perplexity.cpp 69 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859
  1. #include "common.h"
  2. #include "llama.h"
  3. #include <cmath>
  4. #include <cstdio>
  5. #include <cstring>
  6. #include <ctime>
  7. #include <sstream>
  8. #include <thread>
  9. #include <mutex>
  10. #include <atomic>
  11. #include <vector>
  12. #include <array>
  13. #include <fstream>
  14. #include <sstream>
  15. #if defined(_MSC_VER)
  16. #pragma warning(disable: 4244 4267) // possible loss of data
  17. #endif
  18. struct results_perplexity {
  19. std::vector<llama_token> tokens;
  20. double ppl_value;
  21. std::vector<float> logits;
  22. std::vector<float> probs;
  23. };
  24. struct results_log_softmax {
  25. double log_softmax;
  26. float logit;
  27. float prob;
  28. };
  29. static void write_logfile(
  30. const llama_context * ctx, const gpt_params & params, const llama_model * model,
  31. const struct results_perplexity & results
  32. ) {
  33. if (params.logdir.empty()) {
  34. return;
  35. }
  36. if (params.hellaswag) {
  37. fprintf(stderr, "%s: warning: logging results is not implemented for HellaSwag. No files will be written.\n", __func__);
  38. return;
  39. }
  40. const std::string timestamp = get_sortable_timestamp();
  41. const bool success = create_directory_with_parents(params.logdir);
  42. if (!success) {
  43. fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
  44. __func__, params.logdir.c_str());
  45. return;
  46. }
  47. const std::string logfile_path = params.logdir + timestamp + ".yml";
  48. FILE * logfile = fopen(logfile_path.c_str(), "w");
  49. if (logfile == NULL) {
  50. fprintf(stderr, "%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
  51. return;
  52. }
  53. fprintf(logfile, "binary: main\n");
  54. char model_desc[128];
  55. llama_model_desc(model, model_desc, sizeof(model_desc));
  56. dump_non_result_info_yaml(logfile, params, ctx, timestamp, results.tokens, model_desc);
  57. fprintf(logfile, "\n");
  58. fprintf(logfile, "######################\n");
  59. fprintf(logfile, "# Perplexity Results #\n");
  60. fprintf(logfile, "######################\n");
  61. fprintf(logfile, "\n");
  62. dump_vector_float_yaml(logfile, "logits", results.logits);
  63. fprintf(logfile, "ppl_value: %f\n", results.ppl_value);
  64. dump_vector_float_yaml(logfile, "probs", results.probs);
  65. llama_dump_timing_info_yaml(logfile, ctx);
  66. fclose(logfile);
  67. }
  68. static std::vector<float> softmax(const std::vector<float>& logits) {
  69. std::vector<float> probs(logits.size());
  70. float max_logit = logits[0];
  71. for (float v : logits) {
  72. max_logit = std::max(max_logit, v);
  73. }
  74. double sum_exp = 0.0;
  75. for (size_t i = 0; i < logits.size(); i++) {
  76. // Subtract the maximum logit value from the current logit value for numerical stability
  77. const float logit = logits[i] - max_logit;
  78. const float exp_logit = expf(logit);
  79. sum_exp += exp_logit;
  80. probs[i] = exp_logit;
  81. }
  82. for (size_t i = 0; i < probs.size(); i++) {
  83. probs[i] /= sum_exp;
  84. }
  85. return probs;
  86. }
  87. static results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) {
  88. float max_logit = logits[0];
  89. for (int i = 1; i < n_vocab; ++i) {
  90. max_logit = std::max(max_logit, logits[i]);
  91. }
  92. double sum_exp = 0.0;
  93. for (int i = 0; i < n_vocab; ++i) {
  94. sum_exp += expf(logits[i] - max_logit);
  95. }
  96. return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp};
  97. }
  98. static inline int nearest_int(float fval) {
  99. //assert(fval <= 4194303.f);
  100. float val = fval + 12582912.f;
  101. int i; memcpy(&i, &val, sizeof(int));
  102. return (i & 0x007fffff) - 0x00400000;
  103. }
  104. static double log_softmax(int n_vocab, const float * logits, uint16_t * log_prob, int tok) {
  105. float max_logit = logits[0];
  106. float min_logit = logits[0];
  107. for (int i = 1; i < n_vocab; ++i) {
  108. max_logit = std::max(max_logit, logits[i]);
  109. min_logit = std::min(min_logit, logits[i]);
  110. }
  111. min_logit = std::max(min_logit, max_logit - 16);
  112. double sum_exp = 0.0;
  113. for (int i = 0; i < n_vocab; ++i) {
  114. sum_exp += expf(logits[i] - max_logit);
  115. }
  116. const float log_sum_exp = log(sum_exp);
  117. const float min_log_prob = min_logit - max_logit - log_sum_exp;
  118. const float scale = (max_logit - min_logit)/65535.f;
  119. float * d = (float *)log_prob;
  120. d[0] = scale;
  121. d[1] = min_log_prob;
  122. log_prob += 4;
  123. if (scale) {
  124. const float inv_scale = 1/scale;
  125. for (int i = 0; i < n_vocab; ++i) {
  126. log_prob[i] = logits[i] > min_logit ? nearest_int(inv_scale*(logits[i] - min_logit)) : 0;
  127. }
  128. } else {
  129. std::memset(log_prob, 0, n_vocab*sizeof(uint16_t));
  130. }
  131. return max_logit + log_sum_exp - logits[tok];
  132. }
  133. static void process_logits(
  134. int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread> & workers,
  135. double & nll, double & nll2, float * logit_history, float * prob_history
  136. ) {
  137. std::mutex mutex;
  138. int counter = 0;
  139. auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () {
  140. double local_nll = 0;
  141. double local_nll2 = 0;
  142. while (true) {
  143. std::unique_lock<std::mutex> lock(mutex);
  144. int i = counter++;
  145. if (i >= n_token) {
  146. nll += local_nll; nll2 += local_nll2;
  147. break;
  148. }
  149. lock.unlock();
  150. const results_log_softmax results = log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]);
  151. const double v = -results.log_softmax;
  152. local_nll += v;
  153. local_nll2 += v*v;
  154. logit_history[i] = results.logit;
  155. prob_history[i] = results.prob;
  156. }
  157. };
  158. for (auto & w : workers) {
  159. w = std::thread(compute);
  160. }
  161. compute();
  162. for (auto & w : workers) {
  163. w.join();
  164. }
  165. }
  166. static void process_logits(std::ostream& out, int n_vocab, const float * logits, const int * tokens, int n_token,
  167. std::vector<std::thread> & workers, std::vector<uint16_t> & log_probs, double & nll, double & nll2) {
  168. std::mutex mutex;
  169. const int nv = 2*((n_vocab + 1)/2) + 4;
  170. int counter = 0;
  171. auto compute = [&mutex, &counter, &log_probs, &nll, &nll2, n_vocab, logits, tokens, n_token, nv] () {
  172. double local_nll = 0;
  173. double local_nll2 = 0;
  174. while (true) {
  175. std::unique_lock<std::mutex> lock(mutex);
  176. int i = counter++;
  177. if (i >= n_token) {
  178. nll += local_nll; nll2 += local_nll2;
  179. break;
  180. }
  181. lock.unlock();
  182. const double v = log_softmax(n_vocab, logits + i*n_vocab, log_probs.data() + i*nv, tokens[i+1]);
  183. local_nll += v;
  184. local_nll2 += v*v;
  185. }
  186. };
  187. for (auto & w : workers) {
  188. w = std::thread(compute);
  189. }
  190. compute();
  191. for (auto & w : workers) {
  192. w.join();
  193. }
  194. out.write((const char *)log_probs.data(), n_token*nv*sizeof(uint16_t));
  195. }
  196. struct kl_divergence_result {
  197. double sum_nll = 0;
  198. double sum_nll2 = 0;
  199. double sum_kld = 0;
  200. double sum_kld2 = 0;
  201. double sum_nll_diff = 0;
  202. double sum_nll_diff2 = 0;
  203. size_t n_same_top = 0;
  204. size_t count = 0;
  205. };
  206. static double log_softmax(int n_vocab, const float * logits, const uint16_t * base_log_prob, int tok, kl_divergence_result & kld) {
  207. float max_logit = logits[0];
  208. int imax = 0;
  209. for (int i = 1; i < n_vocab; ++i) {
  210. if (logits[i] > max_logit) {
  211. max_logit = logits[i];
  212. imax = i;
  213. }
  214. }
  215. double sum_exp = 0.0;
  216. for (int i = 0; i < n_vocab; ++i) {
  217. sum_exp += expf(logits[i] - max_logit);
  218. }
  219. const float log_sum_exp = log(sum_exp);
  220. const float * d = (const float *)base_log_prob;
  221. const float scale = d[0];
  222. const float min_log_prob = d[1];
  223. base_log_prob += 4;
  224. float nll = max_logit + log_sum_exp - logits[tok];
  225. kld.sum_nll += nll;
  226. kld.sum_nll2 += nll*nll;
  227. nll += (scale*base_log_prob[tok] + min_log_prob);
  228. kld.sum_nll_diff += nll;
  229. kld.sum_nll_diff2 += nll*nll;
  230. max_logit += log_sum_exp;
  231. double sum = 0;
  232. int imax_base = -1;
  233. float p_log_base_max = 0;
  234. for (int i = 0; i < n_vocab; ++i) {
  235. const float p_log_base = scale*base_log_prob[i] + min_log_prob;
  236. if (i == 0 || p_log_base > p_log_base_max) {
  237. p_log_base_max = p_log_base;
  238. imax_base = i;
  239. }
  240. if (p_log_base > -16.f) {
  241. const float p_base = expf(p_log_base);
  242. sum += p_base * (p_log_base - logits[i] + max_logit);
  243. }
  244. }
  245. kld.sum_kld += sum;
  246. kld.sum_kld2 += sum*sum;
  247. ++kld.count;
  248. if (imax == imax_base) ++kld.n_same_top;
  249. return sum;
  250. }
  251. static void process_logits(int n_vocab, const float * logits, const int * tokens, int n_token,
  252. std::vector<std::thread> & workers, const std::vector<uint16_t> & base_log_probs, kl_divergence_result & kld,
  253. float * kld_values) {
  254. std::mutex mutex;
  255. const int nv = 2*((n_vocab + 1)/2) + 4;
  256. int counter = 0;
  257. auto compute = [&mutex, &counter, &base_log_probs, &kld, n_vocab, logits, tokens, n_token, nv, kld_values] () {
  258. kl_divergence_result local_kld;
  259. while (true) {
  260. std::unique_lock<std::mutex> lock(mutex);
  261. int i = counter++;
  262. if (i >= n_token) {
  263. kld.sum_nll += local_kld.sum_nll;
  264. kld.sum_nll2 += local_kld.sum_nll2;
  265. kld.sum_kld += local_kld.sum_kld;
  266. kld.sum_kld2 += local_kld.sum_kld2;
  267. kld.sum_nll_diff += local_kld.sum_nll_diff;
  268. kld.sum_nll_diff2 += local_kld.sum_nll_diff2;
  269. kld.n_same_top += local_kld.n_same_top;
  270. kld.count += local_kld.count;
  271. break;
  272. }
  273. lock.unlock();
