Nessuna descrizione

slaren 67be2ce101 cuda : fix data race in soft max (#5853) 1 anno fa
.devops cb5e8f7fc4 build(nix): Introduce flake.formatter for `nix fmt` (#5687) 1 anno fa
.github e6029348e8 ci : schedule slow server tests only on Release or on demand (#5839) 1 anno fa
ci 87c91c0766 ci : reduce 3b ppl chunks to 1 to avoid timeout (#5771) 1 anno fa
cmake c41ea36eaa cmake : MSVC instruction detection (fixed up #809) (#3923) 2 anni fa
common 475df1d6cf llama : allow for user specified embedding pooling type (#5849) 1 anno fa
docs ff8238f71d docs : add llama-star arch idea 2 anni fa
examples 8ef969afce server : init http requests thread pool with --parallel if set (#5836) 1 anno fa
gguf-py 87c2e8b279 gguf-dump : support i-quants (#5841) 1 anno fa
grammars 532dd74e38 Fix some documentation typos/grammar mistakes (#4032) 2 anni fa
kompute @ 4565194ed7 fbf1ddec69 Nomic Vulkan backend (#4456) 1 anno fa
kompute-shaders fbf1ddec69 Nomic Vulkan backend (#4456) 1 anno fa
media 62b3e81aae media : add logos and banners 2 anni fa
models ea5497df5d gpt2 : Add gpt2 architecture integration (#4555) 2 anni fa
pocs a07d0fee1f ggml : add mmla kernels for quantized GEMM (#4966) 1 anno fa
prompts 37c746d687 llama : add Qwen support (#4281) 2 anni fa
requirements da3b9ba2b7 convert-hf-to-gguf : require einops for InternLM2ForCausalLM (#5792) 1 anno fa
scripts ef2cd694c4 scripts : add pod-llama.sh 1 anno fa
spm-headers df334a1125 swift : package no longer use ggml dependency (#5465) 1 anno fa
tests 0becb22ac0 IQ4_XS: a 4.25 bpw quantization (#5747) 1 anno fa
.clang-tidy 00d62adb79 fix some warnings from gcc and clang-tidy (#3038) 2 anni fa
.dockerignore ea55295a74 docker : ignore Git files (#3314) 2 anni fa
.ecrc fbf1ddec69 Nomic Vulkan backend (#4456) 1 anno fa
.editorconfig 800a489e4a llama.swiftui : add bench functionality (#4483) 2 anni fa
.flake8 2891c8aa9a Add support for BERT embedding models (#5423) 1 anno fa
.gitignore d250c9d61d gitignore : update for CLion IDE (#5544) 1 anno fa
.gitmodules fbf1ddec69 Nomic Vulkan backend (#4456) 1 anno fa
.pre-commit-config.yaml 5ddf7ea1fb hooks : setting up flake8 and pre-commit hooks (#1681) 2 anni fa
CMakeLists.txt 1289408817 cmake : fix compilation for Android armeabi-v7a (#5702) 1 anno fa
LICENSE 6a9a67f0be Add LICENSE (#21) 2 anni fa
Makefile cbbd1efa06 Makefile: use variables for cublas (#5689) 1 anno fa
Package.swift df334a1125 swift : package no longer use ggml dependency (#5465) 1 anno fa
README-sycl.md 715641391d Support multiple GPUs (split mode) on SYCL backend (#5806) 1 anno fa
README.md 231ae28f07 readme : add API changes section 1 anno fa
build.zig 6560bed3f0 server : support llava 1.6 (#5553) 1 anno fa
codecov.yml 73a12a6344 cov : disable comment in PRs (#2989) 2 anni fa
convert-hf-to-gguf.py 475df1d6cf llama : allow for user specified embedding pooling type (#5849) 1 anno fa
convert-llama-ggml-to-gguf.py 4d4d2366fc convert : automatically fall back to HfVocab if tokenizer.model doesn't exist (#5821) 1 anno fa
