return node;
  12857. }
  12858. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  12859. return node;
  12860. }
  12861. int count_children = 0;
  12862. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12863. if (node->src[k]) {
  12864. ++count_children;
  12865. }
  12866. }
  12867. if (count_children == 0) {
  12868. return node;
  12869. }
  12870. size_t i = ggml_hash_find(replacements->set, node);
  12871. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  12872. if (replacements->set.keys[i] == node) {
  12873. return replacements->vals[i];
  12874. }
  12875. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  12876. // insert clone into replacements
  12877. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  12878. replacements->set.keys[i] = node;
  12879. replacements->vals[i] = clone;
  12880. clone->op = node->op;
  12881. clone->grad = node->grad;
  12882. clone->flags = node->flags;
  12883. clone->extra = node->extra;
  12884. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  12885. clone->nb[k] = node->nb[k];
  12886. }
  12887. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12888. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  12889. }
  12890. if (node->view_src != NULL) {
  12891. clone->data = (node->view_src->data == NULL)
  12892. ? NULL // view_src not yet allocated
  12893. : (char *) node->view_src->data // view_src already allocated
  12894. + node->view_offs;
  12895. clone->view_src = node->view_src;
  12896. clone->view_offs = node->view_offs;
  12897. }
  12898. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  12899. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  12900. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  12901. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  12902. return clone;
  12903. }
  12904. void ggml_build_backward_gradient_checkpointing(
  12905. struct ggml_context * ctx,
  12906. struct ggml_cgraph * gf,
  12907. struct ggml_cgraph * gb,
  12908. struct ggml_cgraph * gb_tmp,
  12909. struct ggml_tensor * * checkpoints,
  12910. int n_checkpoints) {
  12911. ggml_graph_cpy(gf, gb_tmp);
  12912. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  12913. if (n_checkpoints <= 0) {
  12914. ggml_graph_cpy(gb_tmp, gb);
  12915. return;
  12916. }
  12917. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  12918. // insert checkpoints in replacements
  12919. for (int i = 0; i < n_checkpoints; ++i) {
  12920. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  12921. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  12922. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  12923. replacements->set.keys[k] = checkpoints[i];
  12924. replacements->vals[k] = checkpoints[i];
  12925. }
  12926. ggml_graph_cpy(gf, gb);
  12927. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  12928. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  12929. // by recomputing them from checkpoints
  12930. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  12931. struct ggml_tensor * node = gb_tmp->nodes[i];
  12932. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12933. // insert new tensors recomputing src, reusing already made replacements,
  12934. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  12935. // recurse for input tensors,
  12936. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  12937. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  12938. }
  12939. // insert rewritten backward node with replacements made into resulting backward graph gb
  12940. ggml_build_forward_expand(gb, node);
  12941. }
  12942. ggml_hash_map_free(replacements);
  12943. }
  12944. // functions to change gradients considering the case that input a might be initial gradient with zero value
  12945. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12946. if (ggml_hash_contains(zero_table, a)) {
  12947. return b;
  12948. } else {
  12949. return ggml_add_impl(ctx, a, b, false);
  12950. }
  12951. }
  12952. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  12953. if (ggml_hash_contains(zero_table, a)) {
  12954. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  12955. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  12956. } else {
  12957. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  12958. }
  12959. }
  12960. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12961. if (ggml_hash_contains(zero_table, a)) {
  12962. return ggml_repeat(ctx, b, a);
  12963. } else {
  12964. return ggml_add1_impl(ctx, a, b, false);
  12965. }
  12966. }
  12967. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12968. if (ggml_hash_contains(zero_table, a)) {
  12969. return ggml_neg(ctx, b);
  12970. } else {
  12971. return ggml_sub_impl(ctx, a, b, false);
  12972. }
  12973. }
  12974. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  12975. struct ggml_tensor * src0 = tensor->src[0];
  12976. struct ggml_tensor * src1 = tensor->src[1];
  12977. switch (tensor->op) {
  12978. case GGML_OP_DUP:
  12979. {
  12980. if (src0->grad) {
  12981. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12982. }
  12983. } break;
  12984. case GGML_OP_ADD:
  12985. {
  12986. if (src0->grad) {
  12987. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12988. }
  12989. if (src1->grad) {
  12990. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12991. }
  12992. } break;
  12993. case GGML_OP_ADD1:
  12994. {
  12995. if (src0->grad) {
  12996. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12997. }
  12998. if (src1->grad) {
  12999. src1->grad = ggml_add_or_set(ctx,
  13000. src1->grad,
  13001. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  13002. zero_table);
  13003. }
  13004. } break;
  13005. case GGML_OP_ACC:
  13006. {
  13007. if (src0->grad) {
  13008. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13009. }
  13010. if (src1->grad) {
  13011. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13012. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13013. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13014. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13015. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  13016. tensor->grad,
  13017. src1->grad->ne[0],
  13018. src1->grad->ne[1],
  13019. src1->grad->ne[2],
  13020. src1->grad->ne[3],
  13021. nb1, nb2, nb3, offset);
  13022. src1->grad =
  13023. ggml_add_or_set(ctx,
  13024. src1->grad,
  13025. ggml_reshape(ctx,
  13026. ggml_cont(ctx, tensor_grad_view),
  13027. src1->grad),
  13028. zero_table);
  13029. }
  13030. } break;
  13031. case GGML_OP_SUB:
  13032. {
  13033. if (src0->grad) {
  13034. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13035. }
  13036. if (src1->grad) {
  13037. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13038. }
  13039. } break;
  13040. case GGML_OP_MUL:
  13041. {
  13042. if (src0->grad) {
  13043. src0->grad =
  13044. ggml_add_or_set(ctx,
  13045. src0->grad,
  13046. ggml_mul(ctx, src1, tensor->grad),
  13047. zero_table);
  13048. }
  13049. if (src1->grad) {
  13050. src1->grad =
  13051. ggml_add_or_set(ctx,
  13052. src1->grad,
  13053. ggml_mul(ctx, src0, tensor->grad),
  13054. zero_table);
  13055. }
  13056. } break;
  13057. case GGML_OP_DIV:
  13058. {
  13059. if (src0->grad) {
  13060. src0->grad =
  13061. ggml_add_or_set(ctx,
  13062. src0->grad,
  13063. ggml_div(ctx, tensor->grad, src1),
  13064. zero_table);
  13065. }
  13066. if (src1->grad) {
  13067. src1->grad =
  13068. ggml_sub_or_set(ctx,
  13069. src1->grad,
  13070. ggml_mul(ctx,
  13071. tensor->grad,
  13072. ggml_div(ctx, tensor, src1)),
  13073. zero_table);
  13074. }
  13075. } break;
  13076. case GGML_OP_SQR:
  13077. {
  13078. if (src0->grad) {
  13079. src0->grad =
  13080. ggml_add_or_set(ctx,
  13081. src0->grad,
  13082. ggml_scale(ctx,
  13083. ggml_mul(ctx, src0, tensor->grad),
  13084. 2.0f),
  13085. zero_table);
  13086. }
  13087. } break;
  13088. case GGML_OP_SQRT:
  13089. {
  13090. if (src0->grad) {
  13091. src0->grad =
  13092. ggml_add_or_set(ctx,
  13093. src0->grad,
  13094. ggml_scale(ctx,
  13095. ggml_div(ctx,
  13096. tensor->grad,
  13097. tensor),
  13098. 0.5f),
  13099. zero_table);
  13100. }
  13101. } break;
  13102. case GGML_OP_LOG:
  13103. {
  13104. if (src0->grad) {
  13105. src0->grad =
  13106. ggml_add_or_set(ctx,
  13107. src0->grad,
  13108. ggml_div(ctx,
  13109. tensor->grad,
  13110. src0),
  13111. zero_table);
  13112. }
  13113. } break;
  13114. case GGML_OP_SUM:
  13115. {
  13116. if (src0->grad) {
  13117. src0->grad =
  13118. ggml_add1_or_set(ctx,
  13119. src0->grad,
  13120. tensor->grad,
  13121. zero_table);
  13122. }
  13123. } break;
  13124. case GGML_OP_SUM_ROWS:
  13125. {
  13126. if (src0->grad) {
  13127. src0->grad =
  13128. ggml_add_or_set(ctx,
  13129. src0->grad,
  13130. ggml_repeat(ctx,
  13131. tensor->grad,
  13132. src0->grad),
  13133. zero_table);
  13134. }
  13135. } break;
  13136. case GGML_OP_MEAN:
  13137. case GGML_OP_ARGMAX:
  13138. {
  13139. GGML_ASSERT(false); // TODO: implement
  13140. } break;
  13141. case GGML_OP_REPEAT:
  13142. {
  13143. // necessary for llama
  13144. if (src0->grad) {
  13145. src0->grad = ggml_add_or_set(ctx,
  13146. src0->grad,
  13147. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13148. zero_table);
  13149. }
  13150. } break;
  13151. case GGML_OP_REPEAT_BACK:
  13152. {
  13153. if (src0->grad) {
  13154. // TODO: test this
  13155. src0->grad = ggml_add_or_set(ctx,
  13156. src0->grad,
  13157. ggml_repeat(ctx, tensor->grad, src0->grad),
  13158. zero_table);
  13159. }
  13160. } break;
  13161. case GGML_OP_CONCAT:
  13162. {
  13163. GGML_ASSERT(false); // TODO: implement
  13164. } break;
  13165. case GGML_OP_SILU_BACK:
  13166. {
  13167. GGML_ASSERT(false); // TODO: not implemented
  13168. } break;
  13169. case GGML_OP_NORM:
  13170. {
  13171. GGML_ASSERT(false); // TODO: not implemented
  13172. } break;
  13173. case GGML_OP_RMS_NORM:
  13174. {
  13175. // necessary for llama
  13176. if (src0->grad) {
  13177. float eps;
  13178. memcpy(&eps, tensor->op_params, sizeof(float));
  13179. src0->grad = ggml_add_or_set(ctx,
  13180. src0->grad,
  13181. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  13182. zero_table);
  13183. }
  13184. } break;
  13185. case GGML_OP_RMS_NORM_BACK:
  13186. {
  13187. GGML_ASSERT(false); // TODO: not implemented
  13188. } break;
  13189. case GGML_OP_GROUP_NORM:
  13190. {
  13191. GGML_ASSERT(false); // TODO: not implemented
  13192. } break;
  13193. case GGML_OP_MUL_MAT:
  13194. {
  13195. // https://cs231n.github.io/optimization-2/#staged
  13196. // # forward pass
  13197. // s0 = np.random.randn(5, 10)
  13198. // s1 = np.random.randn(10, 3)
  13199. // t = s0.dot(s1)
  13200. // # now suppose we had the gradient on t from above in the circuit
  13201. // dt = np.random.randn(*t.shape) # same shape as t
  13202. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13203. // ds1 = t.T.dot(dt)
  13204. // tensor.shape [m,p,qq,rr]
  13205. // src0.shape [n,m,q1,r1]
  13206. // src1.shape [n,p,qq,rr]
  13207. // necessary for llama
  13208. if (src0->grad) {
  13209. struct ggml_tensor * s1_tg =
  13210. ggml_out_prod(ctx, // [n,m,qq,rr]
  13211. src1, // [n,p,qq,rr]
  13212. tensor->grad); // [m,p,qq,rr]
  13213. const int64_t qq = s1_tg->ne[2];
  13214. const int64_t rr = s1_tg->ne[3];
  13215. const int64_t q1 = src0->ne[2];
  13216. const int64_t r1 = src0->ne[3];
  13217. const bool ne2_broadcasted = qq > q1;
  13218. const bool ne3_broadcasted = rr > r1;
  13219. if (ne2_broadcasted || ne3_broadcasted) {
  13220. // sum broadcast repetitions of s1_tg into shape of src0
  13221. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  13222. }
  13223. src0->grad =
  13224. ggml_add_or_set(ctx,
  13225. src0->grad, // [n,m,q1,r1]
  13226. s1_tg, // [n,m,q1,r1]
  13227. zero_table);
  13228. }
  13229. if (src1->grad) {
  13230. src1->grad =
  13231. ggml_add_or_set(ctx,
  13232. src1->grad, // [n,p,qq,rr]
  13233. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  13234. // ggml_cont(ctx, // [m,n,q1,r1]
  13235. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  13236. // tensor->grad), // [m,p,qq,rr]
  13237. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13238. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13239. // // and then use ggml_out_prod
  13240. ggml_out_prod(ctx, // [n,p,qq,rr]
  13241. src0, // [n,m,q1,r1]
  13242. ggml_transpose(ctx, // [p,m,qq,rr]
  13243. tensor->grad)), // [m,p,qq,rr]
  13244. zero_table);
  13245. }
  13246. } break;
  13247. case GGML_OP_MUL_MAT_ID:
  13248. {
  13249. GGML_ASSERT(false); // TODO: not implemented
  13250. } break;
  13251. case GGML_OP_OUT_PROD:
  13252. {
  13253. GGML_ASSERT(false); // TODO: not implemented
  13254. } break;
  13255. case GGML_OP_SCALE:
  13256. {
  13257. // necessary for llama
  13258. if (src0->grad) {
  13259. float s;
  13260. memcpy(&s, tensor->op_params, sizeof(float));
  13261. src0->grad =
  13262. ggml_add_or_set(ctx,
  13263. src0->grad,
  13264. ggml_scale_impl(ctx, tensor->grad, s, false),
  13265. zero_table);
  13266. }
  13267. } break;
  13268. case GGML_OP_SET:
  13269. {
  13270. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13271. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13272. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13273. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13274. struct ggml_tensor * tensor_grad_view = NULL;
  13275. if (src0->grad || src1->grad) {
  13276. GGML_ASSERT(src0->type == tensor->type);
  13277. GGML_ASSERT(tensor->grad->type == tensor->type);
  13278. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13279. tensor_grad_view = ggml_view_4d(ctx,
  13280. tensor->grad,
  13281. src1->grad->ne[0],
  13282. src1->grad->ne[1],
  13283. src1->grad->ne[2],
  13284. src1->grad->ne[3],
  13285. nb1, nb2, nb3, offset);
  13286. }
  13287. if (src0->grad) {
  13288. src0->grad = ggml_add_or_set(ctx,
  13289. src0->grad,
  13290. ggml_acc_impl(ctx,
  13291. tensor->grad,
  13292. ggml_neg(ctx, tensor_grad_view),
  13293. nb1, nb2, nb3, offset, false),
  13294. zero_table);
  13295. }
  13296. if (src1->grad) {
  13297. src1->grad =
  13298. ggml_add_or_set(ctx,
  13299. src1->grad,
  13300. ggml_reshape(ctx,
  13301. ggml_cont(ctx, tensor_grad_view),
  13302. src1->grad),
  13303. zero_table);
  13304. }
  13305. } break;
  13306. case GGML_OP_CPY:
  13307. {
  13308. // necessary for llama
  13309. // cpy overwrites value of src1 by src0 and returns view(src1)
  13310. // the overwriting is mathematically equivalent to:
  13311. // tensor = src0 * 1 + src1 * 0
  13312. if (src0->grad) {
  13313. // dsrc0 = dtensor * 1
  13314. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13315. }
  13316. if (src1->grad) {
  13317. // dsrc1 = dtensor * 0 -> noop
  13318. }
  13319. } break;
  13320. case GGML_OP_CONT:
  13321. {
  13322. // same as cpy
  13323. if (src0->grad) {
  13324. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13325. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13326. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13327. }
  13328. } break;
  13329. case GGML_OP_RESHAPE:
  13330. {
  13331. // necessary for llama
  13332. if (src0->grad) {
  13333. src0->grad =
  13334. ggml_add_or_set(ctx, src0->grad,
  13335. ggml_reshape(ctx,
  13336. ggml_is_contiguous(tensor->grad)
  13337. ? tensor->grad
  13338. : ggml_cont(ctx, tensor->grad),
  13339. src0->grad),
  13340. zero_table);
  13341. }
  13342. } break;
  13343. case GGML_OP_VIEW:
  13344. {
  13345. // necessary for llama
  13346. if (src0->grad) {
  13347. size_t offset;
  13348. memcpy(&offset, tensor->op_params, sizeof(offset));
  13349. size_t nb1 = tensor->nb[1];
  13350. size_t nb2 = tensor->nb[2];
  13351. size_t nb3 = tensor->nb[3];
  13352. if (src0->type != src0->grad->type) {
  13353. // gradient is typically F32, but src0 could be other type
  13354. size_t ng = ggml_element_size(src0->grad);
  13355. size_t n0 = ggml_element_size(src0);
  13356. GGML_ASSERT(offset % n0 == 0);
  13357. GGML_ASSERT(nb1 % n0 == 0);
  13358. GGML_ASSERT(nb2 % n0 == 0);
  13359. GGML_ASSERT(nb3 % n0 == 0);
  13360. offset = (offset / n0) * ng;
  13361. nb1 = (nb1 / n0) * ng;
  13362. nb2 = (nb2 / n0) * ng;
  13363. nb3 = (nb3 / n0) * ng;
  13364. }
  13365. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  13366. }
  13367. } break;
  13368. case GGML_OP_PERMUTE:
  13369. {
  13370. // necessary for llama
  13371. if (src0->grad) {
  13372. int32_t * axes = (int32_t *) tensor->op_params;
  13373. int axis0 = axes[0] & 0x3;
  13374. int axis1 = axes[1] & 0x3;
  13375. int axis2 = axes[2] & 0x3;
  13376. int axis3 = axes[3] & 0x3;
  13377. int axes_backward[4] = {0,0,0,0};
  13378. axes_backward[axis0] = 0;
  13379. axes_backward[axis1] = 1;
  13380. axes_backward[axis2] = 2;
  13381. axes_backward[axis3] = 3;
  13382. src0->grad =
  13383. ggml_add_or_set(ctx, src0->grad,
  13384. ggml_permute(ctx,
  13385. tensor->grad,
  13386. axes_backward[0],
  13387. axes_backward[1],
  13388. axes_backward[2],
  13389. axes_backward[3]),
  13390. zero_table);
  13391. }
  13392. } break;
  13393. case GGML_OP_TRANSPOSE:
  13394. {
  13395. // necessary for llama
  13396. if (src0->grad) {
  13397. src0->grad =
  13398. ggml_add_or_set(ctx, src0->grad,
  13399. ggml_transpose(ctx, tensor->grad),
  13400. zero_table);
  13401. }
  13402. } break;
  13403. case GGML_OP_GET_ROWS:
  13404. {
  13405. // necessary for llama (only for tokenizer)
  13406. if (src0->grad) {
  13407. src0->grad =
  13408. ggml_add_or_set(ctx, src0->grad,
  13409. // last ggml_get_rows_back argument src0->grad is only
  13410. // necessary to setup correct output shape
  13411. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  13412. zero_table);
  13413. }
  13414. if (src1->grad) {
  13415. // noop
  13416. }
  13417. } break;
  13418. case GGML_OP_GET_ROWS_BACK:
  13419. {
  13420. GGML_ASSERT(false); // TODO: not implemented
  13421. } break;
  13422. case GGML_OP_DIAG:
  13423. {
  13424. GGML_ASSERT(false); // TODO: not implemented
  13425. } break;
  13426. case GGML_OP_DIAG_MASK_INF:
  13427. {
  13428. // necessary for llama
  13429. if (src0->grad) {
  13430. const int n_past = ((int32_t *) tensor->op_params)[0];
  13431. src0->grad =
  13432. ggml_add_or_set(ctx, src0->grad,
  13433. /* ggml_diag_mask_inf_impl() shouldn't be here */
  13434. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  13435. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13436. zero_table);
  13437. }
  13438. } break;
  13439. case GGML_OP_DIAG_MASK_ZERO:
  13440. {
  13441. // necessary for llama
  13442. if (src0->grad) {
  13443. const int n_past = ((int32_t *) tensor->op_params)[0];
  13444. src0->grad =
  13445. ggml_add_or_set(ctx, src0->grad,
  13446. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13447. zero_table);
  13448. }
  13449. } break;
  13450. case GGML_OP_SOFT_MAX:
  13451. {
  13452. // necessary for llama
  13453. if (src0->grad) {
  13454. src0->grad =
  13455. ggml_add_or_set(ctx, src0->grad,
  13456. ggml_soft_max_back(ctx, tensor->grad, tensor),
  13457. zero_table);
  13458. }
  13459. } break;
  13460. case GGML_OP_SOFT_MAX_BACK:
  13461. {
  13462. GGML_ASSERT(false); // TODO: not implemented
  13463. } break;
  13464. case GGML_OP_ROPE:
  13465. {
  13466. // necessary for llama
  13467. if (src0->grad) {
  13468. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13469. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13470. const int mode = ((int32_t *) tensor->op_params)[2];
  13471. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13472. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13473. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13474. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13475. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13476. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13477. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13478. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13479. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13480. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13481. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13482. src0->grad = ggml_add_or_set(ctx,
