|
|
2 ani în urmă | |
|---|---|---|
| .devops | 2 ani în urmă | |
| .github | 2 ani în urmă | |
| examples | 2 ani în urmă | |
| media | 2 ani în urmă | |
| models | 2 ani în urmă | |
| pocs | 2 ani în urmă | |
| prompts | 2 ani în urmă | |
| scripts | 2 ani în urmă | |
| spm-headers | 2 ani în urmă | |
| tests | 2 ani în urmă | |
| .dockerignore | 2 ani în urmă | |
| .ecrc | 2 ani în urmă | |
| .editorconfig | 2 ani în urmă | |
| .gitignore | 2 ani în urmă | |
| CMakeLists.txt | 2 ani în urmă | |
| LICENSE | 2 ani în urmă | |
| Makefile | 2 ani în urmă | |
| Package.swift | 2 ani în urmă | |
| README.md | 2 ani în urmă | |
| SHA256SUMS | 2 ani în urmă | |
| build.zig | 2 ani în urmă | |
| convert-lora-to-ggml.py | 2 ani în urmă | |
| convert-pth-to-ggml.py | 2 ani în urmă | |
| convert.py | 2 ani în urmă | |
| flake.lock | 2 ani în urmă | |
| flake.nix | 2 ani în urmă | |
| ggml-cuda.cu | 2 ani în urmă | |
| ggml-cuda.h | 2 ani în urmă | |
| ggml-opencl.c | 2 ani în urmă | |
| ggml-opencl.h | 2 ani în urmă | |
| ggml.c | 2 ani în urmă | |
| ggml.h | 2 ani în urmă | |
| llama-util.h | 2 ani în urmă | |
| llama.cpp | 2 ani în urmă | |
| llama.h | 2 ani în urmă | |
| requirements.txt | 2 ani în urmă |
Inference of LLaMA model in pure C/C++
Hot topics:
The main goal of llama.cpp is to run the LLaMA model using 4-bit integer quantization on a MacBook
The original implementation of llama.cpp was hacked in an evening.
Since then, the project has improved significantly thanks to many contributions. This project is for educational purposes and serves
as the main playground for developing new features for the ggml library.
Supported platforms:
Supported models:
Bindings:
UI:
Here is a typical run using LLaMA-7B:
make -j && ./main -m ./models/7B/ggml-model-q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512
I llama.cpp build info:
I UNAME_S: Darwin
I UNAME_P: arm
I UNAME_M: arm64
I CFLAGS: -I. -O3 -DNDEBUG -std=c11 -fPIC -pthread -DGGML_USE_ACCELERATE
I CXXFLAGS: -I. -I./examples -O3 -DNDEBUG -std=c++11 -fPIC -pthread
I LDFLAGS: -framework Accelerate
I CC: Apple clang version 14.0.0 (clang-1400.0.29.202)
I CXX: Apple clang version 14.0.0 (clang-1400.0.29.202)
make: Nothing to be done for `default'.
main: seed = 1678486056
llama_model_load: loading model from './models/7B/ggml-model-q4_0.bin' - please wait ...
llama_model_load: n_vocab = 32000
llama_model_load: n_ctx = 512
llama_model_load: n_embd = 4096
llama_model_load: n_mult = 256
llama_model_load: n_head = 32
llama_model_load: n_layer = 32
llama_model_load: n_rot = 128
llama_model_load: f16 = 2
llama_model_load: n_ff = 11008
llama_model_load: ggml ctx size = 4529.34 MB
llama_model_load: memory_size = 512.00 MB, n_mem = 16384
llama_model_load: .................................... done
llama_model_load: model size = 4017.27 MB / num tensors = 291
main: prompt: 'Building a website can be done in 10 simple steps:'
main: number of tokens in prompt = 15
1 -> ''
8893 -> 'Build'
292 -> 'ing'
263 -> ' a'
4700 -> ' website'
508 -> ' can'
367 -> ' be'
2309 -> ' done'
297 -> ' in'
29871 -> ' '
29896 -> '1'
29900 -> '0'
2560 -> ' simple'
6576 -> ' steps'
29901 -> ':'
sampling parameters: temp = 0.800000, top_k = 40, top_p = 0.950000
Building a website can be done in 10 simple steps:
1) Select a domain name and web hosting plan
2) Complete a sitemap
3) List your products
4) Write product descriptions
5) Create a user account
6) Build the template
7) Start building the website
8) Advertise the website
9) Provide email support
10) Submit the website to search engines
A website is a collection of web pages that are formatted with HTML. HTML is the code that defines what the website looks like and how it behaves.