  274. double v = log_softmax(n_vocab, logits + i*n_vocab, base_log_probs.data() + i*nv, tokens[i+1], local_kld);
  275. kld_values[i] = (float)v;
  276. }
  277. };
  278. for (auto & w : workers) {
  279. w = std::thread(compute);
  280. }
  281. compute();
  282. for (auto & w : workers) {
  283. w.join();
  284. }
  285. }
  286. static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params & params) {
  287. // Download: https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
  288. // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
  289. // Output: `perplexity: 13.5106 [114/114]`
  290. // BOS tokens will be added for each chunk before eval
  291. const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
  292. fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
  293. std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
  294. const int n_ctx = llama_n_ctx(ctx);
  295. if (int(tokens.size()) < 2*n_ctx) {
  296. fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx,
  297. n_ctx);
  298. fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
  299. return {std::move(tokens), 0., {}, {}};
  300. }
  301. std::vector<float> logit_history;
  302. std::vector<float> prob_history;
  303. logit_history.resize(tokens.size());
  304. prob_history.resize(tokens.size());
  305. if (params.ppl_stride <= 0) {
  306. fprintf(stderr, "%s: stride is %d but must be greater than zero!\n",__func__,params.ppl_stride);
  307. return {tokens, -1, logit_history, prob_history};
  308. }
  309. const int calc_chunk = n_ctx;
  310. fprintf(stderr, "%s: have %zu tokens. Calculation chunk = %d\n", __func__, tokens.size(), calc_chunk);
  311. if (int(tokens.size()) <= calc_chunk) {
  312. fprintf(stderr, "%s: there are only %zu tokens, this is not enough for a context size of %d and stride %d\n",__func__,
  313. tokens.size(), n_ctx, params.ppl_stride);
  314. return {tokens, -1, logit_history, prob_history};
  315. }
  316. const int n_chunk_max = (tokens.size() - calc_chunk + params.ppl_stride - 1) / params.ppl_stride;
  317. const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
  318. const int n_vocab = llama_n_vocab(llama_get_model(ctx));
  319. const int n_batch = params.n_batch;
  320. int count = 0;
  321. double nll = 0.0;
  322. fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
  323. for (int i = 0; i < n_chunk; ++i) {
  324. const int start = i * params.ppl_stride;
  325. const int end = start + calc_chunk;
  326. const int num_batches = (calc_chunk + n_batch - 1) / n_batch;
  327. //fprintf(stderr, "%s: evaluating %d...%d using %d batches\n", __func__, start, end, num_batches);
  328. std::vector<float> logits;
  329. const auto t_start = std::chrono::high_resolution_clock::now();
  330. // clear the KV cache
  331. llama_kv_cache_clear(ctx);
  332. for (int j = 0; j < num_batches; ++j) {
  333. const int batch_start = start + j * n_batch;
  334. const int batch_size = std::min(end - batch_start, n_batch);
  335. //fprintf(stderr, " Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch);
  336. if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
  337. //fprintf(stderr, "%s : failed to eval\n", __func__);
  338. return {tokens, -1, logit_history, prob_history};
  339. }
  340. // save original token and restore it after eval
  341. const auto token_org = tokens[batch_start];
  342. // add BOS token for the first batch of each chunk
  343. if (add_bos && j == 0) {
  344. tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
  345. }
  346. const auto batch_logits = llama_get_logits(ctx);
  347. logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
  348. if (j == 0) {
  349. tokens[batch_start] = token_org;
  350. }
  351. }
  352. const auto t_end = std::chrono::high_resolution_clock::now();
  353. if (i == 0) {
  354. const float t_total = std::chrono::duration<float>(t_end - t_start).count();
  355. fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
  356. int total_seconds = (int)(t_total * n_chunk);
  357. if (total_seconds >= 60*60) {
  358. fprintf(stderr, "%d hours ", total_seconds / (60*60));
  359. total_seconds = total_seconds % (60*60);
  360. }
  361. fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
  362. }
  363. //fprintf(stderr, "%s: using tokens %d...%d\n",__func__,params.n_ctx - params.ppl_stride + start, params.n_ctx + start);
  364. for (int j = n_ctx - params.ppl_stride - 1; j < n_ctx - 1; ++j) {
  365. // Calculate probability of next token, given the previous ones.
  366. const std::vector<float> tok_logits(
  367. logits.begin() + (j + 0) * n_vocab,
  368. logits.begin() + (j + 1) * n_vocab);
  369. const float prob = softmax(tok_logits)[tokens[start + j + 1]];
  370. logit_history[start + j + 1] = tok_logits[tokens[start + j + 1]];
  371. prob_history[start + j + 1] = prob;
  372. nll += -std::log(prob);
  373. ++count;
  374. }
  375. // perplexity is e^(average negative log-likelihood)
  376. if (params.ppl_output_type == 0) {
  377. printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
  378. } else {
  379. printf("%8d %.4lf\n", i*params.ppl_stride, std::exp(nll / count));
  380. }
  381. fflush(stdout);
  382. }
  383. printf("\n");
  384. return {tokens, std::exp(nll / count), logit_history, prob_history};
  385. }
  386. static results_perplexity perplexity(llama_context * ctx, const gpt_params & params) {
  387. if (params.ppl_stride > 0) {
  388. return perplexity_v2(ctx, params);
  389. }
  390. // Download: https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
  391. // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
  392. // Output: `perplexity: 13.5106 [114/114]`
  393. // BOS tokens will be added for each chunk before eval
  394. const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
  395. const int n_ctx = llama_n_ctx(ctx);
  396. std::ofstream logits_stream;
  397. if (!params.logits_file.empty()) {
  398. logits_stream.open(params.logits_file.c_str(), std::ios::binary);
  399. if (!logits_stream.is_open()) {
  400. fprintf(stderr, "%s: failed to open %s for writing\n", __func__, params.logits_file.c_str());
  401. return {};
  402. }
  403. fprintf(stderr, "%s: saving all logits to %s\n", __func__, params.logits_file.c_str());
  404. logits_stream.write("_logits_", 8);
  405. logits_stream.write(reinterpret_cast<const char *>(&n_ctx), sizeof(n_ctx));
  406. }
  407. auto tim1 = std::chrono::high_resolution_clock::now();
  408. fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
  409. std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
  410. auto tim2 = std::chrono::high_resolution_clock::now();
  411. fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
  412. if (int(tokens.size()) < 2*n_ctx) {
  413. fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx,
  414. n_ctx);
  415. fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
  416. return {std::move(tokens), 0., {}, {}};
  417. }
  418. std::vector<float> logit_history;
  419. logit_history.resize(tokens.size());
  420. std::vector<float> prob_history;
  421. prob_history.resize(tokens.size());
  422. const int n_chunk_max = tokens.size() / n_ctx;
  423. const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
  424. const int n_vocab = llama_n_vocab(llama_get_model(ctx));
  425. const int n_batch = params.n_batch;
  426. int count = 0;
  427. double nll = 0.0;
  428. double nll2 = 0.0;
  429. const int num_batches = (n_ctx + n_batch - 1) / n_batch;
  430. std::vector<float> logits;
  431. if (num_batches > 1) {
  432. logits.reserve((size_t)n_ctx * n_vocab);
  433. }
  434. fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
  435. std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
  436. std::vector<uint16_t> log_probs;
  437. if (!params.logits_file.empty()) {
  438. logits_stream.write((const char *)&n_vocab, sizeof(n_vocab));
  439. logits_stream.write((const char *)&n_chunk, sizeof(n_chunk));
  440. logits_stream.write((const char *)tokens.data(), n_chunk*n_ctx*sizeof(tokens[0]));
  441. const int nv = 2*((n_vocab + 1)/2) + 4;
  442. log_probs.resize(n_ctx * nv);
  443. }
  444. for (int i = 0; i < n_chunk; ++i) {
  445. const int start = i * n_ctx;
  446. const int end = start + n_ctx;
  447. const auto t_start = std::chrono::high_resolution_clock::now();
  448. // clear the KV cache
  449. llama_kv_cache_clear(ctx);
  450. for (int j = 0; j < num_batches; ++j) {
  451. const int batch_start = start + j * n_batch;
  452. const int batch_size = std::min(end - batch_start, n_batch);
  453. // save original token and restore it after eval
  454. const auto token_org = tokens[batch_start];
  455. // add BOS token for the first batch of each chunk
  456. if (add_bos && j == 0) {
  457. tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
  458. }
  459. if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
  460. fprintf(stderr, "%s : failed to eval\n", __func__);
  461. return {tokens, -1, logit_history, prob_history};
  462. }
  463. // restore the original token in case it was set to BOS
  464. tokens[batch_start] = token_org;
  465. if (num_batches > 1) {
  466. const auto * batch_logits = llama_get_logits(ctx);
  467. logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
  468. }
  469. }
  470. const auto t_end = std::chrono::high_resolution_clock::now();
  471. if (i == 0) {
  472. const float t_total = std::chrono::duration<float>(t_end - t_start).count();
  473. fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
  474. int total_seconds = (int)(t_total * n_chunk);
  475. if (total_seconds >= 60*60) {
  476. fprintf(stderr, "%d hours ", total_seconds / (60*60));
  477. total_seconds = total_seconds % (60*60);
  478. }
  479. fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
  480. }
  481. // We get the logits for all the tokens in the context window (params.n_ctx)
  482. // from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity,
  483. // calculate the perplexity over the last half of the window (so the model always has
  484. // some context to predict the token).