  13483. src0->grad,
  13484. ggml_rope_back(ctx,
  13485. tensor->grad,
  13486. src1,
  13487. n_dims,
  13488. mode,
  13489. n_ctx,
  13490. n_orig_ctx,
  13491. freq_base,
  13492. freq_scale,
  13493. ext_factor,
  13494. attn_factor,
  13495. beta_fast,
  13496. beta_slow,
  13497. xpos_base,
  13498. xpos_down),
  13499. zero_table);
  13500. }
  13501. } break;
  13502. case GGML_OP_ROPE_BACK:
  13503. {
  13504. if (src0->grad) {
  13505. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13506. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13507. const int mode = ((int32_t *) tensor->op_params)[2];
  13508. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13509. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13510. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13511. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13512. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13513. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13514. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13515. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13516. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13517. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13518. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13519. src0->grad = ggml_add_or_set(ctx,
  13520. src0->grad,
  13521. ggml_rope_impl(ctx,
  13522. tensor->grad,
  13523. src1,
  13524. n_dims,
  13525. mode,
  13526. n_ctx,
  13527. n_orig_ctx,
  13528. freq_base,
  13529. freq_scale,
  13530. ext_factor,
  13531. attn_factor,
  13532. beta_fast,
  13533. beta_slow,
  13534. xpos_base,
  13535. xpos_down,
  13536. false),
  13537. zero_table);
  13538. }
  13539. } break;
  13540. case GGML_OP_ALIBI:
  13541. {
  13542. GGML_ASSERT(false); // TODO: not implemented
  13543. } break;
  13544. case GGML_OP_CLAMP:
  13545. {
  13546. GGML_ASSERT(false); // TODO: not implemented
  13547. } break;
  13548. case GGML_OP_CONV_TRANSPOSE_1D:
  13549. {
  13550. GGML_ASSERT(false); // TODO: not implemented
  13551. } break;
  13552. case GGML_OP_IM2COL:
  13553. {
  13554. GGML_ASSERT(false); // TODO: not implemented
  13555. } break;
  13556. case GGML_OP_CONV_TRANSPOSE_2D:
  13557. {
  13558. GGML_ASSERT(false); // TODO: not implemented
  13559. } break;
  13560. case GGML_OP_POOL_1D:
  13561. {
  13562. GGML_ASSERT(false); // TODO: not implemented
  13563. } break;
  13564. case GGML_OP_POOL_2D:
  13565. {
  13566. GGML_ASSERT(false); // TODO: not implemented
  13567. } break;
  13568. case GGML_OP_UPSCALE:
  13569. {
  13570. GGML_ASSERT(false); // TODO: not implemented
  13571. } break;
  13572. case GGML_OP_PAD:
  13573. {
  13574. GGML_ASSERT(false); // TODO: not implemented
  13575. } break;
  13576. case GGML_OP_ARGSORT:
  13577. {
  13578. GGML_ASSERT(false); // TODO: not implemented
  13579. } break;
  13580. case GGML_OP_LEAKY_RELU:
  13581. {
  13582. GGML_ASSERT(false); // TODO: not implemented
  13583. } break;
  13584. case GGML_OP_FLASH_ATTN:
  13585. {
  13586. struct ggml_tensor * flash_grad = NULL;
  13587. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  13588. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13589. GGML_ASSERT(t == 0 || t == 1);
  13590. bool masked = t != 0;
  13591. flash_grad =
  13592. ggml_flash_attn_back(ctx,
  13593. src0,
  13594. src1,
  13595. tensor->src[2],
  13596. tensor->grad,
  13597. masked);
  13598. }
  13599. struct ggml_tensor * src2 = tensor->src[2];
  13600. const int64_t elem_q = ggml_nelements(src0);
  13601. const int64_t elem_k = ggml_nelements(src1);
  13602. const int64_t elem_v = ggml_nelements(src2);
  13603. enum ggml_type result_type = flash_grad->type;
  13604. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13605. const size_t tsize = ggml_type_size(result_type);
  13606. const size_t offs_q = 0;
  13607. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13608. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13609. if (src0->grad) {
  13610. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  13611. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  13612. src0->grad = ggml_add_or_set(ctx,
  13613. src0->grad,
  13614. grad_q,
  13615. zero_table);
  13616. }
  13617. if (src1->grad) {
  13618. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  13619. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  13620. src1->grad = ggml_add_or_set(ctx,
  13621. src1->grad,
  13622. grad_k,
  13623. zero_table);
  13624. }
  13625. if (src2->grad) {
  13626. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  13627. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  13628. src2->grad = ggml_add_or_set(ctx,
  13629. src2->grad,
  13630. grad_v,
  13631. zero_table);
  13632. }
  13633. } break;
  13634. case GGML_OP_FLASH_FF:
  13635. {
  13636. GGML_ASSERT(false); // not supported
  13637. } break;
  13638. case GGML_OP_FLASH_ATTN_BACK:
  13639. {
  13640. GGML_ASSERT(false); // not supported
  13641. } break;
  13642. case GGML_OP_WIN_PART:
  13643. case GGML_OP_WIN_UNPART:
  13644. case GGML_OP_UNARY:
  13645. {
  13646. switch (ggml_get_unary_op(tensor)) {
  13647. case GGML_UNARY_OP_ABS:
  13648. {
  13649. if (src0->grad) {
  13650. src0->grad =
  13651. ggml_add_or_set(ctx,
  13652. src0->grad,
  13653. ggml_mul(ctx,
  13654. ggml_sgn(ctx, src0),
  13655. tensor->grad),
  13656. zero_table);
  13657. }
  13658. } break;
  13659. case GGML_UNARY_OP_SGN:
  13660. {
  13661. if (src0->grad) {
  13662. // noop
  13663. }
  13664. } break;
  13665. case GGML_UNARY_OP_NEG:
  13666. {
  13667. if (src0->grad) {
  13668. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13669. }
  13670. } break;
  13671. case GGML_UNARY_OP_STEP:
  13672. {
  13673. if (src0->grad) {
  13674. // noop
  13675. }
  13676. } break;
  13677. case GGML_UNARY_OP_TANH:
  13678. {
  13679. GGML_ASSERT(false); // TODO: not implemented
  13680. } break;
  13681. case GGML_UNARY_OP_ELU:
  13682. {
  13683. GGML_ASSERT(false); // TODO: not implemented
  13684. } break;
  13685. case GGML_UNARY_OP_RELU:
  13686. {
  13687. if (src0->grad) {
  13688. src0->grad = ggml_add_or_set(ctx,
  13689. src0->grad,
  13690. ggml_mul(ctx,
  13691. ggml_step(ctx, src0),
  13692. tensor->grad),
  13693. zero_table);
  13694. }
  13695. } break;
  13696. case GGML_UNARY_OP_GELU:
  13697. {
  13698. GGML_ASSERT(false); // TODO: not implemented
  13699. } break;
  13700. case GGML_UNARY_OP_GELU_QUICK:
  13701. {
  13702. GGML_ASSERT(false); // TODO: not implemented
  13703. } break;
  13704. case GGML_UNARY_OP_SILU:
  13705. {
  13706. // necessary for llama
  13707. if (src0->grad) {
  13708. src0->grad = ggml_add_or_set(ctx,
  13709. src0->grad,
  13710. ggml_silu_back(ctx, src0, tensor->grad),
  13711. zero_table);
  13712. }
  13713. } break;
  13714. default:
  13715. GGML_ASSERT(false);
  13716. }
  13717. } break;
  13718. case GGML_OP_GET_REL_POS:
  13719. case GGML_OP_ADD_REL_POS:
  13720. case GGML_OP_MAP_UNARY:
  13721. case GGML_OP_MAP_BINARY:
  13722. case GGML_OP_MAP_CUSTOM1_F32:
  13723. case GGML_OP_MAP_CUSTOM2_F32:
  13724. case GGML_OP_MAP_CUSTOM3_F32:
  13725. case GGML_OP_MAP_CUSTOM1:
  13726. case GGML_OP_MAP_CUSTOM2:
  13727. case GGML_OP_MAP_CUSTOM3:
  13728. {
  13729. GGML_ASSERT(false); // not supported
  13730. } break;
  13731. case GGML_OP_CROSS_ENTROPY_LOSS:
  13732. {
  13733. if (src0->grad) {
  13734. src0->grad = ggml_add_or_set(ctx,
  13735. src0->grad,
  13736. ggml_cross_entropy_loss_back(ctx,
  13737. src0,
  13738. src1,
  13739. tensor->grad),
  13740. zero_table);
  13741. }
  13742. } break;
  13743. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13744. {
  13745. GGML_ASSERT(false); // not supported
  13746. } break;
  13747. case GGML_OP_NONE:
  13748. {
  13749. // nop
  13750. } break;
  13751. case GGML_OP_COUNT:
  13752. {
  13753. GGML_ASSERT(false);
  13754. } break;
  13755. }
  13756. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13757. if (tensor->src[i] && tensor->src[i]->grad) {
  13758. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  13759. }
  13760. }
  13761. }
  13762. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13763. if (node->grad == NULL) {
  13764. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13765. // it can also happen during forward pass, if the user performs computations with constants
  13766. if (node->op != GGML_OP_NONE) {
  13767. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13768. }
  13769. }
  13770. // check if already visited
  13771. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  13772. return;
  13773. }
  13774. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13775. const int k =
  13776. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  13777. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  13778. /* unknown order, just fall back to using i*/ i;
  13779. if (node->src[k]) {
  13780. ggml_visit_parents(cgraph, node->src[k]);
  13781. }
  13782. }
  13783. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13784. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13785. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  13786. if (strlen(node->name) == 0) {
  13787. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13788. }
  13789. cgraph->leafs[cgraph->n_leafs] = node;
  13790. cgraph->n_leafs++;
  13791. } else {
  13792. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  13793. if (strlen(node->name) == 0) {
  13794. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13795. }
  13796. cgraph->nodes[cgraph->n_nodes] = node;
  13797. if (cgraph->grads) {
  13798. cgraph->grads[cgraph->n_nodes] = node->grad;
  13799. }
  13800. cgraph->n_nodes++;
  13801. }
  13802. }
  13803. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13804. if (!expand) {
  13805. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  13806. ggml_graph_clear(cgraph);
  13807. }
  13808. const int n0 = cgraph->n_nodes;
  13809. UNUSED(n0);
  13810. ggml_visit_parents(cgraph, tensor);
  13811. const int n_new = cgraph->n_nodes - n0;
  13812. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13813. if (n_new > 0) {
  13814. // the last added node should always be starting point
  13815. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13816. }
  13817. }
  13818. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13819. ggml_build_forward_impl(cgraph, tensor, true);
  13820. }
  13821. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13822. GGML_ASSERT(gf->n_nodes > 0);
  13823. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13824. if (keep) {
  13825. for (int i = 0; i < gf->n_nodes; i++) {
  13826. struct ggml_tensor * node = gf->nodes[i];
  13827. if (node->grad) {
  13828. node->grad = ggml_dup_tensor(ctx, node);
  13829. gf->grads[i] = node->grad;
  13830. }
  13831. }
  13832. }
  13833. // remember original gradients which start with zero values
  13834. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  13835. for (int i = 0; i < gf->n_nodes; i++) {
  13836. if (gf->grads[i]) {
  13837. ggml_hash_insert(zero_table, gf->grads[i]);
  13838. }
  13839. }
  13840. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13841. struct ggml_tensor * node = gf->nodes[i];
  13842. // inplace operations to add gradients are not created by ggml_compute_backward
  13843. // use allocator to automatically make inplace operations
  13844. if (node->grad) {
  13845. ggml_compute_backward(ctx, node, zero_table);
  13846. }
  13847. }
  13848. for (int i = 0; i < gf->n_nodes; i++) {
  13849. struct ggml_tensor * node = gf->nodes[i];
  13850. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  13851. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13852. ggml_build_forward_expand(gb, node->grad);
  13853. }
  13854. }
  13855. ggml_hash_set_free(zero_table);
  13856. }
  13857. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  13858. size_t nbytes = sizeof(struct ggml_cgraph);
  13859. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  13860. if (grads) {
  13861. nbytes += size * sizeof(struct ggml_tensor *); // grads
  13862. }
  13863. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  13864. return nbytes;
  13865. }
  13866. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  13867. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  13868. }
  13869. size_t ggml_graph_overhead(void) {
  13870. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  13871. }
  13872. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  13873. const size_t obj_size = ggml_graph_nbytes(size, grads);
  13874. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  13875. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13876. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  13877. size_t hash_size = ggml_hash_size(size * 2);
  13878. struct ggml_tensor ** nodes_ptr = data_start;
  13879. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  13880. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  13881. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  13882. // check that we allocated the correct amount of memory
  13883. assert(obj_size == (size_t) (
  13884. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  13885. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  13886. *cgraph = (struct ggml_cgraph) {
  13887. /*.size =*/ size,
  13888. /*.n_nodes =*/ 0,
  13889. /*.n_leafs =*/ 0,
  13890. /*.nodes =*/ nodes_ptr,
  13891. /*.grads =*/ grads_ptr,
  13892. /*.leafs =*/ leafs_ptr,
  13893. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  13894. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13895. /*.perf_runs =*/ 0,
  13896. /*.perf_cycles =*/ 0,
  13897. /*.perf_time_us =*/ 0,
  13898. };
  13899. return cgraph;
  13900. }
  13901. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13902. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  13903. }
  13904. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  13905. struct ggml_cgraph cgraph = {
  13906. /*.size =*/ 0,
  13907. /*.n_nodes =*/ i1 - i0,
  13908. /*.n_leafs =*/ 0,
  13909. /*.nodes =*/ cgraph0->nodes + i0,
  13910. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  13911. /*.leafs =*/ NULL,
  13912. /*.hash_table =*/ { 0, NULL },
  13913. /*.order =*/ cgraph0->order,
  13914. /*.perf_runs =*/ 0,
  13915. /*.perf_cycles =*/ 0,
  13916. /*.perf_time_us =*/ 0,
  13917. };
  13918. return cgraph;
  13919. }
  13920. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  13921. GGML_ASSERT(dst->size >= src->n_leafs);
  13922. GGML_ASSERT(dst->size >= src->n_nodes);
  13923. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  13924. dst->n_leafs = src->n_leafs;
  13925. dst->n_nodes = src->n_nodes;
  13926. dst->order = src->order;
  13927. for (int i = 0; i < src->n_leafs; ++i) {
  13928. dst->leafs[i] = src->leafs[i];
  13929. }
  13930. for (int i = 0; i < src->n_nodes; ++i) {
  13931. dst->nodes[i] = src->nodes[i];
  13932. }
  13933. if (src->grads) {
  13934. GGML_ASSERT(dst->grads != NULL);
  13935. for (int i = 0; i < src->n_nodes; ++i) {
  13936. dst->grads[i] = src->grads[i];
  13937. }
  13938. }
  13939. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  13940. if (src->visited_hash_table.keys[i]) {
  13941. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  13942. }
  13943. }
  13944. }
  13945. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  13946. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  13947. ggml_graph_cpy(cgraph, result);
  13948. return result;
  13949. }
  13950. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13951. GGML_ASSERT(cgraph->grads != NULL);
  13952. for (int i = 0; i < cgraph->n_nodes; i++) {
  13953. struct ggml_tensor * grad = cgraph->grads[i];
  13954. if (grad) {
  13955. ggml_set_zero(grad);
  13956. }
  13957. }
  13958. }
  13959. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  13960. cgraph->n_leafs = 0;
  13961. cgraph->n_nodes = 0;
  13962. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  13963. }
  13964. //
  13965. // thread data
  13966. //
  13967. // synchronization is done via busy loops
  13968. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13969. //
  13970. #ifdef __APPLE__
  13971. //#include <os/lock.h>
  13972. //
  13973. //typedef os_unfair_lock ggml_lock_t;
  13974. //
  13975. //#define ggml_lock_init(x) UNUSED(x)
  13976. //#define ggml_lock_destroy(x) UNUSED(x)
  13977. //#define ggml_lock_lock os_unfair_lock_lock
  13978. //#define ggml_lock_unlock os_unfair_lock_unlock
  13979. //
  13980. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13981. typedef int ggml_lock_t;
  13982. #define ggml_lock_init(x) UNUSED(x)
  13983. #define ggml_lock_destroy(x) UNUSED(x)
  13984. #define ggml_lock_lock(x) UNUSED(x)
  13985. #define ggml_lock_unlock(x) UNUSED(x)
  13986. #define GGML_LOCK_INITIALIZER 0
  13987. typedef pthread_t ggml_thread_t;
  13988. #define ggml_thread_create pthread_create
  13989. #define ggml_thread_join pthread_join
  13990. #else
  13991. //typedef pthread_spinlock_t ggml_lock_t;
  13992. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13993. //#define ggml_lock_destroy pthread_spin_destroy
  13994. //#define ggml_lock_lock pthread_spin_lock
  13995. //#define ggml_lock_unlock pthread_spin_unlock
  13996. typedef int ggml_lock_t;
  13997. #define ggml_lock_init(x) UNUSED(x)
  13998. #define ggml_lock_destroy(x) UNUSED(x)
  13999. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  14000. #define ggml_lock_lock(x) _mm_pause()
  14001. #else
  14002. #define ggml_lock_lock(x) UNUSED(x)
  14003. #endif
  14004. #define ggml_lock_unlock(x) UNUSED(x)
  14005. #define GGML_LOCK_INITIALIZER 0
  14006. typedef pthread_t ggml_thread_t;
  14007. #define ggml_thread_create pthread_create
  14008. #define ggml_thread_join pthread_join
  14009. #endif
  14010. // Android's libc implementation "bionic" does not support setting affinity
  14011. #if defined(__gnu_linux__)
  14012. static void set_numa_thread_affinity(int thread_n) {
  14013. if (!ggml_is_numa()) {
  14014. return;
  14015. }
  14016. int node_num;
  14017. int rv;
  14018. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14019. switch(g_state.numa.numa_strategy) {
  14020. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  14021. // run thread on node_num thread_n / (threads per node)
  14022. node_num = thread_n % g_state.numa.n_nodes;
  14023. break;
  14024. case GGML_NUMA_STRATEGY_ISOLATE:
  14025. // run thread on current_node
  14026. node_num = g_state.numa.current_node;
  14027. break;
  14028. case GGML_NUMA_STRATEGY_NUMACTL:
  14029. // use the cpuset that numactl gave us
  14030. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  14031. if (rv) {
  14032. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  14033. }
  14034. return;
  14035. default:
  14036. return;
  14037. }
  14038. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  14039. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14040. CPU_ZERO_S(setsize, cpus);
  14041. for (size_t i = 0; i < node->n_cpus; ++i) {
  14042. CPU_SET_S(node->cpus[i], setsize, cpus);
  14043. }
  14044. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14045. if (rv) {
  14046. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14047. }
  14048. CPU_FREE(cpus);
  14049. }
  14050. static void clear_numa_thread_affinity(void) {
  14051. if (!ggml_is_numa()) {
  14052. return;
  14053. }
  14054. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14055. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14056. CPU_ZERO_S(setsize, cpus);
  14057. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  14058. CPU_SET_S(i, setsize, cpus);
  14059. }
  14060. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14061. if (rv) {
  14062. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14063. }
  14064. CPU_FREE(cpus);
  14065. }
  14066. #else
  14067. // TODO: Windows etc.