The HTML code is formatted into a template or a format. Once this is done, it is displayed on the user's browser.
The web pages are stored in a web server. The web server is also called a host. When the website is accessed, it is retrieved from the server and displayed on the user's computer.
A website is known as a website when it is hosted. This means that it is displayed on a host. The host is usually a web server.
A website can be displayed on different browsers. The browsers are basically the software that renders the website on the user's screen.
A website can also be viewed on different devices such as desktops, tablets and smartphones.
Hence, to have a website displayed on a browser, the website must be hosted.
A domain name is an address of a website. It is the name of the website.
The website is known as a website when it is hosted. This means that it is displayed on a host. The host is usually a web server.
A website can be displayed on different browsers. The browsers are basically the software that renders the website on the user’s screen.
A website can also be viewed on different devices such as desktops, tablets and smartphones. Hence, to have a website displayed on a browser, the website must be hosted.
A domain name is an address of a website. It is the name of the website.
A website is an address of a website. It is a collection of web pages that are formatted with HTML. HTML is the code that defines what the website looks like and how it behaves.
The HTML code is formatted into a template or a format. Once this is done, it is displayed on the user’s browser.
A website is known as a website when it is hosted
main: mem per token = 14434244 bytes
main: load time = 1332.48 ms
main: sample time = 1081.40 ms
main: predict time = 31378.77 ms / 61.41 ms per token
main: total time = 34036.74 ms
And here is another demo of running both LLaMA-7B and whisper.cpp on a single M1 Pro MacBook:
https://user-images.githubusercontent.com/1991296/224442907-7693d4be-acaa-4e01-8b4f-add84093ffff.mp4
Here are the steps for the LLaMA-7B model.
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
In order to build llama.cpp you have three different options.
Using make:
On Linux or MacOS:
make
On Windows:
w64devkit on your pc.w64devkit.exe.cd command to reach the llama.cpp folder.From here you can run:
make
Using CMake:
mkdir build
cd build
cmake ..
cmake --build . --config Release
Using Zig:
zig build -Drelease-fast
Building the program with BLAS support may lead to some performance improvements in prompt processing using batch sizes higher than 32 (the default is 512). BLAS doesn't affect the normal generation performance. There are currently three different implementations of it:
This is only available on Mac PCs and it's enabled by default. You can just build using the normal instructions.
This provides BLAS acceleration using only the CPU. Make sure to have OpenBLAS installed on your machine.
Using make:
On Linux:
make LLAMA_OPENBLAS=1
Note: In order to build on Arch Linux with OpenBLAS support enabled you must edit the Makefile adding at the end of the line 105: -lcblas
On Windows:
w64devkit on your pc.libopenblas.a, located inside the lib folder, inside w64devkit\x86_64-w64-mingw32\lib.include folder inside w64devkit\x86_64-w64-mingw32\include.w64devkit.exe.cd command to reach the llama.cpp folder.From here you can run:
make LLAMA_OPENBLAS=1
Using CMake on Linux:
mkdir build
cd build
cmake .. -DLLAMA_OPENBLAS=ON
cmake --build . --config Release
cuBLAS
This provides BLAS acceleration using the CUDA cores of your Nvidia GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager or from here: CUDA Toolkit.
