| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357 |
- #include "common.h"
- #include "llama.h"
- #include "build-info.h"
- #include <cmath>
- #include <ctime>
- #include <sstream>
- #if defined(_MSC_VER)
- #pragma warning(disable: 4244 4267) // possible loss of data
- #endif
- std::vector<float> softmax(const std::vector<float>& logits) {
- std::vector<float> probs(logits.size());
- float max_logit = logits[0];
- for (float v : logits) max_logit = std::max(max_logit, v);
- double sum_exp = 0.0;
- for (size_t i = 0; i < logits.size(); i++) {
- // Subtract the maximum logit value from the current logit value for numerical stability
- const float logit = logits[i] - max_logit;
- const float exp_logit = expf(logit);
- sum_exp += exp_logit;
- probs[i] = exp_logit;
- }
- for (size_t i = 0; i < probs.size(); i++) probs[i] /= sum_exp;
- return probs;
- }
- void perplexity(llama_context * ctx, const gpt_params & params) {
- // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
- // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
- // Output: `perplexity: 13.5106 [114/114]`
- // BOS tokens will be added for each chunk before eval
- auto tokens = ::llama_tokenize(ctx, params.prompt, true);
- const int n_chunk_max = tokens.size() / params.n_ctx;
- const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
- const int n_vocab = llama_n_vocab(ctx);
- const int n_batch = params.n_batch;
- int count = 0;
- double nll = 0.0;
- fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
- for (int i = 0; i < n_chunk; ++i) {
- const int start = i * params.n_ctx;
- const int end = start + params.n_ctx;
- const int num_batches = (params.n_ctx + n_batch - 1) / n_batch;
- std::vector<float> logits;
- const auto t_start = std::chrono::high_resolution_clock::now();
- for (int j = 0; j < num_batches; ++j) {
- const int batch_start = start + j * n_batch;
- const int batch_size = std::min(end - batch_start, n_batch);
- // save original token and restore it after eval
- const auto token_org = tokens[batch_start];
- // add BOS token for the first batch of each chunk
- if (j == 0) {
- tokens[batch_start] = llama_token_bos();
- }
- if (llama_eval(ctx, tokens.data() + batch_start, batch_size, j * n_batch, params.n_threads)) {
- fprintf(stderr, "%s : failed to eval\n", __func__);
- return;
- }
- // restore the original token in case it was set to BOS
- tokens[batch_start] = token_org;
- const auto batch_logits = llama_get_logits(ctx);
- logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
- }
- const auto t_end = std::chrono::high_resolution_clock::now();
- if (i == 0) {
- const float t_total = std::chrono::duration<float>(t_end - t_start).count();
- fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
- int total_seconds = (int)(t_total * n_chunk);
- if (total_seconds >= 60*60) {
- fprintf(stderr, "%d hours ", total_seconds / (60*60));
- total_seconds = total_seconds % (60*60);
- }
- fprintf(stderr, "%d minutes\n", total_seconds / 60);
- }
- // We get the logits for all the tokens in the context window (params.n_ctx)
- // from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity,
- // calculate the perplexity over the last half of the window (so the model always has
- // some context to predict the token).
- //
- // We rely on the fact that attention in the forward pass only looks at previous
- // tokens here, so the logits returned for each token are an accurate representation
- // of what the model would have predicted at that point.
- //
- // Example, we have a context window of 512, we will compute perplexity for each of the
- // last 256 tokens. Then, we split the input up into context window size chunks to
- // process the entire prompt.
- for (int j = std::min(512, params.n_ctx / 2); j < params.n_ctx - 1; ++j) {
- // Calculate probability of next token, given the previous ones.
- const std::vector<float> tok_logits(
- logits.begin() + (j + 0) * n_vocab,
- logits.begin() + (j + 1) * n_vocab);
- const float prob = softmax(tok_logits)[tokens[start + j + 1]];
- nll += -std::log(prob);
- ++count;
- }
- // perplexity is e^(average negative log-likelihood)
- printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
- fflush(stdout);
- }
- printf("\n");
- }
- void hellaswag_score(llama_context * ctx, const gpt_params & params) {
- // Calculates hellaswag score (acc_norm) from prompt
- //
- // Data extracted from the HellaSwag validation dataset (MIT license) https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl
- // All used data fields are preprocessed as in https://github.com/EleutherAI/lm-evaluation-harness/blob/df3da98c5405deafd519c2ddca52bb7c3fe36bef/lm_eval/tasks/hellaswag.py#L62-L68
- //
- // All 10042 tasks should be extracted to keep the results standardized like other implementations.