  14068. // (the linux implementation may also work on BSD, someone should test)
  14069. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  14070. static void clear_numa_thread_affinity(void) {}
  14071. #endif
  14072. struct ggml_compute_state_shared {
  14073. const struct ggml_cgraph * cgraph;
  14074. const struct ggml_cplan * cplan;
  14075. int64_t perf_node_start_cycles;
  14076. int64_t perf_node_start_time_us;
  14077. const int n_threads;
  14078. // synchronization primitives
  14079. atomic_int n_active; // num active threads
  14080. atomic_int node_n; // active graph node
  14081. atomic_int node_task; // active graph node task phase
  14082. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  14083. void * abort_callback_data;
  14084. };
  14085. struct ggml_compute_state {
  14086. ggml_thread_t thrd;
  14087. int ith;
  14088. struct ggml_compute_state_shared * shared;
  14089. };
  14090. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  14091. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  14092. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  14093. node->perf_runs++;
  14094. node->perf_cycles += cycles_cur;
  14095. node->perf_time_us += time_us_cur;
  14096. }
  14097. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  14098. int n_tasks = 0;
  14099. switch (node->op) {
  14100. case GGML_OP_CPY:
  14101. case GGML_OP_DUP:
  14102. case GGML_OP_ADD:
  14103. case GGML_OP_ADD1:
  14104. case GGML_OP_ACC:
  14105. {
  14106. n_tasks = n_threads;
  14107. } break;
  14108. case GGML_OP_SUB:
  14109. case GGML_OP_SQR:
  14110. case GGML_OP_SQRT:
  14111. case GGML_OP_LOG:
  14112. case GGML_OP_SUM:
  14113. case GGML_OP_SUM_ROWS:
  14114. case GGML_OP_MEAN:
  14115. case GGML_OP_ARGMAX:
  14116. case GGML_OP_REPEAT:
  14117. case GGML_OP_REPEAT_BACK:
  14118. case GGML_OP_LEAKY_RELU:
  14119. {
  14120. n_tasks = 1;
  14121. } break;
  14122. case GGML_OP_UNARY:
  14123. switch (ggml_get_unary_op(node)) {
  14124. case GGML_UNARY_OP_ABS:
  14125. case GGML_UNARY_OP_SGN:
  14126. case GGML_UNARY_OP_NEG:
  14127. case GGML_UNARY_OP_STEP:
  14128. case GGML_UNARY_OP_TANH:
  14129. case GGML_UNARY_OP_ELU:
  14130. case GGML_UNARY_OP_RELU:
  14131. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  14132. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  14133. {
  14134. n_tasks = 1;
  14135. } break;
  14136. case GGML_UNARY_OP_GELU:
  14137. case GGML_UNARY_OP_GELU_QUICK:
  14138. case GGML_UNARY_OP_SILU:
  14139. {
  14140. n_tasks = n_threads;
  14141. } break;
  14142. default:
  14143. GGML_ASSERT(false);
  14144. }
  14145. break;
  14146. case GGML_OP_SILU_BACK:
  14147. case GGML_OP_MUL:
  14148. case GGML_OP_DIV:
  14149. case GGML_OP_NORM:
  14150. case GGML_OP_RMS_NORM:
  14151. case GGML_OP_RMS_NORM_BACK:
  14152. case GGML_OP_GROUP_NORM:
  14153. case GGML_OP_CONCAT:
  14154. {
  14155. n_tasks = n_threads;
  14156. } break;
  14157. case GGML_OP_MUL_MAT:
  14158. {
  14159. n_tasks = n_threads;
  14160. // TODO: use different scheduling for different matrix sizes
  14161. //const int nr0 = ggml_nrows(node->src[0]);
  14162. //const int nr1 = ggml_nrows(node->src[1]);
  14163. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14164. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14165. } break;
  14166. case GGML_OP_MUL_MAT_ID:
  14167. {
  14168. n_tasks = n_threads;
  14169. } break;
  14170. case GGML_OP_OUT_PROD:
  14171. {
  14172. n_tasks = n_threads;
  14173. } break;
  14174. case GGML_OP_SCALE:
  14175. case GGML_OP_SET:
  14176. case GGML_OP_CONT:
  14177. case GGML_OP_RESHAPE:
  14178. case GGML_OP_VIEW:
  14179. case GGML_OP_PERMUTE:
  14180. case GGML_OP_TRANSPOSE:
  14181. case GGML_OP_GET_ROWS:
  14182. case GGML_OP_GET_ROWS_BACK:
  14183. case GGML_OP_DIAG:
  14184. {
  14185. n_tasks = 1;
  14186. } break;
  14187. case GGML_OP_DIAG_MASK_ZERO:
  14188. case GGML_OP_DIAG_MASK_INF:
  14189. case GGML_OP_SOFT_MAX_BACK:
  14190. case GGML_OP_ROPE:
  14191. case GGML_OP_ROPE_BACK:
  14192. case GGML_OP_ADD_REL_POS:
  14193. {
  14194. n_tasks = n_threads;
  14195. } break;
  14196. case GGML_OP_ALIBI:
  14197. {
  14198. n_tasks = 1; //TODO
  14199. } break;
  14200. case GGML_OP_CLAMP:
  14201. {
  14202. n_tasks = 1; //TODO
  14203. } break;
  14204. case GGML_OP_SOFT_MAX:
  14205. {
  14206. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  14207. } break;
  14208. case GGML_OP_CONV_TRANSPOSE_1D:
  14209. {
  14210. n_tasks = n_threads;
  14211. } break;
  14212. case GGML_OP_IM2COL:
  14213. {
  14214. n_tasks = n_threads;
  14215. } break;
  14216. case GGML_OP_CONV_TRANSPOSE_2D:
  14217. {
  14218. n_tasks = n_threads;
  14219. } break;
  14220. case GGML_OP_POOL_1D:
  14221. case GGML_OP_POOL_2D:
  14222. {
  14223. n_tasks = 1;
  14224. } break;
  14225. case GGML_OP_UPSCALE:
  14226. {
  14227. n_tasks = n_threads;
  14228. } break;
  14229. case GGML_OP_PAD:
  14230. {
  14231. n_tasks = n_threads;
  14232. } break;
  14233. case GGML_OP_ARGSORT:
  14234. {
  14235. n_tasks = n_threads;
  14236. } break;
  14237. case GGML_OP_FLASH_ATTN:
  14238. {
  14239. n_tasks = n_threads;
  14240. } break;
  14241. case GGML_OP_FLASH_FF:
  14242. {
  14243. n_tasks = n_threads;
  14244. } break;
  14245. case GGML_OP_FLASH_ATTN_BACK:
  14246. {
  14247. n_tasks = n_threads;
  14248. } break;
  14249. case GGML_OP_WIN_PART:
  14250. case GGML_OP_WIN_UNPART:
  14251. case GGML_OP_GET_REL_POS:
  14252. case GGML_OP_MAP_UNARY:
  14253. case GGML_OP_MAP_BINARY:
  14254. case GGML_OP_MAP_CUSTOM1_F32:
  14255. case GGML_OP_MAP_CUSTOM2_F32:
  14256. case GGML_OP_MAP_CUSTOM3_F32:
  14257. {
  14258. n_tasks = 1;
  14259. } break;
  14260. case GGML_OP_MAP_CUSTOM1:
  14261. {
  14262. struct ggml_map_custom1_op_params p;
  14263. memcpy(&p, node->op_params, sizeof(p));
  14264. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14265. n_tasks = n_threads;
  14266. } else {
  14267. n_tasks = MIN(p.n_tasks, n_threads);
  14268. }
  14269. } break;
  14270. case GGML_OP_MAP_CUSTOM2:
  14271. {
  14272. struct ggml_map_custom2_op_params p;
  14273. memcpy(&p, node->op_params, sizeof(p));
  14274. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14275. n_tasks = n_threads;
  14276. } else {
  14277. n_tasks = MIN(p.n_tasks, n_threads);
  14278. }
  14279. } break;
  14280. case GGML_OP_MAP_CUSTOM3:
  14281. {
  14282. struct ggml_map_custom3_op_params p;
  14283. memcpy(&p, node->op_params, sizeof(p));
  14284. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14285. n_tasks = n_threads;
  14286. } else {
  14287. n_tasks = MIN(p.n_tasks, n_threads);
  14288. }
  14289. } break;
  14290. case GGML_OP_CROSS_ENTROPY_LOSS:
  14291. {
  14292. n_tasks = n_threads;
  14293. } break;
  14294. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14295. {
  14296. n_tasks = n_threads;
  14297. } break;
  14298. case GGML_OP_NONE:
  14299. {
  14300. n_tasks = 1;
  14301. } break;
  14302. case GGML_OP_COUNT:
  14303. {
  14304. GGML_ASSERT(false);
  14305. } break;
  14306. default:
  14307. {
  14308. fprintf(stderr, "%s: op not implemented: ", __func__);
  14309. if (node->op < GGML_OP_COUNT) {
  14310. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  14311. } else {
  14312. fprintf(stderr, "%d\n", node->op);
  14313. }
  14314. GGML_ASSERT(false);
  14315. } break;
  14316. }
  14317. assert(n_tasks > 0);
  14318. return n_tasks;
  14319. }
  14320. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  14321. // wait for other threads to finish
  14322. const int last_node_n = * node_n;
  14323. while (true) {
  14324. if (do_yield) {
  14325. sched_yield();
  14326. }
  14327. * node_n = atomic_load(&state->shared->node_n);
  14328. if (* node_n != last_node_n) break;
  14329. }
  14330. }
  14331. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  14332. // wait for other threads to finish
  14333. const int last_task_phase = * task_phase;
  14334. while (true) {
  14335. if (do_yield) {
  14336. sched_yield();
  14337. }
  14338. * task_phase = atomic_load(&state->shared->node_task);
  14339. if (* task_phase != last_task_phase) break;
  14340. }
  14341. }
  14342. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14343. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14344. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14345. const struct ggml_cplan * cplan = state->shared->cplan;
  14346. const int n_threads = state->shared->n_threads;
  14347. set_numa_thread_affinity(state->ith);
  14348. int node_n = -1;
  14349. int task_phase = GGML_TASK_TYPE_FINALIZE;
  14350. while (true) {
  14351. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14352. state->shared->node_n += 1;
  14353. return (thread_ret_t) GGML_EXIT_ABORTED;
  14354. }
  14355. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14356. // all other threads are finished and spinning
  14357. // do finalize and init here so we don't have synchronize again
  14358. struct ggml_compute_params params = {
  14359. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  14360. /*.ith =*/ 0,
  14361. /*.nth =*/ 0,
  14362. /*.wsize =*/ cplan->work_size,
  14363. /*.wdata =*/ cplan->work_data,
  14364. };
  14365. if (node_n != -1) {
  14366. /* FINALIZE */
  14367. struct ggml_tensor * node = cgraph->nodes[node_n];
  14368. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14369. params.nth = ggml_get_n_tasks(node, n_threads);
  14370. ggml_compute_forward(&params, node);
  14371. }
  14372. ggml_graph_compute_perf_stats_node(node, state->shared);
  14373. }
  14374. // distribute new work or execute it direct if 1T
  14375. while (++node_n < cgraph->n_nodes) {
  14376. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  14377. struct ggml_tensor * node = cgraph->nodes[node_n];
  14378. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14379. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  14380. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  14381. params.nth = n_tasks;
  14382. if (n_tasks == 1) {
  14383. /* INIT */
  14384. if (GGML_OP_HAS_INIT[node->op]) {
  14385. params.type = GGML_TASK_TYPE_INIT;
  14386. ggml_compute_forward(&params, node);
  14387. }
  14388. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  14389. // they do something more efficient than spinning (?)
  14390. params.type = GGML_TASK_TYPE_COMPUTE;
  14391. ggml_compute_forward(&params, node);
  14392. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14393. params.type = GGML_TASK_TYPE_FINALIZE;
  14394. ggml_compute_forward(&params, node);
  14395. }
  14396. ggml_graph_compute_perf_stats_node(node, state->shared);
  14397. } else {
  14398. break;
  14399. }
  14400. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14401. break;
  14402. }
  14403. }
  14404. task_phase = GGML_TASK_TYPE_INIT;
  14405. atomic_store(&state->shared->n_active, n_threads);
  14406. atomic_store(&state->shared->node_n, node_n);
  14407. atomic_store(&state->shared->node_task, task_phase);
  14408. } else {
  14409. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  14410. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14411. }
  14412. // check if we should stop
  14413. if (node_n >= cgraph->n_nodes) break;
  14414. /* INIT & COMPUTE */
  14415. struct ggml_tensor * node = cgraph->nodes[node_n];
  14416. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14417. struct ggml_compute_params params = {
  14418. /*.type =*/ GGML_TASK_TYPE_INIT,
  14419. /*.ith =*/ state->ith,
  14420. /*.nth =*/ n_tasks,
  14421. /*.wsize =*/ cplan->work_size,
  14422. /*.wdata =*/ cplan->work_data,
  14423. };
  14424. if (state->ith < n_tasks) {
  14425. if (GGML_OP_HAS_INIT[node->op]) {
  14426. ggml_compute_forward(&params, node);
  14427. }
  14428. }
  14429. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14430. task_phase = GGML_TASK_TYPE_COMPUTE;
  14431. atomic_store(&state->shared->n_active, n_threads);
  14432. atomic_store(&state->shared->node_task, task_phase);
  14433. }
  14434. else {
  14435. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  14436. // depending on the workload and the operating system.