  485. //
  486. // We rely on the fact that attention in the forward pass only looks at previous
  487. // tokens here, so the logits returned for each token are an accurate representation
  488. // of what the model would have predicted at that point.
  489. //
  490. // Example, we have a context window of 512, we will compute perplexity for each of the
  491. // last 256 tokens. Then, we split the input up into context window size chunks to
  492. // process the entire prompt.
  493. const int first = n_ctx/2;
  494. const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx);
  495. if (!params.logits_file.empty()) {
  496. process_logits(logits_stream, n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
  497. workers, log_probs, nll, nll2);
  498. } else {
  499. process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
  500. workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first);
  501. }
  502. count += n_ctx - first - 1;
  503. // perplexity is e^(average negative log-likelihood)
  504. if (params.ppl_output_type == 0) {
  505. printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
  506. } else {
  507. double av = nll/count;
  508. double av2 = nll2/count - av*av;
  509. if (av2 > 0) av2 = sqrt(av2/(count-1));
  510. printf("%8d %.4lf %4lf %4lf\n", i*n_ctx, std::exp(nll / count), av, av2);
  511. }
  512. fflush(stdout);
  513. logits.clear();
  514. }
  515. printf("\n");
  516. nll2 /= count;
  517. nll /= count;
  518. const double ppl = exp(nll);
  519. nll2 -= nll * nll;
  520. if (nll2 > 0) {
  521. nll2 = sqrt(nll2/(count-1));
  522. printf("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl);
  523. } else {
  524. printf("Unexpected negative standard deviation of log(prob)\n");
  525. }
  526. return {tokens, ppl, logit_history, prob_history};
  527. }
  528. static bool decode_helper(llama_context * ctx, llama_batch & batch, std::vector<float> & batch_logits, int32_t n_batch, int32_t n_vocab) {
  529. for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
  530. const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
  531. llama_batch batch_view = {
  532. n_tokens,
  533. batch.token + i,
  534. nullptr,
  535. batch.pos + i,
  536. batch.n_seq_id + i,
  537. batch.seq_id + i,
  538. batch.logits + i,
  539. 0, 0, 0, // unused
  540. };
  541. const int ret = llama_decode(ctx, batch_view);
  542. if (ret != 0) {
  543. LOG_TEE("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret);
  544. return false;
  545. }
  546. memcpy(batch_logits.data() + i*n_vocab, llama_get_logits(ctx), n_tokens*n_vocab*sizeof(float));
  547. }
  548. return true;
  549. }
  550. #define K_TOKEN_CHUNK 4
  551. static void compute_logprobs(const float * batch_logits, int n_vocab, std::vector<std::thread>& workers,
  552. const std::vector<std::pair<size_t, llama_token>>& eval_pairs, std::vector<float>& eval_results) {
  553. if (eval_results.size() != eval_pairs.size()) {
  554. eval_results.resize(eval_pairs.size());
  555. }
  556. if (eval_pairs.empty()) return;
  557. size_t max_threads = std::min((eval_pairs.size() + K_TOKEN_CHUNK - 1)/K_TOKEN_CHUNK, workers.size());
  558. std::atomic<int> counter(0);
  559. auto compute = [&counter, &eval_pairs, &eval_results, batch_logits, n_vocab] () {
  560. float local_logprobs[K_TOKEN_CHUNK];
  561. while (true) {
  562. size_t first = counter.fetch_add(K_TOKEN_CHUNK, std::memory_order_relaxed);
  563. if (first >= eval_results.size()) break;
  564. size_t last = std::min(first + K_TOKEN_CHUNK, eval_results.size());
  565. for (size_t i = first; i < last; ++i) {
  566. auto logits = batch_logits + eval_pairs[i].first * n_vocab;
  567. float max_logit = logits[0];
  568. for (int j = 1; j < n_vocab; ++j) {
  569. max_logit = std::max(max_logit, logits[j]);
  570. }
  571. float sum_p = 0.f;
  572. for (int j = 0; j < n_vocab; ++j) {
  573. sum_p += expf(logits[j] - max_logit);
  574. }
  575. local_logprobs[i - first] = logits[eval_pairs[i].second] - max_logit - std::log(sum_p);
  576. }
  577. std::memcpy(eval_results.data() + first, local_logprobs, (last - first)*sizeof(float));
  578. }
  579. };
  580. for (size_t it = 0; it < max_threads; ++it) {
  581. workers[it] = std::thread(compute);
  582. }
  583. for (size_t it = 0; it < max_threads; ++it) {
  584. workers[it].join();
  585. }
  586. }
  587. static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
  588. // Calculates hellaswag score (acc_norm) from prompt
  589. //
  590. // Data extracted from the HellaSwag validation dataset (MIT license) https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl
  591. // All used data fields are preprocessed as in https://github.com/EleutherAI/lm-evaluation-harness/blob/df3da98c5405deafd519c2ddca52bb7c3fe36bef/lm_eval/tasks/hellaswag.py#L62-L68
  592. //
  593. // All 10042 tasks should be extracted to keep the results standardized like other implementations.
  594. //
  595. // Datafile layout:
  596. // ['??'] denotes json fields
  597. // 6 lines per task:
  598. // ['activity_label'] + ": " +['ctx'] - The first part of the query, the context
  599. // ['label'] - The index the best common sense ending aka gold ending
  600. // ['endings'][0] - Endings added to the first part of the query
  601. // ['endings'][1]
  602. // ['endings'][2]
  603. // ['endings'][3]
  604. std::vector<std::string> prompt_lines;
  605. std::istringstream strstream(params.prompt);
  606. std::string line;
  607. while (std::getline(strstream,line,'\n')) {
  608. prompt_lines.push_back(line);
  609. }
  610. if (prompt_lines.size() % 6 != 0) {
  611. fprintf(stderr, "%s : number of lines in prompt not a multiple of 6.\n", __func__);
  612. return;
  613. }
  614. size_t hs_task_count = prompt_lines.size()/6;
  615. fprintf(stderr, "%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count);
  616. const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM;
  617. fprintf(stderr, "================================= is_spm = %d\n", is_spm);
  618. // This is needed as usual for LLaMA models
  619. const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
  620. // The tasks should be randomized so the score stabilizes quickly.