- //
- // Datafile layout:
- // ['??'] denotes json fields
- // 6 lines per task:
- // ['activity_label'] + ": " +['ctx'] - The first part of the query, the context
- // ['label'] - The index the best common sense ending aka gold ending
- // ['endings'][0] - Endings added to the first part of the query
- // ['endings'][1]
- // ['endings'][2]
- // ['endings'][3]
- std::vector<std::string> prompt_lines;
- std::istringstream strstream(params.prompt);
- std::string line;
- while (std::getline(strstream,line,'\n')) {
- prompt_lines.push_back(line);
- }
- if( prompt_lines.size() % 6 != 0) {
- fprintf(stderr, "%s : number of lines in prompt not a multiple of 6.\n", __func__);
- return;
- }
- size_t hs_task_count = prompt_lines.size()/6;
- fprintf(stderr, "%s : loaded %lu tasks from prompt.\n", __func__, hs_task_count);
- // This is needed as usual for LLaMA models
- bool prepend_bos = true;
- // Number of tasks to use when computing the score
- if ( params.hellaswag_tasks < hs_task_count ) {
- hs_task_count = params.hellaswag_tasks;
- }
- // The tasks should be randomized so the score stabilizes quickly.
- bool randomize_tasks = true;
- // The random seed should not impact the final result if the computation is done over enough tasks, so kept hardcoded for now
- std::mt19937 rng(1);
- // Dataholder for hellaswag tasks
- struct hs_data_t {
- std::string context;
- size_t gold_ending_idx;
- std::string ending[4];
- size_t ending_logprob_count[4];
- double ending_logprob[4];
- };
- fprintf(stderr, "%s : selecting %lu %s tasks.\n", __func__, hs_task_count, (randomize_tasks?"randomized":"the first") );
- // Select and read data from prompt lines
- hs_data_t *hs_data = new hs_data_t[hs_task_count];
- for (size_t i=0; i < hs_task_count; i++) {
- size_t idx = i;
- // Select a random example of those left in the prompt
- if (randomize_tasks) {
- std::uniform_int_distribution<size_t> dist(0, prompt_lines.size()/6-1 ) ;
- idx = dist(rng);
- }
- hs_data[i].context = prompt_lines[idx*6];
- hs_data[i].gold_ending_idx = std::stoi( prompt_lines[idx*6+1] );
- for (size_t j=0; j < 4; j++) {
- hs_data[i].ending[j] = " " + prompt_lines[idx*6+2+j];
- }
- // Delete the selected random example from the prompt
- if (randomize_tasks) {
- prompt_lines.erase( std::next(prompt_lines.begin(),idx*6) , std::next(prompt_lines.begin(),idx*6+6) );
- }
- }
- fprintf(stderr, "%s : calculating hellaswag score over selected tasks.\n", __func__);
- printf("\ntask\tacc_norm\n");
- double acc = 0.0f;
- const int n_vocab = llama_n_vocab(ctx);
- for (size_t task_idx = 0; task_idx < hs_task_count; task_idx++) {
- // Tokenize the context to count tokens
- std::vector<int> context_embd = ::llama_tokenize(ctx, hs_data[task_idx].context, prepend_bos);
- size_t context_size = context_embd.size();
- for (size_t ending_idx=0;ending_idx<4;ending_idx++) {
- // Tokenize the query
- std::vector<int> query_embd = ::llama_tokenize(ctx, hs_data[task_idx].context + hs_data[task_idx].ending[ending_idx], prepend_bos);
- size_t query_size = query_embd.size();
- // Stop if query wont fit the ctx window
- if (query_size > (size_t)params.n_ctx) {
- fprintf(stderr, "%s : number of tokens in query %lu > n_ctxl\n", __func__, query_size);
- return;
- }
- // Speedup small evaluations by evaluating atleast 32 tokens
- if (query_size < 32) {
- query_embd.resize(32);
- }
- // Evaluate the query
- if (llama_eval(ctx, query_embd.data(), query_embd.size(), 0, params.n_threads)) {
- fprintf(stderr, "%s : failed to eval\n", __func__);
- return;
- }
- const auto query_logits = llama_get_logits(ctx);
- std::vector<float> logits;
- logits.insert(logits.end(), query_logits, query_logits + query_size * n_vocab);
- hs_data[task_idx].ending_logprob_count[ending_idx] = 0;
- hs_data[task_idx].ending_logprob[ending_idx] = 0.0f;
- // Calculate the logprobs over the ending
- for (size_t j = context_size-1; j < query_size - 1; j++) {
- // Calculate probability of next token, given the previous ones.