  14437. // since it is not clear what is the best approach, it should potentially become user-configurable
  14438. // ref: https://github.com/ggerganov/ggml/issues/291
  14439. // UPD: adding the do_yield flag seems to resolve the issue universally
  14440. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  14441. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  14442. }
  14443. if (state->ith < n_tasks) {
  14444. params.type = GGML_TASK_TYPE_COMPUTE;
  14445. ggml_compute_forward(&params, node);
  14446. }
  14447. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14448. task_phase = GGML_TASK_TYPE_FINALIZE;
  14449. atomic_store(&state->shared->n_active, n_threads);
  14450. atomic_store(&state->shared->node_task, task_phase);
  14451. }
  14452. else {
  14453. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14454. }
  14455. }
  14456. return GGML_EXIT_SUCCESS;
  14457. }
  14458. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  14459. if (n_threads <= 0) {
  14460. n_threads = GGML_DEFAULT_N_THREADS;
  14461. }
  14462. size_t work_size = 0;
  14463. struct ggml_cplan cplan;
  14464. memset(&cplan, 0, sizeof(struct ggml_cplan));
  14465. int max_tasks = 1;
  14466. // thread scheduling for the different operations + work buffer size estimation
  14467. for (int i = 0; i < cgraph->n_nodes; i++) {
  14468. struct ggml_tensor * node = cgraph->nodes[i];
  14469. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14470. max_tasks = MAX(max_tasks, n_tasks);
  14471. size_t cur = 0;
  14472. switch (node->op) {
  14473. case GGML_OP_CPY:
  14474. case GGML_OP_DUP:
  14475. {
  14476. if (ggml_is_quantized(node->type)) {
  14477. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14478. }
  14479. } break;
  14480. case GGML_OP_ADD:
  14481. case GGML_OP_ADD1:
  14482. {
  14483. if (ggml_is_quantized(node->src[0]->type)) {
  14484. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14485. }
  14486. } break;
  14487. case GGML_OP_ACC:
  14488. {
  14489. if (ggml_is_quantized(node->src[0]->type)) {
  14490. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  14491. }
  14492. } break;
  14493. case GGML_OP_MUL_MAT:
  14494. {
  14495. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  14496. #if defined(GGML_USE_CLBLAST)
  14497. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  14498. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  14499. } else
  14500. #endif
  14501. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14502. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  14503. if (node->src[0]->type != GGML_TYPE_F32) {
  14504. // here we need memory for fully dequantized matrix from src0
  14505. // take into account that src0 can be broadcasted into src1[2,3]
  14506. cur = ggml_type_size(GGML_TYPE_F32)
  14507. * node->src[0]->ne[0]*node->src[0]->ne[1]
  14508. * node->src[1]->ne[2]*node->src[1]->ne[3];
  14509. }
  14510. } else
  14511. #endif
  14512. if (node->src[1]->type != vec_dot_type) {
  14513. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  14514. }
  14515. } break;
  14516. case GGML_OP_MUL_MAT_ID:
  14517. {
  14518. cur = 0;
  14519. const struct ggml_tensor * src0 = node->src[2];
  14520. const struct ggml_tensor * src1 = node->src[1];
  14521. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  14522. if (src1->type != vec_dot_type) {
  14523. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  14524. }
  14525. const int n_as = ggml_get_op_params_i32(node, 1);
  14526. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  14527. cur += n_as * sizeof(int64_t); // matrix_row_counts
  14528. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  14529. } break;
  14530. case GGML_OP_OUT_PROD:
  14531. {
  14532. if (ggml_is_quantized(node->src[0]->type)) {
  14533. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14534. }
  14535. } break;
  14536. case GGML_OP_SOFT_MAX:
  14537. case GGML_OP_ROPE:
  14538. {
  14539. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14540. } break;
  14541. case GGML_OP_CONV_TRANSPOSE_1D:
  14542. {
  14543. GGML_ASSERT(node->src[0]->ne[3] == 1);
  14544. GGML_ASSERT(node->src[1]->ne[2] == 1);
  14545. GGML_ASSERT(node->src[1]->ne[3] == 1);
  14546. const int64_t ne00 = node->src[0]->ne[0]; // K
  14547. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  14548. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  14549. const int64_t ne10 = node->src[1]->ne[0]; // L
  14550. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  14551. if (node->src[0]->type == GGML_TYPE_F16 &&
  14552. node->src[1]->type == GGML_TYPE_F32) {
  14553. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  14554. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  14555. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14556. node->src[1]->type == GGML_TYPE_F32) {
  14557. cur += sizeof(float)*ne00*ne01*ne02;
  14558. cur += sizeof(float)*ne10*ne11;
  14559. } else {
  14560. GGML_ASSERT(false);
  14561. }
  14562. } break;
  14563. case GGML_OP_CONV_TRANSPOSE_2D:
  14564. {
  14565. const int64_t ne00 = node->src[0]->ne[0]; // W
  14566. const int64_t ne01 = node->src[0]->ne[1]; // H
  14567. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  14568. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  14569. const int64_t ne10 = node->src[1]->ne[0]; // W
  14570. const int64_t ne11 = node->src[1]->ne[1]; // H
  14571. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  14572. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  14573. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  14574. } break;
  14575. case GGML_OP_FLASH_ATTN:
  14576. {
  14577. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14578. if (node->src[1]->type == GGML_TYPE_F32) {
  14579. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14580. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14581. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14582. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14583. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14584. }
  14585. } break;
  14586. case GGML_OP_FLASH_FF:
  14587. {
  14588. if (node->src[1]->type == GGML_TYPE_F32) {
  14589. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14590. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14591. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14592. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14593. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14594. }
  14595. } break;
  14596. case GGML_OP_FLASH_ATTN_BACK:
  14597. {
  14598. const int64_t D = node->src[0]->ne[0];
  14599. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14600. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  14601. if (node->src[1]->type == GGML_TYPE_F32) {
  14602. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14603. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14604. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14605. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14606. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14607. }
  14608. } break;
  14609. case GGML_OP_CROSS_ENTROPY_LOSS:
  14610. {
  14611. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  14612. } break;
  14613. case GGML_OP_COUNT:
  14614. {
  14615. GGML_ASSERT(false);
  14616. } break;
  14617. default:
  14618. break;
  14619. }
  14620. work_size = MAX(work_size, cur);
  14621. }
  14622. if (work_size > 0) {
  14623. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  14624. }
  14625. cplan.n_threads = MIN(max_tasks, n_threads);
  14626. cplan.work_size = work_size;
  14627. cplan.work_data = NULL;
  14628. return cplan;
  14629. }
  14630. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  14631. {
  14632. GGML_ASSERT(cplan);
  14633. GGML_ASSERT(cplan->n_threads > 0);
  14634. if (cplan->work_size > 0) {
  14635. GGML_ASSERT(cplan->work_data);
  14636. }
  14637. }
  14638. #ifdef GGML_USE_VULKAN
  14639. for (int i = 0; i < cgraph->n_nodes; i++) {
  14640. ggml_vk_preallocate_buffers_graph_cpu_assist(cgraph->nodes[i]);
  14641. }
  14642. ggml_vk_preallocate_buffers_cpu_assist();
  14643. for (int i = 0; i < cgraph->n_nodes; i++) {
  14644. ggml_vk_build_graph_cpu_assist(cgraph->nodes[i], i == cgraph->n_nodes - 1);
  14645. }
  14646. #endif
  14647. const int n_threads = cplan->n_threads;
  14648. struct ggml_compute_state_shared state_shared = {
  14649. /*.cgraph =*/ cgraph,
  14650. /*.cgraph_plan =*/ cplan,
  14651. /*.perf_node_start_cycles =*/ 0,
  14652. /*.perf_node_start_time_us =*/ 0,
  14653. /*.n_threads =*/ n_threads,
  14654. /*.n_active =*/ n_threads,
  14655. /*.node_n =*/ -1,
  14656. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  14657. /*.abort_callback =*/ NULL,
  14658. /*.abort_callback_data =*/ NULL,
  14659. };
  14660. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  14661. // create thread pool
  14662. if (n_threads > 1) {
  14663. for (int j = 1; j < n_threads; ++j) {
  14664. workers[j] = (struct ggml_compute_state) {
  14665. .thrd = 0,
  14666. .ith = j,
  14667. .shared = &state_shared,
  14668. };
  14669. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14670. GGML_ASSERT(rc == 0);
  14671. UNUSED(rc);
  14672. }
  14673. }
  14674. workers[0].ith = 0;
  14675. workers[0].shared = &state_shared;
  14676. const int64_t perf_start_cycles = ggml_perf_cycles();
  14677. const int64_t perf_start_time_us = ggml_perf_time_us();
  14678. // this is a work thread too
  14679. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  14680. // don't leave affinity set on the main thread
  14681. clear_numa_thread_affinity();
  14682. // join or kill thread pool
  14683. if (n_threads > 1) {
  14684. for (int j = 1; j < n_threads; j++) {
  14685. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14686. GGML_ASSERT(rc == 0);
  14687. }
  14688. }
  14689. #ifdef GGML_USE_VULKAN
  14690. ggml_vk_graph_cleanup_cpu_assist();
  14691. #endif
  14692. // performance stats (graph)
  14693. {
  14694. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14695. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14696. cgraph->perf_runs++;
  14697. cgraph->perf_cycles += perf_cycles_cur;
  14698. cgraph->perf_time_us += perf_time_us_cur;
  14699. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14700. __func__, cgraph->perf_runs,
  14701. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14702. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14703. (double) perf_time_us_cur / 1000.0,
  14704. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14705. }
  14706. return compute_status;
  14707. }
  14708. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14709. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14710. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  14711. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14712. ggml_graph_compute(cgraph, &cplan);
  14713. }
  14714. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14715. for (int i = 0; i < cgraph->n_leafs; i++) {
  14716. struct ggml_tensor * leaf = cgraph->leafs[i];
  14717. if (strcmp(leaf->name, name) == 0) {
  14718. return leaf;
  14719. }
  14720. }
  14721. for (int i = 0; i < cgraph->n_nodes; i++) {
  14722. struct ggml_tensor * node = cgraph->nodes[i];
  14723. if (strcmp(node->name, name) == 0) {
  14724. return node;
  14725. }
  14726. }
  14727. return NULL;
  14728. }
  14729. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14730. const int64_t * ne = tensor->ne;
  14731. const size_t * nb = tensor->nb;
  14732. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14733. ggml_type_name(tensor->type),
  14734. ggml_op_name (tensor->op),
  14735. ggml_n_dims(tensor),
  14736. ne[0], ne[1], ne[2], ne[3],
  14737. nb[0], nb[1], nb[2], nb[3],
  14738. tensor->data,
  14739. tensor->name);
  14740. }
  14741. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14742. const int64_t * ne = tensor->ne;
  14743. const size_t * nb = tensor->nb;
  14744. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14745. arg,
  14746. ggml_type_name(tensor->type),
  14747. ggml_op_name (tensor->op),
  14748. ggml_n_dims(tensor),
  14749. ne[0], ne[1], ne[2], ne[3],
  14750. nb[0], nb[1], nb[2], nb[3],
  14751. tensor->data,
  14752. tensor->name);
  14753. }
  14754. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14755. uint64_t size_eval = 0;
  14756. // compute size of intermediate results
  14757. // TODO: does not take into account scratch buffers !!!!
  14758. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14759. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14760. }
  14761. // print
  14762. {
  14763. FILE * fout = stdout;
  14764. fprintf(fout, "\n");
  14765. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14766. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14767. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14768. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14769. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14770. // header
  14771. fprintf(fout, "\n");
  14772. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14773. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14774. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14775. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14776. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14777. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14778. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14779. }
  14780. // header
  14781. fprintf(fout, "\n");
  14782. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14783. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14784. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14785. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14786. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14787. if (cgraph->nodes[i]->src[j]) {
  14788. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14789. }
  14790. }
  14791. fprintf(fout, "\n");
  14792. }
  14793. fprintf(fout, "\n");
  14794. }
  14795. // write binary data
  14796. {
  14797. FILE * fout = fopen(fname, "wb");
  14798. if (!fout) {
  14799. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14800. return;
  14801. }
  14802. // header
  14803. {
  14804. const uint32_t magic = GGML_FILE_MAGIC;
  14805. const uint32_t version = GGML_FILE_VERSION;
  14806. const uint32_t n_leafs = cgraph->n_leafs;
  14807. const uint32_t n_nodes = cgraph->n_nodes;
  14808. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14809. fwrite(&version, sizeof(uint32_t), 1, fout);
  14810. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14811. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  14812. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14813. }
  14814. // leafs
  14815. {
  14816. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14817. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14818. const uint32_t type = tensor->type;
  14819. const uint32_t op = tensor->op;
  14820. fwrite(&type, sizeof(uint32_t), 1, fout);
  14821. fwrite(&op, sizeof(uint32_t), 1, fout);
  14822. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14823. const uint64_t ne = tensor->ne[j];
  14824. const uint64_t nb = tensor->nb[j];
  14825. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14826. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14827. }
  14828. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14829. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14830. // dump the data
  14831. // TODO: pad this to 32 byte boundary
  14832. {
  14833. const size_t size = ggml_nbytes(tensor);
  14834. fwrite(tensor->data, sizeof(char), size, fout);
  14835. }
  14836. }
  14837. }
  14838. // nodes
  14839. {
  14840. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14841. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14842. const uint32_t type = tensor->type;
  14843. const uint32_t op = tensor->op;
  14844. fwrite(&type, sizeof(uint32_t), 1, fout);
  14845. fwrite(&op, sizeof(uint32_t), 1, fout);
  14846. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14847. const uint64_t ne = tensor->ne[j];
  14848. const uint64_t nb = tensor->nb[j];
  14849. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14850. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14851. }
  14852. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14853. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14854. // output the op arguments
  14855. {
  14856. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14857. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14858. args[j] = tensor->src[j];
  14859. }
  14860. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14861. if (args[j]) {
  14862. int32_t idx = -1;
  14863. // check if leaf
  14864. {
  14865. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14866. if (args[j] == cgraph->leafs[k]) {
  14867. idx = k;
  14868. break;
  14869. }
  14870. }
  14871. }
  14872. // check if node
  14873. if (idx == -1) {
  14874. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14875. if (args[j] == cgraph->nodes[k]) {
  14876. idx = cgraph->n_leafs + k;
  14877. break;
  14878. }
  14879. }
  14880. }
  14881. if (idx == -1) {
  14882. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14883. fclose(fout);
  14884. return;
  14885. }
  14886. fwrite(&idx, sizeof(int32_t), 1, fout);
  14887. } else {
  14888. const int32_t nul = -1;
  14889. fwrite(&nul, sizeof(int32_t), 1, fout);
  14890. }
  14891. }
  14892. }
  14893. }
  14894. }
  14895. fclose(fout);
  14896. }
  14897. }
  14898. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14899. assert(*ctx_data == NULL);
  14900. assert(*ctx_eval == NULL);
  14901. struct ggml_cgraph * result = NULL;
  14902. struct ggml_tensor * data = NULL;
  14903. // read file into data
  14904. {
  14905. FILE * fin = fopen(fname, "rb");
  14906. if (!fin) {
  14907. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14908. return result;
  14909. }
  14910. size_t fsize = 0;
  14911. fseek(fin, 0, SEEK_END);
  14912. fsize = ftell(fin);
  14913. fseek(fin, 0, SEEK_SET);
  14914. // create the data context
  14915. {
  14916. const size_t overhead = 1*ggml_tensor_overhead();
  14917. struct ggml_init_params params = {
  14918. .mem_size = fsize + overhead,
  14919. .mem_buffer = NULL,
  14920. .no_alloc = false,
  14921. };
  14922. *ctx_data = ggml_init(params);
  14923. if (!*ctx_data) {
  14924. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14925. fclose(fin);
  14926. return result;
  14927. }
  14928. }
  14929. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14930. {
  14931. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14932. if (ret != fsize) {
  14933. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14934. fclose(fin);
  14935. return result;
  14936. }
  14937. }
  14938. fclose(fin);
  14939. }
  14940. // populate result
  14941. {
  14942. char * ptr = (char *) data->data;
  14943. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14944. if (magic != GGML_FILE_MAGIC) {
  14945. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14946. return result;
  14947. }
  14948. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14949. if (version != GGML_FILE_VERSION) {
  14950. fprintf(stderr, "%s: invalid version number\n", __func__);
  14951. return result;
  14952. }
  14953. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14954. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14955. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14956. const int graph_size = MAX(n_leafs, n_nodes);
  14957. // create the data context
  14958. {
  14959. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  14960. struct ggml_init_params params = {
  14961. .mem_size = size_eval + overhead,
  14962. .mem_buffer = NULL,
  14963. .no_alloc = true,
  14964. };
  14965. *ctx_eval = ggml_init(params);
  14966. if (!*ctx_eval) {
  14967. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14968. return result;
  14969. }
  14970. }
  14971. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  14972. result->n_leafs = n_leafs;
  14973. result->n_nodes = n_nodes;
  14974. // leafs
  14975. {
  14976. uint32_t type;
  14977. uint32_t op;
  14978. for (uint32_t i = 0; i < n_leafs; ++i) {
  14979. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14980. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14981. int64_t ne[GGML_MAX_DIMS];
  14982. size_t nb[GGML_MAX_DIMS];
  14983. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14984. uint64_t ne_cur;
  14985. uint64_t nb_cur;
  14986. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14987. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14988. ne[j] = ne_cur;
  14989. nb[j] = nb_cur;
  14990. }
  14991. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14992. tensor->op = (enum ggml_op) op;
  14993. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14994. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14995. tensor->data = (void *) ptr;
  14996. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14997. tensor->nb[j] = nb[j];
  14998. }
  14999. result->leafs[i] = tensor;
  15000. ptr += ggml_nbytes(tensor);
  15001. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15002. }
  15003. }
  15004. ggml_set_no_alloc(*ctx_eval, false);
  15005. // nodes
  15006. {
  15007. uint32_t type;
  15008. uint32_t op;
  15009. for (uint32_t i = 0; i < n_nodes; ++i) {
  15010. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15011. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15012. enum ggml_op eop = (enum ggml_op) op;
  15013. int64_t ne[GGML_MAX_DIMS];
  15014. size_t nb[GGML_MAX_DIMS];
  15015. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15016. uint64_t ne_cur;
  15017. uint64_t nb_cur;
  15018. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15019. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15020. ne[j] = ne_cur;
  15021. nb[j] = nb_cur;
  15022. }
  15023. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  15024. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  15025. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  15026. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15027. // parse args
  15028. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15029. const int32_t arg_idx = ptr_arg_idx[j];
  15030. if (arg_idx == -1) {
  15031. continue;
  15032. }
  15033. if (arg_idx < result->n_leafs) {
  15034. args[j] = result->leafs[arg_idx];
  15035. } else {
  15036. args[j] = result->nodes[arg_idx - result->n_leafs];
  15037. }
  15038. }
  15039. // create the tensor
  15040. // "view" operations are handled differently
  15041. // TODO: handle inplace ops - currently a copy is always made
  15042. struct ggml_tensor * tensor = NULL;
  15043. switch (eop) {
  15044. // TODO: implement other view ops
  15045. case GGML_OP_RESHAPE:
  15046. {
  15047. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  15048. } break;
  15049. case GGML_OP_VIEW:
  15050. {
  15051. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15052. size_t offs;
  15053. memcpy(&offs, ptr_op_params, sizeof(offs));
  15054. tensor->data = ((char *) tensor->data) + offs;
  15055. } break;
  15056. case GGML_OP_TRANSPOSE:
  15057. {
  15058. tensor = ggml_transpose(*ctx_eval, args[0]);
  15059. } break;
  15060. case GGML_OP_PERMUTE:
  15061. {
  15062. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15063. } break;
  15064. default:
  15065. {
  15066. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15067. tensor->op = eop;
  15068. } break;
  15069. }
  15070. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  15071. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  15072. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15073. tensor->nb[j] = nb[j];
  15074. }
  15075. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15076. tensor->src[j] = args[j];
  15077. }
  15078. result->nodes[i] = tensor;
  15079. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15080. }
  15081. }
  15082. }
  15083. return result;
  15084. }
  15085. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  15086. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  15087. GGML_PRINT("=== GRAPH ===\n");
  15088. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  15089. for (int i = 0; i < cgraph->n_nodes; i++) {
  15090. struct ggml_tensor * node = cgraph->nodes[i];
  15091. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  15092. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  15093. i,
  15094. node->ne[0], node->ne[1], node->ne[2],
  15095. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  15096. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  15097. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  15098. (double) node->perf_time_us / 1000.0,