  621. bool randomize_tasks = true;
  622. // Number of tasks to use when computing the score
  623. if (params.hellaswag_tasks < hs_task_count) {
  624. hs_task_count = params.hellaswag_tasks;
  625. }
  626. // The random seed should not impact the final result if the computation is done over enough tasks, so kept hardcoded for now
  627. std::mt19937 rng(1);
  628. // Dataholder for hellaswag tasks
  629. struct hs_data_t {
  630. std::string context;
  631. size_t gold_ending_idx;
  632. std::string ending[4];
  633. size_t ending_logprob_count[4];
  634. double ending_logprob[4];
  635. size_t i_batch; // starting index in the llama_batch
  636. size_t common_prefix; // max number of initial tokens that are the same in all sentences
  637. size_t required_tokens; // needed number of tokens to evaluate all 4 endings
  638. std::vector<llama_token> seq_tokens[4];
  639. };
  640. fprintf(stderr, "%s : selecting %zu %s tasks.\n", __func__, hs_task_count, (randomize_tasks?"randomized":"the first") );
  641. // Select and read data from prompt lines
  642. std::vector<hs_data_t> hs_data(hs_task_count);
  643. for (size_t i = 0; i < hs_task_count; i++) {
  644. size_t idx = i;
  645. auto & hs_cur = hs_data[i];
  646. // Select a random example of those left in the prompt
  647. if (randomize_tasks) {
  648. std::uniform_int_distribution<size_t> dist(0, prompt_lines.size()/6-1 ) ;
  649. idx = dist(rng);
  650. }
  651. hs_cur.context = prompt_lines[idx*6];
  652. hs_cur.gold_ending_idx = std::stoi( prompt_lines[idx*6+1] );
  653. for (size_t j = 0; j < 4; j++) {
  654. hs_cur.ending[j] = prompt_lines[idx*6+2+j];
  655. hs_cur.seq_tokens[j] = ::llama_tokenize(ctx, hs_cur.context + " " + hs_cur.ending[j], add_bos);
  656. }
  657. // determine the common prefix of the endings
  658. hs_cur.common_prefix = 0;
  659. for (size_t k = 0; k < hs_cur.seq_tokens[0].size(); k++) {
  660. if (hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[1][k] ||
  661. hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[2][k] ||
  662. hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[3][k]) {
  663. break;
  664. }
  665. hs_cur.common_prefix++;
  666. }
  667. hs_cur.required_tokens = hs_cur.common_prefix +
  668. hs_cur.seq_tokens[0].size() - hs_cur.common_prefix +
  669. hs_cur.seq_tokens[1].size() - hs_cur.common_prefix +
  670. hs_cur.seq_tokens[2].size() - hs_cur.common_prefix +
  671. hs_cur.seq_tokens[3].size() - hs_cur.common_prefix;
  672. //GGML_ASSERT(hs_cur.common_prefix >= ::llama_tokenize(ctx, hs_cur.context, add_bos).size());
  673. // Delete the selected random example from the prompt
  674. if (randomize_tasks) {
  675. prompt_lines.erase( std::next(prompt_lines.begin(),idx*6) , std::next(prompt_lines.begin(),idx*6+6) );
  676. }
  677. }
  678. fprintf(stderr, "%s : calculating hellaswag score over selected tasks.\n", __func__);
  679. printf("\ntask\tacc_norm\n");
  680. double acc = 0.0f;
  681. const int n_vocab = llama_n_vocab(llama_get_model(ctx));
  682. const int n_ctx = llama_n_ctx(ctx);
  683. const int n_batch = params.n_batch;
  684. const int max_tasks_per_batch = 32;
  685. const int max_seq = 4*max_tasks_per_batch;
  686. llama_batch batch = llama_batch_init(n_ctx, 0, max_seq);
  687. std::vector<float> tok_logits(n_vocab);
  688. std::vector<float> batch_logits(n_vocab*n_ctx);
  689. std::vector<std::pair<size_t, llama_token>> eval_pairs;
  690. std::vector<float> eval_results;
  691. std::vector<std::thread> workers(std::thread::hardware_concurrency());
  692. for (size_t i0 = 0; i0 < hs_task_count; i0++) {
  693. int n_cur = 0;
  694. size_t i1 = i0;
  695. size_t i_batch = 0; // this tells us where in `llama_batch` we are currently
  696. llama_batch_clear(batch);
  697. // batch as much tasks as possible into the available context
  698. // each task has 4 unique seuqnce ids - one for each ending
  699. // the common prefix is shared among the 4 sequences to save tokens
  700. // we extract logits only from the last common token and from all ending tokens of each sequence
  701. while (n_cur + (int) hs_data[i1].required_tokens <= n_ctx) {
  702. auto & hs_cur = hs_data[i1];
  703. const int s0 = 4*(i1 - i0);
  704. if (s0 + 4 > max_seq) {
  705. break;
  706. }
  707. for (size_t i = 0; i < hs_cur.common_prefix; ++i) {
  708. llama_batch_add(batch, hs_cur.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3}, false);
  709. }
  710. batch.logits[batch.n_tokens - 1] = true; // we need logits for the last token of the common prefix
  711. for (int s = 0; s < 4; ++s) {
  712. for (size_t i = hs_cur.common_prefix; i < hs_cur.seq_tokens[s].size(); ++i) {
  713. llama_batch_add(batch, hs_cur.seq_tokens[s][i], i, { s0 + s }, true);
  714. }
  715. }
  716. hs_cur.i_batch = i_batch;
  717. i_batch += hs_cur.required_tokens;
  718. n_cur += hs_data[i1].required_tokens;
  719. if (++i1 == hs_task_count) {
  720. break;
  721. }
  722. }
  723. if (i0 == i1) {
  724. fprintf(stderr, "%s : task %zu does not fit in the context window\n", __func__, i0);
  725. return;
  726. }
  727. llama_kv_cache_clear(ctx);
  728. // decode all tasks [i0, i1)
  729. if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
  730. fprintf(stderr, "%s: llama_decode() failed\n", __func__);
  731. return;
  732. }
  733. // Compute log-probs in parallel
  734. // First we collect all tasks
  735. eval_pairs.clear();
  736. for (size_t i = i0; i < i1; ++i) {
  737. auto & hs_cur = hs_data[i];
  738. size_t li = hs_cur.common_prefix;
  739. for (int s = 0; s < 4; ++s) {
  740. for (size_t j = hs_cur.common_prefix; j < hs_cur.seq_tokens[s].size() - 1; j++) {
  741. eval_pairs.emplace_back(hs_cur.i_batch + li++, hs_cur.seq_tokens[s][j + 1]);
  742. }
  743. ++li;
  744. }
  745. }
  746. // Then we do the actual calculation
  747. compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results);
  748. size_t ir = 0;
  749. // compute the logprobs for each ending of the decoded tasks
  750. for (size_t i = i0; i < i1; ++i) {
  751. auto & hs_cur = hs_data[i];
  752. std::memcpy(tok_logits.data(), batch_logits.data() + n_vocab*(hs_cur.i_batch + hs_cur.common_prefix - 1), n_vocab*sizeof(float));
  753. const auto first_probs = softmax(tok_logits);
  754. for (int s = 0; s < 4; ++s) {
  755. hs_cur.ending_logprob_count[s] = 1;
  756. hs_cur.ending_logprob[s] = std::log(first_probs[hs_cur.seq_tokens[s][hs_cur.common_prefix]]);
  757. for (size_t j = hs_cur.common_prefix; j < hs_cur.seq_tokens[s].size() - 1; j++) {
  758. hs_cur.ending_logprob[s] += eval_results[ir++];
  759. hs_cur.ending_logprob_count[s]++;
  760. }
  761. hs_cur.ending_logprob[s] /= hs_cur.ending_logprob_count[s];
  762. }
  763. // Find the ending with maximum logprob
  764. size_t ending_logprob_max_idx = 0;
  765. double ending_logprob_max_val = hs_cur.ending_logprob[0];
  766. for (size_t s = 1; s < 4; s++) {
  767. if (hs_cur.ending_logprob[s] > ending_logprob_max_val) {
  768. ending_logprob_max_idx = s;
  769. ending_logprob_max_val = hs_cur.ending_logprob[s];
  770. }
  771. }
  772. //printf("max logprob ending idx %lu, gold ending idx %lu\n", ending_logprob_max_idx, hs_cur.gold_ending_idx);
  773. // If the gold ending got the maximum logprobe add one accuracy point
  774. if (ending_logprob_max_idx == hs_cur.gold_ending_idx) {
  775. acc += 1.0;
  776. }
  777. // Print the accumulated accuracy mean x 100
  778. printf("%zu\t%.8lf\n", i + 1, acc/double(i + 1)*100.0);
  779. fflush(stdout);
  780. }
  781. i0 = i1 - 1;
  782. }
  783. llama_batch_free(batch);
  784. printf("\n");
  785. }
  786. struct winogrande_entry {
  787. std::string first;
  788. std::string second;
  789. std::array<std::string, 2> choices;
  790. int answer;
  791. size_t i_batch;
  792. size_t common_prefix;
  793. size_t required_tokens;
  794. size_t n_base1; // number of tokens for context + choice 1
  795. size_t n_base2; // number of tokens for context + choice 2
  796. std::vector<llama_token> seq_tokens[2];
  797. };
  798. static std::vector<winogrande_entry> load_winogrande_from_csv(const std::string& prompt) {
  799. std::vector<winogrande_entry> result;
  800. std::istringstream in(prompt);
  801. std::string line;
  802. std::array<int, 4> comma_pos;
  803. while (true) {
  804. std::getline(in, line);
  805. if (in.fail() || in.eof()) break;
  806. int ipos = 0;
  807. bool quote_open = false;
  808. for (int i = 0; i < int(line.size()); ++i) {
  809. if (!quote_open) {
  810. if (line[i] == ',') {
  811. comma_pos[ipos++] = i;
  812. if (ipos == 4) break;
  813. }
  814. else if (line[i] == '"') {
  815. quote_open = true;
  816. }
  817. }
  818. else {
  819. if (line[i] == '"') {
  820. quote_open = false;
  821. }
  822. }
  823. }
  824. if (ipos != 4) {
  825. printf("%s: failed to find comma separators in <%s>\n", __func__, line.c_str());
  826. continue;
  827. }
  828. auto sentence = line[comma_pos[0]+1] == '"' ? line.substr(comma_pos[0]+2, comma_pos[1] - comma_pos[0] - 3)
  829. : line.substr(comma_pos[0]+1, comma_pos[1] - comma_pos[0] - 1);
  830. auto choice1 = line.substr(comma_pos[1]+1, comma_pos[2] - comma_pos[1] - 1);
  831. auto choice2 = line.substr(comma_pos[2]+1, comma_pos[3] - comma_pos[2] - 1);
  832. auto answer = line.substr(comma_pos[3]+1, line.size() - comma_pos[3] - 1);
  833. auto index = line.substr(0, comma_pos[0]);
  834. int where = 0;
  835. for ( ; where < int(sentence.size()); ++where) {
  836. if (sentence[where] == '_') break;
  837. }
  838. if (where == int(sentence.size())) {
  839. printf("%s: no _ in <%s>\n", __func__, sentence.c_str());
  840. continue;
  841. }
  842. std::istringstream stream(answer.c_str());
  843. int i_answer; stream >> i_answer;
  844. if (stream.fail() || i_answer < 1 || i_answer > 2) {
  845. printf("%s: failed to parse answer <%s>\n", __func__, answer.c_str());
  846. continue;
  847. }
  848. result.emplace_back();
  849. auto& wg = result.back();
  850. wg.first = sentence.substr(0, where);
  851. wg.second = sentence.substr(where + 1, sentence.size() - where - 1);
  852. wg.choices[0] = std::move(choice1);
  853. wg.choices[1] = std::move(choice2);
  854. wg.answer = i_answer;
  855. }
  856. return result;
  857. }
  858. /*
  859. * Evaluates the Winogrande score.