convert-lora-to-ggml.py 05490fad7f add safetensors support to convert-lora-to-ggml.py (#5062) 2 anni fa
convert-persimmon-to-gguf.py dbd8828eb0 py : fix persimmon `n_rot` conversion (#5460) 1 anno fa
convert.py 4d4d2366fc convert : automatically fall back to HfVocab if tokenizer.model doesn't exist (#5821) 1 anno fa
flake.lock fa974646e1 flake.lock: Update (#5842) 1 anno fa
flake.nix cb5e8f7fc4 build(nix): Introduce flake.formatter for `nix fmt` (#5687) 1 anno fa
ggml-alloc.c a3145bdc30 ggml-alloc : apply ggml/731 1 anno fa
ggml-alloc.h 3b169441df sync : ggml (#5452) 1 anno fa
ggml-backend-impl.h 5f70671856 Introduce backend GUIDs (ggml/743) 1 anno fa
ggml-backend.c 5f70671856 Introduce backend GUIDs (ggml/743) 1 anno fa
ggml-backend.h 5f70671856 Introduce backend GUIDs (ggml/743) 1 anno fa
ggml-cuda.cu 67be2ce101 cuda : fix data race in soft max (#5853) 1 anno fa
ggml-cuda.h a0b3ac8c48 ggml : introduce GGML_CALL function annotation (#4850) 2 anni fa
ggml-impl.h 7e4f339c40 ggml : always define ggml_fp16_t as uint16_t (#5666) 1 anno fa
ggml-kompute.cpp 5f70671856 Introduce backend GUIDs (ggml/743) 1 anno fa
ggml-kompute.h fbf1ddec69 Nomic Vulkan backend (#4456) 1 anno fa
ggml-metal.h 5f14ee0b0c metal : add debug capture backend function (ggml/694) 1 anno fa
ggml-metal.m 5f70671856 Introduce backend GUIDs (ggml/743) 1 anno fa
ggml-metal.metal bbde6eb256 ggml : IQ3_S improvements (#5829) 1 anno fa
ggml-mpi.c 5bf2a27718 ggml : remove src0 and src1 from ggml_tensor and rename opt to src (#2178) 2 anni fa
ggml-mpi.h 5656d10599 mpi : add support for distributed inference via MPI (#2099) 2 anni fa
ggml-opencl.cpp ab336a9d5e code : normalize enum names (#5697) 1 anno fa
ggml-opencl.h a1d6df129b Add OpenCL add kernel (#5151) 2 anni fa
ggml-quants.c 494c870326 ggml : fix IQ3_S AVX implementation (#5834) 1 anno fa
ggml-quants.h 7c4263d426 ggml : make i-quants work with super-blocks of 64 (CPU,Metal) (#5760) 1 anno fa
ggml-sycl.cpp 715641391d Support multiple GPUs (split mode) on SYCL backend (#5806) 1 anno fa
ggml-sycl.h 715641391d Support multiple GPUs (split mode) on SYCL backend (#5806) 1 anno fa
ggml-vulkan-shaders.hpp e920ed393d Vulkan Intel Fixes, Optimizations and Debugging Flags (#5301) 1 anno fa
ggml-vulkan.cpp c2224f003b ggml-vulkan: fix VULKAN_CHECK_RESULTS flag, which was previously broken (#5813) 1 anno fa
ggml-vulkan.h ee1628bdfe Basic Vulkan Multi-GPU implementation (#5321) 1 anno fa
ggml.c 2774b0c974 add google magika inference example (ggml/748) 1 anno fa
ggml.h 5f70671856 Introduce backend GUIDs (ggml/743) 1 anno fa
ggml_vk_generate_shaders.py 4b7b38bef5 vulkan: Set limit for task concurrency (#5427) 1 anno fa
llama.cpp 475df1d6cf llama : allow for user specified embedding pooling type (#5849) 1 anno fa
llama.h 475df1d6cf llama : allow for user specified embedding pooling type (#5849) 1 anno fa
mypy.ini b43ebde3b0 convert : partially revert PR #4818 (#5041) 2 anni fa
requirements.txt 04ac0607e9 python : add check-requirements.sh and GitHub workflow (#4585) 2 anni fa
unicode.h 9600d59e01 unicode : switch to multimap based nfd_map (#5799) 1 anno fa