  15099. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  15100. }
  15101. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  15102. for (int i = 0; i < cgraph->n_leafs; i++) {
  15103. struct ggml_tensor * node = cgraph->leafs[i];
  15104. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  15105. i,
  15106. node->ne[0], node->ne[1],
  15107. ggml_op_name(node->op),
  15108. ggml_get_name(node));
  15109. }
  15110. for (int i = 0; i < GGML_OP_COUNT; i++) {
  15111. if (perf_total_per_op_us[i] == 0) {
  15112. continue;
  15113. }
  15114. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  15115. }
  15116. GGML_PRINT("========================================\n");
  15117. }
  15118. // check if node is part of the graph
  15119. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15120. if (cgraph == NULL) {
  15121. return true;
  15122. }
  15123. for (int i = 0; i < cgraph->n_nodes; i++) {
  15124. if (cgraph->nodes[i] == node) {
  15125. return true;
  15126. }
  15127. }
  15128. return false;
  15129. }
  15130. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15131. for (int i = 0; i < cgraph->n_nodes; i++) {
  15132. struct ggml_tensor * parent = cgraph->nodes[i];
  15133. if (parent->grad == node) {
  15134. return parent;
  15135. }
  15136. }
  15137. return NULL;
  15138. }
  15139. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15140. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  15141. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  15142. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  15143. gparent0 ? (void *) gparent0 : (void *) parent,
  15144. gparent0 ? "g" : "x",
  15145. gparent ? (void *) gparent : (void *) node,
  15146. gparent ? "g" : "x",
  15147. gparent ? "empty" : "vee",
  15148. gparent ? "dashed" : "solid",
  15149. label);
  15150. }
  15151. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15152. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15153. (void *) parent, "x",
  15154. (void *) node, "x",
  15155. label);
  15156. }
  15157. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15158. char color[16];
  15159. FILE * fp = fopen(filename, "w");
  15160. GGML_ASSERT(fp);
  15161. fprintf(fp, "digraph G {\n");
  15162. fprintf(fp, " newrank = true;\n");
  15163. fprintf(fp, " rankdir = LR;\n");
  15164. for (int i = 0; i < gb->n_nodes; i++) {
  15165. struct ggml_tensor * node = gb->nodes[i];
  15166. if (ggml_graph_get_parent(gb, node) != NULL) {
  15167. continue;
  15168. }
  15169. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15170. snprintf(color, sizeof(color), "yellow");
  15171. } else if (node->grad) {
  15172. if (ggml_graph_find(gf, node)) {
  15173. snprintf(color, sizeof(color), "green");
  15174. } else {
  15175. snprintf(color, sizeof(color), "lightblue");
  15176. }
  15177. } else {
  15178. snprintf(color, sizeof(color), "white");
  15179. }
  15180. fprintf(fp, " \"%p\" [ "
  15181. "style = filled; fillcolor = %s; shape = record; "
  15182. "label=\"",
  15183. (void *) node, color);
  15184. if (strlen(node->name) > 0) {
  15185. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15186. } else {
  15187. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15188. }
  15189. if (ggml_is_matrix(node)) {
  15190. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15191. } else {
  15192. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15193. }
  15194. if (node->grad) {
  15195. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15196. } else {
  15197. fprintf(fp, "\"; ]\n");
  15198. }
  15199. }
  15200. for (int i = 0; i < gb->n_leafs; i++) {
  15201. struct ggml_tensor * node = gb->leafs[i];
  15202. snprintf(color, sizeof(color), "pink");
  15203. fprintf(fp, " \"%p\" [ "
  15204. "style = filled; fillcolor = %s; shape = record; "
  15205. "label=\"<x>",
  15206. (void *) node, color);
  15207. if (strlen(node->name) > 0) {
  15208. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15209. } else {
  15210. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15211. }
  15212. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15213. if (ggml_nelements(node) < 5) {
  15214. fprintf(fp, " | (");
  15215. for (int j = 0; j < ggml_nelements(node); j++) {
  15216. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15217. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15218. }
  15219. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15220. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15221. }
  15222. else {
  15223. fprintf(fp, "#");
  15224. }
  15225. if (j < ggml_nelements(node) - 1) {
  15226. fprintf(fp, ", ");
  15227. }
  15228. }
  15229. fprintf(fp, ")");
  15230. }
  15231. fprintf(fp, "\"; ]\n");
  15232. }
  15233. for (int i = 0; i < gb->n_nodes; i++) {
  15234. struct ggml_tensor * node = gb->nodes[i];
  15235. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15236. if (node->src[j]) {
  15237. char label[16];
  15238. snprintf(label, sizeof(label), "src %d", j);
  15239. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15240. }
  15241. }
  15242. }
  15243. for (int i = 0; i < gb->n_leafs; i++) {
  15244. struct ggml_tensor * node = gb->leafs[i];
  15245. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15246. if (node->src[j]) {
  15247. char label[16];
  15248. snprintf(label, sizeof(label), "src %d", j);
  15249. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15250. }
  15251. }
  15252. }
  15253. fprintf(fp, "}\n");
  15254. fclose(fp);
  15255. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15256. }
  15257. ////////////////////////////////////////////////////////////////////////////////
  15258. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15259. int i = 0;
  15260. for (int p = 0; p < np; ++p) {
  15261. const int64_t ne = ggml_nelements(ps[p]) ;
  15262. // TODO: add function to set tensor from array
  15263. for (int64_t j = 0; j < ne; ++j) {
  15264. ggml_set_f32_1d(ps[p], j, x[i++]);
  15265. }
  15266. }
  15267. }
  15268. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15269. int i = 0;
  15270. for (int p = 0; p < np; ++p) {
  15271. const int64_t ne = ggml_nelements(ps[p]) ;
  15272. // TODO: add function to get all elements at once
  15273. for (int64_t j = 0; j < ne; ++j) {
  15274. x[i++] = ggml_get_f32_1d(ps[p], j);
  15275. }
  15276. }
  15277. }
  15278. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15279. int64_t i = 0;
  15280. for (int p = 0; p < np; ++p) {
  15281. const int64_t ne = ggml_nelements(ps[p]) ;
  15282. // TODO: add function to get all elements at once
  15283. for (int64_t j = 0; j < ne; ++j) {
  15284. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15285. }
  15286. }
  15287. }
  15288. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  15289. int64_t i = 0;
  15290. for (int p = 0; p < np; ++p) {
  15291. const int64_t ne = ggml_nelements(ps[p]) ;
  15292. // TODO: add function to get all elements at once
  15293. for (int64_t j = 0; j < ne; ++j) {
  15294. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  15295. }
  15296. }
  15297. }
  15298. //
  15299. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  15300. //
  15301. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  15302. //
  15303. static enum ggml_opt_result ggml_opt_adam(
  15304. struct ggml_context * ctx,
  15305. struct ggml_opt_context * opt,
  15306. struct ggml_opt_params params,
  15307. struct ggml_tensor * f,
  15308. struct ggml_cgraph * gf,
  15309. struct ggml_cgraph * gb,
  15310. ggml_opt_callback callback,
  15311. void * callback_data) {
  15312. GGML_ASSERT(ggml_is_scalar(f));
  15313. // these will store the parameters we want to optimize
  15314. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15315. int np = 0;
  15316. int64_t nx = 0;
  15317. for (int i = 0; i < gf->n_nodes; ++i) {
  15318. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  15319. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15320. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15321. ps[np++] = gf->nodes[i];
  15322. nx += ggml_nelements(gf->nodes[i]);
  15323. }
  15324. }
  15325. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15326. int iter = opt->iter;
  15327. ggml_opt_init(opt->ctx, opt, params, nx);
  15328. opt->iter = iter;
  15329. }
  15330. // constants
  15331. float sched = params.adam.sched;
  15332. const float alpha = params.adam.alpha;
  15333. const float decay = params.adam.decay * alpha;
  15334. const float beta1 = params.adam.beta1;
  15335. const float beta2 = params.adam.beta2;
  15336. const float eps = params.adam.eps;
  15337. const float gclip = params.adam.gclip;
  15338. const int decay_min_ndim = params.adam.decay_min_ndim;
  15339. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15340. const float accum_norm = 1.0f / (float) n_accum;
  15341. float * g = opt->adam.g->data; // gradients
  15342. float * m = opt->adam.m->data; // first moment
  15343. float * v = opt->adam.v->data; // second moment
  15344. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  15345. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15346. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15347. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15348. bool cancel = false;
  15349. // compute the function value
  15350. float fx = 0;
  15351. ggml_set_zero(opt->adam.g);
  15352. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15353. if (callback) {
  15354. callback(callback_data, accum_step, &sched, &cancel);
  15355. if (cancel) {
  15356. return GGML_OPT_RESULT_CANCEL;
  15357. }
  15358. }
  15359. // ggml_graph_reset (gf);
  15360. ggml_set_f32 (f->grad, 1.0f);
  15361. ggml_graph_compute(gb, &cplan);
  15362. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15363. fx += ggml_get_f32_1d(f, 0);
  15364. }
  15365. fx *= accum_norm;
  15366. opt->adam.fx_prev = fx;
  15367. opt->adam.fx_best = opt->adam.fx_prev;
  15368. if (pf) {
  15369. pf[opt->iter % params.past] = opt->adam.fx_prev;
  15370. }
  15371. opt->loss_before = opt->adam.fx_prev;
  15372. opt->loss_after = opt->adam.fx_prev;
  15373. // initialize
  15374. if (opt->just_initialized) {
  15375. opt->adam.n_no_improvement = 0;
  15376. opt->just_initialized = false;
  15377. }
  15378. float * fx_best = &opt->adam.fx_best;
  15379. float * fx_prev = &opt->adam.fx_prev;
  15380. int * n_no_improvement = &opt->adam.n_no_improvement;
  15381. int iter0 = opt->iter;
  15382. // run the optimizer
  15383. for (int t = 0; t < params.adam.n_iter; ++t) {
  15384. opt->iter = iter0 + t + 1;
  15385. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  15386. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15387. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  15388. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  15389. for (int i = 0; i < np; ++i) {
  15390. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  15391. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  15392. }
  15393. const int64_t t_start_wall = ggml_time_us();
  15394. const int64_t t_start_cpu = ggml_cycles();
  15395. UNUSED(t_start_wall);
  15396. UNUSED(t_start_cpu);
  15397. {
  15398. float gnorm = 1.0f;
  15399. if (gclip > 0.0f) {
  15400. // gradient clipping
  15401. ggml_float sum = 0.0;
  15402. for (int64_t i = 0; i < nx; ++i) {
  15403. sum += (ggml_float)(g[i]*g[i]);
  15404. }
  15405. ggml_float norm = sqrt(sum);
  15406. if (norm > (ggml_float) gclip) {
  15407. gnorm = (float) ((ggml_float) gclip / norm);
  15408. }
  15409. }
  15410. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  15411. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  15412. int64_t i = 0;
  15413. for (int p = 0; p < np; ++p) {
  15414. const int64_t ne = ggml_nelements(ps[p]);
  15415. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  15416. for (int64_t j = 0; j < ne; ++j) {
  15417. float x = ggml_get_f32_1d(ps[p], j);
  15418. float g_ = g[i]*gnorm;
  15419. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  15420. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  15421. float mh = m[i]*beta1h;
  15422. float vh = v[i]*beta2h;
  15423. vh = sqrtf(vh) + eps;
  15424. x = x*(1.0f - p_decay) - mh/vh;
  15425. ggml_set_f32_1d(ps[p], j, x);
  15426. ++i;
  15427. }
  15428. }
  15429. }
  15430. fx = 0;
  15431. ggml_set_zero(opt->adam.g);
  15432. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15433. if (callback) {
  15434. callback(callback_data, accum_step, &sched, &cancel);
  15435. if (cancel) {
  15436. return GGML_OPT_RESULT_CANCEL;;
  15437. }
  15438. }
  15439. // ggml_graph_reset (gf);
  15440. ggml_set_f32 (f->grad, 1.0f);
  15441. ggml_graph_compute(gb, &cplan);
  15442. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15443. fx += ggml_get_f32_1d(f, 0);
  15444. }
  15445. fx *= accum_norm;
  15446. opt->loss_after = fx;
  15447. // check convergence
  15448. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  15449. GGML_PRINT_DEBUG("converged\n");
  15450. return GGML_OPT_RESULT_OK;
  15451. }
  15452. // delta-based convergence test
  15453. if (pf != NULL) {
  15454. // need at least params.past iterations to start checking for convergence
  15455. if (params.past <= iter0 + t) {
  15456. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  15457. if (fabsf(rate) < params.delta) {
  15458. return GGML_OPT_RESULT_OK;
  15459. }
  15460. }
  15461. pf[(iter0 + t)%params.past] = fx;
  15462. }
  15463. // check for improvement
  15464. if (params.max_no_improvement > 0) {
  15465. if (fx_best[0] > fx) {
  15466. fx_best[0] = fx;
  15467. n_no_improvement[0] = 0;
  15468. } else {
  15469. ++n_no_improvement[0];
  15470. if (n_no_improvement[0] >= params.max_no_improvement) {
  15471. return GGML_OPT_RESULT_OK;
  15472. }
  15473. }
  15474. }
  15475. fx_prev[0] = fx;
  15476. {
  15477. const int64_t t_end_cpu = ggml_cycles();
  15478. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  15479. UNUSED(t_end_cpu);
  15480. const int64_t t_end_wall = ggml_time_us();
  15481. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  15482. UNUSED(t_end_wall);
  15483. }
  15484. }
  15485. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  15486. }
  15487. //
  15488. // L-BFGS
  15489. //
  15490. // the L-BFGS implementation below is based on the following implementation:
  15491. //
  15492. // https://github.com/chokkan/liblbfgs
  15493. //
  15494. struct ggml_lbfgs_iteration_data {
  15495. float alpha;
  15496. float ys;
  15497. float * s;
  15498. float * y;
  15499. };
  15500. static enum ggml_opt_result linesearch_backtracking(
  15501. const struct ggml_opt_params * params,
  15502. int nx,
  15503. float * x,
  15504. float * fx,
  15505. float * g,
  15506. float * d,
  15507. float * step,
  15508. const float * xp,
  15509. struct ggml_tensor * f,
  15510. struct ggml_cgraph * gb,
  15511. struct ggml_cplan * cplan,
  15512. const int np,
  15513. struct ggml_tensor * ps[],
  15514. bool * cancel,
  15515. ggml_opt_callback callback,
  15516. void * callback_data) {
  15517. int count = 0;
  15518. float width = 0.0f;
  15519. float dg = 0.0f;
  15520. float finit = 0.0f;
  15521. float dginit = 0.0f;
  15522. float dgtest = 0.0f;
  15523. const float dec = 0.5f;
  15524. const float inc = 2.1f;
  15525. const int n_accum = MAX(1, params->n_gradient_accumulation);
  15526. const float accum_norm = 1.0f / (float) n_accum;
  15527. if (*step <= 0.f) {
  15528. return GGML_LINESEARCH_INVALID_PARAMETERS;
  15529. }
  15530. // compute the initial gradient in the search direction
  15531. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  15532. // make sure that d points to a descent direction
  15533. if (0 < dginit) {
  15534. return GGML_LINESEARCH_FAIL;
  15535. }
  15536. // initialize local variables
  15537. finit = *fx;
  15538. dgtest = params->lbfgs.ftol*dginit;
  15539. while (true) {
  15540. ggml_vec_cpy_f32(nx, x, xp);
  15541. ggml_vec_mad_f32(nx, x, d, *step);
  15542. // evaluate the function and gradient values
  15543. {
  15544. ggml_opt_set_params(np, ps, x);
  15545. *fx = 0;
  15546. memset(g, 0, sizeof(float)*nx);
  15547. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15548. if (callback) {
  15549. // LBFG-S does not support learning rate -> ignore learning schedule
  15550. float sched = 0;
  15551. callback(callback_data, accum_step, &sched, cancel);
  15552. if (*cancel) {
  15553. return GGML_OPT_RESULT_CANCEL;
  15554. }
  15555. }
  15556. // ggml_graph_reset (gf);
  15557. ggml_set_f32 (f->grad, 1.0f);
  15558. ggml_graph_compute(gb, cplan);
  15559. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15560. *fx += ggml_get_f32_1d(f, 0);
  15561. }
  15562. *fx *= accum_norm;
  15563. }
  15564. ++count;
  15565. if (*fx > finit + (*step)*dgtest) {
  15566. width = dec;
  15567. } else {
  15568. // Armijo condition is satisfied
  15569. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  15570. return count;
  15571. }
  15572. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  15573. // check the Wolfe condition
  15574. if (dg < params->lbfgs.wolfe * dginit) {
  15575. width = inc;
  15576. } else {
  15577. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  15578. // regular Wolfe conditions
  15579. return count;
  15580. }
  15581. if(dg > -params->lbfgs.wolfe*dginit) {
  15582. width = dec;
  15583. } else {
  15584. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  15585. return count;
  15586. }
  15587. }
  15588. }
  15589. if (*step < params->lbfgs.min_step) {
  15590. return GGML_LINESEARCH_MINIMUM_STEP;
  15591. }
  15592. if (*step > params->lbfgs.max_step) {
  15593. return GGML_LINESEARCH_MAXIMUM_STEP;
  15594. }
  15595. if (params->lbfgs.max_linesearch <= count) {
  15596. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  15597. }
  15598. (*step) *= width;
  15599. }
  15600. GGML_ASSERT(false && "line search failed");
  15601. return GGML_LINESEARCH_FAIL;
  15602. }
  15603. static enum ggml_opt_result ggml_opt_lbfgs(
  15604. struct ggml_context * ctx,
  15605. struct ggml_opt_context * opt,
  15606. struct ggml_opt_params params,
  15607. struct ggml_tensor * f,
  15608. struct ggml_cgraph * gf,
  15609. struct ggml_cgraph * gb,
  15610. ggml_opt_callback callback,
  15611. void * callback_data) {
  15612. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  15613. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  15614. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  15615. return GGML_OPT_RESULT_INVALID_WOLFE;
  15616. }
  15617. }
  15618. const int m = params.lbfgs.m;
  15619. // these will store the parameters we want to optimize
  15620. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15621. int np = 0;
  15622. int nx = 0;
  15623. for (int i = 0; i < gf->n_nodes; ++i) {
  15624. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  15625. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15626. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15627. ps[np++] = gf->nodes[i];
  15628. nx += ggml_nelements(gf->nodes[i]);
  15629. }
  15630. }
  15631. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  15632. int iter = opt->iter;
  15633. ggml_opt_init(ctx, opt, params, nx);
  15634. opt->iter = iter;
  15635. }
  15636. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15637. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15638. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15639. float * x = opt->lbfgs.x->data; // current parameters
  15640. float * xp = opt->lbfgs.xp->data; // previous parameters
  15641. float * g = opt->lbfgs.g->data; // current gradient
  15642. float * gp = opt->lbfgs.gp->data; // previous gradient
  15643. float * d = opt->lbfgs.d->data; // search direction
  15644. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  15645. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15646. const float accum_norm = 1.0f / (float) n_accum;
  15647. float fx = 0.0f; // cost function value
  15648. float xnorm = 0.0f; // ||x||
  15649. float gnorm = 0.0f; // ||g||
  15650. // initialize x from the graph nodes
  15651. ggml_opt_get_params(np, ps, x);
  15652. // the L-BFGS memory
  15653. float * lm_alpha = opt->lbfgs.lmal->data;
  15654. float * lm_ys = opt->lbfgs.lmys->data;
  15655. float * lm_s = opt->lbfgs.lms->data;
  15656. float * lm_y = opt->lbfgs.lmy->data;
  15657. bool cancel = false;
  15658. // evaluate the function value and its gradient
  15659. {
  15660. ggml_opt_set_params(np, ps, x);
  15661. fx = 0;
  15662. memset(g, 0, sizeof(float)*nx);
  15663. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15664. if (callback) {
  15665. // LBFG-S does not support learning rate -> ignore learning schedule
  15666. float sched = 0;
  15667. callback(callback_data, accum_step, &sched, &cancel);
  15668. if (cancel) {
  15669. return GGML_OPT_RESULT_CANCEL;
  15670. }
  15671. }
  15672. // ggml_graph_reset (gf);
  15673. ggml_set_f32 (f->grad, 1.0f);
  15674. ggml_graph_compute(gb, &cplan);
  15675. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15676. fx += ggml_get_f32_1d(f, 0);
  15677. }
  15678. fx *= accum_norm;
  15679. opt->loss_before = fx;
  15680. opt->loss_after = fx;
  15681. }
  15682. // search direction = -gradient
  15683. ggml_vec_neg_f32(nx, d, g);
  15684. // ||x||, ||g||
  15685. ggml_vec_norm_f32(nx, &xnorm, x);
  15686. ggml_vec_norm_f32(nx, &gnorm, g);
  15687. if (xnorm < 1.0f) {
  15688. xnorm = 1.0f;
  15689. }
  15690. // already optimized
  15691. if (gnorm/xnorm <= params.lbfgs.eps) {
  15692. return GGML_OPT_RESULT_OK;
  15693. }
  15694. if (opt->just_initialized) {
  15695. if (pf) {
  15696. pf[0] = fx;
  15697. }
  15698. opt->lbfgs.fx_best = fx;
  15699. // initial step
  15700. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15701. opt->lbfgs.j = 0;
  15702. opt->lbfgs.k = 1;
  15703. opt->lbfgs.end = 0;
  15704. opt->lbfgs.n_no_improvement = 0;
  15705. opt->just_initialized = false;
  15706. }
  15707. float * fx_best = &opt->lbfgs.fx_best;
  15708. float * step = &opt->lbfgs.step;
  15709. int * j = &opt->lbfgs.j;
  15710. int * k = &opt->lbfgs.k;
  15711. int * end = &opt->lbfgs.end;
  15712. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15713. int ls = 0;
  15714. int bound = 0;
  15715. float ys = 0.0f;
  15716. float yy = 0.0f;
  15717. float beta = 0.0f;
  15718. int it = 0;
  15719. while (true) {
  15720. // store the current position and gradient vectors
  15721. ggml_vec_cpy_f32(nx, xp, x);
  15722. ggml_vec_cpy_f32(nx, gp, g);
  15723. // TODO: instead of passing &cancel here, use the return code of the linesearch
  15724. // to determine if the optimization should be cancelled
  15725. // this is a simple change, but not doing this atm, since I don't have a nice
  15726. // way to test and don't want to break something with so many changes lined up
  15727. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  15728. if (cancel) {
  15729. return GGML_OPT_RESULT_CANCEL;
  15730. }
  15731. if (ls < 0) {
  15732. // linesearch failed - go back to the previous point and return
  15733. ggml_vec_cpy_f32(nx, x, xp);
  15734. ggml_vec_cpy_f32(nx, g, gp);
  15735. return ls;
  15736. }
  15737. opt->loss_after = fx;
  15738. ggml_vec_norm_f32(nx, &xnorm, x);
  15739. ggml_vec_norm_f32(nx, &gnorm, g);
  15740. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15741. if (xnorm < 1.0f) {
  15742. xnorm = 1.0f;
  15743. }
  15744. if (gnorm/xnorm <= params.lbfgs.eps) {
  15745. // converged
  15746. return GGML_OPT_RESULT_OK;
  15747. }
  15748. // delta-based convergence test
  15749. if (pf != NULL) {
  15750. // need at least params.past iterations to start checking for convergence
  15751. if (params.past <= k[0]) {
  15752. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15753. if (fabsf(rate) < params.delta) {
  15754. return GGML_OPT_RESULT_OK;
  15755. }
  15756. }
  15757. pf[k[0]%params.past] = fx;
  15758. }
  15759. // check for improvement
  15760. if (params.max_no_improvement > 0) {
  15761. if (fx < fx_best[0]) {
  15762. fx_best[0] = fx;
  15763. n_no_improvement[0] = 0;
  15764. } else {
  15765. n_no_improvement[0]++;
  15766. if (n_no_improvement[0] >= params.max_no_improvement) {
  15767. return GGML_OPT_RESULT_OK;
  15768. }
  15769. }
  15770. }
  15771. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15772. // reached the maximum number of iterations
  15773. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  15774. }
  15775. // update vectors s and y:
  15776. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15777. // y_{k+1} = g_{k+1} - g_{k}.