  860. * Uses a CSV containing task index, dentence, choice 1, choice 2, answer (1 or 2)
  861. * You can get one such dataset from e.g. https://huggingface.co/datasets/ikawrakow/winogrande-eval-for-llama.cpp
  862. * As an example, the 1st row in the above dataset is
  863. *
  864. * 0,Sarah was a much better surgeon than Maria so _ always got the easier cases.,Sarah,Maria,2
  865. *
  866. */
  867. static void winogrande_score(llama_context * ctx, const gpt_params & params) {
  868. constexpr int k_min_trailing_ctx = 3;
  869. auto data = load_winogrande_from_csv(params.prompt);
  870. if (data.empty()) {
  871. fprintf(stderr, "%s: no tasks\n", __func__);
  872. return;
  873. }
  874. fprintf(stderr, "%s : loaded %zu tasks from prompt.\n", __func__, data.size());
  875. if (params.winogrande_tasks > 0 && params.winogrande_tasks < data.size()) {
  876. fprintf(stderr, "%s : selecting %zu random tasks\n", __func__, params.winogrande_tasks);
  877. std::mt19937 rng(1);
  878. std::vector<int> aux(data.size());
  879. for (int i = 0; i < int(data.size()); ++i) {
  880. aux[i] = i;
  881. }
  882. float scale = 1/(1.f + (float)rng.max());
  883. std::vector<winogrande_entry> selected;
  884. selected.resize(params.winogrande_tasks);
  885. for (int i = 0; i < int(params.winogrande_tasks); ++i) {
  886. int j = int(scale*rng()*aux.size());
  887. selected[i] = std::move(data[aux[j]]);
  888. aux[j] = aux.back();
  889. aux.pop_back();
  890. }
  891. data = std::move(selected);
  892. }
  893. fprintf(stderr, "%s : tokenizing selected tasks\n", __func__);
  894. // This is needed as usual for LLaMA models
  895. const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
  896. for (auto & task : data) {
  897. task.seq_tokens[0] = ::llama_tokenize(ctx, task.first + task.choices[0] + task.second, add_bos);
  898. task.seq_tokens[1] = ::llama_tokenize(ctx, task.first + task.choices[1] + task.second, add_bos);
  899. task.common_prefix = 0;
  900. for (size_t k = 0; k < task.seq_tokens[0].size(); k++) {
  901. if (task.seq_tokens[0][k] != task.seq_tokens[1][k]) {
  902. break;
  903. }
  904. task.common_prefix++;
  905. }
  906. task.required_tokens = task.common_prefix +
  907. task.seq_tokens[0].size() - task.common_prefix +
  908. task.seq_tokens[1].size() - task.common_prefix;
  909. task.n_base1 = ::llama_tokenize(ctx, task.first + task.choices[0], add_bos).size();
  910. task.n_base2 = ::llama_tokenize(ctx, task.first + task.choices[1], add_bos).size();
  911. }
  912. fprintf(stderr, "%s : calculating winogrande score over selected tasks.\n", __func__);
  913. const int n_vocab = llama_n_vocab(llama_get_model(ctx));
  914. const int n_ctx = llama_n_ctx(ctx);
  915. const int n_batch = params.n_batch;
  916. const int max_tasks_per_batch = 128;
  917. const int max_seq = 2*max_tasks_per_batch;
  918. llama_batch batch = llama_batch_init(n_ctx, 0, max_seq);
  919. std::vector<float> tok_logits(n_vocab);
  920. std::vector<float> batch_logits(n_vocab*n_ctx);
  921. std::vector<std::pair<size_t, llama_token>> eval_pairs;
  922. std::vector<float> eval_results;
  923. std::vector<std::thread> workers(std::thread::hardware_concurrency());
  924. int n_correct = 0;
  925. int n_done = 0;
  926. for (size_t i0 = 0; i0 < data.size(); i0++) {
  927. int n_cur = 0;
  928. size_t i1 = i0;
  929. size_t i_batch = 0;
  930. llama_batch_clear(batch);
  931. while (n_cur + (int) data[i1].required_tokens <= n_ctx) {
  932. const int s0 = 2*(i1 - i0);
  933. if (s0 + 2 > max_seq) {
  934. break;
  935. }
  936. for (size_t i = 0; i < data[i1].common_prefix; ++i) {
  937. llama_batch_add(batch, data[i1].seq_tokens[0][i], i, { s0 + 0, s0 + 1}, false);
  938. }
  939. batch.logits[batch.n_tokens - 1] = true;
  940. for (int s = 0; s < 2; ++s) {
  941. for (size_t i = data[i1].common_prefix; i < data[i1].seq_tokens[s].size(); ++i) {
  942. llama_batch_add(batch, data[i1].seq_tokens[s][i], i, { s0 + s }, true);
  943. }
  944. }
  945. data[i1].i_batch = i_batch;
  946. i_batch += data[i1].required_tokens;
  947. n_cur += data[i1].required_tokens;
  948. if (++i1 == data.size()) {
  949. break;
  950. }
  951. }
  952. if (i0 == i1) {
  953. fprintf(stderr, "%s : task %zu does not fit in the context window\n", __func__, i0);
  954. return;
  955. }
  956. llama_kv_cache_clear(ctx);
  957. // decode all tasks [i0, i1)
  958. if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
  959. fprintf(stderr, "%s: llama_decode() failed\n", __func__);
  960. return;
  961. }
  962. eval_pairs.clear();
  963. for (size_t i = i0; i < i1; ++i) {
  964. auto & task = data[i];
  965. const bool skip_choice =
  966. task.seq_tokens[0].size() - task.common_prefix > k_min_trailing_ctx &&
  967. task.seq_tokens[1].size() - task.common_prefix > k_min_trailing_ctx;
  968. const auto& n_base1 = skip_choice ? task.n_base1 : task.common_prefix;
  969. const int last_1st = task.seq_tokens[0].size() - n_base1 > 1 ? 1 : 0;
  970. size_t li = n_base1 - 1;
  971. for (size_t j = n_base1-1; j < task.seq_tokens[0].size()-1-last_1st; ++j) {
  972. eval_pairs.emplace_back(task.i_batch + li++, task.seq_tokens[0][j+1]);
  973. }
  974. const auto& n_base2 = skip_choice ? task.n_base2 : task.common_prefix;
  975. const int last_2nd = task.seq_tokens[1].size() - n_base2 > 1 ? 1 : 0;
  976. li = task.seq_tokens[0].size() - task.common_prefix + n_base2 - 1;
  977. for (size_t j = n_base2-1; j < task.seq_tokens[1].size()-1-last_2nd; ++j) {
  978. eval_pairs.emplace_back(task.i_batch + li++, task.seq_tokens[1][j+1]);
  979. }
  980. }
  981. compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results);
  982. size_t ir = 0;
  983. for (size_t i = i0; i < i1; ++i) {
  984. auto & task = data[i];
  985. const bool skip_choice =
  986. task.seq_tokens[0].size() - task.common_prefix > k_min_trailing_ctx &&
  987. task.seq_tokens[1].size() - task.common_prefix > k_min_trailing_ctx;
  988. float score_1st = 0;
  989. const auto& n_base1 = skip_choice ? task.n_base1 : task.common_prefix;
  990. const int last_1st = task.seq_tokens[0].size() - n_base1 > 1 ? 1 : 0;
  991. for (size_t j = n_base1-1; j < task.seq_tokens[0].size()-1-last_1st; ++j) {
  992. score_1st += eval_results[ir++];
  993. }
  994. score_1st /= (task.seq_tokens[0].size() - n_base1 - last_1st);
  995. float score_2nd = 0;
  996. const auto& n_base2 = skip_choice ? task.n_base2 : task.common_prefix;
  997. const int last_2nd = task.seq_tokens[1].size() - n_base2 > 1 ? 1 : 0;
  998. for (size_t j = n_base2-1; j < task.seq_tokens[1].size()-1-last_2nd; ++j) {
  999. score_2nd += eval_results[ir++];
  1000. }
  1001. score_2nd /= (task.seq_tokens[1].size() - n_base2 - last_2nd);
  1002. int result = score_1st > score_2nd ? 1 : 2;
  1003. if (result == task.answer) {
  1004. ++n_correct;
  1005. }
  1006. ++n_done;
  1007. // print the accumulated accuracy mean x 100
  1008. printf("%zu\t%.4lf\t%10.6f %10.6f %d %d\n", i+1, 100.0 * n_correct/n_done, score_1st, score_2nd, result, task.answer);
  1009. fflush(stdout);
  1010. }
  1011. i0 = i1 - 1;
  1012. }
  1013. printf("\n");
  1014. if (n_done < 100) return;
  1015. const float p = 1.f*n_correct/n_done;
  1016. const float sigma = 100.f*sqrt(p*(1-p)/(n_done-1));
  1017. printf("Final Winogrande score(%d tasks): %.4lf +/- %.4lf\n", n_done, 100*p, sigma);
  1018. }
  1019. static bool deserialize_string(std::istream & in, std::string & str) {
  1020. uint32_t size;
  1021. if (!in.read((char *)&size, sizeof(size)).fail()) {
  1022. str.resize(size);
  1023. if (!in.read((char *)&str[0], size).fail()) return true;
  1024. }
  1025. return false;
  1026. }
  1027. struct multiple_choice_answers {