README-sycl.md

llama.cpp for SYCL

Background

SYCL is a higher-level programming model to improve programming productivity on various hardware accelerators—such as CPUs, GPUs, and FPGAs. It is a single-source embedded domain-specific language based on pure C++17.

oneAPI is a specification that is open and standards-based, supporting multiple architecture types including but not limited to GPU, CPU, and FPGA. The spec has both direct programming and API-based programming paradigms.

Intel uses the SYCL as direct programming language to support CPU, GPUs and FPGAs.

To avoid to re-invent the wheel, this code refer other code paths in llama.cpp (like OpenBLAS, cuBLAS, CLBlast). We use a open-source tool SYCLomatic (Commercial release Intel® DPC++ Compatibility Tool) migrate to SYCL.

The llama.cpp for SYCL is used to support Intel GPUs.

For Intel CPU, recommend to use llama.cpp for X86 (Intel MKL building).

News

  • 2024.3

    • Support multiple cards: --split-mode: [none|layer]; not support [row], it's on developing.
    • Support to assign main GPU by --main-gpu, replace $GGML_SYCL_DEVICE.
    • Support detecting all GPUs with level-zero and same top Max compute units.
    • Support OPs
    • hardsigmoid
    • hardswish
    • pool2d
  • 2024.1

    • Create SYCL backend for Intel GPU.
    • Support Windows build

OS

|OS|Status|Verified| |-|-|-| |Linux|Support|Ubuntu 22.04, Fedora Silverblue 39| |Windows|Support|Windows 11|

Intel GPU

Verified

|Intel GPU| Status | Verified Model| |-|-|-| |Intel Data Center Max Series| Support| Max 1550| |Intel Data Center Flex Series| Support| Flex 170| |Intel Arc Series| Support| Arc 770, 730M| |Intel built-in Arc GPU| Support| built-in Arc GPU in Meteor Lake| |Intel iGPU| Support| iGPU in i5-1250P, i7-1260P, i7-1165G7|

Note: If the EUs (Execution Unit) in iGPU is less than 80, the inference speed will be too slow to use.

Memory

The memory is a limitation to run LLM on GPUs.

When run llama.cpp, there is print log to show the applied memory on GPU. You could know how much memory to be used in your case. Like llm_load_tensors: buffer size = 3577.56 MiB.

For iGPU, please make sure the shared memory from host memory is enough. For llama-2-7b.Q4_0, recommend the host memory is 8GB+.

For dGPU, please make sure the device memory is enough. For llama-2-7b.Q4_0, recommend the device memory is 4GB+.

Docker

Note:

  • Only docker on Linux is tested. Docker on WSL may not work.
  • You may need to install Intel GPU driver on the host machine (See the Linux section to know how to do that)

Build the image

You can choose between F16 and F32 build. F16 is faster for long-prompt inference.

# For F16:
#docker build -t llama-cpp-sycl --build-arg="LLAMA_SYCL_F16=ON" -f .devops/main-intel.Dockerfile .

# Or, for F32:
docker build -t llama-cpp-sycl -f .devops/main-intel.Dockerfile .

# Note: you can also use the ".devops/main-server.Dockerfile", which compiles the "server" example

Run

# Firstly, find all the DRI cards:
ls -la /dev/dri
# Then, pick the card that you want to use.

# For example with "/dev/dri/card1"
docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-sycl -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33

Linux

Setup Environment

  1. Install Intel GPU driver.

a. Please install Intel GPU driver by official guide: Install GPU Drivers.

Note: for iGPU, please install the client GPU driver.

b. Add user to group: video, render.

sudo usermod -aG render username
sudo usermod -aG video username

Note: re-login to enable it.

c. Check

sudo apt install clinfo
sudo clinfo -l

Output (example):

Platform #0: Intel(R) OpenCL Graphics
 `-- Device #0: Intel(R) Arc(TM) A770 Graphics


Platform #0: Intel(R) OpenCL HD Graphics
 `-- Device #0: Intel(R) Iris(R) Xe Graphics [0x9a49]
  1. Install Intel® oneAPI Base toolkit.

a. Please follow the procedure in Get the Intel® oneAPI Base Toolkit .

Recommend to install to default folder: /opt/intel/oneapi.

Following guide use the default folder as example. If you use other folder, please modify the following guide info with your folder.

b. Check

source /opt/intel/oneapi/setvars.sh

sycl-ls

There should be one or more level-zero devices. Please confirm that at least one GPU is present, like [ext_oneapi_level_zero:gpu:0].