  15778. //
  15779. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15780. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15781. // compute scalars ys and yy:
  15782. // ys = y^t \cdot s -> 1 / \rho.
  15783. // yy = y^t \cdot y.
  15784. //
  15785. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  15786. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  15787. lm_ys[end[0]] = ys;
  15788. // find new search direction
  15789. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15790. bound = (m <= k[0]) ? m : k[0];
  15791. k[0]++;
  15792. it++;
  15793. end[0] = (end[0] + 1)%m;
  15794. // initialize search direction with -g
  15795. ggml_vec_neg_f32(nx, d, g);
  15796. j[0] = end[0];
  15797. for (int i = 0; i < bound; ++i) {
  15798. j[0] = (j[0] + m - 1) % m;
  15799. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15800. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  15801. lm_alpha[j[0]] /= lm_ys[j[0]];
  15802. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15803. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15804. }
  15805. ggml_vec_scale_f32(nx, d, ys/yy);
  15806. for (int i = 0; i < bound; ++i) {
  15807. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15808. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  15809. beta /= lm_ys[j[0]];
  15810. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15811. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15812. j[0] = (j[0] + 1)%m;
  15813. }
  15814. step[0] = 1.0;
  15815. }
  15816. GGML_ASSERT(false && "lbfgs failed");
  15817. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  15818. }
  15819. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15820. struct ggml_opt_params result;
  15821. switch (type) {
  15822. case GGML_OPT_TYPE_ADAM:
  15823. {
  15824. result = (struct ggml_opt_params) {
  15825. .type = GGML_OPT_TYPE_ADAM,
  15826. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15827. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  15828. .past = 0,
  15829. .delta = 1e-5f,
  15830. .max_no_improvement = 100,
  15831. .print_forward_graph = true,
  15832. .print_backward_graph = true,
  15833. .n_gradient_accumulation = 1,
  15834. .adam = {
  15835. .n_iter = 10000,
  15836. .sched = 1.000f,
  15837. .decay = 0.0f,
  15838. .decay_min_ndim = 2,
  15839. .alpha = 0.001f,
  15840. .beta1 = 0.9f,
  15841. .beta2 = 0.999f,
  15842. .eps = 1e-8f,
  15843. .eps_f = 1e-5f,
  15844. .eps_g = 1e-3f,
  15845. .gclip = 0.0f,
  15846. },
  15847. };
  15848. } break;
  15849. case GGML_OPT_TYPE_LBFGS:
  15850. {
  15851. result = (struct ggml_opt_params) {
  15852. .type = GGML_OPT_TYPE_LBFGS,
  15853. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15854. .n_threads = 1,
  15855. .past = 0,
  15856. .delta = 1e-5f,
  15857. .max_no_improvement = 0,
  15858. .print_forward_graph = true,
  15859. .print_backward_graph = true,
  15860. .n_gradient_accumulation = 1,
  15861. .lbfgs = {
  15862. .m = 6,
  15863. .n_iter = 100,
  15864. .max_linesearch = 20,
  15865. .eps = 1e-5f,
  15866. .ftol = 1e-4f,
  15867. .wolfe = 0.9f,
  15868. .min_step = 1e-20f,
  15869. .max_step = 1e+20f,
  15870. .linesearch = GGML_LINESEARCH_DEFAULT,
  15871. },
  15872. };
  15873. } break;
  15874. }
  15875. return result;
  15876. }
  15877. GGML_API void ggml_opt_init(
  15878. struct ggml_context * ctx,
  15879. struct ggml_opt_context * opt,
  15880. struct ggml_opt_params params,
  15881. int64_t nx) {
  15882. opt->ctx = ctx;
  15883. opt->params = params;
  15884. opt->iter = 0;
  15885. opt->nx = nx;
  15886. opt->just_initialized = true;
  15887. if (opt->ctx == NULL) {
  15888. struct ggml_init_params ctx_opt_params;
  15889. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  15890. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  15891. if (opt->params.past > 0) {
  15892. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15893. }
  15894. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  15895. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  15896. if (opt->params.past > 0) {
  15897. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15898. }
  15899. }
  15900. ctx_opt_params.mem_buffer = NULL;
  15901. ctx_opt_params.no_alloc = false;
  15902. opt->ctx = ggml_init(ctx_opt_params);
  15903. }
  15904. switch (opt->params.type) {
  15905. case GGML_OPT_TYPE_ADAM:
  15906. {
  15907. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15908. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15909. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15910. opt->adam.pf = params.past > 0
  15911. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15912. : NULL;
  15913. ggml_set_zero(opt->adam.m);
  15914. ggml_set_zero(opt->adam.v);
  15915. if (opt->adam.pf) {
  15916. ggml_set_zero(opt->adam.pf);
  15917. }
  15918. } break;
  15919. case GGML_OPT_TYPE_LBFGS:
  15920. {
  15921. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15922. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15923. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15924. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15925. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15926. opt->lbfgs.pf = params.past > 0
  15927. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15928. : NULL;
  15929. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15930. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15931. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15932. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15933. ggml_set_zero(opt->lbfgs.x);
  15934. ggml_set_zero(opt->lbfgs.xp);
  15935. ggml_set_zero(opt->lbfgs.g);
  15936. ggml_set_zero(opt->lbfgs.gp);
  15937. ggml_set_zero(opt->lbfgs.d);
  15938. if (opt->lbfgs.pf) {
  15939. ggml_set_zero(opt->lbfgs.pf);
  15940. }
  15941. ggml_set_zero(opt->lbfgs.lmal);
  15942. ggml_set_zero(opt->lbfgs.lmys);
  15943. ggml_set_zero(opt->lbfgs.lms);
  15944. ggml_set_zero(opt->lbfgs.lmy);
  15945. } break;
  15946. }
  15947. }
  15948. enum ggml_opt_result ggml_opt(
  15949. struct ggml_context * ctx,
  15950. struct ggml_opt_params params,
  15951. struct ggml_tensor * f) {
  15952. bool free_ctx = false;
  15953. if (ctx == NULL) {
  15954. struct ggml_init_params params_ctx = {
  15955. .mem_size = 16*1024*1024,
  15956. .mem_buffer = NULL,
  15957. .no_alloc = false,
  15958. };
  15959. ctx = ggml_init(params_ctx);
  15960. if (ctx == NULL) {
  15961. return GGML_OPT_RESULT_NO_CONTEXT;
  15962. }
  15963. free_ctx = true;
  15964. }
  15965. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  15966. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15967. ggml_opt_init(ctx, opt, params, 0);
  15968. result = ggml_opt_resume(ctx, opt, f);
  15969. if (free_ctx) {
  15970. ggml_free(ctx);
  15971. }
  15972. return result;
  15973. }
  15974. enum ggml_opt_result ggml_opt_resume(
  15975. struct ggml_context * ctx,
  15976. struct ggml_opt_context * opt,
  15977. struct ggml_tensor * f) {
  15978. // build forward + backward compute graphs
  15979. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  15980. ggml_build_forward_expand(gf, f);
  15981. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  15982. ggml_build_backward_expand(ctx, gf, gb, true);
  15983. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15984. }
  15985. enum ggml_opt_result ggml_opt_resume_g(
  15986. struct ggml_context * ctx,
  15987. struct ggml_opt_context * opt,
  15988. struct ggml_tensor * f,
  15989. struct ggml_cgraph * gf,
  15990. struct ggml_cgraph * gb,
  15991. ggml_opt_callback callback,
  15992. void * callback_data) {
  15993. // build forward + backward compute graphs
  15994. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  15995. switch (opt->params.type) {
  15996. case GGML_OPT_TYPE_ADAM:
  15997. {
  15998. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15999. } break;
  16000. case GGML_OPT_TYPE_LBFGS:
  16001. {
  16002. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16003. } break;
  16004. }
  16005. if (opt->params.print_forward_graph) {
  16006. ggml_graph_print (gf);
  16007. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  16008. }
  16009. if (opt->params.print_backward_graph) {
  16010. ggml_graph_print (gb);
  16011. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  16012. }
  16013. return result;
  16014. }
  16015. ////////////////////////////////////////////////////////////////////////////////
  16016. void ggml_set_input(struct ggml_tensor * tensor) {
  16017. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  16018. }
  16019. void ggml_set_output(struct ggml_tensor * tensor) {
  16020. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  16021. }
  16022. ////////////////////////////////////////////////////////////////////////////////
  16023. void ggml_quantize_init(enum ggml_type type) {
  16024. ggml_critical_section_start();
  16025. switch (type) {
  16026. case GGML_TYPE_IQ2_XXS:
  16027. case GGML_TYPE_IQ2_XS:
  16028. case GGML_TYPE_IQ2_S:
  16029. case GGML_TYPE_IQ1_S: iq2xs_init_impl(type); break;
  16030. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  16031. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  16032. default: // nothing
  16033. break;
  16034. }
  16035. ggml_critical_section_end();
  16036. }
  16037. void ggml_quantize_free(void) {
  16038. ggml_critical_section_start();
  16039. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  16040. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  16041. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  16042. iq3xs_free_impl(256);
  16043. ggml_critical_section_end();
  16044. }
  16045. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16046. assert(k % QK4_0 == 0);
  16047. const int nb = k / QK4_0;
  16048. for (int b = 0; b < n; b += k) {
  16049. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  16050. quantize_row_q4_0_reference(src + b, y, k);
  16051. for (int i = 0; i < nb; i++) {
  16052. for (int j = 0; j < QK4_0; j += 2) {
  16053. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  16054. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  16055. hist[vi0]++;
  16056. hist[vi1]++;
  16057. }
  16058. }
  16059. }
  16060. return (n/QK4_0*sizeof(block_q4_0));
  16061. }
  16062. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  16063. assert(k % QK4_1 == 0);
  16064. const int nb = k / QK4_1;
  16065. for (int b = 0; b < n; b += k) {
  16066. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  16067. quantize_row_q4_1_reference(src + b, y, k);
  16068. for (int i = 0; i < nb; i++) {
  16069. for (int j = 0; j < QK4_1; j += 2) {
  16070. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  16071. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  16072. hist[vi0]++;
  16073. hist[vi1]++;
  16074. }
  16075. }
  16076. }
  16077. return (n/QK4_1*sizeof(block_q4_1));
  16078. }
  16079. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16080. assert(k % QK5_0 == 0);
  16081. const int nb = k / QK5_0;
  16082. for (int b = 0; b < n; b += k) {
  16083. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  16084. quantize_row_q5_0_reference(src + b, y, k);
  16085. for (int i = 0; i < nb; i++) {
  16086. uint32_t qh;
  16087. memcpy(&qh, &y[i].qh, sizeof(qh));
  16088. for (int j = 0; j < QK5_0; j += 2) {
  16089. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  16090. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  16091. // cast to 16 bins
  16092. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  16093. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  16094. hist[vi0]++;
  16095. hist[vi1]++;
  16096. }
  16097. }
  16098. }
  16099. return (n/QK5_0*sizeof(block_q5_0));
  16100. }
  16101. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  16102. assert(k % QK5_1 == 0);
  16103. const int nb = k / QK5_1;
  16104. for (int b = 0; b < n; b += k) {
  16105. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  16106. quantize_row_q5_1_reference(src + b, y, k);
  16107. for (int i = 0; i < nb; i++) {
  16108. uint32_t qh;
  16109. memcpy(&qh, &y[i].qh, sizeof(qh));
  16110. for (int j = 0; j < QK5_1; j += 2) {
  16111. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  16112. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  16113. // cast to 16 bins
  16114. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  16115. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  16116. hist[vi0]++;
  16117. hist[vi1]++;
  16118. }
  16119. }
  16120. }
  16121. return (n/QK5_1*sizeof(block_q5_1));
  16122. }
  16123. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16124. assert(k % QK8_0 == 0);
  16125. const int nb = k / QK8_0;
  16126. for (int b = 0; b < n; b += k) {
  16127. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  16128. quantize_row_q8_0_reference(src + b, y, k);
  16129. for (int i = 0; i < nb; i++) {
  16130. for (int j = 0; j < QK8_0; ++j) {
  16131. const int8_t vi = y[i].qs[j];
  16132. hist[vi/16 + 8]++;
  16133. }
  16134. }
  16135. }
  16136. return (n/QK8_0*sizeof(block_q8_0));
  16137. }
  16138. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  16139. return
  16140. type == GGML_TYPE_IQ2_XXS ||
  16141. type == GGML_TYPE_IQ2_XS ||
  16142. type == GGML_TYPE_IQ1_S;
  16143. }
  16144. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start,
  16145. int nrows, int n_per_row, int64_t * hist, const float * imatrix) {
  16146. ggml_quantize_init(type); // this is noop if already initialized
  16147. size_t result = 0;
  16148. int n = nrows * n_per_row;
  16149. switch (type) {
  16150. case GGML_TYPE_Q4_0:
  16151. {
  16152. GGML_ASSERT(start % QK4_0 == 0);
  16153. GGML_ASSERT(start % n_per_row == 0);
  16154. size_t start_row = start / n_per_row;
  16155. size_t row_size = ggml_row_size(type, n_per_row);
  16156. result = quantize_q4_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16157. GGML_ASSERT(result == row_size * nrows);
  16158. } break;
  16159. case GGML_TYPE_Q4_1:
  16160. {
  16161. GGML_ASSERT(start % QK4_1 == 0);
  16162. GGML_ASSERT(start % n_per_row == 0);
  16163. size_t start_row = start / n_per_row;
  16164. size_t row_size = ggml_row_size(type, n_per_row);
  16165. result = quantize_q4_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16166. GGML_ASSERT(result == row_size * nrows);
  16167. } break;
  16168. case GGML_TYPE_Q5_0:
  16169. {
  16170. GGML_ASSERT(start % QK5_0 == 0);
  16171. GGML_ASSERT(start % n_per_row == 0);
  16172. size_t start_row = start / n_per_row;
  16173. size_t row_size = ggml_row_size(type, n_per_row);
  16174. result = quantize_q5_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16175. GGML_ASSERT(result == row_size * nrows);
  16176. } break;
  16177. case GGML_TYPE_Q5_1:
  16178. {
  16179. GGML_ASSERT(start % QK5_1 == 0);
  16180. GGML_ASSERT(start % n_per_row == 0);
  16181. size_t start_row = start / n_per_row;
  16182. size_t row_size = ggml_row_size(type, n_per_row);
  16183. result = quantize_q5_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16184. GGML_ASSERT(result == row_size * nrows);
  16185. } break;
  16186. case GGML_TYPE_Q8_0:
  16187. {
  16188. GGML_ASSERT(start % QK8_0 == 0);
  16189. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  16190. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  16191. } break;
  16192. case GGML_TYPE_Q2_K:
  16193. {
  16194. GGML_ASSERT(start % QK_K == 0);
  16195. GGML_ASSERT(start % n_per_row == 0);
  16196. size_t start_row = start / n_per_row;
  16197. size_t row_size = ggml_row_size(type, n_per_row);
  16198. result = quantize_q2_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16199. GGML_ASSERT(result == row_size * nrows);
  16200. } break;
  16201. case GGML_TYPE_Q3_K:
  16202. {
  16203. GGML_ASSERT(start % QK_K == 0);
  16204. GGML_ASSERT(start % n_per_row == 0);
  16205. size_t start_row = start / n_per_row;
  16206. size_t row_size = ggml_row_size(type, n_per_row);
  16207. result = quantize_q3_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16208. GGML_ASSERT(result == row_size * nrows);
  16209. } break;
  16210. case GGML_TYPE_Q4_K:
  16211. {
  16212. GGML_ASSERT(start % QK_K == 0);
  16213. GGML_ASSERT(start % n_per_row == 0);
  16214. size_t start_row = start / n_per_row;
  16215. size_t row_size = ggml_row_size(type, n_per_row);
  16216. result = quantize_q4_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16217. GGML_ASSERT(result == row_size * nrows);
  16218. } break;
  16219. case GGML_TYPE_Q5_K:
  16220. {
  16221. GGML_ASSERT(start % QK_K == 0);
  16222. GGML_ASSERT(start % n_per_row == 0);
  16223. size_t start_row = start / n_per_row;
  16224. size_t row_size = ggml_row_size(type, n_per_row);
  16225. result = quantize_q5_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16226. GGML_ASSERT(result == row_size * nrows);
  16227. } break;
  16228. case GGML_TYPE_Q6_K:
  16229. {
  16230. GGML_ASSERT(start % QK_K == 0);
  16231. GGML_ASSERT(start % n_per_row == 0);
  16232. size_t start_row = start / n_per_row;
  16233. size_t row_size = ggml_row_size(type, n_per_row);
  16234. result = quantize_q6_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16235. GGML_ASSERT(result == row_size * nrows);
  16236. } break;
  16237. case GGML_TYPE_IQ2_XXS:
  16238. {
  16239. GGML_ASSERT(start % QK_K == 0);
  16240. GGML_ASSERT(start % n_per_row == 0);
  16241. GGML_ASSERT(imatrix);
  16242. size_t start_row = start / n_per_row;
  16243. size_t row_size = ggml_row_size(type, n_per_row);
  16244. result = quantize_iq2_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16245. GGML_ASSERT(result == row_size * nrows);
  16246. } break;
  16247. case GGML_TYPE_IQ2_XS:
  16248. {
  16249. GGML_ASSERT(start % QK_K == 0);
  16250. GGML_ASSERT(start % n_per_row == 0);
  16251. GGML_ASSERT(imatrix);