  1028. std::vector<std::string> answers;
  1029. std::vector<int> labels;
  1030. bool deserialize(std::istream& in) {
  1031. uint32_t n;
  1032. in.read((char *)&n, sizeof(n));
  1033. if (in.fail() || n > 100) return false; // 100 as max. number of answers should be good enough for any practical purpose
  1034. answers.resize(n);
  1035. labels.resize(n);
  1036. for (auto& a : answers) {
  1037. if (!deserialize_string(in, a)) return false;
  1038. }
  1039. in.read((char *)labels.data(), n*sizeof(int));
  1040. return !in.fail();
  1041. }
  1042. };
  1043. struct multiple_choice_task {
  1044. std::string question; // the question (or context that needs to be continued)
  1045. multiple_choice_answers mc1; // possible answers (continuations) with a single correct answer
  1046. multiple_choice_answers mc2; // possible answers (continuations) with multiple correct answers - not handled yet
  1047. bool deserialize(std::istream& in) {
  1048. if (!deserialize_string(in, question)) return false;
  1049. return mc1.deserialize(in) && mc2.deserialize(in);
  1050. }
  1051. // For evaluation
  1052. size_t i_batch; // starting index in the llama_batch
  1053. size_t common_prefix; // max number of initial tokens that are the same in all sentences
  1054. size_t required_tokens; // needed number of tokens to evaluate all answers
  1055. std::vector<std::vector<llama_token>> seq_tokens;
  1056. std::vector<float> log_probs;
  1057. };
  1058. static bool multiple_choice_prepare_one_task(llama_context * ctx, bool add_bos, multiple_choice_task& task, bool log_error) {
  1059. if (task.question.empty() || task.mc1.answers.empty()) {
  1060. if (log_error) {
  1061. printf("%s: found bad task with empty question and/or answers\n", __func__);
  1062. }
  1063. return false;
  1064. }
  1065. task.seq_tokens.reserve(task.mc1.answers.size());
  1066. for (auto& answer : task.mc1.answers) {
  1067. if (answer.empty()) {
  1068. if (log_error) {
  1069. printf("%s: found empty answer\n", __func__);
  1070. }
  1071. return false;
  1072. }
  1073. task.seq_tokens.emplace_back(::llama_tokenize(ctx, task.question + " " + answer, add_bos));
  1074. }
  1075. auto min_len = task.seq_tokens.front().size();
  1076. for (auto& seq : task.seq_tokens) {
  1077. min_len = std::min(min_len, seq.size());
  1078. }
  1079. task.common_prefix = 0;
  1080. for (size_t k = 0; k < min_len; ++k) {
  1081. auto token = task.seq_tokens[0][k];
  1082. bool all_same = true;
  1083. for (size_t i = 1; i < task.seq_tokens.size(); ++i) {
  1084. if (task.seq_tokens[i][k] != token) {
  1085. all_same = false;
  1086. break;
  1087. }
  1088. }
  1089. if (!all_same) {
  1090. break;
  1091. }
  1092. ++task.common_prefix;
  1093. }
  1094. task.required_tokens = task.common_prefix;
  1095. for (auto& seq : task.seq_tokens) {
  1096. task.required_tokens += seq.size() - task.common_prefix;
  1097. }
  1098. return true;
  1099. }
  1100. //
  1101. // Calculates score for multiple choice tasks with single correct answer from prompt.
  1102. // Commonly used LLM evaluation metrics of this type are
  1103. // * ARC
  1104. // * HellaSwag
  1105. // * MMLU
  1106. // * TruthfulQA
  1107. //
  1108. // Validation datasets for these 4 tests can be found at
  1109. // https://huggingface.co/datasets/ikawrakow/validation-datasets-for-llama.cpp
  1110. // The data for these datasets was extracted from
  1111. // git@hf.co:datasets/allenai/ai2_arc
  1112. // https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl
  1113. // git@hf.co:datasets/Stevross/mmlu
  1114. // https://huggingface.co/datasets/truthful_qa
  1115. //
  1116. static void multiple_choice_score(llama_context * ctx, const gpt_params & params) {
  1117. std::istringstream strstream(params.prompt);
  1118. uint32_t n_task;
  1119. strstream.read((char *)&n_task, sizeof(n_task));
  1120. if (strstream.fail() || n_task == 0) {
  1121. printf("%s: no tasks\n", __func__);
  1122. return;
  1123. }
  1124. printf("%s: there are %u tasks in prompt\n", __func__, n_task);
  1125. std::vector<uint32_t> task_pos(n_task);
  1126. strstream.read((char *)task_pos.data(), task_pos.size()*sizeof(uint32_t));
  1127. if (strstream.fail()) {
  1128. printf("%s: failed to raad task positions from prompt\n", __func__);
  1129. return;
  1130. }
  1131. std::vector<multiple_choice_task> tasks;
  1132. if (params.multiple_choice_tasks == 0 || params.multiple_choice_tasks >= (size_t)n_task) {
  1133. // Use all tasks
  1134. tasks.resize(n_task);
  1135. printf("%s: reading tasks", __func__);
  1136. int n_dot = n_task/100;
  1137. int i = 0;
  1138. for (auto& task : tasks) {
  1139. ++i;
  1140. if (!task.deserialize(strstream)) {
  1141. printf("%s: failed to read task %d of %u\n", __func__, i, n_task);
  1142. return;
  1143. }
  1144. if (i%n_dot == 0) printf(".");
  1145. }
  1146. printf("done\n");
  1147. }
  1148. else {
  1149. printf("%s: selecting %zu random tasks from %u tasks available\n", __func__, params.multiple_choice_tasks, n_task);
  1150. std::mt19937 rng(1);
  1151. std::vector<int> aux(n_task);
  1152. for (uint32_t i = 0; i < n_task; ++i) aux[i] = i;
  1153. float scale = 1.f/(1.f + (float)std::mt19937::max());
  1154. tasks.resize(params.multiple_choice_tasks);
  1155. for (auto& task : tasks) {
  1156. int j = (int)(scale * rng() * aux.size());
  1157. int idx = aux[j];
  1158. aux[j] = aux.back();
  1159. aux.pop_back();
  1160. strstream.seekg(task_pos[idx], std::ios::beg);
  1161. if (!task.deserialize(strstream)) {
  1162. printf("%s: failed to read task %d at position %u\n", __func__, idx, task_pos[idx]);
  1163. return;
  1164. }
  1165. }
  1166. n_task = params.multiple_choice_tasks;
  1167. }
  1168. // This is needed as usual for LLaMA models
  1169. const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
  1170. printf("%s: preparing task data", __func__);
  1171. fflush(stdout);
  1172. if (n_task > 500) {
  1173. printf("...");
  1174. fflush(stdout);
  1175. std::atomic<int> counter(0);
  1176. std::atomic<int> n_bad(0);
  1177. auto prepare = [&counter, &n_bad, &tasks, ctx, add_bos] () {
  1178. int num_tasks = tasks.size();
  1179. int n_bad_local = 0;
  1180. while (true) {
  1181. int first = counter.fetch_add(K_TOKEN_CHUNK);
  1182. if (first >= num_tasks) {
  1183. if (n_bad_local > 0) n_bad += n_bad_local;
  1184. break;
  1185. }
  1186. int last = std::min(first + K_TOKEN_CHUNK, num_tasks);
  1187. for (int i = first; i < last; ++i) {
  1188. if (!multiple_choice_prepare_one_task(ctx, add_bos, tasks[i], false)) ++n_bad_local;
  1189. }
  1190. }
  1191. };
  1192. size_t max_thread = std::thread::hardware_concurrency();
  1193. max_thread = std::min(max_thread, (tasks.size() + K_TOKEN_CHUNK - 1)/K_TOKEN_CHUNK);
  1194. std::vector<std::thread> workers(max_thread-1);
  1195. for (auto& w : workers) w = std::thread(prepare);
  1196. prepare();
  1197. for (auto& w : workers) w.join();
  1198. printf("done\n");
  1199. fflush(stdout);
  1200. int nbad = n_bad;
  1201. if (nbad > 0) {
  1202. printf("%s: found %d malformed tasks\n", __func__, nbad);
  1203. return;
  1204. }
  1205. } else {
  1206. int n_dot = n_task/100;
  1207. int i_task = 0;
  1208. for (auto& task : tasks) {
  1209. ++i_task;
  1210. if (!multiple_choice_prepare_one_task(ctx, add_bos, task, true)) {
  1211. return;
  1212. }
  1213. if (i_task%n_dot == 0) {
  1214. printf(".");
  1215. fflush(stdout);
  1216. }
  1217. }
  1218. printf("done\n");
  1219. }
  1220. printf("%s : calculating TruthfulQA score over %zu tasks.\n", __func__, tasks.size());
  1221. printf("\ntask\tacc_norm\n");