Using make:
make LLAMA_CUBLAS=1
Using CMake:
mkdir build
cd build
cmake .. -DLLAMA_CUBLAS=ON
cmake --build . --config Release
# obtain the original LLaMA model weights and place them in ./models
ls ./models
65B 30B 13B 7B tokenizer_checklist.chk tokenizer.model
# install Python dependencies
python3 -m pip install -r requirements.txt
# convert the 7B model to ggml FP16 format
python3 convert.py models/7B/
# quantize the model to 4-bits (using q4_0 method)
./quantize ./models/7B/ggml-model-f16.bin ./models/7B/ggml-model-q4_0.bin q4_0
# run the inference
./main -m ./models/7B/ggml-model-q4_0.bin -n 128
When running the larger models, make sure you have enough disk space to store all the intermediate files.
As the models are currently fully loaded into memory, you will need adequate disk space to save them and sufficient RAM to load them. At the moment, memory and disk requirements are the same.
| Model | Original size | Quantized size (4-bit) |
|---|---|---|
| 7B | 13 GB | 3.9 GB |
| 13B | 24 GB | 7.8 GB |
| 30B | 60 GB | 19.5 GB |
| 65B | 120 GB | 38.5 GB |
Several quantization methods are supported. They differ in the resulting model disk size and inference speed.
| Model | Measure | F16 | Q4_0 | Q4_1 | Q4_2 | Q5_0 | Q5_1 | Q8_0 |
|---|---|---|---|---|---|---|---|---|
| 7B | perplexity | 5.9565 | 6.2103 | 6.1286 | 6.1698 | 6.0139 | 5.9934 | 5.9571 |
| 7B | file size | 13.0G | 4.0G | 4.8G | 4.0G | 4.4G | 4.8G | 7.1G |
| 7B | ms/tok @ 4th | 128 | 56 | 61 | 84 | 91 | 95 | 75 |
| 7B | ms/tok @ 8th | 128 | 47 | 55 | 48 | 53 | 59 | 75 |
| 7B | bits/weight | 16.0 | 5.0 | 6.0 | 5.0 | 5.5 | 6.0 | 9.0 |
| 13B | perplexity | 5.2455 | 5.3748 | 5.3471 | 5.3433 | 5.2768 | 5.2582 | 5.2458 |
| 13B | file size | 25.0G | 7.6G | 9.1G | 7.6G | 8.4G | 9.1G | 14G |
| 13B | ms/tok @ 4th | 239 | 104 | 113 | 160 | 176 | 185 | 141 |
| 13B | ms/tok @ 8th | 240 | 85 | 99 | 97 | 108 | 117 | 147 |
| 13B | bits/weight | 16.0 | 5.0 | 6.0 | 5.0 | 5.5 | 6.0 | 9.0 |
If you want a more ChatGPT-like experience, you can run in interactive mode by passing -i as a parameter.
In this mode, you can always interrupt generation by pressing Ctrl+C and entering one or more lines of text, which will be converted into tokens and appended to the current context. You can also specify a reverse prompt with the parameter -r "reverse prompt string". This will result in user input being prompted whenever the exact tokens of the reverse prompt string are encountered in the generation. A typical use is to use a prompt that makes LLaMa emulate a chat between multiple users, say Alice and Bob, and pass -r "Alice:".
Here is an example of a few-shot interaction, invoked with the command
# default arguments using a 7B model
./examples/chat.sh
# advanced chat with a 13B model
./examples/chat-13B.sh
# custom arguments using a 13B model
./main -m ./models/13B/ggml-model-q4_0.bin -n 256 --repeat_penalty 1.0 --color -i -r "User:" -f prompts/chat-with-bob.txt
Note the use of --color to distinguish between user input and generated text. Other parameters are explained in more detail in the README for the main example program.
ggml Alpaca model into the ./models folderRun the main tool like this:
./examples/alpaca.sh
Sample run:
== Running in interactive mode. ==
- Press Ctrl+C to interject at any time.
- Press Return to return control to LLaMa.
- If you want to submit another line, end your input in '\'.
Below is an instruction that describes a task. Write a response that appropriately completes the request.
> How many letters are there in the English alphabet?
There 26 letters in the English Alphabet
> What is the most common way of transportation in Amsterdam?