  16252. size_t start_row = start / n_per_row;
  16253. size_t row_size = ggml_row_size(type, n_per_row);
  16254. result = quantize_iq2_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16255. GGML_ASSERT(result == row_size * nrows);
  16256. } break;
  16257. case GGML_TYPE_IQ3_XXS:
  16258. {
  16259. GGML_ASSERT(start % QK_K == 0);
  16260. GGML_ASSERT(start % n_per_row == 0);
  16261. size_t start_row = start / n_per_row;
  16262. size_t row_size = ggml_row_size(type, n_per_row);
  16263. result = quantize_iq3_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16264. GGML_ASSERT(result == row_size * nrows);
  16265. } break;
  16266. case GGML_TYPE_IQ3_S:
  16267. {
  16268. GGML_ASSERT(start % QK_K == 0);
  16269. GGML_ASSERT(start % n_per_row == 0);
  16270. size_t start_row = start / n_per_row;
  16271. size_t row_size = ggml_row_size(type, n_per_row);
  16272. result = quantize_iq3_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16273. GGML_ASSERT(result == row_size * nrows);
  16274. } break;
  16275. case GGML_TYPE_IQ2_S:
  16276. {
  16277. GGML_ASSERT(start % QK_K == 0);
  16278. GGML_ASSERT(start % n_per_row == 0);
  16279. size_t start_row = start / n_per_row;
  16280. size_t row_size = ggml_row_size(type, n_per_row);
  16281. result = quantize_iq2_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16282. GGML_ASSERT(result == row_size * nrows);
  16283. } break;
  16284. case GGML_TYPE_IQ1_S:
  16285. {
  16286. GGML_ASSERT(start % QK_K == 0);
  16287. GGML_ASSERT(start % n_per_row == 0);
  16288. size_t start_row = start / n_per_row;
  16289. size_t row_size = ggml_row_size(type, n_per_row);
  16290. result = quantize_iq1_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16291. GGML_ASSERT(result == row_size * nrows);
  16292. } break;
  16293. case GGML_TYPE_IQ4_NL:
  16294. #if QK_K == 64
  16295. case GGML_TYPE_IQ4_XS:
  16296. #endif
  16297. {
  16298. GGML_ASSERT(start % QK4_NL == 0);
  16299. GGML_ASSERT(start % n_per_row == 0);
  16300. size_t start_row = start / n_per_row;
  16301. size_t row_size = ggml_row_size(type, n_per_row);
  16302. result = quantize_iq4_nl(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16303. GGML_ASSERT(result == row_size * nrows);
  16304. } break;
  16305. #if QK_K != 64
  16306. case GGML_TYPE_IQ4_XS:
  16307. {
  16308. GGML_ASSERT(start % QK_K == 0);
  16309. GGML_ASSERT(start % n_per_row == 0);
  16310. size_t start_row = start / n_per_row;
  16311. size_t row_size = ggml_row_size(type, n_per_row);
  16312. result = quantize_iq4_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16313. GGML_ASSERT(result == row_size * nrows);
  16314. } break;
  16315. #endif
  16316. case GGML_TYPE_F16:
  16317. {
  16318. size_t elemsize = sizeof(ggml_fp16_t);
  16319. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16320. result = n * elemsize;
  16321. } break;
  16322. case GGML_TYPE_F32:
  16323. {
  16324. size_t elemsize = sizeof(float);
  16325. result = n * elemsize;
  16326. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16327. } break;
  16328. default:
  16329. assert(false);
  16330. }
  16331. return result;
  16332. }
  16333. ////////////////////////////////////////////////////////////////////////////////
  16334. struct gguf_str {
  16335. uint64_t n; // GGUFv2
  16336. char * data;
  16337. };
  16338. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16339. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16340. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16341. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16342. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16343. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16344. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16345. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16346. [GGUF_TYPE_BOOL] = sizeof(bool),
  16347. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16348. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16349. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16350. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16351. [GGUF_TYPE_ARRAY] = 0, // undefined
  16352. };
  16353. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16354. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16355. [GGUF_TYPE_UINT8] = "u8",
  16356. [GGUF_TYPE_INT8] = "i8",
  16357. [GGUF_TYPE_UINT16] = "u16",
  16358. [GGUF_TYPE_INT16] = "i16",
  16359. [GGUF_TYPE_UINT32] = "u32",
  16360. [GGUF_TYPE_INT32] = "i32",
  16361. [GGUF_TYPE_FLOAT32] = "f32",
  16362. [GGUF_TYPE_BOOL] = "bool",
  16363. [GGUF_TYPE_STRING] = "str",
  16364. [GGUF_TYPE_ARRAY] = "arr",
  16365. [GGUF_TYPE_UINT64] = "u64",
  16366. [GGUF_TYPE_INT64] = "i64",
  16367. [GGUF_TYPE_FLOAT64] = "f64",
  16368. };
  16369. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16370. union gguf_value {
  16371. uint8_t uint8;
  16372. int8_t int8;
  16373. uint16_t uint16;
  16374. int16_t int16;
  16375. uint32_t uint32;
  16376. int32_t int32;
  16377. float float32;
  16378. uint64_t uint64;
  16379. int64_t int64;
  16380. double float64;
  16381. bool bool_;
  16382. struct gguf_str str;
  16383. struct {
  16384. enum gguf_type type;
  16385. uint64_t n; // GGUFv2
  16386. void * data;
  16387. } arr;
  16388. };
  16389. struct gguf_kv {
  16390. struct gguf_str key;
  16391. enum gguf_type type;
  16392. union gguf_value value;
  16393. };
  16394. struct gguf_header {
  16395. char magic[4];
  16396. uint32_t version;
  16397. uint64_t n_tensors; // GGUFv2
  16398. uint64_t n_kv; // GGUFv2
  16399. };
  16400. struct gguf_tensor_info {
  16401. struct gguf_str name;
  16402. uint32_t n_dims;
  16403. uint64_t ne[GGML_MAX_DIMS];
  16404. enum ggml_type type;
  16405. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16406. // for writing API
  16407. const void * data;
  16408. size_t size;
  16409. };
  16410. struct gguf_context {
  16411. struct gguf_header header;
  16412. struct gguf_kv * kv;
  16413. struct gguf_tensor_info * infos;
  16414. size_t alignment;
  16415. size_t offset; // offset of `data` from beginning of file
  16416. size_t size; // size of `data` in bytes
  16417. //uint8_t * padding;
  16418. void * data;
  16419. };
  16420. static size_t gguf_type_size(enum gguf_type type) {
  16421. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  16422. return GGUF_TYPE_SIZE[type];
  16423. }
  16424. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  16425. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  16426. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  16427. for (uint32_t i = 0; i < info->n_dims; ++i) {
  16428. GGML_ASSERT(info->ne[i] > 0);
  16429. }
  16430. // prevent overflow for total number of elements
  16431. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  16432. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  16433. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  16434. }
  16435. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16436. const size_t n = fread(dst, 1, size, file);
  16437. *offset += n;
  16438. return n == size;
  16439. }
  16440. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  16441. p->n = 0;
  16442. p->data = NULL;
  16443. bool ok = true;
  16444. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  16445. // early exit if string length is invalid, prevents from integer overflow
  16446. if (p->n == SIZE_MAX) {
  16447. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  16448. return false;
  16449. }
  16450. p->data = GGML_CALLOC(p->n + 1, 1);
  16451. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16452. return ok;
  16453. }
  16454. struct gguf_context * gguf_init_empty(void) {
  16455. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16456. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  16457. ctx->header.version = GGUF_VERSION;
  16458. ctx->header.n_tensors = 0;
  16459. ctx->header.n_kv = 0;
  16460. ctx->kv = NULL;
  16461. ctx->infos = NULL;
  16462. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16463. ctx->offset = 0;
  16464. ctx->size = 0;
  16465. ctx->data = NULL;
  16466. return ctx;
  16467. }
  16468. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16469. FILE * file = fopen(fname, "rb");
  16470. if (!file) {
  16471. return NULL;
  16472. }
  16473. // offset from start of file
  16474. size_t offset = 0;
  16475. char magic[4];
  16476. // check the magic before making allocations
  16477. {
  16478. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16479. for (uint32_t i = 0; i < sizeof(magic); i++) {
  16480. if (magic[i] != GGUF_MAGIC[i]) {
  16481. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  16482. fclose(file);
  16483. return NULL;
  16484. }
  16485. }
  16486. }
  16487. bool ok = true;
  16488. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16489. // read the header
  16490. {
  16491. strncpy(ctx->header.magic, magic, 4);
  16492. ctx->kv = NULL;
  16493. ctx->infos = NULL;
  16494. ctx->data = NULL;
  16495. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16496. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16497. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16498. if (ctx->header.version == 1) {
  16499. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  16500. fclose(file);
  16501. gguf_free(ctx);
  16502. return NULL;
  16503. }
  16504. // sanity-checks to prevent from integer/buffer overflows
  16505. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  16506. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  16507. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  16508. if (!ok) {
  16509. fprintf(stderr, "%s: failed to read header\n", __func__);
  16510. fclose(file);
  16511. gguf_free(ctx);
  16512. return NULL;
  16513. }
  16514. }
  16515. // read the kv pairs
  16516. {
  16517. ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
  16518. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16519. struct gguf_kv * kv = &ctx->kv[i];
  16520. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16521. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16522. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16523. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16524. switch (kv->type) {
  16525. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16526. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16527. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16528. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16529. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16530. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16531. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16532. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16533. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16534. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16535. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16536. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16537. case GGUF_TYPE_ARRAY:
  16538. {
  16539. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16540. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16541. switch (kv->value.arr.type) {
  16542. case GGUF_TYPE_UINT8:
  16543. case GGUF_TYPE_INT8:
  16544. case GGUF_TYPE_UINT16:
  16545. case GGUF_TYPE_INT16:
  16546. case GGUF_TYPE_UINT32:
  16547. case GGUF_TYPE_INT32:
  16548. case GGUF_TYPE_FLOAT32:
  16549. case GGUF_TYPE_UINT64:
  16550. case GGUF_TYPE_INT64:
  16551. case GGUF_TYPE_FLOAT64:
  16552. case GGUF_TYPE_BOOL:
  16553. {
  16554. // prevent from integer overflow in the malloc below
  16555. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  16556. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16557. fclose(file);
  16558. gguf_free(ctx);
  16559. return NULL;
  16560. }
  16561. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  16562. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  16563. } break;
  16564. case GGUF_TYPE_STRING:
  16565. {
  16566. // prevent from integer overflow in the malloc below
  16567. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  16568. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16569. fclose(file);
  16570. gguf_free(ctx);
  16571. return NULL;
  16572. }
  16573. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str));
  16574. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16575. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16576. }
  16577. } break;
  16578. case GGUF_TYPE_ARRAY:
  16579. default: GGML_ASSERT(false && "invalid type"); break;
  16580. }
  16581. } break;
  16582. default: GGML_ASSERT(false && "invalid type");
  16583. }
  16584. if (!ok) {
  16585. break;
  16586. }
  16587. }
  16588. if (!ok) {
  16589. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  16590. fclose(file);
  16591. gguf_free(ctx);
  16592. return NULL;
  16593. }
  16594. }
  16595. // read the tensor infos
  16596. {
  16597. ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  16598. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16599. struct gguf_tensor_info * info = &ctx->infos[i];
  16600. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16601. info->ne[j] = 1;
  16602. }
  16603. ok = ok && gguf_fread_str(file, &info->name, &offset);
  16604. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  16605. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  16606. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16607. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  16608. }
  16609. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  16610. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  16611. gguf_tensor_info_sanitize(info);
  16612. if (!ok) {
  16613. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  16614. fclose(file);
  16615. gguf_free(ctx);
  16616. return NULL;
  16617. }
  16618. }
  16619. }
  16620. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16621. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  16622. if (alignment_idx != -1) {
  16623. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  16624. }
  16625. // we require the data section to be aligned, so take into account any padding
  16626. {
  16627. const size_t offset_pad = offset % ctx->alignment;
  16628. if (offset_pad != 0) {
  16629. offset += ctx->alignment - offset_pad;
  16630. fseek(file, offset, SEEK_SET);
  16631. }
  16632. }
  16633. // store the current file offset - this is where the data section starts
  16634. ctx->offset = offset;
  16635. // compute the total size of the data section, taking into account the alignment
  16636. {
  16637. ctx->size = 0;
  16638. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16639. struct gguf_tensor_info * info = &ctx->infos[i];
  16640. const int64_t ne =
  16641. (int64_t) info->ne[0] *
  16642. (int64_t) info->ne[1] *
  16643. (int64_t) info->ne[2] *
  16644. (int64_t) info->ne[3];
  16645. if (ne % ggml_blck_size(info->type) != 0) {
  16646. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  16647. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  16648. fclose(file);
  16649. gguf_free(ctx);
  16650. return NULL;
  16651. }
  16652. const size_t size_cur = ggml_row_size(info->type, ne);
  16653. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  16654. }
  16655. }
  16656. // load the tensor data only if requested
  16657. if (params.ctx != NULL) {
  16658. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  16659. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  16660. // the ggml_tensor structs to the appropriate locations in the binary blob
  16661. // compute the exact size needed for the new ggml_context
  16662. const size_t mem_size =
  16663. params.no_alloc ?
  16664. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  16665. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  16666. struct ggml_init_params pdata = {
  16667. .mem_size = mem_size,
  16668. .mem_buffer = NULL,
  16669. .no_alloc = params.no_alloc,
  16670. };
  16671. *params.ctx = ggml_init(pdata);
  16672. struct ggml_context * ctx_data = *params.ctx;
  16673. struct ggml_tensor * data = NULL;
  16674. if (!params.no_alloc) {
  16675. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  16676. ok = ok && data != NULL;
  16677. // read the binary blob with the tensor data
  16678. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  16679. if (!ok) {
  16680. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  16681. fclose(file);
  16682. ggml_free(ctx_data);
  16683. gguf_free(ctx);
  16684. return NULL;
  16685. }
  16686. ctx->data = data->data;
  16687. }
  16688. ggml_set_no_alloc(ctx_data, true);
  16689. // create the tensors
  16690. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16691. const int64_t ne[GGML_MAX_DIMS] = {
  16692. ctx->infos[i].ne[0],
  16693. ctx->infos[i].ne[1],
  16694. ctx->infos[i].ne[2],
  16695. ctx->infos[i].ne[3],
  16696. };
  16697. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  16698. ok = ok && cur != NULL;
  16699. ggml_set_name(cur, ctx->infos[i].name.data);
  16700. if (!ok) {
  16701. break;
  16702. }
  16703. // point the data member to the appropriate location in the binary blob using the tensor infos
  16704. if (!params.no_alloc) {
  16705. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  16706. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  16707. }
  16708. }
  16709. if (!ok) {
  16710. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  16711. fclose(file);
  16712. ggml_free(ctx_data);
  16713. gguf_free(ctx);
  16714. return NULL;
  16715. }
  16716. ggml_set_no_alloc(ctx_data, params.no_alloc);
  16717. }
  16718. fclose(file);
  16719. return ctx;
  16720. }
  16721. void gguf_free(struct gguf_context * ctx) {
  16722. if (ctx == NULL) {
  16723. return;
  16724. }
  16725. if (ctx->kv) {
  16726. // free string memory - not great..