  1222. const int n_vocab = llama_n_vocab(llama_get_model(ctx));
  1223. const int n_ctx = llama_n_ctx(ctx);
  1224. const int n_batch = params.n_batch;
  1225. const int max_tasks_per_batch = 32;
  1226. const int max_seq = 4*max_tasks_per_batch;
  1227. llama_batch batch = llama_batch_init(n_ctx, 0, max_seq);
  1228. std::vector<float> tok_logits(n_vocab);
  1229. std::vector<float> batch_logits(n_vocab*n_ctx);
  1230. std::vector<std::pair<size_t, llama_token>> eval_pairs;
  1231. std::vector<float> eval_results;
  1232. std::vector<std::thread> workers(std::thread::hardware_concurrency());
  1233. std::vector<int> batch_indeces;
  1234. int n_done = 0;
  1235. int n_correct = 0;
  1236. int n_tot_answers = 0;
  1237. for (size_t i0 = 0; i0 < tasks.size(); i0++) {
  1238. int n_cur = 0;
  1239. size_t i1 = i0;
  1240. size_t i_batch = 0; // this tells us where in `llama_batch` we are currently
  1241. llama_batch_clear(batch);
  1242. // batch as much tasks as possible into the available context
  1243. // each task has 4 unique seuqnce ids - one for each ending
  1244. // the common prefix is shared among the 4 sequences to save tokens
  1245. // we extract logits only from the last common token and from all ending tokens of each sequence
  1246. int s0 = 0;
  1247. while (n_cur + (int) tasks[i1].required_tokens <= n_ctx) {
  1248. auto& cur_task = tasks[i1];
  1249. int num_answers = cur_task.seq_tokens.size();
  1250. if (s0 + num_answers > max_seq) {
  1251. break;
  1252. }
  1253. if (int(batch_indeces.size()) != num_answers) {
  1254. batch_indeces.resize(num_answers);
  1255. }
  1256. for (int s = 0; s < num_answers; ++s) batch_indeces[s] = s0 + s;
  1257. for (size_t i = 0; i < cur_task.common_prefix; ++i) {
  1258. //llama_batch_add(batch, cur_task.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3}, false);
  1259. llama_batch_add(batch, cur_task.seq_tokens[0][i], i, batch_indeces, false);
  1260. }
  1261. batch.logits[batch.n_tokens - 1] = true; // we need logits for the last token of the common prefix
  1262. for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) {
  1263. for (size_t i = cur_task.common_prefix; i < cur_task.seq_tokens[s].size(); ++i) {
  1264. llama_batch_add(batch, cur_task.seq_tokens[s][i], i, { s0 + s }, true);
  1265. }
  1266. }
  1267. s0 += num_answers;
  1268. cur_task.i_batch = i_batch;
  1269. i_batch += cur_task.required_tokens;
  1270. n_cur += cur_task.required_tokens;
  1271. if (++i1 == tasks.size()) {
  1272. break;
  1273. }
  1274. }
  1275. if (i0 == i1) {
  1276. fprintf(stderr, "%s : task %zu does not fit in the context window\n", __func__, i0);
  1277. return;
  1278. }
  1279. llama_kv_cache_clear(ctx);
  1280. // decode all tasks [i0, i1)
  1281. if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
  1282. fprintf(stderr, "%s: llama_decode() failed\n", __func__);
  1283. return;
  1284. }
  1285. // Compute log-probs in parallel
  1286. // First we collect all tasks
  1287. eval_pairs.clear();
  1288. for (size_t i = i0; i < i1; ++i) {
  1289. auto& cur_task = tasks[i];
  1290. size_t li = cur_task.common_prefix;
  1291. for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) {
  1292. for (size_t j = cur_task.common_prefix; j < cur_task.seq_tokens[s].size() - 1; j++) {
  1293. eval_pairs.emplace_back(cur_task.i_batch + li++, cur_task.seq_tokens[s][j + 1]);
  1294. }
  1295. ++li;
  1296. }
  1297. }
  1298. // Then we do the actual calculation
  1299. compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results);
  1300. size_t ir = 0;
  1301. // compute the logprobs for each ending of the decoded tasks
  1302. for (size_t i = i0; i < i1; ++i) {
  1303. auto & cur_task = tasks[i];
  1304. //printf("==== Evaluating <%s> with correct answer ", cur_task.question.c_str());
  1305. //for (int j = 0; j < int(cur_task.mc1.labels.size()); ++j) {
  1306. // if (cur_task.mc1.labels[j] == 1) {
  1307. // printf("%d", j+1);
  1308. // }
  1309. //}
  1310. //printf("\n common_prefix: %zu\n", cur_task.common_prefix);
  1311. std::memcpy(tok_logits.data(), batch_logits.data() + n_vocab*(cur_task.i_batch + cur_task.common_prefix - 1), n_vocab*sizeof(float));
  1312. const auto first_probs = softmax(tok_logits);
  1313. cur_task.log_probs.resize(cur_task.seq_tokens.size());
  1314. for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) {
  1315. size_t count = 1;
  1316. float log_prob = std::log(first_probs[cur_task.seq_tokens[s][cur_task.common_prefix]]);
  1317. for (size_t j = cur_task.common_prefix; j < cur_task.seq_tokens[s].size() - 1; j++) {
  1318. //printf(" %zu %g\n", ir, eval_results[ir]);
  1319. ++count;
  1320. log_prob += eval_results[ir++];
  1321. }
  1322. cur_task.log_probs[s] = log_prob / count;
  1323. //printf(" Final: %g\n", log_prob / count);
  1324. //printf(" <%s> : %g\n", cur_task.mc1.answers[s].c_str(), log_prob/count);
  1325. }
  1326. // Find the ending with maximum logprob
  1327. size_t logprob_max_idx = 0;
  1328. float logprob_max_val = cur_task.log_probs[0];
  1329. for (size_t s = 1; s < cur_task.log_probs.size(); s++) {
  1330. if (cur_task.log_probs[s] > logprob_max_val) {
  1331. logprob_max_val = cur_task.log_probs[s];
  1332. logprob_max_idx = s;
  1333. }
  1334. }
  1335. n_tot_answers += cur_task.log_probs.size();
  1336. if (cur_task.mc1.labels[logprob_max_idx] == 1) {
  1337. ++n_correct;
  1338. }
  1339. ++n_done;
  1340. // Print the accumulated accuracy mean x 100
  1341. printf("%d\t%.8lf\n", n_done, 100.*n_correct/n_done);
  1342. fflush(stdout);
  1343. }
  1344. i0 = i1 - 1;
  1345. }
  1346. llama_batch_free(batch);
  1347. if (n_done < 100) return;
  1348. float p = 1.f*n_correct/n_done;
  1349. float sigma = sqrt(p*(1-p)/(n_done-1));
  1350. printf("\n Final result: %.4f +/- %.4f\n", 100.f*p, 100.f*sigma);
  1351. p = 1.f*n_done/n_tot_answers;
  1352. sigma = sqrt(p*(1-p)/(n_done-1));
  1353. printf("Random chance: %.4f +/- %.4f\n", 100.f*p, 100.f*sigma);
  1354. printf("\n");
  1355. }
  1356. static void kl_divergence(llama_context * ctx, const gpt_params & params) {
  1357. if (params.logits_file.empty()) {
  1358. fprintf(stderr, "%s: you must provide a name of a file containing the log probabilities of the base model\n", __func__);
  1359. return;
  1360. }
  1361. std::ifstream in(params.logits_file.c_str(), std::ios::binary);
  1362. if (!in) {
  1363. fprintf(stderr, "%s: failed to open %s\n", __func__, params.logits_file.c_str());
  1364. return;
  1365. }
  1366. {
  1367. char check[9]; check[8] = 0;
  1368. in.read(check, 8);
  1369. if (in.fail() || strncmp("_logits_", check, 8) != 0) {
  1370. fprintf(stderr, "%s: %s does not look like a file containing log-probabilities\n", __func__, params.logits_file.c_str());
  1371. return;
  1372. }
  1373. }
  1374. uint32_t n_ctx;
  1375. in.read((char *)&n_ctx, sizeof(n_ctx));
  1376. if (n_ctx > llama_n_ctx(ctx)) {
  1377. fprintf(stderr, "%s: %s has been computed with %u, while the current context is %d. Increase it with -c and retry\n",
  1378. __func__, params.logits_file.c_str(), n_ctx, params.n_ctx);
  1379. }
  1380. int n_vocab, n_chunk;
  1381. in.read((char *)&n_vocab, sizeof(n_vocab));
  1382. in.read((char *)&n_chunk, sizeof(n_chunk));
  1383. if (in.fail()) {
  1384. fprintf(stderr, "%s: failed reading n_vocab, n_chunk from %s\n", __func__, params.logits_file.c_str());
  1385. return;
  1386. }
  1387. if (n_vocab != llama_n_vocab(llama_get_model(ctx))) {
  1388. fprintf(stderr, "%s: inconsistent vocabulary (%d vs %d)\n", __func__, n_vocab, llama_n_vocab(llama_get_model(ctx)));
  1389. }
  1390. std::vector<llama_token> tokens(n_ctx * n_chunk);