Output (example):

[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2  [2023.16.10.0.17_160000]
[opencl:cpu:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i7-13700K OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO  [23.30.26918.50]
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26918]

  1. Build locally:

Note:

  • You can choose between F16 and F32 build. F16 is faster for long-prompt inference.
  • By default, it will build for all binary files. It will take more time. To reduce the time, we recommend to build for example/main only.

    mkdir -p build
    cd build
    source /opt/intel/oneapi/setvars.sh
    
    # For FP16:
    #cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON
    
    # Or, for FP32:
    cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
    
    # Build example/main only
    #cmake --build . --config Release --target main
    
    # Or, build all binary
    cmake --build . --config Release -v
    
    cd ..
    

or

./examples/sycl/build.sh

Run

  1. Put model file to folder models

You could download llama-2-7b.Q4_0.gguf as example.

  1. Enable oneAPI running environment

    source /opt/intel/oneapi/setvars.sh
    
  2. List device ID

Run without parameter:

./build/bin/ls-sycl-device

# or running the "main" executable and look at the output log:

./build/bin/main

Check the ID in startup log, like:

found 4 SYCL devices:
  Device 0: Intel(R) Arc(TM) A770 Graphics,	compute capability 1.3,
    max compute_units 512,	max work group size 1024,	max sub group size 32,	global mem size 16225243136
  Device 1: Intel(R) FPGA Emulation Device,	compute capability 1.2,
    max compute_units 24,	max work group size 67108864,	max sub group size 64,	global mem size 67065057280
  Device 2: 13th Gen Intel(R) Core(TM) i7-13700K,	compute capability 3.0,
    max compute_units 24,	max work group size 8192,	max sub group size 64,	global mem size 67065057280
  Device 3: Intel(R) Arc(TM) A770 Graphics,	compute capability 3.0,
    max compute_units 512,	max work group size 1024,	max sub group size 32,	global mem size 16225243136

|Attribute|Note| |-|-| |compute capability 1.3|Level-zero running time, recommended | |compute capability 3.0|OpenCL running time, slower than level-zero in most cases|

  1. Set device ID and execute llama.cpp

Set device ID = 0 by GGML_SYCL_DEVICE=0

GGML_SYCL_DEVICE=0 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33

or run by script:

./examples/sycl/run_llama2.sh

Note:

  • By default, mmap is used to read model file. In some cases, it leads to the hang issue. Recommend to use parameter --no-mmap to disable mmap() to skip this issue.
  1. Check the device ID in output

Like:

Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device

Windows

Setup Environment

  1. Install Intel GPU driver.

Please install Intel GPU driver by official guide: Install GPU Drivers.

Note: The driver is mandatory for compute function.

  1. Install Visual Studio.

Please install Visual Studio which impact oneAPI environment enabling in Windows.

  1. Install Intel® oneAPI Base toolkit.

a. Please follow the procedure in Get the Intel® oneAPI Base Toolkit .

Recommend to install to default folder: C:\Program Files (x86)\Intel\oneAPI.

Following guide uses the default folder as example. If you use other folder, please modify the following guide info with your folder.

b. Enable oneAPI running environment:

  • In Search, input 'oneAPI'.

Search & open "Intel oneAPI command prompt for Intel 64 for Visual Studio 2022"

  • In Run:

In CMD:

"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64

c. Check GPU

In oneAPI command line:

sycl-ls

There should be one or more level-zero devices. Please confirm that at least one GPU is present, like [ext_oneapi_level_zero:gpu:0].

Output (example):

[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2  [2023.16.10.0.17_160000]
[opencl:cpu:1] Intel(R) OpenCL, 11th Gen Intel(R) Core(TM) i7-1185G7 @ 3.00GHz OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Iris(R) Xe Graphics OpenCL 3.0 NEO  [31.0.101.5186]
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Iris(R) Xe Graphics 1.3 [1.3.28044]
  1. Install cmake & make

a. Download & install cmake for Windows: https://cmake.org/download/

b. Download & install mingw-w64 make for Windows provided by w64devkit

  • Download the latest fortran version of w64devkit.

  • Extract w64devkit on your pc.

  • Add the bin folder path in the Windows system PATH environment, like C:\xxx\w64devkit\bin\.