The majority (54%) are using public transit. This includes buses, trams and metros with over 100 lines throughout the city which make it very accessible for tourists to navigate around town as well as locals who commute by tram or metro on a daily basis
> List 5 words that start with "ca".
cadaver, cauliflower, cabbage (vegetable), catalpa (tree) and Cailleach.
>
tokenizer.model file from LLaMA model and put it to modelsadded_tokens.json file from Alpaca model and put it to modelsgpt4all-lora-quantized.bin file from GPT4All model and put it to models/gpt4all-7Bggml format which is now obsoletedYou have to convert it to the new format using convert.py:
python3 convert.py models/gpt4all-7B/gpt4all-lora-quantized.bin
You can now use the newly generated models/gpt4all-7B/ggml-model-q4_0.bin model in exactly the same way as all other models
The newer GPT4All-J model is not yet supported!
Please verify the sha256 checksums of all downloaded model files to confirm that you have the correct model data files before creating an issue relating to your model files.
The following python script will verify if you have all possible latest files in your self-installed ./models subdirectory:
# run the verification script
python3 .\scripts\verify-checksum-models.py
On linux or macOS it is also possible to run the following commands to verify if you have all possible latest files in your self-installed ./models subdirectory:
sha256sum --ignore-missing -c SHA256SUMSshasum -a 256 --ignore-missing -c SHA256SUMSIf your issue is with model generation quality, then please at least scan the following links and papers to understand the limitations of LLaMA models. This is especially important when choosing an appropriate model size and appreciating both the significant and subtle differences between LLaMA models and ChatGPT:
You can use the perplexity example to measure perplexity over the given prompt. For more background, see https://huggingface.co/docs/transformers/perplexity. However, in general, lower perplexity is better for LLMs.
The latest perplexity scores for the various model sizes and quantizations are being tracked in discussion #406. llama.cpp is measuring very well compared to the baseline implementations. Quantization has a small negative impact on quality, but, as you can see, running
13B at q4_0 beats the 7B f16 model by a significant amount.
All measurements are done against the wikitext2 test dataset (https://paperswithcode.com/dataset/wikitext-2), with default options (512 length context). Note that changing the context length will have a significant impact on perplexity (longer context = better perplexity).
Perplexity - model options
5.5985 - 13B, q4_0
5.9565 - 7B, f16
6.3001 - 7B, q4_1
6.5949 - 7B, q4_0
6.5995 - 7B, q4_0, --memory_f16
./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.rawOutput:
perplexity : calculating perplexity over 655 chunks
24.43 seconds per pass - ETA 4.45 hours
[1]4.5970,[2]5.1807,[3]6.0382,...
And after 4.45 hours, you will have the final perplexity.
You can easily run llama.cpp on Android device with termux.
First, obtain the Android NDK and then build with CMake:
$ mkdir build-android
$ cd build-android
$ export NDK=<your_ndk_directory>
$ cmake -DCMAKE_TOOLCHAIN_FILE=$NDK/build/cmake/android.toolchain.cmake -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=android-23 -DCMAKE_C_FLAGS=-march=armv8.4a+dotprod ..
$ make
Install termux on your device and run termux-setup-storage to get access to your SD card.
Finally, copy the llama binary and the model files to your device storage. Here is a demo of an interactive session running on Pixel 5 phone:
https://user-images.githubusercontent.com/271616/225014776-1d567049-ad71-4ef2-b050-55b0b3b9274c.mp4
We have two Docker images available for this project:
ghcr.io/ggerganov/llama.cpp:full: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization.ghcr.io/ggerganov/llama.cpp:light: This image only includes the main executable file.The easiest way to download the models, convert them to ggml and optimize them is with the --all-in-one command which includes the full docker image.
Replace /path/to/models below with the actual path where you downloaded the models.
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --all-in-one "/models/" 7B
On completion, you are ready to play!
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --run -m /models/7B/ggml-model-q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512
or with a light image:
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:light -m /models/7B/ggml-model-q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512
llama.cpp repo and merge PRs into the master branchfor loops, avoid templates, keep it simplevoid * ptr, int & a