  16727. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16728. struct gguf_kv * kv = &ctx->kv[i];
  16729. if (kv->key.data) {
  16730. GGML_FREE(kv->key.data);
  16731. }
  16732. if (kv->type == GGUF_TYPE_STRING) {
  16733. if (kv->value.str.data) {
  16734. GGML_FREE(kv->value.str.data);
  16735. }
  16736. }
  16737. if (kv->type == GGUF_TYPE_ARRAY) {
  16738. if (kv->value.arr.data) {
  16739. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  16740. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16741. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  16742. if (str->data) {
  16743. GGML_FREE(str->data);
  16744. }
  16745. }
  16746. }
  16747. GGML_FREE(kv->value.arr.data);
  16748. }
  16749. }
  16750. }
  16751. GGML_FREE(ctx->kv);
  16752. }
  16753. if (ctx->infos) {
  16754. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16755. struct gguf_tensor_info * info = &ctx->infos[i];
  16756. if (info->name.data) {
  16757. GGML_FREE(info->name.data);
  16758. }
  16759. }
  16760. GGML_FREE(ctx->infos);
  16761. }
  16762. GGML_ALIGNED_FREE(ctx);
  16763. }
  16764. const char * gguf_type_name(enum gguf_type type) {
  16765. return GGUF_TYPE_NAME[type];
  16766. }
  16767. int gguf_get_version(const struct gguf_context * ctx) {
  16768. return ctx->header.version;
  16769. }
  16770. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  16771. return ctx->alignment;
  16772. }
  16773. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  16774. return ctx->offset;
  16775. }
  16776. void * gguf_get_data(const struct gguf_context * ctx) {
  16777. return ctx->data;
  16778. }
  16779. int gguf_get_n_kv(const struct gguf_context * ctx) {
  16780. return ctx->header.n_kv;
  16781. }
  16782. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  16783. // return -1 if key not found
  16784. int keyfound = -1;
  16785. const int n_kv = gguf_get_n_kv(ctx);
  16786. for (int i = 0; i < n_kv; ++i) {
  16787. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  16788. keyfound = i;
  16789. break;
  16790. }
  16791. }
  16792. return keyfound;
  16793. }
  16794. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  16795. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16796. return ctx->kv[key_id].key.data;
  16797. }
  16798. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  16799. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16800. return ctx->kv[key_id].type;
  16801. }
  16802. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  16803. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16804. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16805. return ctx->kv[key_id].value.arr.type;
  16806. }
  16807. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  16808. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16809. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16810. return ctx->kv[key_id].value.arr.data;
  16811. }
  16812. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  16813. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16814. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16815. struct gguf_kv * kv = &ctx->kv[key_id];
  16816. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  16817. return str->data;
  16818. }
  16819. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  16820. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16821. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16822. return ctx->kv[key_id].value.arr.n;
  16823. }
  16824. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  16825. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16826. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  16827. return ctx->kv[key_id].value.uint8;
  16828. }
  16829. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  16830. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16831. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  16832. return ctx->kv[key_id].value.int8;
  16833. }
  16834. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  16835. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16836. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  16837. return ctx->kv[key_id].value.uint16;
  16838. }
  16839. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  16840. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16841. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  16842. return ctx->kv[key_id].value.int16;
  16843. }
  16844. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  16845. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16846. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  16847. return ctx->kv[key_id].value.uint32;
  16848. }
  16849. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  16850. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16851. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  16852. return ctx->kv[key_id].value.int32;
  16853. }
  16854. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  16855. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16856. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  16857. return ctx->kv[key_id].value.float32;
  16858. }
  16859. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  16860. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16861. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  16862. return ctx->kv[key_id].value.uint64;
  16863. }
  16864. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  16865. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16866. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  16867. return ctx->kv[key_id].value.int64;
  16868. }
  16869. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  16870. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16871. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  16872. return ctx->kv[key_id].value.float64;
  16873. }
  16874. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  16875. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16876. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  16877. return ctx->kv[key_id].value.bool_;
  16878. }
  16879. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  16880. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16881. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  16882. return ctx->kv[key_id].value.str.data;
  16883. }
  16884. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  16885. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16886. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  16887. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  16888. return &ctx->kv[key_id].value;
  16889. }
  16890. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  16891. return ctx->header.n_tensors;
  16892. }
  16893. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  16894. // return -1 if tensor not found
  16895. int tensorfound = -1;
  16896. const int n_tensors = gguf_get_n_tensors(ctx);
  16897. for (int i = 0; i < n_tensors; ++i) {
  16898. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  16899. tensorfound = i;
  16900. break;
  16901. }
  16902. }
  16903. return tensorfound;
  16904. }
  16905. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  16906. return ctx->infos[i].offset;
  16907. }
  16908. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  16909. return ctx->infos[i].name.data;
  16910. }
  16911. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  16912. return ctx->infos[i].type;
  16913. }
  16914. // returns the index
  16915. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  16916. const int idx = gguf_find_key(ctx, key);
  16917. if (idx >= 0) {
  16918. return idx;
  16919. }
  16920. const int n_kv = gguf_get_n_kv(ctx);
  16921. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  16922. ctx->kv[n_kv].key.n = strlen(key);
  16923. ctx->kv[n_kv].key.data = strdup(key);
  16924. ctx->header.n_kv++;
  16925. return n_kv;
  16926. }
  16927. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  16928. const int idx = gguf_get_or_add_key(ctx, key);
  16929. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  16930. ctx->kv[idx].value.uint8 = val;
  16931. }
  16932. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  16933. const int idx = gguf_get_or_add_key(ctx, key);
  16934. ctx->kv[idx].type = GGUF_TYPE_INT8;
  16935. ctx->kv[idx].value.int8 = val;
  16936. }
  16937. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  16938. const int idx = gguf_get_or_add_key(ctx, key);
  16939. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  16940. ctx->kv[idx].value.uint16 = val;
  16941. }
  16942. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  16943. const int idx = gguf_get_or_add_key(ctx, key);
  16944. ctx->kv[idx].type = GGUF_TYPE_INT16;
  16945. ctx->kv[idx].value.int16 = val;
  16946. }
  16947. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  16948. const int idx = gguf_get_or_add_key(ctx, key);
  16949. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  16950. ctx->kv[idx].value.uint32 = val;
  16951. }
  16952. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  16953. const int idx = gguf_get_or_add_key(ctx, key);
  16954. ctx->kv[idx].type = GGUF_TYPE_INT32;
  16955. ctx->kv[idx].value.int32 = val;
  16956. }
  16957. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  16958. const int idx = gguf_get_or_add_key(ctx, key);
  16959. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  16960. ctx->kv[idx].value.float32 = val;
  16961. }
  16962. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  16963. const int idx = gguf_get_or_add_key(ctx, key);
  16964. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  16965. ctx->kv[idx].value.uint64 = val;
  16966. }
  16967. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  16968. const int idx = gguf_get_or_add_key(ctx, key);
  16969. ctx->kv[idx].type = GGUF_TYPE_INT64;
  16970. ctx->kv[idx].value.int64 = val;
  16971. }
  16972. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  16973. const int idx = gguf_get_or_add_key(ctx, key);
  16974. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16975. ctx->kv[idx].value.float64 = val;
  16976. }
  16977. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16978. const int idx = gguf_get_or_add_key(ctx, key);
  16979. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16980. ctx->kv[idx].value.bool_ = val;
  16981. }
  16982. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16983. const int idx = gguf_get_or_add_key(ctx, key);
  16984. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16985. ctx->kv[idx].value.str.n = strlen(val);
  16986. ctx->kv[idx].value.str.data = strdup(val);
  16987. }
  16988. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16989. const int idx = gguf_get_or_add_key(ctx, key);
  16990. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16991. ctx->kv[idx].value.arr.type = type;
  16992. ctx->kv[idx].value.arr.n = n;
  16993. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type));
  16994. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  16995. }
  16996. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16997. const int idx = gguf_get_or_add_key(ctx, key);
  16998. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16999. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  17000. ctx->kv[idx].value.arr.n = n;
  17001. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str));
  17002. for (int i = 0; i < n; i++) {
  17003. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  17004. str->n = strlen(data[i]);
  17005. str->data = strdup(data[i]);
  17006. }
  17007. }
  17008. // set or add KV pairs from another context
  17009. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  17010. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  17011. switch (src->kv[i].type) {
  17012. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  17013. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  17014. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  17015. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  17016. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  17017. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  17018. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  17019. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  17020. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  17021. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  17022. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  17023. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  17024. case GGUF_TYPE_ARRAY:
  17025. {
  17026. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  17027. const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *));
  17028. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  17029. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  17030. }
  17031. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  17032. GGML_FREE((void *)data);
  17033. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  17034. GGML_ASSERT(false && "nested arrays not supported");
  17035. } else {
  17036. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  17037. }
  17038. } break;
  17039. default: GGML_ASSERT(false && "invalid type"); break;
  17040. }
  17041. }
  17042. }
  17043. void gguf_add_tensor(
  17044. struct gguf_context * ctx,
  17045. const struct ggml_tensor * tensor) {
  17046. const int idx = ctx->header.n_tensors;
  17047. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  17048. ctx->infos[idx].name.n = strlen(tensor->name);
  17049. ctx->infos[idx].name.data = strdup(tensor->name);
  17050. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  17051. ctx->infos[idx].ne[i] = 1;
  17052. }
  17053. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  17054. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  17055. ctx->infos[idx].ne[i] = tensor->ne[i];
  17056. }
  17057. ctx->infos[idx].type = tensor->type;
  17058. ctx->infos[idx].offset = 0;
  17059. ctx->infos[idx].data = tensor->data;
  17060. ctx->infos[idx].size = ggml_nbytes(tensor);
  17061. if (ctx->header.n_tensors > 0) {
  17062. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  17063. }
  17064. ctx->header.n_tensors++;
  17065. }
  17066. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  17067. const int idx = gguf_find_tensor(ctx, name);
  17068. if (idx < 0) {
  17069. GGML_ASSERT(false && "tensor not found");
  17070. }
  17071. ctx->infos[idx].type = type;
  17072. }
  17073. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  17074. const int idx = gguf_find_tensor(ctx, name);
  17075. if (idx < 0) {
  17076. GGML_ASSERT(false && "tensor not found");
  17077. }
  17078. ctx->infos[idx].data = data;
  17079. ctx->infos[idx].size = size;
  17080. // update offsets
  17081. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  17082. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  17083. }
  17084. }
  17085. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  17086. // fwrite(&val->n, sizeof(val->n), 1, file);
  17087. // fwrite(val->data, sizeof(char), val->n, file);
  17088. //}
  17089. //
  17090. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  17091. // fwrite(val, sizeof(char), size, file);
  17092. //}
  17093. struct gguf_buf {
  17094. void * data;
  17095. size_t size;
  17096. size_t offset;
  17097. };
  17098. static struct gguf_buf gguf_buf_init(size_t size) {
  17099. struct gguf_buf buf = {
  17100. /*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size),
  17101. /*buf.size =*/ size,
  17102. /*buf.offset =*/ 0,
  17103. };
  17104. return buf;
  17105. }
  17106. static void gguf_buf_free(struct gguf_buf buf) {
  17107. if (buf.data) {
  17108. GGML_FREE(buf.data);
  17109. }
  17110. }
  17111. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  17112. if (buf->offset + size > buf->size) {
  17113. buf->size = 1.5*(buf->offset + size);
  17114. if (buf->data) {
  17115. buf->data = realloc(buf->data, buf->size);
  17116. }
  17117. }
  17118. }
  17119. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  17120. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  17121. if (buf->data) {
  17122. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  17123. }
  17124. buf->offset += sizeof(val->n);
  17125. if (buf->data) {
  17126. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  17127. }
  17128. buf->offset += val->n;
  17129. }
  17130. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  17131. gguf_buf_grow(buf, el_size);
  17132. if (buf->data) {
  17133. memcpy((char *) buf->data + buf->offset, val, el_size);
  17134. }
  17135. buf->offset += el_size;
  17136. }
  17137. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  17138. // write header
  17139. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  17140. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  17141. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  17142. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  17143. // write key-value pairs
  17144. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17145. struct gguf_kv * kv = &ctx->kv[i];
  17146. gguf_bwrite_str(buf, &kv->key);
  17147. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  17148. switch (kv->type) {
  17149. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  17150. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  17151. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  17152. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  17153. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  17154. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  17155. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  17156. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  17157. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  17158. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  17159. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  17160. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  17161. case GGUF_TYPE_ARRAY:
  17162. {
  17163. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  17164. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  17165. switch (kv->value.arr.type) {
  17166. case GGUF_TYPE_UINT8:
  17167. case GGUF_TYPE_INT8:
  17168. case GGUF_TYPE_UINT16:
  17169. case GGUF_TYPE_INT16:
  17170. case GGUF_TYPE_UINT32:
  17171. case GGUF_TYPE_INT32:
  17172. case GGUF_TYPE_FLOAT32:
  17173. case GGUF_TYPE_UINT64:
  17174. case GGUF_TYPE_INT64:
  17175. case GGUF_TYPE_FLOAT64:
  17176. case GGUF_TYPE_BOOL:
  17177. {
  17178. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17179. } break;
  17180. case GGUF_TYPE_STRING:
  17181. {
  17182. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17183. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  17184. }
  17185. } break;
  17186. case GGUF_TYPE_ARRAY:
  17187. default: GGML_ASSERT(false && "invalid type"); break;
  17188. }
  17189. } break;
  17190. default: GGML_ASSERT(false && "invalid type");
  17191. }
  17192. }
  17193. // write tensor infos
  17194. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17195. struct gguf_tensor_info * info = &ctx->infos[i];
  17196. gguf_bwrite_str(buf, &info->name);
  17197. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  17198. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17199. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  17200. }
  17201. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  17202. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  17203. }
  17204. // we require the data section to be aligned, so take into account any padding
  17205. {
  17206. const size_t offset = buf->offset;
  17207. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  17208. if (offset_pad != offset) {
  17209. uint8_t pad = 0;
  17210. for (size_t i = 0; i < offset_pad - offset; ++i) {
  17211. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17212. }
  17213. }
  17214. }
  17215. if (only_meta) {
  17216. return;
  17217. }
  17218. size_t offset = 0;
  17219. // write tensor data
  17220. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17221. struct gguf_tensor_info * info = &ctx->infos[i];
  17222. const size_t size = info->size;
  17223. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  17224. gguf_bwrite_el(buf, info->data, size);
  17225. if (size_pad != size) {
  17226. uint8_t pad = 0;
  17227. for (size_t j = 0; j < size_pad - size; ++j) {
  17228. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17229. }
  17230. }
  17231. GGML_ASSERT(offset == info->offset);
  17232. offset += size_pad;
  17233. }
  17234. }
  17235. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  17236. FILE * file = fopen(fname, "wb");
  17237. if (!file) {
  17238. GGML_ASSERT(false && "failed to open file for writing");
  17239. }
  17240. struct gguf_buf buf = gguf_buf_init(16*1024);
  17241. gguf_write_to_buf(ctx, &buf, only_meta);
  17242. fwrite(buf.data, 1, buf.offset, file);
  17243. gguf_buf_free(buf);
  17244. fclose(file);
  17245. }
  17246. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  17247. // no allocs - only compute size
  17248. struct gguf_buf buf = gguf_buf_init(0);
  17249. gguf_write_to_buf(ctx, &buf, true);
  17250. return buf.offset;
  17251. }
  17252. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  17253. struct gguf_buf buf = gguf_buf_init(16*1024);
  17254. gguf_write_to_buf(ctx, &buf, true);
  17255. memcpy(data, buf.data, buf.offset);
  17256. gguf_buf_free(buf);
  17257. }
  17258. ////////////////////////////////////////////////////////////////////////////////
  17259. int ggml_cpu_has_avx(void) {
  17260. #if defined(__AVX__)
  17261. return 1;
  17262. #else
  17263. return 0;
  17264. #endif
  17265. }
  17266. int ggml_cpu_has_avx_vnni(void) {
  17267. #if defined(__AVXVNNI__)
  17268. return 1;
  17269. #else
  17270. return 0;
  17271. #endif
  17272. }
  17273. int ggml_cpu_has_avx2(void) {
  17274. #if defined(__AVX2__)
  17275. return 1;
  17276. #else
  17277. return 0;
  17278. #endif
  17279. }
  17280. int ggml_cpu_has_avx512(void) {
  17281. #if defined(__AVX512F__)
  17282. return 1;
  17283. #else
  17284. return 0;
  17285. #endif
  17286. }
  17287. int ggml_cpu_has_avx512_vbmi(void) {
  17288. #if defined(__AVX512VBMI__)
  17289. return 1;
  17290. #else
  17291. return 0;
  17292. #endif
  17293. }
  17294. int ggml_cpu_has_avx512_vnni(void) {
  17295. #if defined(__AVX512VNNI__)
  17296. return 1;
  17297. #else
  17298. return 0;
  17299. #endif
  17300. }
  17301. int ggml_cpu_has_fma(void) {
  17302. #if defined(__FMA__)
  17303. return 1;
  17304. #else
  17305. return 0;
  17306. #endif
  17307. }
  17308. int ggml_cpu_has_neon(void) {
  17309. #if defined(__ARM_NEON)
  17310. return 1;
  17311. #else
  17312. return 0;
  17313. #endif
  17314. }
  17315. int ggml_cpu_has_arm_fma(void) {
  17316. #if defined(__ARM_FEATURE_FMA)
  17317. return 1;
  17318. #else
  17319. return 0;
  17320. #endif
  17321. }
  17322. int ggml_cpu_has_metal(void) {
  17323. #if defined(GGML_USE_METAL)
  17324. return 1;
  17325. #else
  17326. return 0;
  17327. #endif
  17328. }
  17329. int ggml_cpu_has_f16c(void) {
  17330. #if defined(__F16C__)
  17331. return 1;
  17332. #else
  17333. return 0;
  17334. #endif
  17335. }
  17336. int ggml_cpu_has_fp16_va(void) {
  17337. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  17338. return 1;
  17339. #else
  17340. return 0;
  17341. #endif
  17342. }
  17343. int ggml_cpu_has_wasm_simd(void) {
  17344. #if defined(__wasm_simd128__)
  17345. return 1;
  17346. #else
  17347. return 0;
  17348. #endif
  17349. }
  17350. int ggml_cpu_has_blas(void) {
  17351. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  17352. return 1;
  17353. #else
  17354. return 0;
  17355. #endif
  17356. }
  17357. int ggml_cpu_has_cublas(void) {
  17358. #if defined(GGML_USE_CUBLAS)
  17359. return 1;
  17360. #else
  17361. return 0;
  17362. #endif
  17363. }
  17364. int ggml_cpu_has_clblast(void) {
  17365. #if defined(GGML_USE_CLBLAST)
  17366. return 1;
  17367. #else
  17368. return 0;
  17369. #endif
  17370. }
  17371. int ggml_cpu_has_vulkan(void) {
  17372. #if defined(GGML_USE_VULKAN)
  17373. return 1;
  17374. #else
  17375. return 0;
  17376. #endif
  17377. }
  17378. int ggml_cpu_has_kompute(void) {
  17379. #if defined(GGML_USE_KOMPUTE)
  17380. return 1;
  17381. #else
  17382. return 0;
  17383. #endif
  17384. }
  17385. int ggml_cpu_has_sycl(void) {
  17386. #if defined(GGML_USE_SYCL)
  17387. return 1;
  17388. #else
  17389. return 0;
  17390. #endif
  17391. }
  17392. int ggml_cpu_has_gpublas(void) {
  17393. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  17394. ggml_cpu_has_sycl();
  17395. }
  17396. int ggml_cpu_has_sse3(void) {
  17397. #if defined(__SSE3__)
  17398. return 1;
  17399. #else
  17400. return 0;
  17401. #endif
  17402. }
  17403. int ggml_cpu_has_ssse3(void) {
  17404. #if defined(__SSSE3__)
  17405. return 1;
  17406. #else
  17407. return 0;
  17408. #endif
  17409. }
  17410. int ggml_cpu_has_vsx(void) {
  17411. #if defined(__POWER9_VECTOR__)
  17412. return 1;
  17413. #else
  17414. return 0;
  17415. #endif
  17416. }
  17417. int ggml_cpu_has_matmul_int8(void) {
  17418. #if defined(__ARM_FEATURE_MATMUL_INT8)
  17419. return 1;
  17420. #else
  17421. return 0;
  17422. #endif
  17423. }
  17424. ////////////////////////////////////////////////////////////////////////////////