- const std::vector<float> tok_logits(
- logits.begin() + (j + 0) * n_vocab,
- logits.begin() + (j + 1) * n_vocab);
- const float prob = softmax(tok_logits)[query_embd[ j + 1]];
- hs_data[task_idx].ending_logprob[ending_idx] += std::log(prob);
- hs_data[task_idx].ending_logprob_count[ending_idx]++;
- }
- // Calculate the mean token logprob for acc_norm
- hs_data[task_idx].ending_logprob[ending_idx] /= hs_data[task_idx].ending_logprob_count[ending_idx];
- // printf("task %lu, ending %lu, whole_len %lu, context_len %lu, ending_logprob_count %lu, ending_logprob %.4f\n",
- // task_idx,ending_idx,whole_size,context_size, hs_data[task_idx].ending_logprob_count[ending_idx], hs_data[task_idx].ending_logprob[ending_idx] );
- }
- // Find the ending with maximum logprob
- size_t ending_logprob_max_idx = -1;
- double ending_logprob_max_val = -INFINITY;
- for (size_t j=0; j < 4; j++) {
- if (hs_data[task_idx].ending_logprob[j] > ending_logprob_max_val) {
- ending_logprob_max_idx = j;
- ending_logprob_max_val = hs_data[task_idx].ending_logprob[j];
- }
- }
- // printf("max logprob ending idx %lu, gold ending idx %lu\n", ending_logprob_max_idx, hs_data[task_idx].gold_ending_idx);
- // If the gold ending got the maximum logprobe add one accuracy point
- if (ending_logprob_max_idx == hs_data[task_idx].gold_ending_idx) {
- acc += 1.0;
- }
- // Print the accumulated accuracy mean x 100
- printf("%li\t%.8lf\n",task_idx+1, acc/double(task_idx+1)*100.0);
- fflush(stdout);
- }
- delete [] hs_data;
- printf("\n");
- }
- int main(int argc, char ** argv) {
- gpt_params params;
- params.n_batch = 512;
- if (gpt_params_parse(argc, argv, params) == false) {
- return 1;
- }
- params.perplexity = true;
- params.n_batch = std::min(params.n_batch, params.n_ctx);
- if (params.n_ctx > 2048) {
- fprintf(stderr, "%s: warning: model might not support context sizes greater than 2048 tokens (%d specified);"
- "expect poor results\n", __func__, params.n_ctx);
- }
- fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
- if (params.seed == LLAMA_DEFAULT_SEED) {
- params.seed = time(NULL);
- }
- fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
- std::mt19937 rng(params.seed);
- if (params.random_prompt) {
- params.prompt = gpt_random_prompt(rng);
- }
- llama_backend_init(params.numa);
- llama_model * model;
- llama_context * ctx;
- // load the model and apply lora adapter, if any
- std::tie(model, ctx) = llama_init_from_gpt_params(params);
- if (model == NULL) {
- fprintf(stderr, "%s: error: unable to load model\n", __func__);
- return 1;
- }
- // print system information
- {
- fprintf(stderr, "\n");
- fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
- params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
- }
- if (params.hellaswag) {
- hellaswag_score(ctx, params);
- } else {
- perplexity(ctx, params);
- }
- llama_print_timings(ctx);
- llama_free(ctx);
- llama_free_model(model);
- llama_backend_free();
- return 0;
- }
|