Build locally:

In oneAPI command line window:

mkdir -p build
cd build
@call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force

::  for FP16
::  faster for long-prompt inference
::  cmake -G "MinGW Makefiles" ..  -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx  -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON

::  for FP32
cmake -G "MinGW Makefiles" ..  -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx  -DCMAKE_BUILD_TYPE=Release


::  build example/main only
::  make main

::  build all binary
make -j
cd ..

or

.\examples\sycl\win-build-sycl.bat

Note:

  • By default, it will build for all binary files. It will take more time. To reduce the time, we recommend to build for example/main only.

Run

  1. Put model file to folder models

You could download llama-2-7b.Q4_0.gguf as example.

  1. Enable oneAPI running environment
  • In Search, input 'oneAPI'.

Search & open "Intel oneAPI command prompt for Intel 64 for Visual Studio 2022"

  • In Run:

In CMD:

"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64
  1. List device ID

Run without parameter:

build\bin\ls-sycl-device.exe

or

build\bin\main.exe

Check the ID in startup log, like:

found 4 SYCL devices:
  Device 0: Intel(R) Arc(TM) A770 Graphics,	compute capability 1.3,
    max compute_units 512,	max work group size 1024,	max sub group size 32,	global mem size 16225243136
  Device 1: Intel(R) FPGA Emulation Device,	compute capability 1.2,
    max compute_units 24,	max work group size 67108864,	max sub group size 64,	global mem size 67065057280
  Device 2: 13th Gen Intel(R) Core(TM) i7-13700K,	compute capability 3.0,
    max compute_units 24,	max work group size 8192,	max sub group size 64,	global mem size 67065057280
  Device 3: Intel(R) Arc(TM) A770 Graphics,	compute capability 3.0,
    max compute_units 512,	max work group size 1024,	max sub group size 32,	global mem size 16225243136

|Attribute|Note| |-|-| |compute capability 1.3|Level-zero running time, recommended | |compute capability 3.0|OpenCL running time, slower than level-zero in most cases|

  1. Set device ID and execute llama.cpp

Set device ID = 0 by set GGML_SYCL_DEVICE=0

set GGML_SYCL_DEVICE=0
build\bin\main.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0

or run by script:

.\examples\sycl\win-run-llama2.bat

Note:

  • By default, mmap is used to read model file. In some cases, it leads to the hang issue. Recommend to use parameter --no-mmap to disable mmap() to skip this issue.
  1. Check the device ID in output

Like:

Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device

Environment Variable

Build

|Name|Value|Function| |-|-|-| |LLAMA_SYCL|ON (mandatory)|Enable build with SYCL code path.
For FP32/FP16, LLAMA_SYCL=ON is mandatory.| |LLAMA_SYCL_F16|ON (optional)|Enable FP16 build with SYCL code path. Faster for long-prompt inference.
For FP32, not set it.| |CMAKE_C_COMPILER|icx|Use icx compiler for SYCL code path| |CMAKE_CXX_COMPILER|icpx (Linux), icx (Windows)|use icpx/icx for SYCL code path|

Running

|Name|Value|Function| |-|-|-| |GGML_SYCL_DEVICE|0 (default) or 1|Set the device id used. Check the device ids by default running output| |GGML_SYCL_DEBUG|0 (default) or 1|Enable log function by macro: GGML_SYCL_DEBUG| |ZES_ENABLE_SYSMAN| 0 (default) or 1|Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.
Recommended to use when --split-mode = layer|

Known Issue

  • Hang during startup

llama.cpp use mmap as default way to read model file and copy to GPU. In some system, memcpy will be abnormal and block.

Solution: add --no-mmap or --mmap 0.

  • Split-mode: [row] is not supported

It's on developing.

Q&A

  • Error: error while loading shared libraries: libsycl.so.7: cannot open shared object file: No such file or directory.

Miss to enable oneAPI running environment.

Install oneAPI base toolkit and enable it by: source /opt/intel/oneapi/setvars.sh.

  • In Windows, no result, not error.

Miss to enable oneAPI running environment.

  • Meet compile error.

Remove folder build and try again.

  • I can not see [ext_oneapi_level_zero:gpu:0] afer install GPU driver in Linux.

Please run sudo sycl-ls.

If you see it in result, please add video/render group to your ID:

  sudo usermod -aG render username
  sudo usermod -aG video username

Then relogin.

If you do not see it, please check the installation GPU steps again.

Todo

  • Support multiple cards.