  1391. if (in.read((char *)tokens.data(), tokens.size()*sizeof(tokens[0])).fail()) {
  1392. fprintf(stderr, "%s: failed reading evaluation tokens from %s\n", __func__, params.logits_file.c_str());
  1393. return;
  1394. }
  1395. const int n_batch = params.n_batch;
  1396. const int num_batches = (n_ctx + n_batch - 1)/n_batch;
  1397. const int nv = 2*((n_vocab + 1)/2) + 4;
  1398. const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
  1399. std::vector<uint16_t> log_probs_uint16(size_t(n_ctx - 1 - n_ctx/2) * nv);
  1400. std::vector<float> kld_values(size_t(n_ctx - 1 - n_ctx/2)*n_chunk);
  1401. std::vector<float> logits;
  1402. if (num_batches > 1) {
  1403. logits.reserve(n_ctx * n_vocab);
  1404. }
  1405. std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
  1406. auto mean_and_uncertainty = [] (double sum, double sum2, size_t count) {
  1407. if (count < 1) {
  1408. return std::make_pair(0., 0.);
  1409. }
  1410. double f = sum/count;
  1411. double df = sum2/count - f*f;
  1412. df = df > 0 && count > 10 ? sqrt(df/(count-1)) : 0.;
  1413. return std::make_pair(f, df);
  1414. };
  1415. kl_divergence_result kld;
  1416. auto kld_ptr = kld_values.data();
  1417. for (int i = 0; i < n_chunk; ++i) {
  1418. const int start = i * n_ctx;
  1419. const int end = start + n_ctx;
  1420. const auto t_start = std::chrono::high_resolution_clock::now();
  1421. if (in.read((char *)log_probs_uint16.data(), log_probs_uint16.size()*sizeof(uint16_t)).fail()) {
  1422. fprintf(stderr, "%s: failed reading log-probs for chunk %d\n", __func__, i);
  1423. return;
  1424. }
  1425. // clear the KV cache
  1426. llama_kv_cache_clear(ctx);
  1427. for (int j = 0; j < num_batches; ++j) {
  1428. const int batch_start = start + j * n_batch;
  1429. const int batch_size = std::min(end - batch_start, n_batch);
  1430. // save original token and restore it after eval
  1431. const auto token_org = tokens[batch_start];
  1432. // add BOS token for the first batch of each chunk
  1433. if (add_bos && j == 0) {
  1434. tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
  1435. }
  1436. if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
  1437. fprintf(stderr, "%s : failed to eval\n", __func__);
  1438. return;
  1439. }
  1440. // restore the original token in case it was set to BOS
  1441. tokens[batch_start] = token_org;
  1442. if (num_batches > 1) {
  1443. const auto * batch_logits = llama_get_logits(ctx);
  1444. logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
  1445. }
  1446. }
  1447. const auto t_end = std::chrono::high_resolution_clock::now();
  1448. if (i == 0) {
  1449. const float t_total = std::chrono::duration<float>(t_end - t_start).count();
  1450. fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
  1451. int total_seconds = (int)(t_total * n_chunk);
  1452. if (total_seconds >= 60*60) {
  1453. fprintf(stderr, "%d hours ", total_seconds / (60*60));
  1454. total_seconds = total_seconds % (60*60);
  1455. }
  1456. fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
  1457. printf("\nchunk PPL ln(PPL(Q)/PPL(base)) KL-Divergence Same top\n");
  1458. }
  1459. const int first = n_ctx/2;
  1460. const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx);
  1461. process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
  1462. workers, log_probs_uint16, kld, kld_ptr);
  1463. kld_ptr += n_ctx - 1 - first;
  1464. auto ppl = mean_and_uncertainty(kld.sum_nll, kld.sum_nll2, kld.count);
  1465. auto log_ppl_ratio = mean_and_uncertainty(kld.sum_nll_diff, kld.sum_nll_diff2, kld.count);
  1466. auto kl_div = mean_and_uncertainty(kld.sum_kld, kld.sum_kld2, kld.count);
  1467. auto p_top = 1.*kld.n_same_top/kld.count;
  1468. auto d_p_top = sqrt(p_top*(1 - p_top)/(kld.count - 1));
  1469. printf("%4d %10.4lf %10.5lf ± %10.5f %10.5f ± %10.5lf %.5f ± %.5f\n", i+1, exp(ppl.first),
  1470. log_ppl_ratio.first, log_ppl_ratio.second, kl_div.first, kl_div.second,
  1471. p_top, d_p_top);
  1472. fflush(stdout);
  1473. logits.clear();
  1474. }
  1475. printf("\n");
  1476. if (kld.count < 100) return; // we do not wish to do statistics on so few values
  1477. std::sort(kld_values.begin(), kld_values.end());
  1478. printf("===== KL-divergence statistics\n");
  1479. auto kl_div = mean_and_uncertainty(kld.sum_kld, kld.sum_kld2, kld.count);
  1480. printf("Average: %10.6f ±%10.6lf\n", kl_div.first, kl_div.second);
  1481. auto kld_median = kld_values.size()%2 == 0 ? 0.5f*(kld_values[kld_values.size()/2] + kld_values[kld_values.size()/2-1])
  1482. : kld_values[kld_values.size()/2];
  1483. printf("Median : %10.6f\n", kld_median);
  1484. auto percentile = [&kld_values] (float fraction) {
  1485. if (fraction <= 0) return kld_values.front();
  1486. if (fraction >= 1) return kld_values.back();
  1487. float p = fraction*(kld_values.size() - 1);
  1488. size_t ip = size_t(p); p -= ip;
  1489. return (1 - p)*kld_values[ip] + p*kld_values[std::min(ip+1, kld_values.size()-1)];
  1490. };
  1491. printf("Maximum: %10.6f\n", kld_values.back());
  1492. printf("KLD_99 : %10.6f\n", percentile(0.99f));
  1493. printf("KLD_95 : %10.6f\n", percentile(0.95f));
  1494. printf("KLD_90 : %10.6f\n", percentile(0.90f));
  1495. printf("Minimum: %10.6f\n", kld_values.front());
  1496. printf("KLD_01 : %10.6f\n", percentile(0.01f));
  1497. printf("KLD_05 : %10.6f\n", percentile(0.05f));
  1498. printf("KLD_10 : %10.6f\n", percentile(0.10f));
  1499. }
  1500. int main(int argc, char ** argv) {
  1501. gpt_params params;
  1502. params.n_batch = 512;
  1503. if (!gpt_params_parse(argc, argv, params)) {
  1504. return 1;
  1505. }
  1506. params.logits_all = true;
  1507. params.n_batch = std::min(params.n_batch, params.n_ctx);
  1508. if (params.ppl_stride > 0) {
  1509. fprintf(stderr, "Will perform strided perplexity calculation -> adjusting context size from %d to %d\n",
  1510. params.n_ctx, params.n_ctx + params.ppl_stride/2);
  1511. params.n_ctx += params.ppl_stride/2;
  1512. }
  1513. print_build_info();
  1514. if (params.seed == LLAMA_DEFAULT_SEED) {
  1515. params.seed = time(NULL);
  1516. }
  1517. fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
  1518. std::mt19937 rng(params.seed);
  1519. if (params.random_prompt) {
  1520. params.prompt = gpt_random_prompt(rng);
  1521. }
  1522. llama_backend_init();
  1523. llama_numa_init(params.numa);
  1524. llama_model * model;
  1525. llama_context * ctx;
  1526. // load the model and apply lora adapter, if any
  1527. std::tie(model, ctx) = llama_init_from_gpt_params(params);
  1528. if (model == NULL) {
  1529. fprintf(stderr, "%s: error: unable to load model\n", __func__);
  1530. return 1;
  1531. }
  1532. const int n_ctx_train = llama_n_ctx_train(model);
  1533. if (params.n_ctx > n_ctx_train) {
  1534. fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
  1535. __func__, n_ctx_train, params.n_ctx);
  1536. }
  1537. // print system information
  1538. {
  1539. fprintf(stderr, "\n");
  1540. fprintf(stderr, "%s\n", get_system_info(params).c_str());
  1541. }
  1542. struct results_perplexity results;
  1543. if (params.hellaswag) {
  1544. hellaswag_score(ctx, params);
  1545. } else if (params.winogrande) {
  1546. winogrande_score(ctx, params);
  1547. } else if (params.multiple_choice) {
  1548. multiple_choice_score(ctx, params);
  1549. } else if (params.kl_divergence) {
  1550. kl_divergence(ctx, params);
  1551. } else {
  1552. results = perplexity(ctx, params);
  1553. }
  1554. llama_print_timings(ctx);
  1555. write_logfile(ctx, params, model, results);
  1556. llama_free(ctx);
  1557. llama_free_model(model);
  1558. llama_backend_free();
  1559. return 0;
  1560. }